Theoretical and Experimental Stress Analyses of ORNL Thin-Shell Cylinder-to-Cylinder Model 2

R. C. Gwaltney S. E. Bolt J. W. Bryson

BLANK PAGE

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia ??161 Price: Printed Copy \$7.60; Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

1 1

「ういろのないのを見る、神神神を、たちやくなるのでいたないとうないない

ORNL-5021 NRC-1, -5 「「「「「「「「」」」」

Superior Science

いきまたから いたまでものなかい いたいいない たいないないないないない ないのでき ちょうちょうまん ちょうちょう

WUMTED

Contract No. W-7405-eng-26

Contraction of the

Reactor Division

THEORETICAL AND EXPERIMENTAL STRESS ANALYSES OF ORNL THIN-SHELL CYLINDER-TO-CYLINDER MODEL 2

R. C. Gwaltney S. E. Bolt J. W. Bryson

OCTOBER 1975

OAK RIDGE NATIONAL LABORATORY Oak Kidge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

ULL TR SUTION FT TH

CONTENTS

ABSTRACT 1 1. INTRODUCTION 2 EXPERIMENTAL ANALYSIS 2. 5 2.1 Model Construction 6 2.2 Strain-Gage Layout 6 Test Description 2.3 8 Data Acquisition and Reduction 2.4 3. FINITE-ELEMENT ANALYSIS 3.1 Background 12 Finite-Element Method 3.2 14 3.3 Finite-Element Idealization of Model COMPARISON OF THEORY AND EXPERIMENT 4. 21 4.1 Internal Fressure 22 Out-of-Plane Moment Loading, M_{XN}, on Nozzle 4.2 26 Torsional Moment Loading, Hyp, on Nozzle 4.3 28 In-Plane Moment Loading, M_{ZN}, on Nozzle 4.4 28 In-Plane Force, F., on Hozzle 37 4.5 Arial Force, Fyn, on Nozzle 37 4.6 Out-of-Place Force, F_{2N}, on Mozzle 44 4.7 Torsional Moment Loading, Myr., on Cylinder 44 4.8 Out-of-Plans Moment Londing, Myc, on Cylinder 44 4.9 In-Plane Moment Londing, $M_{\gamma/2}$, on Cylinder 54 4.10 4.11 In-Plane Force, F_{yc}, on Cylinder 54 4.12 4.13 Out-of-Plane Force, F_{2C}, on Cylinder 64 4.14 Out-of-Plane Moment, My, on Nozzle with In-Flane Moment, M_{2N}, on Nozzle with Restraints ... 71 4.15 4.16 Axial Force, F_{YN}, on Nozzle with Restrain:s 71 CONCLUSIONS ... 5. 71 ACKNOWLEDGMENTS 80 REFERENCES 80 APPENDIX. TABULATION OF SEPTIMENTAL DATA 83

Page

THEORETICAL AND EXPERIMENTAL STRESS AN'LYSES OF ORNL THIN-SHELL CYLINDER-TO-CYLINDEF. MODEL 2*

「「「ないないないない」というないないないないないないとう

R. C. Gwaltney S. E. Bolt J. W. Bryson

ABSTRACT

Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells intersecting at right angles. There are no transitions, reinforcements, or fillets in the junction region. The series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicatle to nozzles in cylindrical vessels, and (2) the idealized models serve a basic need for test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d_0/D_0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces.

All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes.

^{*}Work on this program was initiated under ERDA sponsorship and ultimately completed under NRC sponsorship.

1. INTRODUCTION

Intersecting cylindrical shells are common configurations in structural components for nuclear reactor systems. Piping tees and nozzles in cylindrical versels are specific examples. However, despite their common occurrence, proven elastic stress analysis methods for such configurations have not been generally available, and only recently have potential analyses, both analytical and numerical, been developed. This is true even for the case of an idealized configuration consisting of two thin-shell normally intersecting cylinders with no transitions, reinforcements, or fillets in the junction region.

To meet the need for experimental data obtained from carefully machined models, Oak Ridge National Laboratory (ORML) has tested a series of four thin-shell cylinder-to-cylinder models. In addition to serving a basic need for test results for use in developing and evaluating potential analytical techniques, the models in the series provide design information directly applicable to nozzles in cylindrical vessels and to a class of thin piping tees as well. The test results are particularly applicable to liquid-metal fast breeder reactor components in which relatively low internal pressures and high thermal transients dictate thinwalled structures.

Model 2 is shown in Fig. 1 along with the significant dimensions of the four models in the series. The test results for all four models have been compared with typical elastic finite-element predictions. This report describes the tests and analyses of model 2; similar results have been reported for model 1 (Refs. 1 and 2), model 3 (Refs. 2 and 3), and model 4 (Ref. 4). As the figure indicates, these models are truly idealized shell structures. There are no transitions, fillets, or reinforcing in the junction region. The outside diameter D_0 of the cylinder of model 2 was 10 in. and the outside diameter d_0 of the nozzle was 10 in., giving a d_0/D_0 of 1.0. The cylinder and the nozzle were 0.1 in. thick; thus the outside diameter/thickness ratio of the cylinder and the nozzle was 100.

The cylinders for the remaining three models had outside diameters of 10 in. In model 1 the outside diameter of the nozzle was 5 in., giving a d_{a}/D_{a} ratio of 0.5. Model 3 had a nozzle outside diameter of 1.29 in.,

and the second second second

A CONTRACTOR OF A CONTRACTOR A C

いる はないまたいまたい あたまになる こうしょう

giving a $d_0 D_0$ ratio of 0.129. The nozzle of model 4, which was obtained from the third by boring out the nozzle to provide a thinner wall thickness, had an outside diameter of 1.29.

Model 2 is shown schematically in Fig. 2, together with the applied forces and moments to which it was subjected and the major dimensions. One end of the model was rigidly fixed, or "built-in." as shown, while external loads were applied to the other end of the cylinder and to the end of the nozzle. Three mutually perpendicular force components and three mutually perpendicular moment components were applied individually at each location with the ends of the nozzle and cylinder assumed to be free.

In the cases of the pressure loading, the out-of-plane moment on the nozzle, the torsional moment on the nozzle, the in-plane moment on the nozzle, and the axial force on the nozzle, slight nonlinearities were observed in the measured strains when the loads were increased. To investigate the source of these nonlinearities and to evaluate their effect on the maximum strains, three extra experimental cases were performed. These

Fig. 2. Schematic of model 2 showing applied external loadings.

4

C. D. S. Gardi

were the out-of-plane moment on the nozzle with the free end of the cylinder constrained to zero rotation about the x axis, the in-plane moment on the nozzle with the free end of the cylinder constrained to zero displacement in the y direction, and the axial force applied to the nozzle with the free end of the cylinder restrained as for the in-plane moment load. Thus, including internal pressure, there was a total of 16 loading cases. These loading cases were examined both experimentally and analytically, and the results were compared for each loading case.

Chapter 2 of this report describes the testing aspects of the experimental analysis and also the strain-gage data-acquisition and -reduction techniques used. Chapter 3 discusses the finite-element analysis, briefly describes the formulation used, and presents the specific element layout for the model. Complete comparisons of theory and experiment are presented and discussed in Chap. 4 for all 16 loading cases, and Chap. 5 contains a concise summary of the conclusions drawn from the study of this thin-shell cylinder-to-cylinder configuration. For the benefit of the reader who wishes to use the experimental data for comparisons with his own analyses. an appendix is included that gives a complete set of experimental data for each of the 16 loading cases.

2. EXPERIMENTAL ANALYSIS

Experimental investigations of thin-shell cylinder-to-cylinder pressure vessel configurations have used both strain-gage metal models and photoelastic models. Strain-gage studies for internal pressure and for external nozzle loadings have been carried out by Hardenbergh, Zamrik, and Edmondson,⁵ by Hardenbergh and Zamrik,⁶ and by Riley.⁷ In the first two studies, contoured and reinforced outlets were used, while in the third, the model was fabricated from hot-rolled sheet steel by welding. Photoelastic studies have been carried out by Taylor and Lind⁸ and by Leven.⁹ In both cases, reinforced openings were examined. Thus, of the previous studies, <u>only</u> that of Riley⁷ used a thin-shell idealized cylinderto-cylinder metal model, and it was of welded construction rather than being carefully machined.

5

いたのであるのでのであるとのできるとうとうとうとうとう

2.1 Model Construction

One of the primary objectives of the experimental analysis described in this report was to obtain experimental data on a carefully machined cylinder-to-cylinder model so that the effects of geometrical imperfections would be minimized.

The basic configuration was obtained by forging a billet of carbon steel into the basic shape of a tee and then annealing it. The forging was then bored out to the rough inside dimensions. The outside was then rough machined, and the structure was annealed a second time. To maintain the correct dimensions during annealing, tight-fitting graphite mandrels were machined and inserted in both the nozzle and the cylinder. The inside surfaces were then machined to the final dimensions by boring. The final machining on the outside surface was then done on a tracing-type milling machine using a carefully constructed mahogany wood pattern.

2.2 Strain-Gage Levout

The model was extensively instrumented with electric resistance strain gages on both the inside and outside surfaces. A sufficient number of gages was used on this model to provide a good description of the stress distributions for comparisons with predictions and for identifying the high-stress regions.

The strain-gage layout for model 2 is shown in Fig. 3. A total of 152 three-gage strain-gage rosettes was used, making 456 individual strain gages. Half of these were on the outer surface, and half were on the inner surface; they were in all cases located "back-to-back" at the locations shown in the figure.

The gages were arranged along two lines running from the junction of the nozzle and cylinder and around the junction. One line of gages was along a longitudinal axis (0° plane) and the other was along a transverse axis (270° plane). The gages around the junction were spaced at 22.5° intervals, with the first gage on the 0° plane. The gages around the junc. tion are as close to the junction as possible and are always within 1/8 in. of the junction.

Fig. 3. Strain-gage layout.

The three-gage rosettes used were Micro-Measurements type EA-06-030YE-120. option SE, which is a very compact three-gage foil rosette. The three individual gages are arranged in a "Y" pattern and have an individual gage length of 0.030 in. As can be seen in the inset in the upper right-hand corner of Fig. 3, five complete rosettes were located along each gage line within the first 5/8 in. from the junction. These first five rosettes were supplied mounted on a common backing by the gage manufacturer. These

7

1

X

assemblies have the same designation as the single rosettes except that the option becomes B27. One of the five-rosette assemblies is shown in Fig. 4.

The rosettes were applied with an epoxy adhesive, BR-610, which is available from W. T. Bean, Inc. Curing times and temperatures ranged from 10 hr at 250°F to 24 hr at 200°F. Uninsulated 4-mil-diam wire was used to connect the gages to terminal tabs to which larger lead wires were connected. The strain-gage data were recorded by a Datum Computer-Controlled Data-Acquisition System (Sect. 2.4).

The junction region of the model is shown in Fig. 5 with the strain gages applied but not completely wired. The line of gages along the 0° plane can be clearly seen. Also, the gages along the junction can be seen from the 0° plane to the 270[°] plane.

2.3 Test Description

Figure 6 shows the instrumented model in a loading frame being subjected to a torsional moment on the cylinder. The right end of the cylinder was rigidly clamped to the heavy flat plate using a split ring arrangement acting over the flange on the end of the cylinder. The loading fixtures on the other end of the cylinder and on the end of the nozzle were attached in a similar manner. These heavy fixtures in effect constrained the end circles of the shell to remain plane circles. The end fixtures were counterbalanced by weights attached to the cables (Fig. 6).

The external loads were applied by hydraulic rams acting through load cells, and the loads were controlled by the load cell indications. The pressure loading was applied using a hydraulic fluid. To avoid undue straining of the model, weights were used to counterbalance the weight of the pressurizing fluid in the model.

For all 16 loading cases, data were taken in nine steps, usually at 0, 25, 50, 75, 100, 75, 50, 25, and 0% of full load. The procedure was then repeated, so that two complete sets of data were taken for each gage for every loading.

8

and the second second

Fig. 4. Closeup of assembly of five strain-gage rosettes on a common foil backing.

9

Salar Barriston

199010 2070-73 **K**•

Fig. 5. Model during instrumentation.

Fig. 6. Instrumented model in test frame being subjected to a torsional roment on the cylinder.

2.4 Data Acquisition and Reduction

The strain-gage data were recorded by a Datum Computer-Controlled Data Acquisition System (CCDAS). The system consists of a data-acquisition unit composed of a control module controlled by a PDP-8/I computer with the following capabilities: (1) magnetic tape input/output system, (2) in-core calculation ability, and (3) teletypewriter input and output.

The system records the strain data in millivolt readings on magnetic tape. The PDP-8/I computer converts the millivolt reading on the tape into engineering units (strains in this case) and stores them on a second tape which is compatible with the ORNL IEM 360/91 computer. This second tape is sent to the ORNL 360/91 computer, and stresses are calculated for each rosette from the strains stored on the second tape.

The experimental results presented later in this report, and tabulated in the appendix, are generally based on the strain-gage readings at maximum load and on the first of the two sets of data taken from each gage and loading. If the first set of data was questionable for some reason, the second set was used. The strain-gage readings at fractional values of the maximum load were used to check linearity and drift of the gages. In cases where nonlinearity or drift was excessive or where an individual gage or circuit was otherwise obviously malfunctioning, the rosette of which the gage was a part was not used in the final results for the specific loading case under consideration. In some instances, a gage that behaved erratically during one loading behaved normally during others. Thus, in the plots showing the experimental stresses, results from a given rosette may be included for some loadings but not for others.

Stresses were calculated from the experimental strains by using a modulus of elasticity value of 30×10^6 psi and a Poisson ratio of 0.3.

3. FINITE-ELEMENT ANALYSIS

3.1 Background

Thin-shell cylinder-to-cylinder intersection problems have, in recent years, been a favorite with the stress analyst. Their popularity stems

12

のないです。そのないであっても、

not only from the common occurrence of such configurations in practical design, but also from the enallenge that they present as complex shell analysis problems. In addition to their whe in piping and pressure vessel configurations, thin-shell cylinder-to-cylinder intersections occur in the petroleum industry, which uses tubular structural members extensively in off-shore oil-drilling towers. Much of the cylinder-to-cylinder intersection research, both experimental and theoretical, that has been done was motivated by the off-shore oil-drilling tower application. The literature associated with the latter application is reviewed in Ref. 10.

Both analytical and numerical analyses have been developed and applied to thin-shell cylinder-to-cylinder intersection problems. In 1961, Reidelbach¹¹ developed the first analytical solution for two perpendicularly intersecting cylindrical shells subjected to internal pressure. Eringen and his co-workers¹²⁻¹⁵ corrected some errors and approximations in Reidelbach's solutions and formulated a solution in which the intersection curve was approximated by a circle. These solutions consisted of products of Krylov functions and Hankel functions of the first kind. A collocation method was used whereby the boundary conditions were satisfied in a least-squares sense at selected boundary points.

In 1969, Hansberry and Jones¹⁶ used the method developed by Reidelbach and Eringen et al. to develop a solution for an in-plane bending moment applied to the nozzle of a nozzle-to-cylinder configuration. In 1970, Maye and Eringen¹⁷ developed a solution using Fourier series involving Bessel functions in place of the Krylov functions. In 1973, Hansberry and Jones¹⁸ expanded their solution to include the case of an axial force applied to the nozzle. However, as in the case of earlier solutions, the nozzle diameter was limited relative to the cylinder diameter.

In 1967, Bijlaard, Dohrmann, and Wang¹⁹ formulated the problem to include the case where the nozzle and cylinder are of equal diameter. They indicated a solution in the form given by Flügge for closed cylindrical shells. In 1969, Pan and Beckett²⁰ developed a numerical solution to the differential equations of Flügge and Donnell that is applicable to the equal-diameter case. They compared their predictions with the experimental results obtained by Riley⁷ for a nozzle-diameter/cylinder-diameter

ratio of 1/2. By careful choice of some of the factors used in the solution, they obtained predictions that agreed reasonably well with experiment.

In 1968, Herrmann and Campbell²¹ presented a finite-element shell analysis formulation using flat-plate elements and the 1/2 diameter ratio model test 2 by Riley⁷ as a sample problem. The limited comparisons shown were for internal pressure and indicated reasolubly good agreement between theory and experiment. In 1969, Prince and Rashid²² also presented a flat-plate finite-element shell analysis using the cylinder-to-cylinder intersection as a sample problem (ORNL model 1). Their shell analysis program was leveloped under subcontract to ORNL as a part of the ORNL Prestressed Concrete Reactor Vessel Program.

3.2 Finite-Element Method

The finite-element program used for the analysis of model 2 was chosen as being reasonably representative of currently available and widely used finite-element shell formulations. The program was developed at the University of California, Berkeley, under the direction of Professor R. W. Clough. The original program was written for general shell analyses by Johnson^{23,24} and was later modified and adopted by Greste^{10,25} for treating the "K" joints of cylindrical shells found in off-shore oil-drilling towers.

The basic elements used in the program are shown in Fig. 7. The elements are nomplanar quadrilaterals that are built up of an assemblage of four component triangles as shown. Within each component triangle, the in-plane displacements u and v are assumed to vary quadratically over the plane of the triangle except that they are constrained to vary linearly along the one exterior edge. The resulting membrane element, referred to as a constrained linear strain triangle (CLST), has two degrees of freedom (u and v) at each of the five nodes.

The plate bending portion of the component triangle elements has three degrees of freedom at each of the three corner nodes - two rotations about axes in the plane of the element and the transverse, or normal, displacement w. The displacement expansion for this element is due to Hsieh,

Fig. 7. Quadrilateral element and component triangles.

ើ

In the second second

Clough, and Tocher, 26 and the element is referred to as the HCT triangle. Full compatibility of displacements and slopes between triangular element boundaries is achieved by dividing the element into three subtriangles and assuming an independent cubic variation for w within each subtriangle. One of the ten terms of the general cubic is neglected in each subtriangle, so that in the final assembled component triangle the normal slope varies linearly along each exterior edge. It is this feature that ensures slope compatibility in the resulting element system for plate bending problems. The 27 constants in the three cubic expressions for w within the triangular element are reduced to 9 (and related to the 9 nodal degrees of freedom) by internal compatibility considerations. With w varying as a cubic polynomial within each subtriangle, the three components of curvature, and hence the bending and twisting moments, vary linearly.

The total stiffness (membrane plus bending) of the triangular elements that form the components of the quadrilateral is obtained by superposition of the plate bending element and the membrane elements. The membrane plus bending stresses vary piecewise linearly over the surface of the resulting triangular element.

The quadrilateral element stiffness is obtained from that of the four component triangles. In general, due to the curvature of the shell that is being discretized, an arbitrary quadrilateral will be nonplanar. This introduces a complication in the transformation of the triangular element stiffness, because on the element level only two bending rotations per node are defined. When transformed from the element coordinates to some other coordinate system, a third bending rotation quantity is introduced, and in the transformed system three rotational degrees of freedom should be considered at each node. This consideration regarding the third rotational degree of freedom also arises in the subsequent assembly of the quadrilateral elements into the total structural stiffness, since adjacent elements are in general not coplarar. In his formulation, Johnson²³ chose to retain only two rotations per node in the total element assemblage. He argued that since the element plane in a sufficiently fine mesh lies close to the shell tangent plane at each node, the rotations could be transformed from the element coordinates (ii. the plane of the element) to coordinates in the shell tangent plane and the small transformed component of bending

16

rotation about the normal to the shell could be neglected. This is perhaps a reasonable assumption everywhere except at the junction of intersecting shells.

The stiffness formulation for the quadrilateral element, as well as for the CLST membrane element and the HCT plate bending element, is summarized by Greste.¹⁰ The quadrilateral element has five degrees of freedom at each node: u, v, w, and the two rotations. In the final assembled structure the five degrees of freedom per node are u, v, w, and the two rotations about the shell tangent coordinates at each node.

The task of the finite-element method is to determine the unknown coefficients of the assumed element displacement functions for u, v, and w. This is done by connecting the quadrilateral elements together at discrete points, the corner nodes, and requiring compatibility of displacements and rotations and equilibrium of forces and moments at these nodes. Unfortunately, when the elements are assembled into a curved-shell structure, compatibility and equilibrium are not completely achieved along the element interfaces. Thus there are inherent small errors involved. However, studies by Johnson²³ have shown that these errors are not too significant provided a sufficiently fine element mesh is used.

There is an error in intersecting shell problems which is not diminished by mesh refinement. This error arises from the aforementioned meglect of the rotation about the shall normal. At the junction nodes in the cylinder-to-cylinder intersection, there are three nonzero rotational components, only two of which can be retained as nodal degrees of freedom. Greste¹⁰ chose to define the tangent plane, and hence the two rotational degrees of freedom, at the junction nodes as the cylinder tangent plane. The manner in which he treated the junction nodes thus constrained the normal rotation about the cylindrical shell normal to be zero at the junction. This rotational constraint unrealistically constrains the bending deformation of the aljacent rozale elements.

The most severe case of this situation is illustrated in Fig. 8. In this case, the rotation of the nozzle elements (adjacent to node A) about the normal to the cylinder at A is completely constrained. Thus, if in the actual structure the nozzle deforms into the shape shown, the constraint on the idealized structure prevents the rotation θ at A. Greate

Fig. 8. Constraint at junction nodes.

considered two factors in estimating the magnitude of the constrained rotation and its effects: rigid body displacements and membrane deformations in the cylinder. Because of the relatively small length-to-diameter ratios that are generally considered for the cylinder, Greste reasoned that the rigid body displacements which produce rotations of the type shown in Fig. 8 are small compared with the bending rotations associated with straining of the structure. Therefore, essentially all the rotation of the type in Fig. 8 can be assumed to be produced by the membrane deformations of the cylinder wall. Greste then further reasoned that in oildrilling towers the membrane stiffness of the cylinder is very large and the circumferential bending stiffness of the nozzle, or branch as he calls it, is relatively small. Thus the cylinder normal rotations, when applied as circumferential bending rotations to the nozzle, would be expected to generate only small forces and moments in the norzle wall. That is, if the rotation θ of Fig. 8 were allowed to take place in the nozzle wall, relatively small additional stresses would be generated.

This argument may be valid for structural joints in off-shore oildrilling towers, but it does not necessarily remain so for pressure vessel and piping cylinder-to-cylinder configurations in which the nozzle and

the cylinder may be nearly equivalent in stiffness. For these configurations there is, unfortunately, little justification for choosing the cylinder tangent plane as the reference plane for junction nodes. A better choice might have been some average or mean tangent plane at junction nodes giving partial bending constraint to both nozzle and cylinder. Johnson²³ used this latter approach to analyze a folded-plate structure and found that the results agreed well with an elasticity solution.

In conclusion, the error introduced in the junction region by the neglect of the sixth degree of freedom at the junction nodes and by the associated constraint on the bending deformations of the element adjacent to those nodes is not believed to be a large factor, but it is present and it is not reduced by mesh refinement.

3.3 Finite-Element Idealization of Model

The finite-element representation chosen for the model is depicted in Fig. 9, which shows developed views of one-half of the nozzle, cylinder, and end plates. It was necessary to consider only one-half of the structure because of symmetry considerations. This mesh layout was developed manually and was arranged so that lines of nodes corresponded to the lines of strain gages in the experimental model. There were 993 nodes, resulting in approximately 4500 linear algebraic simultaneous equations to be solved for the unknown displacement parameters. There were 27 nodes along the (half) junction line between the nozzle and cylinder. All 16 loading cases considered experimentally were analyzed using this mesh, and the theoretical predictions were compared with the experimentally determined stresses and are given in Chap. 4.

Nine of the 16 loadings - pressure, axial forces on the cylinder and the nowsis, and in-plane moment and forces on the cylinder and nozzle produce behavior that is theoretically symmetric about the longitudinal plane of symmetry of the model. For these symmetric loadings, it is correct to consider just one-half of the model in the finite-element reprezentation. The boundary conditions on nodal displacements and rotations are those commonly associated with symmetry conditions.

The second second reaction of the second second

t

.....

Sec. 1 under

というでものできる

ŝ,

ţ,

Fig. 9. Finite-element idealization of the model.

For the remaining seven loadings — out-of-plane moments and forces on the cylinder and nozzle and torsional moments on the cylinder and nozzle — asymmetric conditions exist; and to consider just one-half of the model in the finite-element representation requires assumptions, or approximations, in establishing nodal displacement and rotational boundary conditions. Basically, the boundary conditions used were based on the assumption that the projection on the X-Y plane (see Fig. 2) of the boundary remained fixed in the X-Y plane. In other words, the displacements in the X and Y directions and the rotation about the Z axis were assumed to be zero for the noder along the boundary in the X-Y plane. Although

W. C. S. A. MACONSULT DE CO

÷.

1

.

.

- ノロション ちょうし ないとれたいないないない したいない ちょうちょう

21

these conditions are obvicusly not strictly correct, they nonetheless seen to be reasonable assumptions that are useful for reducing the size of the problem to be solved.

4. COMPARISON OF THEORY AND EXPERIMENT

The theoretical predictions, based on the finite-element layout shown in Fig. 9, are compared in this chapter with experimentally determined distributions for all 16 loading cases. For each loading, the theoretical and experimental stress distributions along two gage lines on the cylinder and nozzle (see Fig. 3) and around the crotch are presented. The stresses shown are always those parallel (longitudinal) to the gage lines and those perpendicular (transverse) to the gage lines. The gages around the crotch are on gage lines of one gage each at the angles shown in Fig. 3. The theoretical stresses at the crotch are plotted at the position of the strain gage near the crotch, since the strain gages could not be placed exactly on the crotch (see Fig. 3).

To examine the stresses, the plots were drawn using stress ratios which were determined by dividing the stresses at a point by a nominal membrane stress value. The membrane hoop stress in the cylinder, and nozzle, was used as the nominal stress level for the pressure loading. For the moment loadings on the nozzle, or cylinder, the maximum membrane bending stresses (computed by Mc/I) or the membrane shear stress (computed by Tc/J and equal to the maximum normal stress) in the nozzle, or cylinder. were used as the nominal stresses. For the axial forces on the nozzle and the cylinder, the axial membrane stress (calculated by P A) was used. For the in-plane and out-of-plane forces on the nozzle, the nominal stress was somewhat arbitrarily chosen as the maximum bending stress in the nozzle (calculated by \dot{rc}/I) at the level of the top of the cylinder. Finally, for the in-rlane and out-of-plane forces on the cylinder, the nominal stress was arbitrarily chosen as the maximum bending stress in the cylinder at its midlength (at the center line of the nozzle).

The applied loads used in the experimental analyses are given in Table 1, together with the nominal membrane stress levels calculated by the above procedures.

Loading case	Load level	Nominal membrane stress (psi)
Internal pressure	60 psi	2970
Out-of-plane moment, M _{XN}	10,000 in1b	1300
Torsional moment, MyN	16,000 in1b	1040
In-plane moment, M _{ZN}	15,000 inlb	1950
In-plane force, F.	1200 1ъ	2260
Axial force, F _{vN}	4000 1ъ	J <i>29</i> 0
Out-of-plane force, F _{ZN}	600 ЛЪ	1330
Torsional moment, M _{XC}	20,000 in1b	1300
Out-of-plane moment, My	60,000 in1b	7800
In-plane moment, M _{ZC}	24,000 in1b	3120
Axial force, F _{XC}	8000 1ъ	2570
In-plane force, F _{VC}	1000 1ъ	2530
Out-of-plane force, F _{ZC}	1200 1ъ	3040
Out-of-plane moment with restraints, M _{XN}	10,000 in1b	1300
In-plane moment with restraints, M _{ZN}	15,000 in1b	1950
Axial force with restraints, F _{YN}	4000 Ib	1290

Table 1. Applied loads and nominal stress levels

4.1 Internal Pressure

The measured and predicted stress distributions determined for an internal pressure of 60 psi applied to the model are shown in Figs. 10 through 12. Figure 10 shows the measured and predicted stress distributions on the outside and inside surfaces of the cylinder and the mozzle along the 0° gage line, which is the longitudinal plane of symmetry (see Fig. 3). The stresses are shown as a function of distance from the junction of the nozzle and cylinder midsurfaces. The heavy lines are the

Fig. 10. Measured and predicted stress distributions at J° for an internal pressure of 60 psi.

predicted stresses, while the fine lines through the experimental points show the measured distribution. The solid lines in each case represent the transverse stresses, which are perpendicular to the gage lines; the dashed lines represent the longitudinal stresses, which are parallel to the gage lines. Thus one can compare the solid lines with each other and the dashed lines with each other. All the stresses in the figures are normalized by the nominal membrane stresses given in Table 1.

The agreement between theory and experiment is excellent in Fig. 10, except that the stresses at the inside surface are somewhat underestimated by the finite-element predictions. The general shape and distribution of the stresses are well predicted by the theory.

Figure 11 shows the stresses along the 270° gage line, which is the transverse plane of symmetry. Here the agreement between theory and experiment is also excellent, and the shape and distribution of the stresses are again well predicted by the theory.

23

Fig. 11. Measured and predicted stress distributions at 270° for an internal pressure of 60 psi.

Fig. 12. Measured and predicted stress distributions around the nozzle-cylinder junction for an internal pressure of 60 psi.

The variation of the stresses around the nozzle-cylinder junction is shown in Fig. 12, and the sharp and rupid variation of stresses around the junction, which indicates the very complex nature of the stress distribution in this region, can immediately be seen. The agreement between theory and experiment is excellent except around the 180' plane on the outside surface. However, the shape and distribution of the stresses are well predicted by the theory.

To examine the maximum stresses, stress ratio: were determined by dividing the maximum <u>absolute principal</u> stress⁴ value at a point by a nominal membrane stress value (listed in Table 1). These maximum stress ratios were calculated for both experimental and theoretical stresses. The experimental stress ratios were extrapolated along the 0 and 270° gage lines to the junction where necessary, but the stress ratios around the crotch were calculated where they occurred. However, it should be emphasized that the maximum experimental stress estimates are based on a consideration of the stresses along the gage lines and on the string of gages around the crotch only; this does not preclude the existence of slightly higher ratios at locations away from gage lines. The theoretical maximums were calculated where they occurred.

The maximum experimentally determined stress occurred on the outside surface of the nozzle at 180° , and the maximum stress ratio was 9.0. The theoretical maximum stress was on the outer surface of the cylinder at 0° ; the maximum stress ratio was 7.7.

4.2 Out-of-Plane Moment Loading, M_{NN}, on Nozzle

The measured and predicted stress distributions for an out-of-plane moment loading of 10,000 in.-lb applied to the nozzle are shown in Figs. 13 through 15. The results in Fig. 13 are for the 0° plane, the longitudinal plane of symmetry. As expected, the stresses are small, since this plane is analogous to the neutral exis of a beam in bending.

Ż0

ŀ

^{*}Principal stress values are given in the appendix in terms of psi for the indicated value of the loading actually applied.

Fig. 13. Heasured and predicted stress distributions at 0° for an out-of-plane moment, $M_{\rm XW}$, on the nozzle.

27

erze centecche entre le render e la entre data en la recordante de la contra de la contraction de la contraction

The results for the 270° gage line, which is the transverse plane of symmetry, are shown in Fig. 14. Here, the stresses are a maximum and the agreement between theory and experiment is excellent except for the transverse stress on the inside surface of the nozzle.

#1.....

The variation of the stresses around the junction is shown in Fig. 15, where again the complex variation of the stresses can be seen. The comparisons of the results are good, particularly on the inside surfaces.

The maximum experimentally determined principal stress ratio was 15.8, with the maximum stress occurring on the inside surface of the cylinder at the junction at 247° . The theoretical maximum stress was on the inside surface of the nozzle at the junction at 249° , and the ratio was 17.8.

4.3 Torsional Moment Loading, $M_{\gamma\gamma\gamma}$, on Nozzle

The measured and predicted stress distributions for a torsional moment loading of 16,000 in.-lb applied to the nozzle are shown in Figs. 16 through 18. Here the stresses in the longitudinal and transverse planes of symmetry are low and rise to their maximum levels on approximately the 70, 110, 250, and 290° planes (see Fig. 18). In general, the distributions show poor quantitative agreement except for the distribution around the crotch; here the agreement is good on the inside surfaces.

The maximum experimentally determined principal stress ratio was 31.3, with the maximum stress located on the inside surface of the cylinder at 247°. The maximum theoretical stress was on the outside surface of the cylinder at 256°, and the maximum principal stress ratio was 37.5.

4.4 In-Plane Moment Loading, M_{ZN}, on Nozzle

The measured and predicted stress distributions for an in-plane moment of 15,000 in.-lb applied to the nozzle are shown in Figs. 19 through 21. Here the stresses agree well on the longitudinal plane of symmetry, as shown in Fig. 19. The stresses along the transverse plane are larger than those along the longitudinal plane (Fig. 20). In general, the distributions show poor quantitative agreement between theory and experimental results. The agreement between the distributions around the crotch is

Fig. 14. Measured and predicted stress distributions at 270° for an out-of-plane moment, $M_{\rm YN}$, on the nozzle.

SHA STAL

Fig. 15. Measured and predicted stress distributions around the nozzle-cylinder juntion for an out-of-plane moment, M_{XN} , on the nozzle.

Я

STRUCTURE PROPERTY IN STRUCTURE A THE STRUCTURE AND A MARKED AND A MARKED AND A

Fig. 16. Measured and predicted stress distributions at O for a torsional moment, $M_{\rm VN}$, on the nogale.
ORNL - DWG 74- 5421

Fig. 17. Measured and predicted stress distributions at 270° for a torsional moment, $N_{\rm YN}$, on the nozzle.

32

. . . .

ORNL-DWG 74-5422

MARKAN COLUMN SHOW SHAW

Fig. 18. Measured and predicted stress distributions around the nozzle-cylinder junction for a torsional moment, $M_{\rm YN}$, on the nozzle.

ų

Fig. 19. Measured and predicted stress distributions at 0° for an in-plane moment, $M_{\rm ZN}$, on the nozzle.

Fig. 20. Measured and predicted stress distributions at 270° for an in-plane moment, $M_{\rm ZE}$, on the nozzle.

ы

and a second second of a second similar to the second second second second second second second second second s

excellent and again shows the complex state of stress with no neutral axis similar to the neutral axis of a beam.

The maximum experimentally determined principal stress ratio was 11.0, with the maximum stress occurring on the outside surface of the nozzle at about 1/2 in. from the junction along the 270° gage line. The maximum theoretical stress occurred on the inside surface of the nozzle at the junction at 265°; the principal stress ratio was 15.2.

No. of the second second second

4.5 In-Plane Force, F_{XN}, on Nozzle

The comparisons of theory and experiment for an in-plane force of 1200 lb applied to the nozzle are shown in Figs. 22 through 24. The recults here are very similar to those for the in-plane bending moment on the nozzle, and overall agreement is excellent except on the inside surface of the mozzle along the 270° gage line.

The maximum experimentally determined principal stress ratio was 13.4, with the maximum stress occurring on the inside surface of the nozzle about 1.0 in. from the junction along the 270° gage line. The maximum theoretical stress occurred on the invide surface of the nozzle at the junction along the 256° plane; the ratio was 17.8.

4.6 Axial Force, F_{YN}, on Nozzle

The comparisons of theory and experiment for an axial force of 4000lb applied to the nozzle are presented in Figs. 25 through 27. The agreement is excellent along the longitudinal plane (0° gage line). In general the agreement between the distributions along the transverse plane and around the crotch show poor quantitative agreement between theory and experiment.

The experimentally determined maximum principal stress ratio was 13.4, with the maximum stress occurring on the outside surface of the nozzle on the 180° plane at the junction. The theoretically determined maximum stress occurred on the inside surface of the cylinder on the 256° plane at the junction; the ratio was 17.2.

ORNL-DWG 74-4039

and a second second

State L

Fig. 22. Measured and predicted stress distributions at 0° for an in-plane force, $F_{\rm XN}$, on the nozzle.

ORNL-DWG 74-4038

e.

Fig. 25. Measured and predicted stress distributions at 0° for an axial force, $F_{\rm YN}$, on the nogale.

41

「「「「「「「「「「「「「「」」」」」」

2、1221日またのである

Fig. 26. Measured and predicted stress distributions at 270° for an axial force, $F_{\rm YN}$, on the nozzle.

Fig. 27. Measured and predicted stress distributions around the nozzle-cylinder junction for an axial force, F_{YN} , on the nozzle.

4.7 Out-of-Plane Force, F_{7N}, on Nozzle

The comparisons of theory and experimental data for an out-of-plane force of 600 lb applied to the nozzle are presented in Figs. 28 through 30. The results are very similar to those for an out-of-plane moment on the nozzle, and the overall agreement between theory and experiment is again very good.

The experimentally determined maximum principal stress (ratio 15.9) occurred on the inside surface of the cylinier on the 247° plane at the junction. The theoretically determined maximum stress (ratio 24.3) occurred on the outer surface of the cylinder on the 256° plane at the junction.

4.8 Torsional Moment Loading, $M_{\chi_{C}}$, on Cylinder

The comparisons of theory and experiment for a torsional moment of 20,000 in.-lb applied to the cylinder are presented in Figs. 31 through 33. The experimental stresses are low in the longitudinal and transverse planes of symmetry and rise to their maximum levels on approximately the 67, 112, 247, and 292° planes. The agreement between theory and experiment is excellent along the crotch line. The sharp rise in the stresses at the junction of the nozzle is probably caused by neglecting the sixth degree of freedom.

The experimentally determined maximum stress (ratio 24.2) occurred on the inside surface of the nozzle on the 292° plane at the junctica. The theoretically determined maximum stress (ratio 37.5) occurred on the outside surface of the cylinder on the 294° plane at the junction.

4.9 Out-of-Plane Moment Loading, M_{YC} , on Cylinder

The comparisons of theory and experiment for an out-of-plane moment loading of 60,000 in.-1b applied to the cylinder are presented in Figs. 34 through 36. The stress comparisons along the longitudinal plane (0° plane) seem to be poor, while the agreement between theory and experiment along the transverse plane is good and is excellent around the crotch. The experimentally determined maximum principal stress (ratio 4.5) occurred on the inside

Fig. 28. Measured and predicted stress listributions at 0° for an out-of-plane force, F_{ZN} , on the nozzle.

Fig. 29. Measured and predicted stress distributions at 270° for an out-of-plane force, $F_{\rm ZN}$, on the nozzle.

.

ŝ

2.0.8

and the spectra is

The second states and a second state of the second states and the

Fig. 31. Measured and predicted stress distributions at C° for a torsional moment, $M_{\rm XC}$, on the cylinder.

48

しのう はっよう ふからさ 伊林時間開発

Section 20

Fig. 34. Measured and predicted stress distributions at 0° for an out-of-plane moment, $M_{\rm YC}$, on the cylinder.

15

.

E VIN

Fig. 36. Measured and predicted stress distributions around the nozzle-cylinder junction for an out-of-plane moment, $M_{\rm YC}$, on the cylinder.

surface of the nozzle along the 270° plane at about 1.0 in. from the junction. The theoretically determined stress occurred on the outside surface of the nozzle along the 0° plane at the junction; the ratio was 5.9.

4.10 In-Plane Moment Loading, M_{ZC}, on Cylinder

The comparisons of theory and experiment for an in-plane moment loading of 24,000 in.-lb applied to the cylinder are presented in Figs. 37 through 39. Here the stress levels are a maximum in the transverse plane of symmetry, as shown in Figs. 38 and 39, and the comparisons between theory and experiment are excellent except for the inside surface of the nozzle along the 270° plane.

The experimentally and theoretically determined maximum stresses occurred on the inside surface of the nozzle along the 270° plane about 1.0 in. from the junction. The experimental maximum ratio was 14.9, while the theoretical maximum was 10.1.

4.11 Axial Force, F_{XC}, on Cylinder

The comparisons of theory and experiment for an axial force of 8000 lb applied to the cylinder are presented in Figs. 40 through 42. In general, the agreement between theory and experiment is very good, and along the 0° plane the agreement is excellent.

The experimentally and theoretically determined maximum stresses occurred on the inside surface of the nozzle along the 270° plane at about 1.0 in. from the junction. The experimental maximum was 14.4, while the theoretical maximum was 14.7.

4.12 In-Plane Force, F_{YC} , on Cylinder

The comparisons of theory and experiment for an in-plane force of 1000 lb applied to the cylinder are shown in Figs. 43 through 45 The agreement is very good except on the inside surface of the nozzle along the 270° plane.

No. of the second second

S

Ŷ

Fig. 38. Measured and predicted stress distributions at 270° $_{1}$, r an in-plane moment, $\rm M_{\rm ZC}$, on the cylinder.

55

and the state

ORNL-DWG 74-4413

Fig. 40. Measured and predicted stress distributions at 0° for an axial force, $F_{\rm XC}$, on the cylinder.

Сл Со

Fig. 41. Measured and predicted stress distributions at 270° for an axial force, $F_{\rm XC}$, on the cylinder.

a sugar

and the state of the second second

60

Fig. 44. Measured and predicted stress distributions at 270° for an in-plane force, $F_{\rm YC}$, on the cylinder.

j

62

and the second states of the

The state of the second second second

21. 18

63

Both the experimentally and theoretically determined maximum stresses occurred on the inside surface of the nozzle along the 270° plane at about 1.0 in. from the junction. The experimental maximum was 15.7, while the theoretical maximum was 10.7.

4.13 Out-of-Plane Force, F_{ZC}, on Cylinder

The comparisons of theory and experiment for an out-of-plane force of 1200 lb applied to the cylinder are shown in Figs. 46 through 48. The stress comparisons along the longitudinal plane (0° plane) seem to be excellent, while the agreement between theory and experiment along the transverse plane and around the crotch is poor. The sharp rise in the stress at the junction is probably caused by neglecting the sixth degree of freedom.

The experimentally determined maximum stress (ratio 6.9) occurred on the inside surface of the nozzle along the 270° plane at about 1.0 in. from the junction. The theoretically determined maximum stress (ratio 9.9) occurred on the outside surface of the cylinder along the 256° plane at the junction.

4.14 Out-of-Plane Moment, M_{XN}, on Nozzle with Restraints

The measured and predicted stress distributions for an out-of-plane moment loading of 10,000 in.-lb applied to the nozzle are shown in Figs. ¹⁴⁹ through 51. The results here are very similar to those for the outof-plane bending moment on the nozzle, and the overall agreement is very good except for the transverse stress on the inside surface of the nozzle along the $2/0^{\circ}$ plane.

The maximum experimentally determined stress ratio (14.9) occurred on the inside surface of the nozzle along the 270° plane about 1.0 in. from the junction. The maximum theoretically determined stress ratio (11.8) occurred on the outside surface of the cylinder along either the 256 or 284° plane at the junction.

64

Fig. 47. Measured and predicted stress distributions at 270° for an out-of-plane force, F_{ZC} , on the cylinder.

ORNL-DWG 74-5752

ŝ

OR11L-DWG 74-5753

Fig. 50. Measured and predicted stress distributions at 270° for an out-of-plane moment, $M_{\chi N}$, on the nozzle with restraintc.

6 19 Y Y Y Y Y

· . ·

η.

Contraction of the second

Fig. 51. Measured and predicted stress distributions around the nozzle-cylinder junction for an out-of-plane moment, M_{XN} , on the nozzle with restraints.

3

. North A LET LET LE PARTIE

ORNL-DWG 74-5754

4.15 In-Plane Moment, M_{VN}, on Nozzle with Restraints

The comparisons of theory and experiment for an in-plane moment of 15,000 in.-lb applied to the nozzle are presented in Figs. 52 through 54. The agreement between the theoretical and experimental distribution is excellent along the longitudinal plane and around the crotch. The stresses on the transverse plane are low, and the agreement is poorer than on the other plane.

The maximum experimentally determined principal stress ratio (8.0) occurred on the outside surface of the possile along the 270° plane at about 3/8 in. from the junction. The maximum theoretically determined scress ratio (12.5) occurred on the inside surface of the nozzle along the 284° plane at the junction.

1

4.16 Axial Force, F_{yN} , on Nozzle with Restraints

The comparisons of theory and experiment for an axial force of 4000 lb applied to the nozzle are presented in Figs. 55 through 57. The agreement is good along the longitudinal plane (0° plane). In general, the distributions along the transverse plane and around the crotch show poor quantitative agreement between theory and experiment.

The experimentally determined maximum stress ratio (3i.0) occurred on the inside surface of the nozzle on the 270° plane about 1.0 in. from the junction. The theoretically determined maximum stress ratio (16.0) occurred on the inside surface of the nozzle on the 270° plane about 1.0 in. from the junction.

5. CONCLUSIONS

Table 2 represents an attempt to summarize concisely the principal findings of this study in terms of maximum principal stress ratios, locations of maximum principal stresses, and the relative overall agreement between theory and experiment for each loading case. The maximum experimental stress ratios are based on the stresses along two gage lines and the gage line around the crotch only, and were determined by dividing the

The share is the second of the second second

Fig. 54. Measured and predicted stress distributions around the nozzle-cylinder junction for an in-plane moment, $M_{\rm ZN}$, on the nozzle with restraints.

and the second pre-

4 - P

Fig. 55. Measured and predicted stress distributions at 0° for an axial force, $F_{\rm YN},$ on the nozzle with restraints.

de la

N

· · ·

ملحمارة أأقلقت

Fig. 57. Measured and predicted stress distributions around the nozzle-cylinder junction for an axial force, $F_{\rm YN}$, on the nozzle with restraints.

Londing case	Experime. Bax	ntally determined	Theo	retical maximum stress	Overall agreement between theory and experiment	
	Struss ratio	Location ^b	Stress ratio	Location ^b		
Internal pressure	9.0	Outside nozzla, 180°	7.7	Outside cylinder, 0°	Excellent, excellent	
N _{XH} . out-of-plane moment on mosgle	15.8	(nside cylinder, 247°	17.8	Inside nozzle, 249°	Excellent, good	
MYN, torsional moment on nosale	31.3	Inside cylinder, 247	37.5	Outside cylinder, 256°	Poor, good	
N _{ZN} , in-plane moment on nozzle	11.0	Outside noszle, ^C 270°	15.2	Inside nozzle, 256°	Good, excellent	
Figs, in-plane force on mourle	10.4	Inside nosale, d 270°	17.8	Inside nozzle, 256°	Excellent, excellent	
Fyg, axial force on no sle	13.4	Outside nozzle, 180°	17.2	Inside cylinder, 256°	Good, poor	
F _{ZN} , out-of-plane force on nozzle	15.9	Inside cylinder, 247°	24.3	Urtside cylinder, 256	Good, excellent	
N _{XC} , torsional moment on cylinder	24.2	Inside norrele, 292°	37.5	Outside cylinder, 284°	Poor, excellent	
N _{YC} , out-or-plane moment on cylinder	4.5	Inside nozzle, d 270°	5.9	Outside nouzle, O'	Fair, excellent	
N _{ZC} , in-plane • ment on cylinder	14.9	Inside nozzle, ^d 270°	10.1	Inside nozzle, d 270°	Good, excellent	
Fre, axial force on cylinder	14.4	Inside nozzle, d 270'	14.7	Inside nozzle, ^d 270°	Good, good	
Fyc, in-plane force on cylinder	15.7	Inside nozzle, ^d 270°	10.7	Inside nozzle, ^d 270°	Good, excellent	
F _{ZC} , out-of-plane force on cylinder	69	Inside nozzle, ^d 270°	9.9	Outside cylinder, 256°	Fair, good	
N _{XN} , out-of-plane moment on nossle with restraints	14.9	Liside nozzle, ^d 270°	11.8	Outside cylinder. 284 and 256°	Good, excellent	
M _{ZN} , in-plane moment on nogale with restraints	8.0	Outside nozzant ^e 270°	12.5	Inside nozzle, 284°	Ercellent, excellent	
Fyg, axial force on nogale with restricts	31.0	Inside wrele, ^d 270*	16.0	Inside nozzle, ^d 270°	Good, poor	

Table 2. Summary of maximum principal stress ratios and locations

"Ratio of maximum subolute principal stress value to nominal stress value.

Maximums all occurred at the junction, except where noted.

"Maximums not at junction, at approximately 1/2 in. from junction on transverse plane.

Maximums not at junction, at approximately 1.0 in. from junction on transverse plane.

Maximums not at junction, at approximately 3/8 in. from junction on transverse plane.

maximum absolute principal stress value by a nominal membrane stress value as previously described. The maximum theoretical stress ration were calculated where they occurred. The maximum experimental principal stresses occurred at the junction in only six cases; the other ten occurred on the 270° gage line at about 1.0 in. from the junction.

The relative overall agreement between the finite-element predictions and the experimental results is rated in Table 2 as excellent, good, fair, or poor. These ratings are, of course, a matter of opinion, but an attempt was made to make an unbiased evaluation by basing them both on the overall qualitative agreement alon, the gage lines and on the quantitative agreement in areas where the stresses were relatively high. In each case two ratings are given; the first rating is for the gage lines $(0, 270^{\circ} \text{ planes})$ and the second is for the crotch gage line.

Table 2 indicates that generally the experimentally determined maximum stress ratios and those based on finite-element predictions are in fair agreement. Furthermore, the degree of agreement between the stress ratios generally correlates well with relative ratings of the overall agreement between theory and experiment. Generally, the agreement was best for those cases involving loadings on the nozzle, except for the torsional moment and the axial force loadings. In 14 cases, the maximum stress ratios occurred on or close to the transverse plane of symmetry for both the experimental and theoretical analysis. For the axial force applied to the nozzle, the experimental stress ratio occurred on the longitudinal plane, while the theoretical stress ratio occurred near the transverse plane (256° plane). The outof-plane moment applied to the cylinder produced a maximum experimental stress ratio on the transverse plane, while the theoretical stress ratio on the transverse plane, while the theoretical stress ratio occurred on the longitudinal plane (0° plane).

Finally, it should be pointed out that, as would be expected, the outof-plane moment and force loadings produced quite similar results, and the in-plane moments and forces produced similar results. The *t*-wess distributions were very similar for each pair. The loadings on the nozzle with restraints applied to the free end of the cylinder compared favorably with unrestrained loadings on the nozzle except for the maximum experimental

stress ratio. The results from the three loadings with restraints indicated that the nonlinearities observed in the corresponding cases without restraints were reduced. However, the maximum stresses and stress distributions were similar, which indicates that the observed small nonlinearities had little effect on the measured maximum stresses that are reported.

In conclusion, the comparison of these particular finite-element predictions with the experimental results shows reasonably good general agreement. It is felt that this analysis would be satisfactory for most engineering purposes.

ACKNOWLEDGMENTS

The planning and execution of the analytical and experimental study reported herein would not have been possible without the assistance and cooperation of many individuals, both within ORNL and outside. The authors are deeply indebted to these people for their contributions.

Special thanks is due J. P. Rudd for the instrumentation of the model, which was a very painstaking task.

The finite-element computer program used in the analysis was developed at the University of California, Berkeley.

REFERENCES

- 1. J. M. Corum et al., <u>Theoretical and Experimental Stress Analysis of</u> <u>ORNL Thin-Shell Cylinder-to-Cylinder Model No. 1</u>, ORNL-4553 (October 1972).
- 2. J. M. Corum and W. L. Greenstreet, "Experimental Elastic Stress Analyses of Cylinder-to-Cylinder Shell Models and Comparisons with theoretical Predictions," Paper G2/5, First International Conference on Structural Mechanics in Reactor Technology, Berlin, Sept. 20-24, 1971.
- 3. R. C. Gwaltney et al., <u>Theoretical and Experimental Stress Analysis</u> of ORNL Thin-Shell Cylinder-to-Cylinder Model 3, ORNL-5020 (June 1975).

80

A DESCRIPTION OF A DESC

- R. C. Gwaltney, S. E. Bolt, and J. W. Bryson, <u>Theoretical and Experi-</u> mental Stress Analyses of ORNL Thin-Shell Cylinder-to-Cylinder Model 4, ORNL-5019 (June 1975).
- D. E. Hardenbergh, S. Y. Zamrik, and A. J. Edmondson, "Experimental Investigation of Stresses in Nozzles in Cylindrical Pressure Vessels," Welding Research Council Bulletin 89. July 1963.
- 6. D. E. Hardenbergh and S. Y. Zamrik, "Effects of External Loadings on Large Outlets in a Cylindrical Pressure Vessel," <u>Welding Research</u> Council Bulletin 96, May 1964.
- 7. W. F. Riley, <u>Excerimental Determination of Stress Distributions in</u> <u>Thin Walled Cylindrical and Spherical Pressure Vessels with Circular</u> <u>Nozzles</u>, IIT Research Institute Report M6053 (March 1965).

「北京市ではないたいで、「大学市市のなどでなる」になっていたとう

「日本の「たいできない」のでいたのでは、「日本のできた」ないたいできょうかいちょうとうよう

- 8. C. E. Taylor and N. C. Lind, "Photoelastic Study of the Stresses near Openings in Pressure Vessels," <u>Welding Research Council Bulletin 113</u>. April 1966.
- 9. M. M. Leven, "Photoelastic Determination of Stresses in Reinforced Openings in Pressure Vecsels," <u>Welding Research Council Bulletin 113</u>, April 1966.
- 10. Ojars Greste, <u>Finite Element Analysis of Tubular K Joints</u>, Report UCSEM 70-11, University of California, Berkeley (June 1970).
- 11. W. Reidelbach, "The State of Stress at the Perpendicular Intersection of Two Right Circular Tubes," Ingenieur-Archiv. 30(5), 293-316 (1961).
- A. C. Eringen, A. K. Naghdi, and C. C. Thiel, "State of Stress in a Circular Cylindrical Shell with a Circular Hole," <u>Welding Research</u> <u>Council Bullotin 102</u>, January 1965.
- A. K. Naghdi and A. C. Eringen, "Stress Distribution in a Circular Cylindrical Shell with a Circular Cut-Out," Ingenieur-Archiv. <u>34</u>(3), 161-72 (1965).
- 14. A. C. Eringen and E. S. Suhubi, "Stress Distribution at Two Normally Intersecting Shells," Nucl. Struct. Eng. 2(3), 253-70 (1965).
- 15. A. C. Eringen et al., "Stress Concentrations in Two Normally Intersecting Cylindrical Shells Subject to Internal Pressure," <u>Welding</u> <u>Research Council Bulletin 139</u> April 1969.
- J. W. Hansberry and N. Jones, "A Theoretical Study of the Elastic Behavior of Two Normally Intersecting Cylindrical Shells," Trans. ASME, J. Eng. Ind. <u>91B(3)</u>, 563-72 (1969).
- R. F. Maye and A. C. Eringen, "Further Analysis of Two Normally Intersecting Cylindrical Shells Subjected to Internal Pressure," Nucl. Eng. Des. <u>12(3)</u>, 457-74 (1970).

- 18. J. M. Hansberry and N. Jones, "Elastic Stresses Due to Axial Loads on a Nozzle Which Intersects a Cylindrical Shell," <u>Proceedings of the Second Internat</u>. <u>1 Conference on Pressure Vessel Technology</u>, Part <u>I. Design and Analysis</u>, pp. 129-54, October 1973.
- 19. P. P. Bijlaard, R. J. Dohrmann, and I. C. Wang, "Stresses in Junction of Nozzle to Cylinder Pressure Vessel for Equal Diameter of Vessel and Nozzle," Nucl. Eng. Des. 5(3), 349-66 (1967).
- K. C. Pan and R. E. Beckett, "Stress and Displacement Analysis of a Shell Intersection," Trans. ASME, J. Eng. Ind. <u>92B(3)</u>, 303-8 (May 1970).
- 23. L. R. Herrmann and D. M. Campbell, "A Finite-Element Analysis for Thin Shells," AIAA J. 6(10), 1842-47 (1968).
- 22. N. Prince and Y. R. Pashid, "Structural Analysis of Shell Intersections," presented at First International Conference on Pressure Vessels and Piping, Sept. 29-Oct. 2, 1969, Delft, The Netherlands.
- 23. C. P. Johnson, <u>The Analysis of Thin Shells by a Finite Element Pro-</u> <u>cedure</u>, Report 67-22, Department of Civil Engineering, University of California, Berkeley (September 1967).
- 24. C. P. Johnson and P. G. Smith, <u>A Computer Program for the Analysis</u> of Thin Shells, Report 69-5, Department of Civil Engineering, University of California, Berkeley (August 1967).
- Ojars Greste, <u>A Computer Program for the Analysis of Tubular K Joints</u>, Report 69-19, <u>Department of Civil Engineering</u>, University of California, Beckeley (November 1969).
- R. W. Clough and J. L. Tocher, "Finite Element Stiffness Matrices for the Analysis of Flate Bending," <u>Proceedings of Conference on Matrix</u> <u>Methods in Structural Mechanics</u>, Report AFFDL-TR-66-80, Wright-Patterson Air Force Base (November 1966).

Appendix

TABULATION OF EXPERIMENTAL DATA

For the benefit of the reader who may wish to use the experimental data presented herein for comparison with his own analysis techniques, the experimental data on which the various plots in this report were based are given in Tables A.1 through A.16. For each loading case, a set of data is tabilated for each operable rosette. These data were obtained from the several sets of data taken in each case by the procedures described in Sect. 2.4.

The rosette listings are grouped according to gage lines. For each rosette, the three strain readings are first listed, followed by the normal stress transverse (perpendicular) to the gage line, the normal stress longitudinal (parallel) to the gage line, the shear stress (referred to the gage line as a poordinate axis), and finally the maximum and minimum principal stresses. The strains are given in microinches per inch, and the stresses are in pounds per square inch.

The nomenclature used to identify and locate each rosette can be explained by considering the following sample designation:

$\underline{I} \underline{270} \underline{N} - \underline{E}$.

The letter I designates that the rosette is located on the inner surface of the nozzle or cylinder (0 denotes an outside rosette). The number 270 indicates that the rosette is located on the 270° gage line (see Fig. 3 for the gage line designations). The letter N indicates that the rosette is on the nozzle (C designates = rosette on the cylinder), and E designates the location of the rosette along the gage line according to the following convention:

Rosette designation	Distance from noggle-cylinder intersection (see Fig. 3) (in.)					
*	≈0					
A	1/8					
В	1/4					
С	3/8					

「「「「「「「「「」」」」」

Rosette designation	Distance from nozzle-cylinder intersection (see Fig. 3) (in.)
D	1/2
E	5/8
F	1
G	1 1/2
Н	2
J	3
X	4
L	6
M	8
N	10.95

In every case, the rosettes were positioned on the gage lines so that the leg of the Y lay along the gage line and pointed away from the nozzlecylinder junction. The convention used can be understood by referring to Fig. 5. The leg of the Y is designated as gage 1 in the tabulations, with gages 2 and 3 being numbered from 1 in the counterclockwise direction.

Finally, in those cases where nonlinearity or drift was excessive, or where an individual gage or circuit was otherwise obviously malfunctioning, the rostite of which the gage was a part was not used in the final results plotted in this report for the specific loading under consideration. Nonetheless, these data are listed in the tabulations, but they are marked by a double asteriak beside the rosette number.

84

The second se

Table A.1. Internal pressure

INTERNAL PRESSURE (60 PSI)

	HIC	10- ST.	AIN	5	TRESSES	PRIN STRESSES		
RO SETTE	GA GE 1	GA GB2	GAGE3	TRAVS	LONG	SEITAR	SIGHX	SIGH
I-0-C-1	-462	320	486	18226	-8379	-2212	18408	- 8562
I-0-C-B	- 172	351	34 5	154 95	-509	77	15496	-510
I-0-C-C	30	320	329	14228	5183	-111	14229	5182
I-0-C-D	137	264	295	12128	7760	-411	12166	7722
I-0-C-E	19 1	244	258	10841	8976	- 187	10859	8957
I-0-C-P	213	160	154	66 66	8400	74	8403	6663
I-0-C-G	129	92	106	4222	5132	- 1 88	5169	4185
1-0-C-H	78	86	75	3466	3381	149	3578	3268
1-0-C-J	64	86	92	3851	3078	- 74	3858	3071
I-0-C-K	75	89	89	38 38	3408	0	3838	3402
I-0-C-L	70	89	86	3781	3223	38	3784	3221
0-0-C-A	308	534	548	23447	16278	-189	23452	16273
0-0-C-B	51	442	425	190 15	7234	2 25	19020	7229
0-0-C-C	-63	322	308	13925	2277	193	13928	2274
0-0-C-D	- 129	237	251	10861	-612	- 192	10864	-615
0-0-C-B	- 13 2	157	168	72 84	-1773	-155	7286	- 1776
0-0-0-7	-75	54	62	26.37	-1448	-114	2681	-1451
0-0-0-6-6	31	31	28	1263	1309	38	1330	1242
0-0-0-1	79	45	48	1967	2971	- 37	2973	1966
0-0-0-1	77	60	57	24.91	3060	28	3063	78.89
0-0-0-	74	60	60	2552	2904	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2003	2552
0-0-C-L	74	63	66	2739	304B	- 38	3053	2735

85

のあるのではの

Table A.1 (continued)

INTERNAL PEESSORE (60 PSI)

.

	HIC	RO-STR	AIN	S	STRESSES			PRIK STRESSES		
				-				*********		
BO SETTE	GA GE 1	GA GB2	GAGB3	TRANS	LONG	SHEAR	SIGNI	SIGNN		
I-0-N-B	0	337	354	15195	4559	-232	15200	4554		
I-0-#-C	26	322	340	14527	5143	-232	14533	5137		
1-0-1-D	122	311	299	13274	7643	156	13278	7638		
1-0-N-E	189	273	264	11504	9147	1 17	11610	9141		
I-0-#-P	224	168	157	6903	8781	155	8794	6891		
I-0-N-G	139	102	99	4251	5459	39	5460	4250		
I-0-N-H	84	84	90	3737	3648	- 78	3782	3603		
I-0-N-J	73	93	93	4023	3389	0	4023	3389		
1-0-8-K	70	87	94	3898	3267	- 84	3909	3256		
I-0-N-L	76	53	35	2735	3101	7 78	3718	2119		
0-0-N-A	236	523	54 1	23123	14015	-228	23129	14609		
0-0-#-B	40	398	421	17959	6573	-304	17967	6565		
0-0-#-C	-71	319	304	13774	2015	195	13777	2011		
0-0-X-D	- 123	216	228	9903	~727	-156	9905	-730		
0-0-N-E	- 135	146	155	6765	-2018	-117	6767	-2010		
0-0-#-*	-79	61	64	2843	-1529	- 39	2844	-1530		
0-0-#-G	29	35	35	1497	1314	-1	1497	1314		
0-0-8-H	73	43	43	1824	2724	3	2724	1824		
0-0-8-J	76	61	61	2605	3057	0	3057	2605		
0-0-N-K	70	61	61	2619	2880	0	2880	2619		

7

200

美伝

漫が

87

Table A.1 (continued)

INTERNAL PRESSURE (60 PSI)

	MIC	RO-STR	AIN	S -	STRESSES		FRIN STRESSE	
ro sette	GA GE 1	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGHX	SIGHN

1270C-A	42	-25	-59	-1889	685	446	760	- 1964
1270C-B	75	8	-36	-701	2045	595	2168	-825
1270C-C	98	31	-17	197	2985	632	3121	60
1270C-D	123	45	Û	843	3932	5 94	4042	732
1270C-B	128	63	20	1675	4355	571	4471	1558
1270C-F	154	94	51	3027	5532	570	5655	2903
1270C-H	148	80	57	2846	5306	304	5343	2809
1270C-J	131	68	51	2488	4684	2 2 9	4707	2464
1270C-K	128	57	57	2366	4562	0	4562	2366
1270C-L	114	51	51	2130	4063	0	4063	2130
1270C-M	114	54	54	2256	4101	0	4101	2256
0270C-A	231	211	97	65 14	8879	15 17	9619	5773
0270C-B	185	174	94	5688	7267	1063	7802	5154
0270C-C	148	148	80	485*	5904	910	6429	4326
0270C-D	123	131	69	4257	4960	832	5512	3706
0270C-B	106	117	60	3775	4304	759	4843	3236
0270C-F	60	60	40	2125	2432	266	2586	1971
0270C-G	40	34	28	1332	1595	76	1615	1312
0270C-H	37	23	28	1085	1436	- 76	1452	1069
0270C-J	37	26	37	1335	1510	- 152	1598	1247
0270C-K	46	31	40	1515	1822	-114	1860	1478
0270C-L	51	34	37	1507	1990	- 38	1993	1504
0270C-H	51	40	37	1634	2027	38	2031	1630

Ι	'ab	le	A	L (co	nt	:i	nü	ed)
_				- '	·		_			,

INTERNAL PRESSURE (50 PSI)

	MIC	RO-STR	AIN	S	TRESSES	PRIN S	PRIN STRESSES		
				-					
ROSETTE	GA GE 1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGUN	
**** •									
T 2 70 H - A	-53	-68	-97	-3554	-2656	391	-2510	- 3700	
T2 /08-8	-79	-97	-114	-4550	- 3742	235	-3679	- 4613	
1270N-C	-88	- 117	- 135	-5445	-4274	232	-4230	-5490	
1270N-D	-97	-138	- 129	-5753	-4631	-116	-4619	-5765	
1270N-B	- 100	- 147	- 138	-6139	-4835	-117	-4824	-6149	
12701-1	-41	- 159	-118	-6045	-3055	-550	-2957	-6143	
1270N-G	23	- 130	-77	-4563	~665	-707	-541	-4687	
1270N-H	32	-112	-80	-4249	- 306	-431	-260	-4296	
1270N-J	-30	-77	-80	-3403	-1908	39	-1907	-3404	
1270N-K	-50	-62	-59	-2504	-2287	- 39	-2282	-2609	
1270N-L	-47	- 18	-12	-599	-1597	-78	-593	- 1603	
1270N-N	-35	21	23	1007	-751	- 39	1008	-762	
01708-A	313	224	109	6973	11486	1534	11959	6501	
0270N-B	379	235	132	7658	13674	1380	13975	7356	
0270H-C	4 (4	259	141	8317	14908	1572	15264	7962	
0270N-D	434	276	172	9372	15828	1379	16110	9089	
0270N-B	448	282	192	9924	16423	1186	16633	9715	
0270N-P	319	273	233	10766	12798	5 36	12931	10633	
0270#-G	189	244	221	10062	7496	305	10098	7461	
0270¥-H	31	221	218	9627	3832	39	9627	3832	
0270N-J	-38	181	210	8649	1463	-385	8669	1442	
0270#-K	-41	178	187	8075	1204	-115	8077	1202	
0270N-L	-44	141	135	6119	529	77	6120	527	
02708-W	-44	78	83	3583	-231	- 77	3585	-233	

Table A.1 (continued)

INTERNAL PRESSURE (60 PSI)

***288**

		RO-STR	AIN	:	STRESSES	PRIN STRESSES		
RO SETTE	GA GE 1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGNN

I-0-C-*	- 56 6	495	32 5	18590	- 11389	2289	18764	-11562
I- 22C - A	- 375	295	304	13569	-7191	~ 1 15	13569	-7192
1-45C-A	- 186	289	275	12605	-1807	191	12608	- 18 10
I-67C-A	-29	229	180	9032	1849	649	3090	1790
T-90C-A	34	-40	-72	-2496	281	4 20	343	-2558
1112C-A	3	172	218	8557	2651	-611	8620	2589
T135C-A	- 192	292	284	12863	-1902	1 14	12864	- 1903
1157C-A	- 378	292	338	14264	-7068	-611	14282	- 7086
1202C-A	- 370	341	306	14634	-6710	462	14644	-6720
1225C-A	- 18 2	263	277	12077	-1841	-193	12079	- 1843
1247C-A	-17	173	121	6497	1428	693	6590	1335
1292C-A	-38	188	225	9 123	1609	-501	9157	1575
13 15C-A	- 252	257	275	11963	-3957	-231	11966	-3960
1337C-A	- 382	312	292	13694	-7540	269	13697	-7343
I180C-L	38	90	78	3641	2222	1 54	3657	2206
0-22C-A	237	462	488	20620	13290	-341	20635	13274
0-450-1	136	382	368	16330	8993	185	16335	8989
0-67C-A	-53	117	184	6671	406	-892	6795	281
0-90C-A	237	137	184	6782	9140	-631	9298	6624
01 12C-A	- 10 1	70	120	4272	-1735	-669	4345	-1809
01 35C-A	103	379	348	15877	7854	4 08	15898	7834
01 57C-A	268	507	471	21210	1439û	483	21244	14356
0180C-A	262	566	597	25262	15438	-4 10	25279	15421
02 02C-A	192	452	371	20065	11784	-260	20073	11776
0225C-A	105	313	347	14385	7464	-453	14414	7435
02 47C-A	-80	77	125	4515	- 1046	-644	4589	-1120
02 92C-A	-43	185	125	6858	777	797	6960	674
03 15C-A	165	393	398	17198	10102	-74	17 198	10101
03 37C-A	245	464	481	20489	13482	-227	20496	13475
0180C-L	31	54	62	2523	1689	-114	2536	1674

ł

Table A.1 (continued)

INTERNAL PRESSURE (60 PSI)

. . .

	FIC	RO-STR	AIN	:	STRESSES			PRIN STRESSES		
				•						
ro set te	GAGE 1	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGMI	SIGHN		

I-0-N-*	-578	491	477	21913	- 10771	193	21914	-10772		
I-22N-4	-15	259	38	6553	1521	2945	7910	164		
I-45N-A	-46	419	- 144	6090	446	7508	11289	-4753		
1-67N-A	50	292	6	6507	3464	3808	9087	884		
I-90N-A	-20	-59	-91	-3274	-1589	431	-1485	- 3378		
I112N-A	68	36	286	7002	4142	-3341	9206	1937		
1135N-A	-91	-71	463	8734	- 115	-71 15	12688	-4069		
1157N-A	-242	21	520	12141	~3609	-6645	14570	-6038		
1180W-A	-510	461	260	16392	- 10390	26 74	16657	-10654		
1202N-A	-268	508	-23	10945	-4760	70 80	13665	-7480		
1225N-A	14	391	-152	52 73	2003	7224	11020	- 3785		
1247N-A	23	251	38	6511	2590	2836	7842	1059		
1292N-A	58	3	329	7236	3916	-4350	10233	920		
1315N-A	-21	- 105	414	6808	1427	-6913	11537	-3301		
1337M-A	-248	6	469	10709	-4225	-6176	12932	- 5448		
	<i></i>									
0-22N-A	239	363	495	18600	12749	-1767	19092	12257		
0-45N-A	216	236	395	13621	10561	-2113	14700	9482		
0-67N-3	92	-23	164	29.85	3655	- 24 96	5838	801		
0 - 90N - A	314	141	190	6925	11490	-653	11582	6833		
01 12 A-A	43	136	-85	1074	1601	29.56	4305	- 1530		
01358-A	227	427	24.5	14499	11174	2426	15777	9896		
01578-4	256	540	378	19907	13650	2150	20580	12976		
0180N-A	307	620	614	26787	1/249	16	26787	17249		
02 U2N-A	247	350	460	17522	12677	-1467	1/932	12258		
02 25N-A	179	190	367	12052	8988	-2350	13325	7715		
0247N-A	34	-60	131	1522	1478	- 25 39	4039	- 1040		
02928-A	91	205	-31	3796	3838	3146	6918	526		
03 158-1	208	393	222	13293	10224	2284	14510	9007		
0337N-A	225	503	388	19326	12540	1537	19658	12208		
0-0-N-L	70	56	59	2452	2840	- 39	2844	2449		

Table A.2. Out-of-plane moment loading, $M_{\chi N},$ on mozele

OUT-OF-PLANE BOBENT ICACING, MAN, ON NOZZLE (10000 IN-LB)

	EIC	RC-STR		5 -	TFBSSES	PAIN STRESSES		
BOSETTE	GAGET	GIEI2	GAEE3	18A IS	LONG	SHEAR	SIGHT	SIGNN
I-C-C-1	-9	- 12	17	-189	-318	-168	-55	-452
I-0-C-B	-6	-14	14	-9	- 180	-373	288	-478
I-0-C-C	-6	- 14	14	-4	- 189	-374	292	-476
I-C-C-D	-3	- 14	14	-11	-96	-374	322	-430
Ĩ-(-C-8	-3	- 14	17	56	-77	-412	407	-428
I-0C-P	C	-17	14	-77	-32	-4 13	358	-468
I-0-C-6	0	- 14	14	- 18	-18	-375	358	-393
I-C-C-8	-3	- 17	14	-68	-110	-408	320	-497
I-0-C-J	-3	- 14	11	-62	-106	-335	252	-419
I-C-C-R	-6	-11	14	62	-158	-334	304	-400
I-0-C-L	-6	- 11	1€	118	- 141	-370	381	-403
0-0-C-A	- e	-6	-20	-553	-419	150	-285	-687
0-0-C-B	-14	-6	-17	-482	-569	153	-367	-685
0-0-C-C	-14	-8	-17	-544	-588	113	-450	-682
0-0-0-0	-14	-11	-14	-545	-589	39	-523	-611
G-0-C-B	-17	- 11	-17	-604	- 691	77	-560	-736
0-C-C-P	-17	-11	-17	-604	-693	76	-560	-736
0-0-C-G	-17	- 11	-20	-666	-711	1 14	-572	-805
0-C-C-H	-14	-11	-20	-671	-625	1 14	-531	-764
C-C-J	-17	-6	-23	-601	-689	227	-414	-877
0-0-C-X	-17	~ 5	-20	-604	-689	152	-485	-804
0-0-C-L	- 17	-8	-23	-666	-709	150	-497	-879

91

こうにはなるないののというない 国際には、このないのになってないです。

20

1.000

Table A.4. In-plene moment loading, $M_{\overline{ZN}}$, on nozzle

	IM-LB)	(150.00	NO2278	NO "N2	n 'Sni	T LOAD		IN-PLANE		
RESSES	PRIN ST		TRESSES	2	HICRO-STRAIN					
SIGHM	X H9 I S	SHEAR	LOME	TRAKS	GAGE3	GA GE2	GAGET	RO SET TE		
			****		-					
- 7048	#1-	78#-	-7018	84-	11	-25	- 233	4-3-0-T		
-4215	288	- 75	-4218	286	9	0	E 41 -	R-3-0-T		
- 2026	829	0	-2026	829	17	17	-76	0-0-0-T		
-636	967	37	-635	996	20	23	18-	0-2-0-T		
10E	992	0	301	992	23	23	0	8-2-0-1		
381	TIEI	113	1393	395	6	#1	ēε	9-0-0-I		
-278	933	0	933	-278	-5	-5	#E	2-2-0-1		
80#-	634	75	628	-402	11-	ð-	25	H-J-C-I		
-330	S 0#	TE	000	-328	8-	9-	77	L-2-0-1		
-209	436	37	a ê û	-207	9-	-3	17	X-0-5-K		
-156	379	76	369	-145	-6	0	41	I- 0-C-I		
4893	8092	- 2 29	8076	4910	126	601	220	4-3-0-0		
4668	5024	1 15	5015	4707	106	114	120	0-0-C-B		
3010	3857	152	3038	38 29	83	#R	63	J- J-0-0		
1803	3430	- 38	180\$	es pe	08	77	25	0-0-C-D		
928	2510	ł	928	2510	57	57	3	0-0-C-B		
ø	1147	0	4	5#11	26	26	11-	9-0-0-0		
132	644	38	137	584	6	12	0	9- 0-0-0		
296	531	65 -	524	303	6	9	41	H-J-0-0		
312	543	37	537	319	9	5	15	0-0-0-3		
179	504	37	66 h	184	ε	9	15	7-0-0-0		
127	306	0	306	127	ε	E	6	0-0-C-L		

ontinued)	o) E.A	Table /
-----------	--------	---------

	IN-LB)	(16000	NO227B	HYN, 01	DING,	IOJ TH	IHOH J	to rsion
RESSES	PRIN ST	•	TRESSES	2	N IA	O-STR	RICH	
SIGHN	SIGHX	SHRAR	Fore	TRANS	GAGRE	ga gez	ever i	PO SETTE
****		*****	****					**
84	325	154	254	41-	-6	9	6	*-₩~0-I
2456	6044	1 18	0#03	2460	56	65	177	T-22N-A
-6432	-3511	-1336	-5562	-4382	-53	- 153	-142	I-458-A
-26728	-20039	-2122 -	- 20798	-25968	-522	-681	184-	I-67#1
-20518	14872	17684	-2188	- 3458	E 47 -	584	98-	T-80M-T
22148	27652	-1768	22791	27009	693	560	495	I112M-A
5405	8520	-1729	6845	7480	239	109	153	I135M-A
1505	2792	-629	2013	2285	77	29	D D	11578-2
-769	179	-275	-681	91	12	e-	4 <u>5</u> -	a-W0811
-3050	2090	-472	-2479	- 26 6 1	##-	U8-	みごー	1202H-1
-8928	0180-	- 2058	-6937	-6802	-82	~~ 236	- 163	1225M-A
-31982	-24803	-2097 -	-25479	-31306	-647	508 -	-536	IZN7H-A
16524	23525	-2213	17313	22736	609	643	350	1292W-A
2976	5850	-1204	5198	3628	127	14	137	13 15M~1
167	1980	-544	1643	1105	(D	9	4 4	1337M-A
-865	1134	666	180	90	-35	0#	5	0-22#-A
-2695	2382	2496	308	e : 9-	-107	08	16	0-458-1
4234	17854	5800	10671	11417	T T	521	242	0-678-1
-14224	11764	12985	-1720	-740	-:05	469	-50	A-808-0
-20130	-3833	7882	- <u>`</u> °29	- 14040	-620	-28	- 191	01128-6
-3217	4192	3676	85	947	-117	159	6 -	01358-2
-757	1651	1901	-122	10 16	-17	63	pt -	01578-4
344	956	3 03	969	606	3	26	17	0180M-A
-1024	1431	1023	881	-475	8#-	28	₿E	0202H-1
-4332	2626	824E	-394	-1312	- 159	100	0	0225M-A
5515	22517	8147	11588	16443	74	685	222	22478-4
-13831	-551	6593	-7979	-6403	- 398	97	-202	0292M-A
- 1945	2748	2321	56	747	-70	104	-6	0315H-A
-1271	870	801	-417	15	-39	39	P1-	0337M-A
BR 5-	926	599	80\$	235	-17	28	11	J-N-0-0

È

• ~

Table A.2 (continued)
-------------	------------

であり

001-0F-1	PIANE	MCHENT	LCADIN	G. MXN.	CN NOZ	2LE [1	0000 IN-	LB)
	BIC	RO-SIR	AIN	9	TBESSES	PBIN STRESSES		
RUSETTE	GACE1	GAGE2	GAGE 3	1 BARS	LONG	SHEAR	SIGNI	SIGNN
I-C-N-B	0	-3	12	191	57	- 193	329	-80
I-C-N-C	C	0	ç	191	57	-116	259	- 10
I-C-N-D	C	-3	ç	128	38	-155	244	-78
I-C-N-B	3	0	9	188	344	- 1 16	284	1.8
I-0-N-F	€	0	:	57	192	- 39	202	47
I-C-N-G	3	-3	3	-3	86	-77	131	-48
1-0-N-H	3	0	E	124	124	- 77	202	47
I-C-N-J	C	0	3	73	. 33	- 39	97	9
I-I)-N-K	0	0	E	136	49	-71	175	9
I-C-N-L	0	-3	-44	- 10 20	-309	346	- 13	-1316
C- O-N-A	-6	-3	-14	-371	-284	151	-170	-485
0-0-N-E	-11	-3	-17	-427	- 471	189	-258	-640
0-C-N-C	-12	-6	-15	-441	-487	1 17	-345	-583
0 0- N-D	-12	-3	-18	-442	-487	195	-269	-661
0- C-N-E	-12	-6	-18	-505	-505	157	-349	-662
0-0-N-F	-12	-3	-18	-441	-487	195	-268	-661
0- C-N-G	-9	-3	-18	-446	-403	195	-228	-621
0-0-N-H	-9	0	-21	-452	-408	275	-154	-705
0-0-N-J	-6	-3	-24	-578	-351	274	- 168	761
0-0-N-E	-12	Ó	-7:	-503	-507	312	-193	-818

Table A.2 (continued)

OUT-OF-PLANE HOMENT LOADING, MIN, ON NOZZLE (10000 IN-LB)

	NICRO-STRAIN			Ş	TRESSES	PRIN STRESSES		
			8 -	•		•		
BOSETTE	GACEI	GA E E 2	GAGES	TEANS	LONG	SBEIR	SIGHI	SIGHN
				~~~~				
1270C-1	-87	- 354	14	-7391	-4822	-4964	-1037	-11176
1270C-B	-118	-315	33	-6077	-5348	-4645	-1054	-10372
1270C-C	- 145	-282	36	-5240	-5932	-4236	-1336	-9837
1270C-D	-168	-237	47	- 3992	-6225	- 3792	-1155	-9062
1270C-1	- 17 1	-217	43	-3638	-6229	-3461	-1238	-8629
1270C-1	-203	- 103	25	- 1408	-6502	-1749	-865	-7045
1270C-H	-174	23	20	1132	-4883	38	1132	-4884
1270C-J	-103	57	26	1932	-2503	4 18	1971	-2542
1270C-R	-60	63	25	2073	-1176	456	2136	-1239
1270C-L	-9	43	14	1264	122	360	1379	7
12700-8	Э	17	-5	185	141	342	506	-180
0270:-1	-65	- 37	20¢	3767	-830	- 3753	5428	-2490
02700-2	-A	-8	196	4143	992	-2730	5710	-594
02700-0		17	185	4411	2267	-2237	5820	358
0270C-D	60	15	16 2	#1 Q#	3057	- 1746	5461	1799
0270C-F	80	60	158	4609	3780	-1251	5513	2876
02700-7	123	100	123	4773	5127	-305	5302	15QR
02700-6	123	120	Q.C.	4584	5070	342	5246	4407
0270C-H	106	169	28	4225	4446	268	4625	4046
02700-1	46	83	75	3479	2427	200	3484	2421
0270C-K	12	54	66	2632	1141	-144	2647	1125
C270C-L	-22	6	32	858	-413	342	9 <b>7</b> 0	-#66
0270C-M	-11	-20		-287	-412	-242	-2	-69Å

「日本」「日本」の「日本」

Table A.2 (continued)

001-07-)	PIAKE	NCEEST	LCACI	NG, MIN	, CH HOZ	17.1.E (1)	0000 IN	-LB)
	EIC	RC-SIR	AID		STEESSES	5	PRIN S	TRESSES
BOSET12	G <b>A</b> GE î	GAGE2	GAGEE	IFANS	î cire	SEEAR	SIGNI	SIGNN
1270N-1	-26	-333	-52	-8438	-3310	-3740	-1340	-10408
1270N-8	15	- 368	-95	- 10285	-2638	-3584	-1221	-11702
1270W-C	30	-394	- 158	-12157	-2762	-3152	-1802	-13117
1270N-D	35	-403	-216	-13646	-3032	-2453	-2476	-14202
1270¥-B	32	-412	-231	-14153	-3272	-24 14	-2760	-14665
1270N-F	23	-522	-428	-20891	-5564	- 1257	-5461	-20993
1270N-G	- 105	- 398	-401	- 17441	-8509	39	-8509	-17442
1270N-H	- 18 3	-245	-251	- 10688	-8€94	79	-8691	-10691
1270N-J	-180	-97	-162	-5507	-7050	864	-5120	-7437
12709-K	-136	-47	-85	-2835	-4922	550	-2699	-5058
1270N-L	- 100	-24	-44	- 1383	-3425	275	-1347	-3461
1270N-N	-74	-15	-27	-829	-2463	157	-814	-2473
0270N-A	- 17 C	-95	192	2319	-4409	-3831	4054	-6143
0270N-B	-239	-130	218	2203	-6520	-4638	4208	-8525
0270N-C	-274	- 164	241	1991	-7617	-54C4	4418	-10043
0270N-C	-334	- 176	235	1744	-9504	-5521	4001	-11760
0270N-E	-354	- 193	253	17 03	-10123	-5945	4174	-12595
0270N-F	- 35 1	-78	288	4994	-9044	-4869	6518	-10567
0270N-G	-311	31	27€	7093	-7206	-3261	7801	-7915
0270N-8	-285	95	221	7259	-6375	- 1686	7464	-6580
0270N-J	-251	84	9E	ð <b>26</b> 8	-6248	-152	4271	-6252
0270N-K	-216	46	17	16 30	-6001	384	1649	-6021
0270N-L	-139	6	-32	-421	-4281	459	- 357	-4345
0270N-N	-98	- 26	-36	- 1289	-3331	153	-1278	- 7743

94

1. . . . .

and the second second

95

# Table A.2 (continued)

00 <b>1-0</b> -1	PLABE	HOBIHT	TCTDI	IG, MXN	, OF BOS	ZLE (1	6000 IH	-LB)
	BIC	RC-S18:	AIN 	:	STEESSES	5	PRIN S	TRESSES
BOSETTE	GACE1	GAGE2	GAGE3	1 BANS	LONG	SBBAR	SIGNI	SIGNN
I-C-C-*	-6	-3	E	119	- 138	-148	186	-205
I-22C-1	-32	-9	-6	-280	-1029	-38	-278	- 1031
I-45C-1	-4C	- 14	-14	-585	-1379	Ó	-585	-1379
I-67C-1	-95	-166	4 C	-2666	-3635	-2748	- 360	-5941
I-90C-A	08	- 32	399	€773	4438	-4999	10739	472
1112C-A	-312	- 392	-464	- 18478	~14910	954	- 14671	-18717
1135C-1	-46	- 160	-106	-5804	-3116	-725	-2933	- 5987
115/C-A	-17	-54	-32	- 1869	-1076	-305	-973	-1973
12020-1	52	35	64	2102	2191	-365	2534	1759
1225C-A	81	121	173	6389	4344	-653	6602	4131
1247C-A	413	514	381	19233	18168	1771	20550	16857
12920-1	127	-20	170	3163	4763	-2541	6627	1299
1315C-A	49	29	29	1216	1839	0	1839	1216
1337C-1	26	6	14	416	905	-116	931	390
1180C-L	-46	3	C	114	-1353	39	115	-1354
0-220-1	23	12	7	3 <b>79</b>	813	71	824	367
C-45C-1	47	28	-17	195	1483	5\$5	1715	-38
0-67C-A	123	73	17	18 <b>2</b> 9	4233	744	4444	1618
0-90C-1	€4	-265	36	-5097	397	-4015	2515	-7215
0112C-A	366	25	28	766	11197	-37	11197	766
0135C-A	75	-81	-84	- 3698	1151	37	1152	-3699
0157C-A	25	-11	-45	- 1252	379	446	493	- 1366
01800-1	-25	0	-25	-829	-1001	520	-388	- 1442
02 C2C-1	-67	20	-17	136	-1968	483	242	- 2073
C225C-A	- 128	46	46	2143	-3204	0	2143	-3204
02470-1	-484	-5?	-71	-2286	-15213	150	-2284	-15216
0292C-A	- 177	- 34	-94	-2632	-6082	797	-2448	-6257
0315C-A	-66	3	46	-867	-2227	645	~610	- 2484
0337C-1	-26	-6	- 17	~473	-912	152	-426	-960
0180C-L	3	20	-26	-129	46	667	572	-655

	Tab.	le	A.	2 (	(cont	inu	ed)
--	------	----	----	-----	-------	-----	-----

001-01-1	LABE :	OV DE DI		ity DIS,	, UN NUZ	STF (1)	0000 18-	-78)
	EIC)	RC-SIR	ain 	:	STRESSES		PRIN ST	RESSES
ROSETIE	GAEE 1	GAGE2	GAGES	16ANS	LCHG	SBEIR	SIGEI	SIGNN
I-0-H-*	-6	0	S	197	- 114	- 1 16	235	-153
I-22N-A	-68	-35	3É-	- 1549	-2502	39	-1548	-2503
I-458-A	-30	-18	-27	-945	-1188	1 18	-897	- 1236
I-67N-A	-ôć	24	2€	1190	-2214	- 37	1190	-2215
I-SON-A	26	-9	369	7880	3154	-50 13	11077	-43
I112N-A	-331	- 304	-39€	- 150 15	-14426	1219	-13466	-15975
I135N-A	-77	-95	- 145	-5175	-3859	569	-3579	- 5455
1157N-A	-18	-33	-35	- 1542	- 997	79	-986	-1554
I180N-A	29	3	3	92	911	-1	911	92
1202N-A	53	44	55	2204	2250	-158	2427	2027
1225N-A	99	154	96	5399	4590	777	5871	4119
1247N-1	325	411	335	16042	14698	10 11	16583	14156
1292N-A	93	3	-12	-298	2707	154	2719	-310
2315N-A	32	38	29	1434	1390	117	1531	1293
1337N-A	20	14	12	549	773	39	779	543
0-22N-A	14	23	c	488	577	307	843	222
0-45H-A	-3	52	-3	1078	234	730	1499	- 187
0-67N-A	-9	52	2E	17 16	254	346	179ペ	177
0-90H-A	138	-260	78	-4149	2905	-4496	5093	-6336
0112K-A	105	8	35E	7884	5523	-46 24	11475	1931
0135N-A	17	-111	57	- 1206	150	-2236	1808	28¢5
0157H-A	20	-40	-20	-1334	196	-265	241	- 1379
0180N-1	-28	-11	-37	- 10 33	-1164	341	-751	-1446
02028-1	-68	-23	Ę	-316	-2144	-370	-244	-2216
0225 <b>X-</b> 1	-51	-85	<b>3</b> 8	-70	-1557	- <u>2158</u>	1507	- 3134
02471-1	- 159	- 4 10	-63	- 10201	-7839	-4624	-4248	-13792
0252N-1	-2C	~48	-105	-3356	-1606	757	-1324	-3638
03 15¥-A	-12	-6	-65	- 1549	- 814	786	-314	-2049
0337N-A	-17	0	-23	-500	-667	367	-266	-901
0-0-M-L	-9	0	-23	-492	-410	258	-150	-752

QUI-OF-PIAKE HOBERT LOADING, NAME ON NORZER (10000 IN-ER

Table A.3. Torsional moment loading, MyN, on nozzle

TURSION	AL HOR	ENT LO	ADING,	HYN, ON	NOZZLE	(16 000	IN-LB)	
	NIC	RO-STR	67.0 	5	TRESSES		PRIN ST	RESSES
ROSETTE	GAGEI	GA GE2	GAGE3	TRANS	LOUG	SHEAR	SIGHI	SIGHN
1-0-C-2	8	3	-8	-133	213	150	269	-189
<b>х-о-с-в</b>	3	0	~ 3	-65	65	37	75	-75
I-0-C-C	0	-3	-3	-124	-37	Ģ	-37	-124
X-0-C-D	0	-3	0	-62	-19	- 37	3	-83
1-0-C-B	-3	-6	6	3	-83	- 1 50	116	-196
1-0-C-P	C	-8	8	0	0	-2 25	225	-225
I-0-C-G	-3	-8	14	127	-46	-300	352	- 272
I-0-C-H	-3	-11	14	64	-64	-3:34	341	-341
I-0-C-J	-3	-11	17	126	-46	-372	\$21	-342
I-0-C-K	-6	-11	20	190	-110	-409	475	-396
I-0-C-L	-8	-14	5.0	132	-211	-446	439	-518
0-0-C-A	-9	9	-26	-367	-367	4 57	96	-824
0-0-C-B	-6	3	-17	-308	-265	255	-20	-553
00-CC	-6	3	+23	-434	- 302	343	-19	-717
0- J-C-D	- 14	-9	-23	-675	-631	190	-462	-844
C-0-C-E	-14	-11	-9	-425	-557	- 38	-414	-567
0-0-C-F	-17	-6	-17	-484	-659	152	- 396	-747
0-0-C-G	-14	-9	-17	-550	-594	1 14	-456	-688
0-0-C-E	-14	-9	-17	-550	-595	114	-456	-689
0-0-C-J	-3	-3	-5	-170	-127	38	- 105	-191
G-0-C-K	-2	-3	- 3	-113	-108	0	- 107	-113
0-0-C-L	-8	-8	0	-169	-298	-114	- 103	-364

# TORSIONAL MOMENT LOADING. NYN. ON MOZZLE (16000 TH-

Table A.3 (continued)

						(		
	HIC	RO-STR	AIN	S	TRESSES		PRIN S	TRESSES
				-				
rosette	GAGET	GAGE2	GAGZ3	TRA WS	LONG	SHEAR	SIGHI	SIGNI
******								
T- A-W-P	•	-	^	67	.7	20		- 7
	Ū,	2	v	57	11	33	10	= 1
1-0-8-0	0	5	- 3	- 11	100		195	-40
I-0-N-D	3	6	-3	54	100	1 15	194	- 4 0
I-0-N-B	3	6	-6	- 10	79	154	195	-126
I-0-N-F	6	6	- 3	54	188	117	255	- 13
I-6-N-G	3	6	-6	-7	82	154	198	-123
I-0-N-H	6	6	* <b>ນ</b> ໌	-9	168	155	258	- 99
I-0-N-J	9	6	- 9	-77	236	195	330	-170
I-0-N-K	12	3	-12	-209	285	193	352	-275
I-0-N-L*	* 15	6	-108	-2267	-242	1518	571	- 3079
0-0-N-A	-6	17	-23	-137	-227	531	351	-714
0-0-N-B	-3	17	-26	-204	- 162	568	386	-752
0-0-N-C	-1	23	-24	-23	- 27	625	600	-650
0-0-N-D	2	23	-27	-95	42	663	640	-693
0-0-H-E	2	26	-27	-26	66	703	724	-684
0-0-N-P	5	29	-24	99	185	702	846	-562
0-0-N-G	5	31	-24	157	198	741	919	-563
0-0-N-H	ŝ	31	-25	142	186	745	909	-581
0-0-1-1	Â	32	-19	285	221	661	972	-356
0-0-N-K	11	32	-19	203	551 A 14	663	1020	-313

## TORSIONAL NOMENT LOADING, MYN, ON NOZZLE (16000 IN-LB)

**3**(*

and the second second states and the second s

.

99

÷.,

22. 18 18 20 10

# Table A.3 (continued)

TORSION	L HOH	ENT LO	ADIKG,	MYN, O	N NOZZLE	(16000	IN-LB	)
	RIC	RO-STR	AIN		STRESSES		PRIN S	IRESSES
	***		*					
ROSETTE	GAGET	GAGE2	GAGE3	TRA NS	LONG	SHEAR	SIGMX	SIGNN
1270C-A	-70	742	-563	39 99	-892	17389	19114	-16007
1270C-B	- 103	667	-580	26 13	-2491	166.09	16522	-17000
1270C-C	-89	622	-524	22.43	-2004	15271	15538	-15299
12700-0	-75	530	-502	695	-2050	13748	13139	-14494
12700-8	-94	505	- 44 2	1478	-2386	12625	12317	-13226
1270C-P	-34	288	-260	662	-834	7301	7253	-7425
1270C-H	23	71	-29	912	956	1331	2265	-397
1270C-J	46	8	46	1133	1706	-4 96	1992	847
1270C-K	48	3	40	884	1718	-494	1948	654
1270C-L	26	8	11	4 06	888	- 38	891	403
12700-4	~6	3	- 3	2	- 173	76	30	-202
0270C-A	46	433	-406	5 26	1532	11181	12222	-10163
0270С-В	37	373	-335	787	1358	9440	10516	-8371
0270C-C	37	30 2	-264	784	1355	7542	3617	- 6478
0270C-D	37	253	- 182	1538	1584	5797	7358	-4236
0270C-B	35	197	-133	1353	1444	4397	5795	- 2998
02700-1	11	40	28	1479	774	152	1510	743
0270C-G	-17	-37	94	1261	- 146	- 1748	2441	- 1326
0270C-H	-32	-63	108	1026	-642	~2281	2621	- 2236
0270C-J	-49	-46	51	164	-1416	~1291	887	-2139
0270C-K	-52	-26	11	-265	-1626	-493	~105	-1786
0270C-L	-32	-6	-9	-293	-1041	38	- 291	- 1043
02700~!!	5	0	-6	-141	114	76	135	-162

Tabie	4.3	(continued)
TUNTE	- L + L -	(continued)

TORSIONAL	HOHE	NT LOI	DING,	HYN, OI	NOZZLE	(16000	IW-LB)	
	MICRO-STRAIN			STRESSES			PRIN STRESSES	
ROSETTE GI	l ge 1	GL GE2	GAGE3	TRA US	LONG	SHEAR	SIGHT	SIGHN
								_
1270H-1 ·	-152	488	-494	34	-4553	13085	11025	-15544
1270M-B -	- 184	506	-421	2062	-4908	12345	11404	-14251
1270H-C -	- 123	552	-386	3791	-2548	12500	13517	-12274
1270¥~D -	- 129	473	-85	8680	-1257	74 38	12657	- 5233
12708-8**-	- 102	447	- 263	4154	-1826	9463	11088	- 8760
12708-2	9	389	88	10477	3409	4003	12283	1603
1270N-G	6	100	315	9121	2913	- 2865	10241	1793
12708-8	56	-97	339	5247	3253	-5809	10 144	- 1544
1270N-J**	156	- 38	253	4554	60 <b>50</b>	- 3886	9259	1345
1270N-K	97	- 32	127	1965	3506	-2119	4990	480
1270K-L	77	-21	147	26 9 9	3108	-2237	5150	657
12701-1	71	18	109	2706	2933	- 1217	4041	1597
02708-1	31	514	- 50 1	250	1002	1 35 35	14 166	-12915
0270¥~B	16	583	-614	-686	284	15948	15754	-16156
02708-C	-50	644	-749	-2252	-2166	18555	16346	-20764
0270N-D	-7	690	-795	-2296	-886	19779	18201	-21383
0270H-B	-53	718	-849	-28 14	-2426	20887	18268	-23508
02708-2	-93	538	-806	-5796	-4521	17900	12753	-23070
02708-G	-32	307	-539	-5052	-2487	11267	7570	-15108
02701-8	5	92	-294	-4453	-1177	5138	2578	-8207
02708-J	48	-41	-78	-2673	649	498	722	-2746
02701-K	45	-44	-18	-1412	939	-345	989	- 1462
0270N-L	22	-24	-3	-6 20	482	-269	544	-682
0270H-N	- 4	17	-21	- 89	-136	498	387	-611

Table	A.3	(continued)
TOPIC		(comerunea)

TORSION	IL HOB	SHT LO	ADING,	HIN, O	N NOZZLE	(16000	1841/33			
	HIC	NICRO-STRAIN			STRESSES			PRIN STRESSES		
					*****		~~~~~			
RO SETTE	GAGE 1	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGMX	SIGNU		
I-0-C-*	6	6	-3	56	185	112	250	-9		
I-220-A	-32	-41	-32	- 1558	-1425	-121	-1353	- 1629		
I-45C-1	-85	- 172	- 152	-7027	-4697	-266	-4667	-7057		
I-67C-A	-476	-599	-679	-27564	~22548	1069	- 22330	-27783		
I-90C-A	14	601	-745	-3185	-535	17934	16123	-19842		
I1 12C-4	486	661	624	27703	22904	492	27753	22854		
11350-1	83	220	200	9142	5221	270	9160	5203		
I157C-1	31	63	68	2842	1780	- 76	2847	1775		
1202C-A	-41	-61	-72	-2882	-2083	153	-2054	-2910		
1225C-A	-90	- 199	-237	-9493	-5539	500	-5477	- 9555		
12470-1	-653	-777	-728	- 32373	-29309	-655	- 29 175	-32507		
1292C-A	396	572	517	23499	18923	7 3 2	23613	18809		
t3 15C-A	72	144	176	5967	4254	-423	7031	4189		
I337C-A	43	26	52	1664	1796	-346	2083	1377		
I180C-L	-9	-6	20	325	-186	-346	500	-360		
0-22C-A	40	5	-35	-695	978	5 37	1135	-852		
0-450-1	122	-90	-81	- 3890	2502	-112	2504	- 3892		
0-67C-1	535	- 17	19	-544	15392	-483	15906	-558		
0-90C-A	-42	824	- 447	-460	-1409	11599	10675	-12543		
01120-1	-547	-59	-20	-1132	- 16755	-522	-1114	-16772		
01350-1	-120	145	108	5695	-1903	482	5725	- 1934		
0157C-1	-51	44	30	1691	-1013	185	1704	- 1026		
01800-1	14	13	16	642	598	- 39	664	575		
0202C-1	61	-20	-34	- 1255	1446	186	1458	-1267		
02250-1	133	-94	- 146	-5421	2373	685	2433	- 54 80		
02470-1	706	54	34	1144	21515	2 66	21519	1141		
0292C-1	-436	11	96	2843	- 12 2 2 2	-1138	2928	-12307		
03150-1	-97	82	91	3908	-1747	-112	3910	- 1749		
03 37C -1	-49	31	-15	413	-1342	6 07	602	- 1531		
01800-1	-15	-20	11	-185	-494	-4 18	106	-785		

.
Table	A.3	(continued)

TORSION	L HOH	ent loi	ADING,	HYN, O	N NOZZLE	(16000	IN-LB)	)
	HIC	RO-STR	AI N		STRESSES		PRIN ST	RESSES
		******						
RO SET TE	GAGEI	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGHX	SIGNN
T-0-W-#	0	6	-6	- 14	25.0	15/	325	- 94
1-0-N-+ T-22N-A	177	65	56	2460	6040	1 18	6044	2456
T-45W-1	-142	- 153	-53	-4392	-5562	-1336	-3511	-6432
T-67N-A	-434	-681	-522	-25968	-20798	-2122	-20039	-26728
T-904-A	-38	584	-743	- 3458	-2188	176 84	14872	-20518
T1 28-A	490	560	693	27009	22791	-1768	27652	22148
1155N-A	153	109	239	7480	6845	-1729	8920	5405
1157N-2	44	29	77	2285	2013	-629	2792	1505
I1808-A	-24	-9	12	91	-681	-275	179	-769
1202N-A	-75	-80	-44	-2661	-2479	-472	-2090	-3050
1225N-A	- 16 3	- 236	-82	-6802	-6937	- 20 58	-4810	-8928
1247M-A	-536	- 862	-647	-31306	-25479	-2097	-24803	-31982
1292N-A	350	443	609	22736	17313	-2213	23525	16524
1315N-A	137	41	N. 1	3628	5 198	-1204	5850	2976
1337M-A	44	6	4,	1105	1643	-544	1980	767
	-							
0-22N-A	5	40	-35	90	180	9 99	1134	-865
0-45N-A	16	80	-107	-6.7	308	24 96	2382	-2695
0-67N-1	242	521	11	11417	10671	68 00	17854	4234
0-90N-A	-50	469	-505	-740	-1720	12985	11764	-14224
01 12N-A	- 19 1	-28	-620	~ 14040	-1020	7882	-3839	-20130
0135N-L	-9	159	-117	947	28	3676	4192	-3217
015/N-A	-14	63	-1/	1016	- 122	1063	1051	-/-/
OISUN-A	1/	20	3	000	694	3 03	950	344
OZUZE-A	34	28	-48	-4/5	881	1023	1451	- 1024
	0 101	100	- 159	* 1314	- 374	5458	2020	-4332
02978-1	222	200 70	- 20.9	10443	11200	014/ 6602	- 65 4	12021
02768-1	- 20 2	9/	- 370	-0403 7#12	-1719 54	2223	-221	-13031
03138"A	-0	104	-70	14/	-# <b>17</b>	2321	670	- 1743
	- 14	27	-12	17	-41/	00 VI	010	-14/1
0-0-4-6		20	-1/	637	400	377	740	- j 14

* The there was

1.1.1

4

Martin Parts

ż

Table A.4. In-plane moment loading, M_{ZN}, on nozzle

### IN-PLANE HOHENT LOADING, MZN, ON NOZZLE (15000 IN-LB)

NICRO-STRAIN				S -	TRESSES		PRIN STRESSES	
RO SETTS	GAGE 1	GAGE2	GAGE3	TRANS	LONG	SEEAR	SIGNI	SIGHN
I-0-C-4	- 233	-25	11	-48	-7014	-487	-14	- 7048
I-0-C-B	- 143	0	6	286	-4214	- 75	288	-4215
I-0-C-C	-7£	17	17	8 29	-2026	0	829	-2026
I-0-C-D	-31	23	20	966	-635	37	967	-636
I-0-C-B	0	23	23	992	301	0	992	301
I-0-C-₽	39	14	6	395	1303	113	1317	381
I-0-C-G	34	-5	-5	-278	933	0	933	-278
I-0-C-H	25	-6	-57	-+ 02	628	75	634	-408
1-0-C-J	17	-6	9	~328	400	37	402	-330
1-0-C-K	17	-3	<del>-</del> Ķ	-207	434	37	436	-209
I-0-C-L	14	0	-6	-145	369	76	379	-156
0-0-C-A	220	109	126	4910	6276	- 2 29	8092	4893
0-0-C-B	120	114	106	#7 07	5015	1 15	5054	4668
0-0-C-C	63	94	8 <del>3</del>	38 29	3038	152	3857	3010
0-0-C-D	26	77	80	34 29	1804	- 38	3430	1803
0-0-C-E	6	57	57	2510	928	1	2510	928
9-0-C-P	-11	26	26	1147	4	0	1147	<b>Q</b>
0-0-C-G	0	12	9	4 4 5	137	38	449	152
0-0-C-R	14	6	9	303	524	- 38	531	296
0-0-C-J	15	ç	6	3 19	537	37	543	312
0-0-C-K	15	6	3	184	499	37	504	179
0-0-C-L	9	3	3	127	306	c	306	127

Table	A.4	(continued)	
-------	-----	-------------	--

IN-PLANE	e noner	T LOAD	DING,	MZN, ON	NOZZĽE	(150 00	IN-LB)	
	MICH	O-STR	AI N		STRESSES	;	PRIN S	TRESSES
						•		******
ROSETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHX	SIGHN
I-0-N-B	- 134	0	Q	153	-3960	-1	153	- 3960
I-0-N-C	-72	9	13	659	-1976	- 1 16	664	- 1981
I-0-N-D	-29	21	20	932	-588	1	932	~588
I-0-N-E	0	18	18	173	237	1	773	237
1-0-N-P	44	6	3	147	1354	38	1355	145
I-0-N-G	44	-12	- 14	-619	1125	39	1126	-620
I-0-N-H	32	-14	-20	-798	722	77	726	-802
T-0-N-J	29	- 15	-15	-630	666	0	666	-680
0-N-K	32	-12	-6	-425	832	- 83	838	-430
I-0-1-L	38	6	-53	-1075	820	779	1099	-1354
0-0-N-A	200	123	132	5376	7615	- 1 13	7621	5371
J-0-N-B	118	103	10 9	4530	4885	<b>- 7</b> 5	4900	4515
0-0-N-C	68	94	88	3941	3324	78	3949	3216
0-0-N-D	36	74	77	3274	2055	- 39	3275	2054
0-0-N-E	12	59	59	2585	1140	0	2585	1140
0-0-N-P	-5	30	33	1381	259	- 38	1382	258
0-0-N-G	10	15	15	664	488	1	664	488
J-C-N-H	22	16	13	606	835	34	840	601
0-0-N-J	24	12	15	5 82	895	- 40	900	577
0-0-N-K	2 <b>7</b>	9	9	371	930	Û	930	371

TO CRAN		AT POH				(13000		
	MICI	RO-STR	VI N	:	STRESSES	5	PRIN S	TRESSES
						•		
ROSETTE	GAGEI	GAGE2	GAGES	TRANS	LONG	SHEAR	SIGMI	SIGAN
					****			
1270C-A	-6	-25	- 257	-6191	-2032	3085	-391	-7831
1270C-P	-14	50	-282	2 -5082	-1951	4422	1174	-8207
1270C -C	-25	106	-279	-3777	-1893	5128	2379	-8049
1270CD	-28	134	- 282	2 -3224	-1809	5535	3064	-8097
1270C-E	-46	166	- 280	) -2454	-2102	5934	3659	-8215
1270C-P	-60	174	-225	5 -1060	-2112	5326	3766	-6938
1270C-H	-60	103	-83	508	-1643	2473	2129	- 3264
1270C-J	-23	49	10	1414	-257	458	1531	-374
1270C-K	12	31	46	5 1685	851	-190	1726	810
1270C-L	54	40	52	2 1953	2217	-152	2287	1884
12700-1	60	40	40	2009	2404	- 38	2408	2005
0270C-A	57	613	-498	3 2461	2460	14793	17254	-12333
0270C-B	38	576	- 472	2234	1800	13962	15981	-11947
0270C-C	43	516	-435	5 17 22	1814	12670	14438	-10902
0270C-D	49	476	-361	2475	2216	11147	13493	-8803
0270C-E	46	411	- 373	1663	1889	9901	11677	-8125
0270C-P	72	237	- 168	3 14 44	2588	5400	7446	-3414
0270C-G	58	129	-25	5 1772	2258	23 19	4347	-317
0270C-H	40	60	20	5 1852	1766	458	2269	1349
0270C-J	0	17	66	5 18 37	564	-648	2108	293
0270C-K	-31	9	52	2 1362	-524	-572	1522	-684
0270C-L	-71	3	16	3 535	-1966	- 190	549	-1980
0270C-N	-77	9	(	5 411	-2172	38	412	-2172

IN-PLANE MOMENT LOADING, HZN, ON NOZZLE (15000 IN-LB)

3.455 3

# IN-PLANE MOMENT LOADING, MZN, ON NOZZLE (15000 IN-LB)

and the state of the second

The state of the second

	NICI	RO-STR	AIN		STRESSES		PRIN ST	RESSES
RO SETTE	GAGE1	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGNN
					2200	04.04	057C	0006
1270N-A	-50	-82	-269	-/604	-3/98	2494	-2010	-0200
1270N-B	-50	-118	- 24 3	-9204	-4208	000	-4114	- 7340
1270N-C	-38	~ 26 1	-231	-10/03	-4315	-391	-4371	-10/8/
1270N-D	-38	- 331	-214	-11917	-4/22	- 1558	-4399	-12239
1270N-E	-41	- 412	- 173	-12815	-5080	-3195	-3931	-13964
1270N-F	-65	-693	-38	- 15990	-6737	-8/20	-1491	-21230
1270 ₉ -G	-65	-640	21	-13527	-5997	-8800	-191	-19334
1270N-H	-17	- 501	-50	-12087	-4149	-6011	-914	-15322
1270N-J	-32	- 180	-79	-5659	-2665	-1336	-2156	-6169
1270N-K	-53	-118	-76	-4210	-2849	-550	-2655	-4404
1270N-L	-47	-56	-35	-1951	-1994	-275	-1696	-2249
1270N-N	-35	- 18	-23	-862	-1314	79	-848	- 1328
0270N-1	69	71?	-624	1960	2669	17862	20180	-15551
0270N-B	90	734	-621	2382	3403	18054	20954	-15169
0270N-C	75	728	-661	1384	2669	185 14	20552	-16499
0270N-D	153	717	- 58 1	2815	5429	17289	21460	-13216
0270N-E	150	694	-518	3703	5611	16140	20826	-11511
0270N-P	124	478	- 152	7014	5824	8395	14835	- 1997
0270N-G	69	285	130	9040	4792	2072	9883	3949
0270N~H	6	135	265	8789	2815	- 1726	9252	2352
0270N-J	-43	-17	274	5704	430	-3879	<b>77</b> 58	- 1623
0270N-K	-66	-34	205	3840	-820	-3190	5460	-2440
0270N-L	-48	-23	110	1975	- 857	- 1767	2823	- 1705
0270N-N	-40	-11	29	449	-1057	-5 36	621	- 1228

106

w 35.5 . *

### IN-PLANE MOMENT LOADING, MZN, ON NOZZLE (15060 IN-LB)

	HICH	RO-STR	AT N	9	STRESSES	5	PRIN ST	RASSES
				•		-		
ro set te	GA GE 1	GA GE2	GAGE3	TRA NS	LONG	SHEAK	SIGHI	SIGHN
I-0-C-*	- 197	20	-25	96	-5875	599	156	-5934
I-22C-A	-223	-31	-26	- 1009	-7004	-75	-1008	-7005
I-45C-N	- 198	-11	63	1353	-5522	-993	1493	-5663
I-67C-A	69	321	450	16866	7127	- 17 18	17160	6833
I-90C-A	29	-292	-29	-7078	-1262	-35 12	390	-8729
I112C-A	252	-252	- 3	-5875	5805	- 33 20	6683	-6753
1135C-A	295	66	152	44 66	10 197	-1146	10417	4245
1157C-A	258	138	135	5703	9451	38	9452	5703
1202C-A	272	122	116	49 16	9631	78	9632	4915
1225C-N	361	168	81	5069	12364	1156	12543	4890
1247C-1	283	-72	- 237	-7103	6373	2195	6721	-7451
1292C-1	29	390	295	15030	5380	1271	15195	5216
1315C-A	-240	41	-20	7 11	-6981	809	795	-7065
1337C-A	-231	-23	-32	-950	-7219	115	-948	-7221
I180C-L	-45	9	Û	243	-1291	1 15	252	-1300
0-22C-A	217	120	132	530s	8115	-157	8123	5300
0-45C-A	232	173	190	77 34	5224	-222	9315	7703
0-57C-A	45	154	369	11436	4787	-2863	12499	3725
0-90C-A	45	- 566	628	13 76	1751	-15915	17450	-14382
0112C-A	-446	-373	- 379	- 160 30	- 18 197	76	- 16048	-18200
0135C-A	-318	- 106	-136	-4969	-11021	411	-4941	-11048
0157C-A	- 293	-50	-75	-24 18	-950!	3 35	-2402	-9516
0180C-A	-353	-64	-44	-2094	-8231	-258	-2084	-8242
02 02C - N	-264	-94	-47	-28 10	-8774	-632	-2744	-8840
0225C-A	- 389	- 165	-136	-6181	-13535	-384	-6161	-13555
0247C-A	-501	- 390	- 392	- 166 31	-20005	36	- 16631	-20005
02 92C-A	80	3 1 9	186	11007	5696	1783	11550	5153
03 15C A	249	208	183	83 25	9954	3 38	10021	8258
0337C-A	226	114	129	50 94	8298	-189	8309	5083
0150C-L	-42	-11	-5	-311	-1359	- 76	- 30 6	-1364

ન કરે હતા. જેવારી કેંગ્રે સંદર્ભ **તે સ્વ**ાલ્ટ<mark>ે</mark>

.

Table A.4 (continued)

IN-PLANE	e noner	IT LOAD	DING, N	IZE, ON	NOZZLE	(150.00	IN-LB)	
	HICE	(0-STR)	NIN	:	ST RESSES	;	PRIN SI	RESSES
				-		•		
RC SETTE	GAGEI	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGHX	SICHN
I-0-N-*	-223	12	6	630	-6487	77	630	- 64 87
I-22N-A	-26	9	-79	- 1517	-1246	1179	- 195	-2568
I-45N-A	-99	118	- 177	- 1178	-3316	3933	1828	-6323
1-67N-1	139	525	<b>u</b> 8	12451	7905	6365	16937	3420
I-90N-A	48	- 280	-85	-8085	991	- 25 98	-141	- 8935
I112N-A	71	290	- 27 1	321	2227	74 74	8808	-6260
I 1 35N-N	254	298	30	6935	9707	35 80	12160	4482
1157N-1	<b>2</b> 28	189	71	5470	8469	1571	9141	4798
1180N-A	284	118	142	54 11	10131	-3 13	10151	5390
1202N-A	240	80	195	5793	8924	-1529	9547	5170
1225N-A	202	41	339	8120	8483	- 3964	12269	4334
1247N-N	82	- 286	239	-1105	2124	- 69 96	7689	-6671
1292N-A	149	-6	499	10674	7674	-6723	16062	22.85
1315N-A	-84	- 169	120	-988	-2828	-3848	2049	- 5865
1337N-A	- 175	- 111	38	- 140 1	-5662	- 1982	-622	-6441
0-22N-X	188	168	93	5525	7298	10 00	7747	5075
0- 458-A	223	217	156	7959	9073	809	9498	7534
0-67N-A	347	-34	15 1	2192	11057	-2453	11693	1556
0-90N-A	27	-625	684	1268	1184	-17445	18671	-16218
01 12N - A	-466	- 28 1	-415	-14798	- 18433	1782	- 14070	-19160
0135N-A	-262	~88	- 373	-9835	-10798	3790	-6497	-14137
01578-1	- 222	-8	- 154	- 3316	-7648	1933	-2579	-8385
0180N-A	- 27 3	74	-65	-2757	-9015	-114	-2755	-9017
02 02r-A	- 239	- 173	-22	-4029	-8372	- 20 20	-3235	-9166
0225N-A	- 26 2	- 341	-85	-9085	-10572	- 34 11	-6337	-13320
0247N-1	-486	-441	- 28 2	- 15339	- 19 19 1	-2122	- 14399	-20131
0292N-A	367	216	43	5292	12600	2312	13270	4622
03 15N-A	214	152	217	7862	8771	-861	9290	7343
0337N-A	191	96	166	5542	7399	-9 38	7791	5151
0-0-W-L	34	0	0	- 34	1005	0	1005	-34

Table A.5. In-plane force loading,  $F_{\chi\chi\gamma}$ , on nozzle

# IN-PLANE FORCE LOADING, PKN, ON NOZZLE (1200 LB)

	HIC	RO-STR	AI N	:	STRESSES		PRIN S	TRESSES
ro set te	GAGE	GAGE2	GAGE 3	TRANS	LONG	SHEAR	SIGNX	SIGMN
					* *			
1-0-C-A	329	0	-70	- 1896	9299	936	9377	- 1974
I-0-C-B	191	-36	-42	-1929	5160	74	5160	- 1930
I-0-C-C	82	-48	-53	-2304	1760	75	1761	-2306
1-0-C-D	14	-50	~53	-2291	-260	37	-259	-2291
I-0-C-E	-25	-48	-48	-2065	-1371	0	-1371	-2065
I-0-C-P	-73	-28	-22	-1021	-2492	- 75	-1017	-2496
I-0-C-G	-59	0	-5	-48	-1777	75	-44	- 1780
I-0-C-H	-39	3	9	296	-1077	- 75	300	- 108 1
I-0-C-J	-28	Ú	0	36	-821	0	36	-821
I-0-C-K	-28	0	- 3	-24	-836	37	-23	-838
I-0-C-L	-16	-5	- 3	-157	-541	- 38	- 153	-545
0-0-C-A	-291	-185	- 205	-8269	- 11209	265	-8246	-11233
0-0-C-B	- 148	- 180	- 168	-7482	-6688	-150	~666%	-7509
0-0-0-C	-68	- 140	- 13 1	-5872	-3806	-116	-3800	- 5875
0-0-C-D	-17	- 108	-117	-4926	-1982	1 15	-1978	- 4931
0-0-C-E	6	-80	-77	-3444	-850	- 36	-850	-3445
0-0-C-P	23	-25	-28	-1204	337	38	333	-1205
0-0-C-G	-5	-5	- 3	-167	-211	- 38	- 145	-233
0- 0- C -H	-25	-3	- 3	-85	-732	0	-85	-782
0-0-C-J	-25	-2	-2	-81	-782	0	-81	-782
0-0-C-K	-25	-3	0	- 26	-764	- 38	-24	-766
0-0-C-L	-20	0	3	93	-561	- 38	95	-563

Table V. ) (concluded)	Tabl	le A.	5 (	contin	ued
------------------------	------	-------	-----	--------	-----

IN-PLANB	FORCE	LOADING,	PIN,	ON	NOZZLB	(1200 LB)	

	HIC	RO-STR	NIN	9	STRESSES		PRIN ST	RESSES
	~~~~		P = /2	-				
ROSETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGMX	SIGHN
		~~~~		<i>~~~~</i>				
I-0-8-B	0	-32	-34	-1454	-436	37	-435	- 1455
I-0-N-C	79	-40	-52	-2116	1726	155	1732	-2122
1-0-N-D	18	-46	-52	-2175	- 122	78	-119	-2178
1-0-N-E	-23	-46	-43	- 18 1 1	-1230	39	-1227	- 1814
I-0-N-P	-75	-11	-11	-420	-2384	-1	-420	-2384
I-0-N-G	-64	15	20	344	-1655	- 75	846	- 1658
I-0-N-H	-43	26	26	1203	-938	C	1203	-938
I-0-N-J	-35	26	24	1137	-703	39	1137	-704
I-0-N-K	-29	24	18	937	-589	81	942	-594
I-0-N-L	-29	9	99	24 13	-151	-1206	2891	-629
0-0-N-A	-259	- 199	- 207	-8643	- 10349	1 15	-8535	-10357
0-0-N-B	-145	- 165	- 17 0	-7202	-6499	77	-6490	-7211
0-0-8-C	-73	- 140	-131	-5890	-3949	-118	-3941	-5997
0-0-N-D	-29	- 108	- 108	-4710	-2278	1	-2278	-4710
0-C-N-E	~3	-82	-82	-3585	-1152	0	-1152	- 35 85
0-0-N-P	15	- 38	-38	- 1672	-45	1	-45	- 1672
0-1-4-G	-11	-20	-17	-799	-570	- 38	- 564	-806
0-0-1-H	-28	-20	-19	-828	-1096	-4	-828	-1096
0-0-N-J	-32	-23	-23	-971	-1244	-1	-971	-1244
0-0-N-K	-23	-23	-20	-929	-960	- 39	-903	~986

### IN-PLANE MORCE LOADING, FIN, ON NOZZLE (1200 LB)

	MIC	MICRO-SZRAIN		S	STRESSES			PRIN STRESSES		
RO SETTE	GA GE 1	grge2	GAGE3	TRAWS	LONG	SHEAR	SIGHI	SIGHN		
							***			
1270C-A	-14	151	329	10556	2757	-2377	11224	2090		
1270C-B	-19	36	340	8300	1913	-4048	10262	-49		
1270C-C	-22	-42	321	6155	1185	-4827	9100	-1759		
1270C-D	-28	-89	315	6999	670	-5383	8636	-2967		
12700-E	-25	- 139	300	3551	306	-5852	80C 1	-4144		
12700-7	-34	- 191	223	7 36	-794	-5509	5533	- 5591		
1270C-E	-23	-117	69	~1031	-986	-2469	1461	-3478		
1270c-J	-17	-45	-37	-1780	-1037	-112	- 1020	- 1796		
1270C-K	-17	-31	-77	-2353	-1211	6 08	-948	- 2616		
1270C-L	-17	-51	-82	- 29 14	-1373	<b>4 18</b>	-1272	- 3021		
1270C-8	-5	-71	-74	-3178	-1117	38	-1116	-3179		
0270C-A	- 145	- 745	564	- 3829	-5494	-17447	12806	-22129		
0270C-B	-93	- 694	544	-3196	-3763	-16497	13020	-19978		
0270C-C	-82	-017	510	-2274	-3147	-15020	12316	-17736		
0270C-D	-73	- 563	456	-2277	-2888	-13582	11003	-16168		
02700-3	51	-472	425	-990	-1817	-11947	10551	-13357		
0270C-₽	-40	-257	257	56	-1171	-6844	6314	- 7429		
0270C-G	0	- 122	132	200	70	-3384	3520	- 3250		
0270C-H	20	-45	37	-200	548	-1101	1337	-989		
0270C-J	37	-8	-31	-905	851	303	902	-956		
0270C-K	49	-20	-45	- 1488	1016	341	1061	- 1533		
0270C-L	57	-43	-45	- 1994	1125	38	1125	- 1994		
02700-1	55	-51	54	-2370	928	38	928	-2370		

移民に

### IN-PLANE PORCE LOADING, FXN, ON NOZZLE (1200 LB)

	BIC	RO-STR	AIN		ST RESSES	5	PRIN ST	RESSES
						•		
RO SETTE	GA GE 1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGMN
						*****		
1270N-N	85	219	374	12944	6432	- 2063	13543	5834
1270N-B	88	348	35 E	15636	7326	-273	15645	7317
1270N-C	76	462	377	18347	7788	1130	18467	7669
12 70#-D	79	543	365	19883	8337	2373	20351	7858
1270N-E	82	637	327	21101	8791	4125	22355	7537
12708-1	48	961	210	25664	9129	10009	30379	44 15
1270#-G	36	831	112	29694	7287	9577	25680	2301
12701-H	-5	616	148	16794	4880	6238	19463	2211
1270#-J	48	221	148	60 57	3846	981	8275	3629
1270#-K	62	148	115	5713	3584	432	5798	3500
1270#-L	56	62	77	2997	2592	- 1 97	3077	2513
12709-1	53	18	56	1577	2077	-5 10	2395	1260
02 708-1	- 186	- 865	706	-3298	-6574	-20933	16061	-25933
0270#-B	-229	-382	694	- 3879	-8035	-21007	15152	-27057
0270#-C	- 229	- 880	726	-3127	-78 14	-21392	16049	-26990
02 701 -D	-316	-877	631	-5058	- 10983	-20085	12281	-28323
02701-8	- 315	- 851	556	-6135	-11299	-18739	10199	-27633
02701-7	-244	-607	136	- 10082	- 10 3 38	- 98 89	~ 320	-20099
02 70H-G	- 137	- 379	- 18 1	-12164	-7762	- 26 4 1	-6521	-13384
02701-8	-54	- 198	-333	-11613	-5109	1799	- 1645	-12077
02 701 -J	12	9	- 357	-7666	-1941	4880	854	-10462
02701-5	52	44	-275	-5230	2	4302	2421	- 7649
02701-L	38	38	- 16 1	-2749	317	2651	1847	-4279
02 70#-#	41	38	-66	-658	1030	1364	1807	- 1435

### IN-PLANE FORCE LOADING, FXN, ON NOZZLE (1200 LB)

1

	MIC	RO-STR	AIN	-	STRESSES		PRIN ST	RESSES
ROSETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGMX	SIGHN
T=0-C=*	20.1	-76	- 1	-2051	0 // 0 9	-075	a 11 0 0	- 3181
I-0-C-F	301	-70	- 3	-2031	0400	- , / 5	0470	-2141
T-45C-1	278	14	-91	- 1996	7737	14 10	7937	-2196
T-67C-1	-51	- 317	-506	-18045	-6950	25 16	-6406	-18589
T-90C-A	-43	358	121	10565	1888	3165	11596	856
T 1 12C-A	-340	358	60	9569	-7337	3968	10454	- 6222
1135C-A	-452	-60	- 143	-3957	- 14744	1104	-3845	-14856
1157C-A	-466	-129	-94	-4382	- 15299	-458	-4362	-15318
1202C-A	-459	-83	- 107	-3673	- 14866	309	-3664	-14875
1225C-A	-519	- 173	-84	-5070	-17105	-1192	-4953	-17222
1247C-A	-384	122	329	10333	-8410	-2770	10734	-8811
1292C-A	- 17	-447	-314	-16719	-5528	- 1770	-5254	-16992
I315C-A	327	-63	26	-1176	9443	-1193	9576	- 1308
1337C-N	327	3	0	-287	9710	38	9710	-287
I180C-L	13	- 14	-14	-641	197	-1	197	-641
0-22C-A	-282	- 197	-185	-8073	- 10887	-155	-8064	-10895
0-45C-A	-312	-248	-237	- 103 10	- 12455	-148	- 10300	-12465
0-67C-A	- 106	- 167	-460	-13663	-7267	3903	-5419	-15510
0-90C~A	-142	66 ?	-761	- 20 39	-4866	18953	15554	-22458
01120-1	608	547	494	22210	24917	707	25090	22036
01350-1	494	221	274	10322	17920	-705	17985	10257
0157C-N	502	224	224	9273	17857	1	17857	9273
0190C-A	424	243	232	9970	15723	150	15727	9966
0202C-A	430	226	193	8744	15528	446	15557	8715
02 25C - A	564	291	231	10852	20189	793	20256	10785
0247C-1	675	630	496	24000	27463	1782	28216	23247
0292C-1	- 137	- 40 1	- 20 2	-13102	-8030	- 2656	-6894	-14239
03 15C-A	- 335	- 259	-259	-11001	- 13362	-3	- 1100 )	-13362
03370-1	-298	- 170	-210	~8040	- 11365	532	-7958	-11448
0180C-1	3	9	12	649	233	- 38	455	227

## IN-PLANE PORCE LOADING, PXN, ON NOZZLE (1200 LB)

1.1

	HICE	RO-STRI	AIN	:	STRESSES	5	PRIN ST	RESSES
ROSETTE	GAGEI	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHX	SIGHN
I-0-N-*	329	-66	-57	-3080	8956	-116	8958	-3081
I-22N-A	68	- 14	109	2018	2650	- 16 48	4013	656
I-45N-A	160	- 159	230	1389	5219	-5187	8833	-2225
1-67N-N	-115	-610	-47	- 143 17	-7741	-7508	-2832	-19225
I-90N-A	-38	360	201	12366	2568	2121	12805	2129
I112N-A	-88	- 383	395	365	-2539	-10374	9388	-11563
1135N-A	-368	- 457	36	-8854	-13710	-6552	-4285	-18279
11578-2	-380	-265	39	-4565	-12777	-4049	-2505	-14437
1180N-X	-522	-44	- 12 1	-3047	- 1657 1	1023	-2970	-16648
1202N-A	- 39 2	6	-283	-5650	- 13454	3853	-4069	-15036
1225N-A	-268	-6	-495	-10712	-11249	6524	-4451	-17510
1247N-A	-122	402	-294	2515	-2911	9280	9471	-9866
1292W-A	- 148	18	-591	-12447	-8165	8116	-1925	-18707
1315N-A	131	216	-163	1019	4247	5048	7932	-2667
1337W-A	239	149	-90	1029	7486	3184	8792	-277
0-22#-4	-245	-245	- 149	-8389	~9855	-1267	-7658	-10586
0-45X-A	- 265	- 302	- 20 1	- 10775	- 11 17 1	- 1343	-9615	-12331
0-67#-L	-446	12	- 167	-2901	-14263	2382	-2422	-14742
0-90#-A	- 155	724	-824	-2022	-5257	20530	17053	-24332
01128-1	605	406	594	21314	24553	-2500	25913	19935
01358-1	432	205	614	17509	18208	-5453	23322	12395
0157W-A	403	153	318	9922	15079	-2196	15888	9113
01808-1	466	273	258	11158	17324	190	17330	11152
02028-1	415	327	138	9749	15367	25 19	16331	8785
02 258-1	395	531	173	15050	16361	4771	20522	10890
02478-1	594	617	401	21702	24327	2877	26 17 7	19852
02928-1	-469	- 242	-74	-64 27	- 16003	-2235	-5931	-16499
03 15H-A	-261	- 199	-297	-10625	-11015	1310	-9496	-12144
03 37¥ - A	- 247	= 154	-247	-8540	-9969	1232	-7830	-10679
0-0-#-L	-22	-8	-8	-339	-769	1	- 339	-769

Table A.6. Axial force loading,  $F_{YN}$ , on nozzle

### AKIAL PORCE LOADING, FYN, ON NOZZLE (4000 LB)

HICRO-STRAIN				STRESSES			PRIN STRESSES	
RO SETTE	GAGEI	GAGE2	GAGE 3	TRANS	LONG	SHEAR	SIGNY	SIGMN
				~~~~			40 % e e	
I-0-C-A	- 152	-34	-8	-756	-4780	-337	-728	-4808
I-0-C-B	- 10 1	-11	-14	-440	-3166	37	-439	-3167
T-0-C-C	-62	0	0	72	-1831	0	72	-1831
I-0-C-D	-34	3	Ō	104	-978	37	105	-979
I-0-C-E	-14	6	Ĵ.	204	-357	37	206	-360
I-0-C-F	17	3	Ó	49	524	38	527	46
I-0-C-G	17	-8	-5	-321	414	- 37	416	-323
I-0-C-H	8	-6	-11	-373	141	74	152	-384
I-0-C-J	3	-6	-8	- 308	-7	37	-2	-312
I-0-C-K	6	-3	-6	-187	115	37	119	-192
I-0-C-L	6	3	-3	-2	170	74	197	-29
0-0-C-N	149	€0	72	27 28	5279	-153	5288	27 19
0-0-C-B	86	69	66	2861	3433	39	3436	2858
0-0-C-C	49	60	52	2401	2181	1 13	2449	2133
0-0-C-D	23	49	52	2177	1342	- 38	2178	1340
0-0-C-E	6	37	40	1694	684	- 37	1695	682
0-0-C-F	-11	17	20	834	-90	- 38	835	-92
0-0-C-G	-8	3	6	203	-193	- 38	207	-196
0-0-C-H	0	3	3	130	44	0	130	44
0-0-C-J	6	9	9	391	302	-1	39 1	302
0-0-C-K	3	3	6	196	161	- 39	22 1	136
0-0-C-L	0	3	3	136	53	0	136	53

115

i

Tab	le	A.6	5 (co	nt	in	ued)
-----	----	-----	-----	----	----	----	-----	---

AXIAL FORCE LOADING, FYN, ON NOZZLE (4000 LB)

MIN 1565 N. 1676-1911

S. S. Same

	MIC	RO-STR	AZ N	S	TRESSES		PRIN S	TRESSES
ROSETTE	GAGE 1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGMI	I SIGMN
							** * * *	
I-0-N-B	-96	-14	-12	-468	-3014	- 38	-468	- 3015
I-0-N-C	-55	-3	0	-2	-1655	- 39	- 1	l -1656
I-0-N-D	-29	3	3	160	-822	-1	160) -822
I-0-N-E	-12	3	6	203	-288	- 39	206	5 -291
I-0-N-P	23	-6	0	-151	652	- 78	660	-159
I-0-N-G	29	- 15	-12	-605	690	- 39	691	-306
I-0-N-H	20	-20	-17	-850	355	- 38	356	5 -852
I-0-W-J	23	-18	-18	-795	462	0	462	2 -795
I-0-N-K	23	-20	-12	-730	482	- 1 18	494	-742
I-0-N-L	38	- 12	-15	-618	956	39	957	-619
0-0-N-A	136	74	77	3158	5041	- 38	5041	3157
0-0-N-B	88	65	68	2835	3491	- 38	3493	3 2832
0-0-N-C	56	62	56	2519	2430	78	2564	2384
0-0-N-D	32	50	50	2159	1618	0	2159	1618
0-0-N-E	18	41	41	1788	1066	0	1789	8 1066
0-0-N-P	3	26	26	1160	439	0	1160) 439
0-0-N-G	12	15	15	636	547	0	636	5 547
0-0-N-H	18	15	15	633	723	-1	723	633
0-0-N-J	26	21	15	749	1019	78	1040	728
0-0-M-K	27	15	15	617	981	0	981	617

AXIAL PORCE LOADING, FYN, CN NOZZLE (4000 LB)

10

		RO-STR	AIN	S	TRESSES		PRIN ST	RESSES
				_				
ROSETTE	GA GE 1	GAGE2	GAGE3	TRANS	LONG	SSEAR	SIGNX	SIGNE
1270C-A	123	34	- 12 3	-2093	3058	2081	3793	-2829
1270C-B	131	70	- 145	-1793	3 3 9 9	2961	4666	-30€1
1270C-C	120	92	- 148	- 1355	3195	3196	4843	- 3003
I270C-D	114	95	~ 156	- 14 7 1	2992	3345	4782	-3260
I270C-E	94	106	- 154	-1166	2477	3460	4566	- 3255
1270C-P	46	80	- 134	- 1239	1001	2851	2944	-3182
1270С-н	-43	11	-71	-1267	-1662	1103	-344	-2585
I270C-J	-66	-3	-20	-426	-2094	2 28	-396	-2124
1270C-K	-43	17	9	614	-1098	1 14	621	-1105
1270C-L	34	49	40	1909	1602	114	1947	1565
12700-5	54	51	57	2326	2326	- 76	2403	2250
0270C-A	-11	359	-427	-1468	-769	10469	9356	-11593
0270C-B	-36	328	-427	-2002	-1692	9979	8134	-11827
0270C-C	-36	282	- 395	-2445	-1828	9028	6897	-11169
0270C-D	-33	251	- 34 4	-2001	-1604	7923	6122	- 9728
0270C-E	-33	203	- 327	-2692	-1809	7056	4819	-9320
0270C-P	3	86	-214	-2809	-743	3993	2348	-5901
0270C-G	26	35	-117	- 1832	235	2015	1466	- 3063
0270C-H	46	15	-48	-789	1145	8 38	1458	-1102
0270:3-J	52	23	18	839	1807	75	1812	834
0270C-K	26	37	32	1488	1226	74	1507	1206
0270C-L	54	26	26	1206	-1251	0	1206	-1251
02700-1	-79	20	20	979	-2087	Ō	979	-2097

こうしょうか 大学学校学校学校学校では、「ないないない」ので、これでは、「ないない」

Contraction Description

POR ADDRESS

Table A.6	(cont:	inued)
-----------	--------	--------

AXIAL FORCE LOADING, FYN, ON NOZZLE (4003 LB)

;

	BIC	RO-STR	NIN	STRESSES			PRIN STRESS	
				-	******			
ROSETTE	GA GE 1	GA GE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGMN
******		~~ ~~~						
1270N-A	56	23	-114	-2052	1051	18 30	1898	-2899
1270N-B	38	- 29	-91	-2673	337	8 18	545	-2881
1270N-C	32	-70	-64	- 29 90	67	- 78	69	- 2992
1270N-D	23	- 102	-47	-3300	-289	-740	-117	-3472
1270N-E	15	- 149	-3	· 3355	-568	- 19 47	433	- 4355
1270N-P	-15	- 268	147	-26 37	-1230	- 55 39	3650	•7517
1270N-G	12	- 253	174	-1759	~ 170	-5696	4787	-6716
1270N-H	59	-206	77	-2911	899	-3772	3220	-5231
1270N-J	50	- 5 9	27	-764	1277	-1139	1786	- 1273
1270N-K	27	-35	0	-803	558	-471	705	-950
1270N-L	21	-6	3	- 84	597	- 1 18	616	-104
<u>12768-</u> N	15	15	9	505	597	79	642	460
0270N-A	23	446	-506	- 1348	289	12689	12 18 6	-13245
0270M-B	58	486	-503	-880	1467	12919	13266	-12679
0270N-C	61	466	-529	-1453	1381	13264	13303	-13376
0270N-D	132	460	-478	-521	3818	12498	14333	-11036
0270N-E	144	455	-437	22 5	4388	11885	14373	- 97 59
0270N-F	150	275	- 201	1482	4936	6364	9803	-3385
0270#-G	118	118	-14	2151	4188	1764	52J6	1133
0270N-H	75	3	81	1755	2773	- 1035	3418	1110
0270N-J	43	-72	121	10 24	1599	-2575	3903	- 1279
0270N-K	22	-61	106	973	1151	-2229	3292	-1169
0270N-L	23	-35	60	5 38	846	- 1268	1970	-585
0270N-N	8	-20	11	-208	190	-423	459	-47?

The second s

Table	A.6	(continued)
Table	A.6	(continued)

AXIAL	FORCE	LOADING	G, FYN,	CN NOZ	6LE (400	00 LB)		
	61	CRO-STR	AIN	:	STRESSES	5	PRIN ST	RESSES
						•		
20 5274	P CLC	P1 C1CP2	61683	TRING	LONG	SHRAR	STONT	STGRN
			, secar					
I-0-C-	+ -12	24 -6	5 -31	-664	-3909	3 3 7	-629	- 3944
I-22C-	- 1	54 -31	-40	-1387	-5043	120	-1383	- 5047
I-45C-	·A -1(50 -28	39	-255	-4876	-497	-202	-4929
I-67C-	· A	37 135	5 257	8866	1557	- 17 56	9266	1157
I-90C-	-A 1!	55 - 134	+ 29	-2478	3903	-2174	4573	- 3149
I1 12C-	- <u>A</u> (43 -349) -43	~8650	-1294	-4079	521	-10465
I135C-	٠X	0 -25	5 189	3604	1094	- 2863	5475	-778
I157C-	-1 - 18	BO 132	2 241	8395	-2879	- 1450	8578	-3062
I202C-	- <u>A</u> – 16	55 231	142	8371	-2427	1193	8502	-2557
I225C-	- X	38 182	2 -20	3516	2182	2694	5625	73
12470-	-X (66 -104	1 -335	-9770	-922	3079	48	-10691
I292C-	-y -(56 23 1	I 124	7883	373	1424	8144	112
I315C-	-1 - 19	91 -6	5 -32	-614	-5903	346	-591	-5925
I337C-	-X -1(65 -3 8	3 -29	- 1278	-5321	-115	-1274	-5325
I180C-	-L -20	60 -23	3 -49	-1299	-8 192	347	-1282	-8209
0-220-	-A 19	52 66	5 84	3123	5490	-233	5512	3100
0-45C-	-1 1	87 117	7 120	50 11	7116	- 37	7117	5011
0-67C-	-A 1/	48 159	9 271	9286	7227	-1487	10065	6447
0-90C·	- 1 -	31 - 488	3 360	-2784	-1752	-11304	9047	-13584
0112C	- 8	78 = 19() -148	~7331	-4541	-557	-4434	-/438
0135C	~)	6 173	3 -22	3309	1163	2603	5052	-579
01570	-A 1.	23 380	5 159	11890	/25%	3047	13402	5742
01800	-A 13	20 360	585	16369	8515	- 260	10378	3506
02020	- 9	76 14() 357	10839	2217	~ 2900	12114	4242
02 250	-	32 -42	7 120 7 170	2404	- 221	-2/31	4119	- 1943
024/0	-A - I	14 -21)	103	-8210	-2089	- 1 20	-2003 0400	-8415
02920		74 239	9 1/9 1 124	9003	7912	191	7423	7492
03130	-A 13	77 (J) 50 74	+ 131 1 7n	2000	1031	- 30	/031 5694	2000
01900	- T	27 /	1 /4 C 0	5009	-7772	- 30	2001	2003

THE REAL PROPERTY OF

「「「「「「「「「「」」」」」

1

たい、そうないというではないです。

いちつ きどうとう ひんきち えんびき いう

ご良んな

AXIAL FORCE LOADING, FYN, ON NOZZLE (4000 LB) MICRO-STRAIN STRESSES PRIN STRESSES -----..... -----ROSETTE GAGE1 GAGE2 GAGE3 TRANS LONG SHEAR SIGM' SIGMN ----- - - -_____ -478 I-0-N-* -141 -14 -14 -478 -4388 0 -4388 15 -50 -793 1-22N-A 18 295 864 772 -1270 50 1-45N-A -85 - 150 -2108 -3183 2675 83 - 5374 I-67N-A 36 316 -38 6067 2886 4718 9455 ~ 502 I-908-A 130 -118 -2603 3123 -1653 3565 -3046 6 -62 -283 -8990 I112N-A -21 -7564 -2887 2950 -1461 1135N-A 27 -94 154 1274 1183 -3304 4533 -2076 -97 7897 - 550 12 343 -4406 1157N-A 9777 -2430 I180N-A -272 284 219 11333 -4746 866 11380 -4792 - 106 325 ~985 4289 9143 1202N-A 3 7327 - 2802 -70 1225N-A 91 - 93 418 2843 2177 4122 -862 -7796 1247N-A -17 -280 -76 -2861 -2721 -1656 -9001 58 303 1292N-A -67 5131 3294 -4936 9233 -808 1315N-A -73 - 149 56 -1967 -2775 -2721 380 -5121 1337N-N -119 -93 15 -1594 -4062 -1438 -934 -4722 106 49 4954 0-22N-A 132 3267 768 5252 2970 158 179 92 5774 6483 1152 7334 4923 0-45N-A 274 72 127 4059 0-67N-A 9431 -730 9528 3962 -516 0-90N-A -20 409 -2333 -1314 -12334 10521 -14169 0112N-A -119 -131 -37 -3553 -4648 -1250-2736 -5465 6096 5818 1099 0135N-A 176 85 3 1747 1470 0157N-A 205 336 111 9592 9025 2994 12315 6301 0180N-A 148 401 390 17220 9608 151 17223 9605 182 88 285 8011 7869 -2626 10566 0202N-A 5313 0225N-A 120 -43 71 498 3737 - 15 16 4336 -101 -142 - 134 -4278 -5547 -5991 0247N-A -68 872 -3835 174 131 0292N-A 287 6380 10537 569 10613 6303 155 96 180 5889 6408 -11237301 4996 0315N-A 5400 138 54 107 3377 5149 -713 3126 0337N-A 34 9 8 336 1116 0 1116 336 0-0-N-L

and the second provide the statements of the statement of the second second second second second second second

Table A.7. Out-of-plane force loaving, $F_{\underline{Z}\underline{N}}$, on nozzle

	HIC!	RC-SIR/	AIN	STRESSES			PRIN STRESSES		
Ros ett e	GAGEI	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGMI	SIGNN	

I-0-C-A	-6	-9	5	-74	-202	- 188	61	-336	
1-0-C-8	-3	- 12	8	-79	-120	-260	162	-361	
1-0-C-C	-3	-6	8	50	- 83	- 186	181	-214	
I-0-C-D	0	-6	8	42	0	- 187	209	- 167	
I-0-C-E	0	-6	8	50	1	- 187	214	-163	
I-0-C-F	2	-6	5	-24	65	- 150	177	-136	
I-0-C-G	-1	-3	5	38	-5	-113	132	-98	
I-0-С-Н	0	-6	3	-65	- 22	- 111	70	-157	
I-0-C-J	0	-6	3	-63	- 21	- 111	72	-155	
I-0-C-K	0	-3	3	-3	-4	-74	71	-78	
1-0-0-1	3	-3	Ê	54	97	-111	138	-37	
C-Ú-C-▲	2	5	2	171	119	40	193	97	
0-0-С-В	-1	2	3	105	11	-5	105	11	
0-0-C-C	2	2	- 1	32	75	42	10 1	7	
0-0-C-D	-1	- 1	0	-22	- 24	- 3	-20	-26	
0-0-C-E	-4	- 1	2	42	- 95	-41	53	-106	
0-0-C-F	- 3	-1	~1	-21	-106	1	-21	-106	
0-0-C-G	-3	~1	- 3	-87	-129	38	-65	-151	
0-0-С-Н	-1	-3	-3	- 147	-70	1	-70	-147	
0-0-C-J	2	-1	-1	-31	57	1	57	-31	
0-0-C-K	-1	3	- 3	- 14	- 27	רָר	56	-97	
0-0-C-L	0	3	-3	- 13	- 19	76	60	-92	

OUT-OF-FLANE FORCE LCADING, PZN, CN NOZZIE (600 LE)

金属人語を簡単語を見てき、「「「「「」」」

こうていう そうてんせい 二日本のない ないない ないない ないていちょう ういのかん あいかい

A State of the second

TONTE UN / CONFTHERA	Tab	le	А.	Ī (continued)
----------------------	-----	----	----	-----	-----------	---

OUT-OF-PLANE FORCE LCADING, PER, CH NOERLE (600 LB)

- Same

194 M.

	BIC	10-51R	ain 	5	T 2 2 5 5 2 5	PRIN STRESSES		
205 ETT B	GAGE 1	G1612	GAGE3	TRAVS	LORS	SHEAR	sign x	SIGNN
I-0-#-B	0	-9	8	-26	-4	-229	212	-246
I-0-3-C	-1	-9	11	46	-6	-272	293	-254
1-0-X-D	0	- 12	11	- 26	-21	- 313	290	-337
I-0-#-E	-1	-9	8	-28	-29	-235	206	-264
I-0-1-P	Ő	-9	8	- 12	- 14	-230	217	-244
I-0-1-6	Ŏ	- 12		-78	- 36	- 273	216	-330
1-0-#-H	Ō	-9	Ğ	-75	-35	- 193	139	-249
I-0-1-J	-3	-9	ă	-8	- 105	-233	182	-295
I-0-#-K	ŏ	-6	12	118	25	- 243	319	-175
I-0-#-L	-3	- 12	-6	- 392	-203	-79	- 174	-42 ?
0-0-1-1	5	5	3	225	2 2 2	- 1	225	222
0-0-8-B	2	2	5	164	1 18	-39	186	96
0-0-1-C	2	3	3	111	108	0	111	108
0-0-N-D	ō	2	3	110	21	Č	119	21
0-0-1-E	ō	ŏ	3	50	6	-39	72	-17
0-0-1-7	Õ	Ō	Ŏ	- 15	- 18	-1	- 15	-18
0-0-8-6	-1	Ő	Õ	-20	- 22	-1	- 19	=22
0-0-1-1	- 1	-1	2	33	-13	-37	53	-33
0-0-8-1	Ö	3	ō	46	2	39	69	-21
0-0-#-K	-1	3	-3	- 10	- 20	78	63	-93

YERTE WYLL (CARLTANEA)	Table	A.7	(continued)
------------------------	-------	-----	-------------

OUT-OF-FLANE FORCE LCADING, FEN, CH NOSSIE (600 LB)

4.59-14

Proverties and the

	NICRC-STRAIN			5	* 125588	PRIP STRESSES		
805 277 2	646E1	64612	GAG 7 3	TRABS	LOUG	se eap	8168 I	sten#

12700-4	- 120	-432	128	-6551	-5567	-7468	1425	-13543
127 GC-B	-142	-393	142	-5365	- 5880	-7134	1516	-12761
1270C-C	-165	-357	131	-4786	-6375	-6592	970	-12131
1270C-D	-187	-367	131	-3659	-6706	-5834	847	~11212
1270C-8	-183	-286	105	-3771	-6628	-5209	202	- 1060 1
1270C-P	-198	-146	57	- 1740	-6448	-2700	~512	-7677
1270C-8	-137	11	5	514	-3967	76	315	- 3968
1270C-J	-60	56	5	1913	-1390	680	1569	- 1547
127 OC-8	-12	51	14	1442	79	495	1603	~82
127 QC-L	22	25	17	897	936	114	1033	802
12700-1	•	0	2	37	256	-38	263	31
02700-1	- 15	-117	295	3926	734	-5494	8052	- 3392
02700-8	45	-76	273	4233	2609	-1666	8157	- 13 15
0270C-C	76	-40	250	4519	36 39	-3866	7970	188
027 CC-D	99	-12	215	4356	4264	-3024	7335	1286
027 OC-8	110	25	204	8900	5020	-2368	7349	2572
027 0C-7	142	92	139	5079	5954	- 531	6205	4828
027 0C-G	139	125		4527	5532	494	5734	4324
027 0C-#	111	111	71	3871	4483	530	4788	3565
027 0C-J	36	74	51	2693	1902	306	2798	1798
0270C-K	- 3	34	42	1682	100	-112	1692	398
027 0C-L	-29	-1	14	322	-778	- 198	354	-810
0270C-1	-9	- 12	2	- 196	- 3 38	- 189	-64	-469

123

en, en altre statet de Anton

an martines of star a third a sufficient of the

					STEESSES	PRIN STRESSES		
805 BTT 8	GAGEI	61612	GAG13	TRAFS	LONG	SHEAR	SIGHT	SIGNN
12708-4	- 27	-360	67	-6410	-2726	-5684	1407	- 10543
12708-8	23	-389	17	-8 194	- 1769	-5412	1312	-11275
12701-C	29	-404	-27	-9494	- 1983	-5026	536	- 12013
127 QH-D		-395	-136	-11748	-23 10	-3426	-1193	-12861
12701-1	35	-395	- 109	-1110	-2293	-3816	-870	-12527
12708-7	Ō	-448	-322	- 16919	- 5089	- 1689	-4853	-17156
127 GH-6	-107	-286	-354	-13954	-7384	903	-7262	-14076
12708-1	-171	-139	-251	-8380	-7658	1494	-6482	-9556
12701-J	-171	-59	-171	-4879	-6604	1492	-4018	-7465
12708-K	-127	- 30	- 95	-2598	-4593	864	-2276	-4915
1270H-L	- 95	- 19	-68	-1787	-3377	668	- 1544	- 3620
12708-8	-65	-24	-50	- 156	-2425	353	-1435	- 255 1
02708-4	-105	- 190	311	2770	-2453	-6669	7321	- 7002
02708-5	-179	-230	348	2782	2 -4520	-7704	7656	-9394
02703-C	-204	-273	391	2812	2 -5288	-8853	8498	-10974
02701-D	-273	-296	394	244	5 -7469	-9199	7938	- 12961
027CH-B	-291	-317	406	227	5 -8038	-9621	8034	-13798
0270-7	-288	-184	394	4 921	3 -7154	-7704	8677	- 1090 3
02708-6	-253	-40	313	6279	9 -5714	-4715	7911	-7345
02701-1	-224	63	219	6439	9 -4802	-2069	6807	-5171
027 0H-J	-194	86	69	4 06 5	5 -4587	-39	4065	- 4588
027 0 H-K	-162	60	20	193	2 -4277	538	1978	-4323
02765-L	- 99	23	- 15	283	3 -2871	499	360	- 2948
				- 15'		20	- 154	- 1446

OUT-OF-PLANE FORCE LCADING, FIN, CH HOZZIE (600 LB)

OUT-OF-PLANE YORCE LCADING, FIN, CE NOZZIE (600 LB)

The state of the second st

:

2

4

1

į

	NICI	RC-SIRI	IB 	5	TRESS35		PRIN ST	115555
ros ett s	GAGE 1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGRI	
						44 444		
1-0-0-*	-6	-3	8	115	-142	- 147	18 1	-209
I-22C-A	0	5	0	207	20	70	146	- 19
I-45C-1	-6	28	20	1067	137	116	1081	123
I-67C-A	20	3	153	3611	1669	-2136	4987	294
1-90C-A	91	-155	400	5290	4328	-7403	12228	- 26 10
1112C-A	-356	-482	-493	-21029	- 16977	149	- 16971	-21034
1135C-A	- 69	-172	-98	-5859	-3833	-989	-3430	-6262
1157C-A	-29	-58	-9	-1435	-1307	-648	-719	- 20 2 2
120 2C-A	34	14	66	1720	1539	- 697	2332	927
1225C-A	86	107	179	6182	4440	-963	6610	4013
1247C-A	444	511	453	20698	19539	770	21082	19155
129 2C-A	-1	- 148	14	-2947	-899	-2156	463	-4309
1315C-A	5	-12	-23	-779	-74	155	-42	-812
1337C-A	-6	0	-3	-69	-207	39	-59	-217
I180C-L	-6	-20	24	- 132	-218	-460	287	-636
0-220-1	-3	2	2	91	-77	7	91	-78
0-45C-A	2	39	5	964	360	446	1200	124
0-67C-A	-6	69	11	1769	349	78 1	2114	4
0-30C-A	16	-274	94	~ 3955	-699	-4905	2841	- 7495
01120-1	454	55	72	2306	14322	-224	14327	2302
01356-4	103	-37	-87	-2825	2237	668	2324	-2912
01570-1	39	39	- 48	- 244	1086	1152	1751	-909
0180C-A	- 9	44	-45	-6	-266	1 188	1059	-1331
02020-2	-42	47	-31	392	-1155	1041	915	- 1678
0225C-A	-117	77	31	2488	-2774	610	2558	- 2844
0247C-1	-499	-23	-63	-1352	- 15370	532	-1332	-15390
02920-4	-11	-15	-77	-2003	-945	835	-485	- 2463
0315C-A	-3	3	- 35	-703	-313	495	24	- 1040
0337C-A	8	2	2	100	272	-1	272	100
0180C-L	5	45	-34	231	228	1062	1291	-833

125

م المار و ميد چيم را ا

المتركبين والمراجع والمراجع

ð.

ł

ę

2 and we will be defe

OUT-OF-PLANE FORCE LOADING, PSN, ON MOSELE (600 LB)

. . . .

ŝ

	#IC:	BC-878/	LID	2	511155ES		PRIN ST	ITE SSE S
				•				
Bos ITTI	61611	61412	61613	78A45	long	SHEAR	signi	SIGNE
*******				40 - 4	***	*****		
I-0-#-*	-3	-3		114	- 50	- 152	202	- 148
1-228-4	- 92	-45	-42	-1795	-3290	-39	~1794	-3291
1-458-4	15	14	-12	28	466	354	663	-169
1-678-A	23	153	132	6237	2567	285	6259	2545
1-908-A	61	-136	421	6203	3694	-7429	12483	~ 2586
I1128-A	-355	-411	-473	-19022	- 16342	\$26	- 16 168	-19256
11358-A	-95	- 139	-130	-5820	-4595	-118	-4584	-5831
11578-2	-21	-53	-9	-1359	- 104 1	- 587	- 592	- 1808
I1808-A	6	-18	26	163	217	-593	784	-402
12028-1	26	20	61	1753	1302	-558	2129	926
12258-A	84	145	116	5658	42 17	387	5756	4120
12478-4	352	454	414	18690	16182	545	18403	16068
12928-1	- 15	- 198	-152	-5699	-2164	582	-2070	-5792
1315H-A	-21	5	-6		-623	157	41	-650
13378-4	-9	0	đ	-10	-284	-1	-10	-264
0-22H-A	2	2	5	168	135	-39	191	102
0-4 58- A	-9	20	23	94.0	6	-40	942	5
0-678-1	-47	-53	28	- 482	-1541	-1075	187	-2211
0-908-A	71	-277	141	-3078	1221	-5570	5042	- 6899
01128-1	190	88	466	11087	90 37	-5572	15728	4396
01358-4	79	- 88	82	- 226	2309	-2274	3645	- 156 1
01578-A	56	0	- 23	- 574	1522	304	1565	-618
0180H-A	~ 15	37	-43	- 132	-482	106 3	770	- 1384
02028-1	-96	14	-6	235	- 1907	27 0	269	- 194 1
02258-1	~72	-74	79	188	-2091	-2045	1390	- 3293
02478-1	- 194	-447	-46	-10613	-8995	-5343	-4400	- 15208
029 28-1	53	-19	28	- 524	1445	-1024	1881	-959
0315H-A	11	- 14	-11	-574	161	-38	163	-576
0337#-1	3	0	3	51	96	-35	115	31
0-0-¥-L	0	6	-3	59	14	112	151	-78

14.

e tra a ser a ser a

Table A.S. Torsional moment loading, M_{XC}, on cylinder

106 210 10	L EUR	EDI LUA	STRA'		CITTAR		NAA 18-1	- 21
	#IC	BC-S18/	IN	S	T & 25585	PRIN STRESSES		
acs ett e	GAGE1	GAGE2	5 761 3	TRAIS	LONG	SH EAR	SIGNX	
1-0-6-1	-9	- 39	6	-736	-477	-599	7	- 1219
1-0-6-6	0	-42	36	- 129	-42	- 1048	\$63	- 1134
I-0-C-C	-3	- 37	34	-63	-106	- 936	851	- 1020
I-0-C-D	-3	- 34	34	-2	- 58	-898	85 4	-944
I-0-C-8	-3	- 34	38	0	- 88	- 898	855	-943
I-0-C-8	3	- 34	28	- 132	42	- 824	783	-873
I-0-C-6	-3	-28	31	59	-71	-766	783	-795
1-0-C-#	0	+31	28	-65	- 22	- 779	736	-823
I-0-C-J	0	- 28	25	-63	- 21	- 705	664	-748
I-0-C-K	0	-28	28	-3	-6	-743	739	-746
I-0-C-L	0	-31	31	-4	-5	-816	812	-820
0-0-C-A	6	49	-48	-1	177	1293	1384	- 1207
0-0-C-B	3	\$9	-40	193	151	f 18 1	1352	- 1009
0-0-6-6	0	\$2	-40	261	86	1216	1392	- 1046
C-0-C-D	0	52	-40	259	84	1218	1393	- 1050
0-0-0-2-2	3	43	-43	131	133	1218	1350	- :086
0-0-C-P	- 3	46	-43	75	-58	1 179	1189	-1172
0-0-C-G	3	43	-45	-56	75	1179	1191	- 117 1
0-0-0-#	0	49	~ 48	8	12	1293	1303	- 1283
0-0-C-J	3	51	-40	70	1 14	1327	1418	-1235
G-0-C-K	0	48	-51	-57	-9	1327	1294	- 1359
0-0-C-L	-3	54	-51	71	- 58	1403	1411	- 1398

TORSIONAL ADNERT LOADING, MEC, ON CYLINDES (20000 IN-12)

Table	A.8 (COBL	inved)
-------	-------	------	-------	---

TOR STUBAL MONREY LOADING, MEC, ON CYLINDIN (20000 IN-LD)

		EC-528		STR ESSES			VELS STRESSES	
105 277 E	64681	61612	CAGE3	TRANS	LONG	SNIAP		s Ign i
1-0-1-8	0	-47	40	- 134	- 40	- 1 160	1974	- 1248
I-4-1-C	Ō	-47	43	-68	-26	-1200	1 153	- 1247
1-0-8-0	ō	-47	63	-70	-24	-1200	1153	- 1248
1-0-8-8	ŏ	-50	86	-71	-27	- 1277	1229	- 1326
1-0-1-7	ă	-49	52	61	16	-1354	1392	-1316
1-0-8-6	Ä	-55	55	-1	-	-1470	1467	- 1474
1-0-1-1	ă	-58	52	- 131	-12	- 1470	1384	- 1557
T-O-D-J	-1	-53	58	120	-66	-1679	1509	- 1455
	- 12	-63	67	323	-264	-1605	166 1	- 1602
1-0-1-L	* -3	-62	199	3011	818	-3466	5550	- 1721
0-0-8-1	5	51	- 40	226	224	1213	1438	-988
0-0-1-8	2	39	- 29	228	138	909	1093	-727
0-0-M-C	Ō	35	- 30	117	25	\$58	931	-789
0-0-X-D	3	32	-27	111	112	780	891	-668
0-0-B-Z	-3	29	- 27	56	-78	74 1	733	-755
0-0-1-7	ō	29	-27	52	5	741	770	-713
0-0-8-6	ă	29	- 30	- 16	- 17	780	763	-796
		29	- 27	64	-1	742	764	-721
		20	-30	-15	-13	780	767	-794
	-3	29	- 29	-6	- 102	780	728	-835

TORSIONAL MONENT LOADING, MIC, ON CYLINDER (20000 IN-LB)

	HICRC-STRAIN			S#228525			PRIN STRESSES		
505 ITT 5	61621	61612	61623	TRANS	LOUG	SH ZAR	SIGNI	SIGHN	
12700-1	- 64	-688	610	-1648	-2421	-17302	15272	- 1934 1	
1270C-B	+ 39	-638	599	~ 820	-1421	-16486	15368	-17609	
1270C-C	- 50	-596	521	-1601	- 1989	- 14889	13096	- 16686	
1270C-D	-67	-510	482	-542	-2172	-13219	11887	- 14601	
127 0C-E	-32	-477	4 16	- 1288	-1332	-11899	10589	-13209	
127 0C-1	-40	-240	211	~ 586	- 1379	-6007	5037	-7003	
1270C- #	-6		-17	~ 185	-230	34 2	135	-550	
127 OC-J	3	77	-74	51	97	2014	2088	- 1940	
127 OC-X	8	60	-63	-75	231	1635	1720	- 1564	
1270C-L	6	34	- 34	-11	164	912	993	-840	
127 00-1	3	31	-23	181	137	722	882	-564	
0270C-1	-3	-492	444	-1050	-394	-12472	11755	- 13199	
027 0C-B	26	-412	381	- 705	566	- 10575	10525	-10664	
0276C-C	29	-324	322	-85	836	-8605	8993	-8242	
0270C-D	29	-239	254	- 144	821	-6826	7181	-6505	
027 0C-1	32	- 190	217	540	1112	-5421	6254	- 4602	
0270C-F	26	-23	60	795	1015	-1103	2013	-203	
027 CC-G	20	46	-11	738	827	760	1544	21	
027 0C-E	12	49	- 28	433	478	1027	1483	-572	
0270C-J	3	6	3	194	150	37	215	129	
027 CC-K	Ō	-31	34	68	25	-875	922	-829	
027 0C-L	-8	-45	46	18	-244	-1216	1110	- 1337	
0270C-A	-3	-43	49	135	-37	-1216	1269	-1170	

Table A.8 ((continued)
-------------	-------------

TORSIDUAL MOMENT LOADING, MIC, ON CYLINDER (20000 IF-LB)

	BICRC-SIFAIN			2	STRESSES			PRIN STRESSES		
BOS ETT B	GAGEI	GIGI2	GAGE3	TRAVS	LONG	SEFAR	SIGNI	SIGHN		

12708-1	128	-389	610	4722	5260	- 13313	18307	- 8325		
12701-B	187	- 377	569	4021	6804	-12613	18102	- 7277		
1270B-C	128	- 369	581	4524	5203	- 12656	17524	-7797		
12768-D4	** 154	-293	266	-762	4404	-7435	9692	- 6050		
12708-B	143	-243	514	5795	6021	- 10083	15992	-4176		
12701-1	9	-73	282	4574	1640	-4733	8062	- 1848		
12701-G	21	200	-3	4303	1911	2699	6059	155		
127CB-8	-26	323	-147	3904	382	6258	8644	-4358		
12701-J	-85	141	-132	290	-2464	3638	2803	-4976		
127 CH-K	-47	83	-62	636	-1215	1995	1909	-2489		
1270H-L	-41	41	-106	-1371	-1642	1956	454	- 3467		
12701-1	-50	-9	-82	-1942	~ 20 77	978	-1029	-2990		
02708-1	-32	-587	529	-1246	-1334	- 14860	13570	- 16150		
0270 I-B	-64	-685	620	-1339	-2313	~17389	15569	-19222		
C2701-C	-38	-774	747	-544	-1297	-20261	19344	-21185		
02701-5	- i 18	-837	767	-1402	- 3969	-21373	18726	-24097		
027CH-B	- 98	-885	796	-1866	-3507	-22409	19737	-25110		
02701-7	-64	-748	664	-1773	-2440	- 18 807	16703	-20916		
027 0¥-G	-41	-501	371	-2814	-2063	- 11607	9174	-14052		
0270N-H	-3	-242	120	-2662	-894	-4825	3128	-6684		
02708-J	14	-20	-40	-1348	26	269	77	- 1399		
027 0 H-K	23	23	-46	~534	529	921	1061	- 1066		
0270H-L	14	35	-35	-19	426	921	1151	-744		
027 0 H- N	3	6	0	121	121	77	198	44		

مراجعه المستحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد والمستحد

tor Signi	AL HOB	ENI LO	DING,	HIC, O	B CILID	DIE (20)	000 IM-	LB)
	BIC	RC-SIR	IN		STRESSE	5	PRIN S	TRESSES
	• •					•		
ROS ETTE	GAJEI	GJGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGN
I-0-C-*	-3	-8	34	555	80	-561	926	-292
I-22C-1	37	14	(S	1779	1647	-726	2443	984
I-45C-1	S 2	155	235	8455	5283	- 1068	8781	4957
I-67C-A	501	584	736	28453	23565	-2022	29 18 1	22837
I-90C-A	6	-719	601	-2592	-608	-17587	16015	-19215
I112C-A	-464	-796	-610	- 30 39 1	-23037	-2461	-22279	~31150
I 13 5C-A	- 80	-215	-140	-7719	-4725	-99 1	-4426	-8017
1157C-A	-37	-63	- 12	- 1600	- 1601	-687	-914	- 2287
1202C-1	49	23	69	1972	2061	- €17	2635	1396
1225C-4	101	156	219	8 140	5472	-847	8 3 8 6	5225
1247C-1	502	572	690	27 185	23231	-1578	27738	22678
129 2C-1	-526	-766	-659	-30727	- 24995	- 1424	-24661	-31061
I315C-A	- 87	-220	-153	-8097	-5033	-885	-4795	-8334
13370-1	-43	-67	- 15	-1733	- 1823	-693	- 1084	- 2472
I 18 0C-L	2	-23	20	-69	43	- 577	567	-592
G-22C-1	-45	60	-45	377	-1249	1404	1 186	- 2059
0-450-1	-134	162	0	3698	-2909	2153	4337	- 354 9
0-67C-A	-572	36	-25	867	- 16890	817	904	-16928
0-900-1	- 14	-5 10	449	-1338	-825	-12778	11699	- 13862
01120-1	563	11	78	1336	17291	-892	17341	1287
01350-1	123	-39	-142	-4123	3439	1374	2715	- 4399
0157C-A	53	50	- 48	-3	1584	1300	2314	-733
0180C-A	- 14	44	-48	-52	-438	1225	995	- 1485
020 2C-A	-59	47	-42	179	- 1708	1 189	753	- 228 2
0225C-A	-140	131	17	3 387	-3183	1519	3721	- 3517
024 7C- ▲	-564	56	-66	410	- 16794	1631	563	-16947
029 20-1	637	31	-52	-1151	18772	1100	18833	- 1212
03156-1	128	-26	- 148	-3972	2634	1632	3015	- 4354
0337C-1	54	42	-52	-262	1529	1251	2172	- 905
0180C-L	2	51	-46	108	105	1289	1396	~ 1183

.

•

. . .

Table A.	.8 (continued)
----------	------	------------

1.11

TOR	1013	I A L	NORE	SNI LCA	ADING,	HIC, OI	N CYLINI)18 (200	JOO TN-1	L 8)
			AICE	C-SIR	AIN	5	STRESSES	5	PRIN S	IRESSES
						•		-	******	
ROS	ETT	3 G	AGEI	GAGE2	GAGE3	TRANS	LONG	SHPAR	SIGHI	SIGMN
					•		. 104	- 369	150	-404
I-0	- #-1	F	0-	- 12		10-	- 194	- 207	-1225	-404
I-2	20-1		·129	- 30	- 12	-1330	-42/4	10C-	-1225	5396
1-4	2 8 -1	•	120	1/3	129	24940	2101	200	26223	22851
1-0			429	7 14	E 0 0 3 J	-2779	23324	-17070	17094	-17645
7-3	214-		-4.59	-666	-776	-21063	-23051	1606	-22738	- 31277
111	∠#=: 5 N -	A \	-437	-107	- 150	-34303	-23031	157	-5748	- 6619
113	38- 1	B	-14/	- 147	- 133	-0303	-1182	-703	-522	- 1932
113	() # - (R. 	-27	- 30	-5	431	389	-980	1391	-570
1 10	987) 984	F		- 21	70	2063	2020	- 591	2633	1450
144	58- 58-	8 1	125	171	136	6620	5724	464	6817	5528
166	714-	а А	4 20	674	636	28304	21382	504	28 340	21345
147 77Q	7 M -	- 	-4.04	-425	-802	+ 30901	-21391	2360	-20837	-31455
121	514-		-119	-137	-145	-6070	-5399	117	-5380	-6089
133	714-	A	- 12	-55	-12	-1443	-1400	~581	-840	-2003
233		-			• •					
0-2	25-		- 66	20	6	640	-1798	192	655	- 18 1 3
0-4	52-	2	-115	-61	1 15	1327	-3061	-2341	2342	41175
0-6	7#-	2	-277	-550	0	-11793	-11638	-7333	-4483	-19149
C-9	02-	A	-73	-582	496	-1917	-2881	-14359	12020	-16717
011	2#-	8	287	34	642	14528	12962	-8102	21885	5605
013	53-	8	108	- 122	79	-1068	2906	-2688	4261	2423
015	7#-	۸.	65	0	-23	-583	1774	303	1812	-622
018	0#-	2	- 20	36	~55	- 376	-725	1213	675	- 1776
020	21-	2	- 86	5	-12	-56	-2589	232	34	-2610
C22	53-	A .	-114	-65	99	858	-3166	-2 195	1824	-4131
024	7#-	8	-287	-569	- 15	-12497	- 12367	-7382	-5050	- 19814
029	28-	L	298	-55	576	11133	12270	-8404	20124	3279
:031	53-	8	87	-110	75	-842	2355	-21.70	3698	-2185
033	74-		62	0	-23	- 569	1679	301	1719	-609
-j-0) - #- '	ŗ	-9	20	-31	-55	-273	785	629	-957

. . .

No. of Lot of Lo

Table A.9. Out-of-plane moment loading, M_{YC} , on cylinder

out-cf-i	PLANE	HONERT	LOADIN	IG, HIC,	ON CYL	INDER	(60000	IN-IB)
	HIC	RC-STR	AIN	S	TRESSES		PRIN S	TRESSES

ROSETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGMN

I-0-C-1	9	- 14	- 28	-926	- 19	188	13	-964
I-0-C-B	0	-14	- 11	~545	-157	-38	~154	-549
1-1-C-C	-8	-11	-11	-477	-389	0	-389	-477
I-0-C-D	-11	-11	-8	- 410	-433	-38	- 388	-475
I-0-C-E	-11	-5	-5	-228	-399	0	-228	-399
I-0-C-P	- 11	-3	3	23	-324	-75	38	-339
I-0-C-G	-3	6	6	261	2	0	261	2
I-0-C-H	- j	6	9	318	17	-38	322	12
I-0-C-J	0	6	17	496	153	- 148	551	98
I-0-C-K	3	3	22	555	257	- 260	705	107
I-0-C-L	3	3	34	802	331	-409	1039	95
0-0-C-A	- 8	-8	-43	-1110	-581	456	-318	- 1373
0-0-C-B	0	3	- 37	-741	-212	534	119	- 1072
0-0-C-C	3	12	- 34	- 491	- 52	£07	374	-917
0-0-C-D	3	17	- 34	- 367	- 16	685	516	-899
0-0-C-E	3	17	-31	-304	4	647	516	-815
0-0-C-P	-3	23	- 31	- 173	- 130	722	571	-874
0-0-C-G	- 8	17	- 72	-415	-372	722	329	- 1117
0-0-с-н	-8	17	- 37	-418	-370	722	328	- 1116
0-0-C-J	-5	12	- 37	- 54 1	-324	644	220	- 1086
0-0-C-K	- 2	12	- 40	-613	-258	682	269	- 1140
0-0-C-L	- 3	3	- 37	-738	-298	530	57	- 1092

Table A.9 (continued)

0 0T - 0P - 1	PLANE	HCHERT	LOADIN	G, MYC,	ON CAI	INDER	(60000	IN-LB)
	AIC	RC-SIR	AIN	S	TRESSES	5	PRIN S	TRESSES
				-		•		
ros ett e	GAGE 1	G≱G∑2	GAGEB	TRANS	LONG	SHEAR	SIGHI	SIGHN

I-0-N-B	0	-11	-23	-746	-224	152	- 18 3	3 -787
I-0-1-C	-8	-8	-20	-615	-431	156	- 342	-703
1-0-2-D	-11	-8	- 17	-542	-501	119	-401	-642
1-0-N-E	- 14	- 5	-14	-473	-562	79	-426	-608
1-0-N-P	-11	-9	-6	- 297	-430	-40	-286	5 -441
1-0-N-G	-5	-6	0	-111	- 198	-76	-67	-242
1-0-1-E	- 3	-9	Ð	-180	-131	- 116	-37	-274
I-G-H-J	~5	-9	0	- 178	-217	- 117	-79	-316
1-0-1-X	-6	-6	3	-115	- 202	- 149	-3	-313
1-0-N-L	-3	-9	187	3926	1088	-2606	5474	-461
0-0-N-A	3	-2	-28	-677	-104	342	56	-836
0-0-B-B	22	.0	- 17	- 37 1	245	229	32() -446
0-0-N-C	12	0	-11	-256	288	156	329	-298
0-0-2-D	15	3	-5	-62	432	118	459	-89
0-0 - 1- E	12	9	0	194	4 18	117	468	3 144
0-0-N-F	6	9	6	330	288	40	354	265
0-0-1-G	3	9	9	403	225	1	403	3 225
0-0 - I- H	1	9	10	420	152	- 4	420) 152
0-0-1-J	- 3	6	6	279	7	0	273	97
0-0-X-K	-2	3	6	205	-9	-39	211	I -15

Table A.9	(continued)
-----------	-------------

GUT-OF-PLANE HOMENT LOADING, MYC, ON CYLINDER (60000 IN-LB)

	MICRC-STRAIN			STRESSES			PRIN STRESSES	
ros ette	GAGE 1	GAGB2	GAGE3	TRANS	LONG	SHEAR	SIGH	SIGEN
1275C-A	-161	413	385	17700	470	371	17708	3 462
127CC-B	-145	346	351	15401	306	-74	15481	I 305
1270C-C	-125	312	293	13433	276	260	13438	3 271
1270C-D	-108	296	270	12560	5 14	335	12569	505
127 0C-B	- 88	266	254	11518	8 16	152	11520	814
127 CC-P	- 28	208	186	8688	1766	304	8702	2 1752
1270C-H	23	168	157	7 128	2832	152	7134	2827
1276C-J	23	135	137	5953	2483	-35	5953	3 2482
1270C-K	-3	103	114	4776	1356	- 152	4782	2 1349
1270C-L	-34	52	55	2370	-304	-38	2371	-304
1270C-M	-40	0	6	181	-1135	-76	186	5 -1139
0270C-A	-25	91	17	2417	-34	985	2763	-380
027 CC-B	- 42	106	43	3312	-274	835	3497	-459
0270C-C	-59	117	66	4078	-557	682	4170	5 -655
027 0C-D	-74	123	86	4660	-808	491	4704	-851
027 CC- B	- 88	134	100	5238	- 106 1	455	5270) - 1093
0270C-P	-128	149	123	6105	-2008	34 1	6119	-2022
027 0C-G	-139	143	123	5992	-2384	266	600(-2392
0270C-H	- 145	129	126	5746	-2630	39	5742	7 -2630
0270C-J	-117	114	97	4778	-20€4	227	478	5 - 2071
027 0C- K	-77	89	89	3978	- 1109	- 1	397(8 -1109
0270C-L	- 14	57	54	2471	324	38	2472	2 323
02700-6	26	23	12	733	1001	152	1070) 665

Table A.9 (continued)

OUT-OF-PLANE BORSST LOADING, BYC, OR CYLINDER (60000 IN-LB)

	MICBC-STRAIN			STRES SE S			PRIN STRESSES		
0000000			C1083		Long	6931B	RTCHY	C T C N M	
ROS STT 5	64.551	GAGEZ	GAGEJ	TRADS	1016	JULAS	STAUY	21005	
*******		*****							
12708-A	3	488	485	21380	65 13	38	21380	6513	
12768-B	24	564	555	24 56 3	8080	16	24564	8079	
12798-C	9	611	652	27731	8591	- 54 2	27746	8576	
12708-D	56	646	573	26712	9688	972	26767	5533	
127 CH-B	91	660	713	30078	1 17 50	-700	30 10 5	11724	
12708-7	3	777	8 19	35073	10608	- 55 0	35087	10596	
1270H-G	88	604	589	26113	10482	196	26115	1 (479	
12708-8	100	415	327	16196	7859	1 178	16359	7696	
1270H-J	132	185	209	8524	6531	-314	8573	6483	
1270H-K	106	124	127	5382	4793	- 39	5384	4790	
I27CH-L	79	€5	65	2758	3211	0	3211	2758	
12708-1	53	38	35	î557	2055	39	2058	1554	
02708-4	-8	113	33	3202	723	1068	3599	326	
02701-8	-25	73	~ 8	1454	-312	1071	1959	-817	
0270H-C	-51	38	- 34	150	~1484	954	589	- 1924	
0270M-D	-80	-5	-63	-1403	-2813	766	- 1067	-3149	
027 JH-E	-105	-42	-97	-2956	-4050	732	- 2589	- 4417	
02708-2	-112	-233	-270	-10926	-6624	498	-6567	-10982	
0270#-G	- 19	- 313	-325	-13984	-4780	157	-4777	-13987	
02701-8	72	-299	-304	-13335	- 1830	75	- 1830	= 1 3 3 3 6	
027CH-J	142	-181	-187	-8255	1771	78	1772	- 8256	
02708-K	127	-115	-98	-4811	2374	-231	2381	-4819	
0270M-L	75	- 46	- 29	-1718	1747	- 230	1762	- 1733	
02701-1	38	3	3	100	1168	1	1168	100	

Contraction of the second s

こうちょう しょうしん かいていていたい あいまたのではない しょうしょう しょうしょう いまである あいてん あいてん あいてん あいてん あいたい ひょうちょう

とうちょう おまくろう

محمد المحمد الولا

CUT-OF-PLANE MCHERT LOADING, STC, ON CYLINDER (60000 IN-LB)

	A JCBG-S?BAIN			STRESSES			PBIF STRESSES	
Ros ette	GAGEI	GAGE2	GAGE3	TRANS	LO JG	SHEAR	SIGAX	SIGH
I-0-C-*	17	-20	- 17	-813	266	-38	268	-814
1-22C-1	35	23	29	1108	1372	-72	1390	1090
I-45C-A	69	46	120	3579	3143	-992	4377	2345
1-67C-A	267	218	152	7934	10347	87E	10622	7558
I-90C-A	243	-415	-443	-19118	1568	38,2	1575	-19125
1112C-A	246	172	218	9298	9883	-607	10089	8092
I135C-A	63	115	61	3781	3033	722	4221	2594
I157C-A	20	43	35	1690	1121	914	1712	1099
1202C-A	6	-31	-55	-1895	-383	311	-321	- 1956
12250-1	-34	-69	-121	-4143	-2271	693	-2043	-4372
12476-1	- 297	-280	-164	-9429	-11735	- 1539	-8659	-12505
1292C-A	-285	- 127	-274	-8487	-11110	1962	-7439	-12158
13150-4	-49	- 1 18	-75	-4 189	- 27 19	- 577	-2519	- 4389
1337C-A	- 3	-55	-37	-2018	-683	-231	-644	-2057
1180C-L	-3	23	-6	393	13	383	630	-224
0-220-4	-40	26	-34	-128	-1226	796	290	- 1604
G-45C-A	-92	20	36	1336	-2353	- 223	1350	- 2366
0-670-1	-318	-251	64	-3749	- 10656	- 4 200	- 1765	-12640
0-90C-A	56	-61	-39	-2260	1005	- 298	1032	-2287
01120-1	-298	-237	11	-4629	- 10336	-3307	-3115	-11851
01350-1	-75	53	25	1808	- 17 10	373	1847	- 1749
0157C-A	-28	-5	39	777	-596	-594	998	-817
01800-1	-2	-28	14	- 294	-163	- 556	332	-789
020 2C-A	14	-50	- 16	-1472	- 11	- 446	115	- 1597
0225C-A	55	-34	-76	-2486	892	566	985	- 2578
0247C-1	351	205	- 19	3701	11631	2996	12636	2696
6292C-A	362	-11	242	4681	12253	-3377	13540	3394
0315C-A	72	-(8	-25	-2129	1511	-57 1	1598	-2217
C337C-A	20	- 20	-48	-1511	156	380	239	- 1594
01800-1	-5	-31	17	- 296	- 250	- 645	372	-918

1. Hendline and a start and

- -

しい しゅうう みいきかんきょう かかん ぶんざんざい かいしった きまやす 名 法国家法学院学校学校学校学校学校

11. g. 11.
OUT-OF-PLANE HOBERT LOADING, MYC, ON CYLINDER (60000 IN-LB)

		alcro-strain			STRESSES			PRIJ STRISSES	
ros ett b	GIGB1	GAGE2	GACE3	TRANS	LONG	SHEAR	SIGKI	SIGNN	
	****	~****					40040		
I-0-#-*	17	- 17	-29	-1022	218	153	237	- 1040	
I-22H-1	79	53	50	2174	3036	39	3038	2172	
I-45H-A	66	103	112	4669	3371	- 118	4679	3360	
I-67∦- ∆	154	242	236	10342	77 09	7å	10 34 4	7707	
I=908-1	207	-442	-516	-21281	-183	981	- 138	-21326	
1112 8- 1	168	230	239	10 129	8087	- 118	10135	808 1	
135 6- a	65	112	109	4800	3393	39	4801	3392	
11578-1	- 24	21	30	1085	1040	-119	1 184	941	
1180H-A	3	- 12	0	- 253	17	- 156	89	-324	
1202 H- A	-6	- 56	-29	-1860	-7 27	- 352	-626	- 1960	
12251-1	-53	- 134	-58	-4172	-2830	-1010	-2288	-4714	
12478-1	- 187	-259	-207	- 10046	- 86 12	- 699	-8328	-10330	
12928-1	-163	- 158	-233	-9300	-7690	465	-7565	-9425	
13158-1	-58	~85	-122	-4486	- 3097	505	-2933	-4650	
13371-1	- 15	- 29	-55	-1845	-995	349	-870	- 1970	
0-228-1	+⇒43	5	Э	255	-1211	39	256	- 1212	
0-458-1	-43	-92	46	-949	- 1568	-1843	610	-3127	
0-67#-A	15	-317	-103	- 9243	-2330	-2843	-1311	-10262	
0-908-A	101	-63	- 26	- 2057	24 27	- 499	2482	-2112	
0112H-A	- 11	-239	-338	-12658	-4135	1326	-3933	-12860	
0135 3- A	-42	48	-99	-1071	- 15 95	1969	653	- 3320	
01573-1	-37	14	14	671	-9û2	0	671	-902	
0180 - 1	-3	-25	6	-425	-206	-417	116	-746	
020 2 - 1	14	-25	-33	-1301	42	102	50	- 1308	
0225 5- A	-5	51	-71	-424	-292	1628	1271	- 1987	
02478-1	0	324	116	9624	2892	2802	10638	1879	
029 2 3- 2	29	103	338	9660	37 58	-3143	11020	2398	
0315 F- A	0	-61	73	259	55	-1796	1970	- 1620	
033 71- 1	17	- 39	-22	-1363	104	-227	136	- 1797	
0-0-#-L	-3	-3	3	10	- 74	-74	53	-118	

Table A.10. In-plane moment loading, $M_{2C}^{}$, on cylinder

	61C)	RC-518/		STRESSES			PBIN STRESSES	
ros ette	GAGE 1	G AG E 2	GAGE3	TRANS	LONG	SHEAF	SIGHX	SIGHW

I-0-C-1	138	76	70	3057	5047	75	5050	3054
I-0-C-B	112	59	48	2219	4036	150	4049	2207
1-0-C-C	87	45	36	1692	3119	113	3128	1683
I-0-C-D	65	31	25	1159	2284	75	2289	1154
1-0-C-E	48	28	20	995	1729	112	1745	978
1-0-C-F	11	20	14	724	551	75	752	523
1-0-C-G	0	25	17	921	272	112	939	253
I-0-С-Н	0	31	22	1 160	346	112	1175	331
I-0-C-J	3	33	28	1343	485	74	1349	478
I-0-C-K	3	31	25	1220	446	74	1227	439
I-0-C-T	0	28	19	1038	308	112	1054	291
0-0-C-1	- 146	- 17	- 23	-717	-4581	76	-716	- 4583
0-0-C-B	-108	-43	- 37	-1637	-3745	-77	-1634	- 3748
0-0-C-C	-77	-46	-40	- 1798	-2851	-75	-1793	-2857
0-0-C-D	-57	-49	-46	-2007	-2315	-38	-2003	-2319
0-9-C-E	-40	-46	-43	-1901	- 1770	-39	- 1759	- 1911
0-0-C-F	-9	- 37	- 34	-1359	-725	-38	-723	- 156 1
0-0-C-G	3	- 29	- 29	-1259	-293	C	- 293	- 1259
0-0-С-Н	0	- 29	-29	-1255	-379	1	-379	- 1255
0-0-C-J	-3	-28	-26	- 1 186	-442	-38	-440	- 1188
0-0-C-K	0	-28	-26	-1187	-357	- 38	- 355	- 1189
0 0 - 0 1	^	. 11	10	037	. 500		- 170	_0.20

IN-FLANE MOMENT LOADING, MZC, ON CYLINDER (24000 IN-LE)

いたのとうとなるなどのないないのである。となるなどのないないないであると

ladie A.IV (continued	Table	A.10	(continue	d)
-----------------------	-------	------	-----------	----

IN-BIVNE	HOME	NT LCAI	DING, N	12C, 08	CYLINDE	R (240	00 IX-LE	3)
	AIC	RC-SIR		:	STRESSES	PRIN STRESSES		
Bos ett e	GAGE1	GAG12	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGHN
T=0-3-84	** 0	5 2	49	2226	668	4 G	2227	667
I-0-#-C	81	38	32	1438	2864	77	2868	1434
I-0-1-D	61	23	20	883	2090	37	2091	881
I-0-8-E	46	20	14	706	1600	76	1606	700
1-0-1-2	14	9	9	365	543	1	543	365
1-0-1-G	Ó	12	12	508	150	Ó	508	150
I-0-1-H	3	14	17	697	294	- 38	700	290
I-0-1-J	12	23	23	1012	651	0	1012	651
I-0-#-K	17	29	26	1199	883	36	1203	879
I-0-N-L+	* 29	35	-204	-3756	-248	3 190	1639	- 5642
0-0-X-A	-134	-26	- 26	-984	-4313	0	-984	-4313
0-0-N-B	- 97	- 34	- 34	-1401	-3328	0	- 140 1	- 3328
0-0-8-C	-70	-38	- 35	-1538	-2576	-39	-1537	- 2577
0-0-N-D	-47	-41	- 38	-1695	- 1920	-39	-1688	- 1926
0-0-N-E	- 29	-41	- 38	-1712	-1396	-39	- 139 1	- 1717
C-0-8-7	0	-32	- 32	-1423	-434	N	-434	- 1423
0-0-#-G	14	24	-24	-1056	1 14	0	114	- 1056
0-0-N-H	8	-21	-21	-929	-29	2	-29	-929
C-0-N-J	9	-24	-27	-1112	-76	39	-74	- 1113
0-0-N-K	14	- 29	-29	-1306	38	0	38	- 1306

	AIC	rc-s1ri	NIN .		STRESSES	PRIN STRESSES		
	* • •						******	******
ROSETTE	JAG B 1	G AG E 2	GAGE3	TRANS	LONG	SHEAB	SIGNI	SIGNE

1270C-A	92	-0.18	-821	- 19 547	-28.08	37	- 2808	- 18547
127/C-P	02 02	_2 15		-14690	-1651	hAS	-1626	-14705
12700-0	94	-343	-343	-14009	- 1051	222	-1030	-14125
12700-0	70	-243	-209	-11120	-373	443	- 303	-11123
	60	- 150	-203	-3033	-372	140	- 309	- 7164
12766-6	00	-134	-100	-/149	-350	190	-344	-/134
12/60-2	23	-31	-43	-1/80	148	10	151	- 1/83
12/00-8	- 14	46	40	1896	140	76	1899	137
1270C-J	-6	88	80	3698	937	113	3703	932
127 CC-K	6	108	111	4818	16 16	-38	4819	1616
1270C-L	20	145	137	E 180	2452	114	6184	2448
127CC-8	20	151	151	6619	2584	0	6619	2584
0270C-1	182	131	91	4673	6862	530	6983	\$531
0270C-B	148	94	77	3586	5511	227	5537	3560
0270C-C	1 19	65	45	2306	4274	265	4309	2271
0270C-D	94	64	37	1893	3381	229	3416	1859
0270C-R	88	43	26	1401	3061	228	3092	1371
02706-2	46	17	Ĩ	513	1521	114	1534	501
02700-6	a	20	20	967	516	0	967	516
02700-4	- 14	20	27	\$510	210	-76	1633	210
02700-2		21 60	31	1313	- 0 10	-70	1727	- 910
	-3/	80	00	3007	-010	38	1006	-010
02/0C-K	- 86	58	85	3854	- 1409	- /5	3855	- 1410
0276C-L	-117	100	100	4513	-2154	0	4513	-2154
0270C~N	-131	105	108	4843	-2483	-38	4843	-2484

IN-PLANE HOMENT LCADING, M2C, ON CYLINDEE (24000 IN-LE)

- 二日の市 日本を見たいのであるのである

and the second second

IN-PLAN	e nonzi	IT LOND)ING,	HZC, ON	CYLINDE	R (240)	DO IN-LI	3)
	HIC	RC-STR/	II	:	STRESSES		PRIN S	IRESSES
				·				*******
ROSLTTE	GAGET	GAGE2	GAG 23	TRANS	LOBG	SHEAR	SIGNI	SIGN
******			****				qe=qe	
	- 4 3 4							25002
12/08-1	-134	-364	-244	-25076	-1155/	275	- 11551	-25082
127G-B	-164	-677	-686	-29791	-13847	117	-13846	-29792
1270H-C	-146	-678	-815	-32638	-14175	1828	-13996	-32817
1270 H -D	-193	-829	-745	-34381	-16100	-1128	- 16031	-34450
1270 H- 5	-228	-E64	-914	-38836	- 184 88	662	-18466	-38857
32708-2	- 56	- 1052	-1061	-46378	- 15595	118	- 15594	-46378
12708-6	-56	-E78	-796	- 36727	- 12699	-1100	- 12649	-36777
1270H-8	-44	-651	-510	-25470	-8968	- 188 5	-8756	-25683
1270N-J	-171	-330	-365	-15098	-9658	471	-9617	-15138
12708-X	-159	-251	-251	- 10836	-8026	0	-8026	-10836
1270H-L	-136	-156	-159	~6781	-6102	39	-6100	-6784
12708-1	-127	-57	-88	-3941	-4984	-118	-3928	-4998
	• • • •	••	•••					
027C#-A	261	118	89	4254	91 18	384	9 148	4223
02703-B	353	158	135	6046	124 14	307	12429	6031
0270H-C	437	207	167	7725	154 19	537	15456	7688
0270N-D	5 03	259	221	9990	18082	498	18113	9960
02701-E	566	305	273	12069	20601	420	20622	12049
02701-7	523	489	500	21152	22036	- 154	22062	21127
02701-6	305	552	549	23853	16292	37	23853	15292
02708-8	106	5 17	512	22493	9937	77	22494	9936
02708-1	- 58	340	354	16310	2863	- 10 3	16322	2861
00702-P	- 27	230	224	10409	5.25	125	10400	574
02708-1	-91	132	100	SACE	- 201	207	5474	-904
	- 04	144	107	3400	-071		1144	-500
	- 34		20	1102	-2104	~ 57	1 102	~∠ 100

IN-FLAME MOMENT LOADING, MZC, ON CYLINDRE (24000 IN-LE)

	BICI	RC-SIE	IN.	-	STRESSES			PRIN STRESSES	
ROS ETT B	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNI	SIGHN	
I+0+C-*	81	67	70	2934	3324	-37	3327	2930	
1-226-4	152	100	75	4045	5/62	115	5/69	40313	
1-450-4	180	314	103	5902	/1/8	- 548	7450	2031	
	08 C	269	143	1310	13781	8//	13897	/193	
1-900-4	74	-415	-420	- 185/3	-3341	152	-3339	- 185/4	
	349	100	212	7790	12809	- 68/	12902	1697	
1135C-A	100	100	120	5.979	67/1	234	7040	5/10	
	140	103	100	4430	2232	-36	5536	4434	
12020-1	144	98	98	4153	55/3	- 1	55/3	4153	
12236-1	202	139	176	5094	8008	-500	8231	6531	
124/6-4	401	205	150	/48/	14281	654	14 34 4	7424	
12920-1	404	167	231	8307	14616	- 846	14727	8196	
1315C-A	185	182	124	6522	7498	769	7921	E099	
1337C-A	150	95	104	4212	5766	- 115	5774	4203	
I180C-L	-4	12	12	511	42	1	511	42	
0-220-1	-168	- 17	-26	-759	-5275	116	-756	-5278	
0-45C-1	-223	-31	17	-63	-6711	-632	-4	-6770	
0-67C-1	-5 19	- 393	-31	-8745	- 18180	-4828	-6712	-20213	
0-90C-A	2 15	100	123	4664	7836	- 297	7863	4636	
0112C-1	-465	-365	-67	-8986	-16662	-3974	-7299	~18349	
01356-1	-195	42	-22	640	-5663	854	754	- 5777	
01570-2	-170	-8	-6	- 123	-5140	-37	- 122	-5141	
0186C~A	- 137	- 17	- 8	-404	-4221	- 112	-401	- 4224	
0202C-1	-153	-11	- 3	- 142	-4646	- 112	- 140	-4649	
0225C-1	-234	-43	28	-62	-7024	- 946	64	-7151	
0247C-1	-527	- 359	-57	~855 8	-18364	-4018	-7 123	-19800	
0292C-A	-524	~31	- 367	-8182	-18160	4473	-6471	-19872	
0315C-A	-216	26	- 34	44	-6480	797	140	- 6576	
0337C-A	-165	-9	-9	-198	-50 15	0	- 198	-5015	
1-20310	3	- 14	- 14	-632	-108	0	- 108	-632	

In the second line should be the state of the second second second second second second second second second se

૮ ગામના વિશેષ્ટ્રાન્ટ્રેસ પ્રાથમિક્ષિત વિશેષ્ટ્ર વિશેષ વિશે

IN-PLANE HOMENT LGADING, MZC, ON CYLINDER (24000 IN-LE)

.

بريد ورم

A Contraction of the second

	MICRC-STRAIN			STRESSES			PRIN STRESSES	
ROSETTE	GAGEI	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	S IGUN
I-0-8-* I-228-A	95 -171	66 -41	63 6	2749 - 590	3683 - 5305	39 -628	3684 - 507	2747 -5387
I-45N-A I-67N-A I-90N-A	162 195 68	148 242 -454	221 398 -502	7929 13859 -21087	7248 10001 -4291	-983 -2084 629	8629 14770 -4267	6548 9091 -21111
I112N-A I135N-A I157N-A	201 171 139	375 233 109	245 156 80	13399 8373 3998	10040 7647 5361	1730 1022 393	14131 9095 5456	9309 6925 3893
I 18 CN-A I 20 2N-A I 22 5N-A	148 145 152	80 57 169	89 115 230	3535 4511 8613	5487 5692 7133	-118 -236 -816	5494 5737 8974	3528 4465 6772
1247N-A 1292N-A	201 166	239	356 277	12852 13723 7918	9892 9104 6662	-1554 1049 1010	13518 13951 8479	9226 6877
1337N-A	131	102	79	3829	5085	311	5158	3756
0-22N-A 0-45N-A 0-67N-A	-138 -130 -121	-92 -225 -504	20 26 -179	-1439 -4235 -14884	-4585 -5167 -8100	-1497 -3341 -4338	-1328 -5986	- 5184 - 807.3 - 16999
0-90N-A 0112N-A 0135N-A	314 -122 -122	89 -153 40	127 -518 -236	4395 -15491 -4181	10732 -8317 -4925	- 499 4318 3675	10771 -6290 -859	4356 -17518 -8246
0157N-A 0180N-A 0202N-A	-131 -142 -137	31 -17 -77	-65 -17	-609 -600 -1060	-4110 -4449 -4416	1288 1 -1315	- 186 -600 -606	- 4533 - 4449 - 4870
0225N-A 0247N-A	-120	-222	43 -208	-3809 -15859 -15313	-4729 -8599 -8096	-3523 -4167 4660	-716 -6703 -5811	-7822 -17756 -17598
0315N-A 0337N-A 0-0-N-L	-101 -132 31	34 28 -28	-219 -73 -34	-3970 -851 -1395	-4230 -4220 505	3369 1350 75	-728 -377 508	-7471 -4694 -1398

とうちょうかい くろしてきる いちない ちち

Table A.11. Axial force loading, $F_{\chi C},$ on cylinder

AXIAL PORCE LOADING, FXC, CN CYLINDER (8000 LE)

	NICI	RC-SIR!	AIN	STBESSES			PRIN S	TRESSES
				-	* = # * * *			~~~~~
ROS ETT E	GAGEI	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGHN
					*			
I-0-C-A	-110	-48	-31	-1623	-3784	-225	- 1600	- 3807
I-0-C-B	-85	- 37	-23	-1220	-2905	- 186	-1200	-2925
I-0-C-C	-62	-26	-12	-746	-2089	- 187	-721	-2115
I-0-C-D	- 42	-20	-9	-586	-1450	-149	-561	- 1475
I-0-C-E	-28	- 17	-6	-472	-996	- 150	-433	- 1035
I-0-C-F	0	- 17	-6	-510	- 162	- 150	- 106	-566
I-0-C-G	2	-23	-12	-752	-156	- 150	-121	-797
I-0-С-Н	2	~26	- 17	-944	-212	-110	- 196	-960
I-0-C-J	-3	-31	-20	-1110	-3.7	- 149	-396	- 114 1
I-0-C-K	-3	-28	-17	-992	-401	-149	-366	- 1028
I-0-C-L	-3	-23	- 15	-816	-349	- 108	-324	-840
0-0-0-4	111	23	28	998	3626	-74	3629	996
C-0-C-B	74	37	34	1474	2655	35	2657	1473
0-0-C-C	48	37	25	1309	1835	155	1877	1267
0-0-C-D	28	31	31	1335	1245	-2	1335	1245
C-0-C-E	14	25	31	1224	781	-78	1237	768
0-0-C-F	-9	20	20	872	-4	Ó	872	-4
C-0-C-G	-9	14	14	620	-81	0	620	-81
0-0-С-Н	-9	11	14	561	-105	-37	563	-107
0-0-C-J	-9	17	17	742	-45	0	742	-45
0-0-C-K	-9	17	14	689	-63	38	691	-65
C-0-C-L	-12	14	11	568	-180	38	570	-182

가지 귀엽.

...

and the second second

- 1211日の注意時間では「「「「」」」

AXIAL FORCE LOADING, FXC, ON CYLINDER (8000 LB)

	NIC!	RC-SIBI	AIN	S	TRESSES	PRIN S	TRESSES			
			. ~ -	-	~ ~ ~ ~ ~ ~ ~ ~ ~					
ወሰር ደጥጥ թ	CACEL	61632	C1C52	TRANC	TONG	CUFID	STORY	STONN		
AUS EILE	GAGET		UBGEJ		LONG	JULAN	SIGAN	5168A		
			32400							
I	k≢ ()	-29	-30	-1296	-389	2	-389	- 1296		
1-0-N-C	-61	- 18	- 15	- 549	-2039	-40	-647	-2040		
I-0-N-D	-41	-9	-9	- 357	- 1337	- 3	-357	- 1337		
I-0-N-E	-30	-9	-6	- 308	-979	-41	-306	-982		
1-0-N-F	-6	-3	-6	- 194	-240	40	- 17 1	-263		
I-0-8-G	0	-6	- 12	-393	-128	76	- 108	-414		
I-0-N-H	-3	-9	-15	-515	-251	78	-230	-537		
I-0-N-J	-9	- 12	- 18	-641	-466	78	-437	-671		
I-0-N-K	- 12	- 15	- 17	-701	-569	32	-562	-708		
I-0-N-L4	** -23	- 18	166	3293	289	-2454	4668	- 1086		
0-0-N-A	105	37	37	1498	3599	-1	3599	1498		
0-0-N-B	74	37	37	1532	2669	C	2669	1532		
0-0-N-C	50	38	35	1547	1951	39	1955	1543		
0-0-N-D	32	35	35	1500	1411	0	1500	1411		
0-0-N-E	17	32	35	1453	958	39	1456	955		
0-0-N-F	0	23	26	1687	3 19	- 39	1089	317		
0-0-X-G	-5	14	17	705	29	-39	707	26		
C-0-N-H	-3	11	14	570	75	-39	573	72		
0-0-N-J	-3	14	14	637	97	C	637	97		
0-0-N-K	- 12	15	20	779	-126	-78	786	-133		

AXIAL FORCE LOADING, FXC, ON CYLINDER (8000 LE)

.

	MIC	MICRC-STRAIN			STRESSES			PRIN STRESSES	
ROS ETT E	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGHE	
		*****			****				
T 27 0C-A	-132	409	342	16668	1087	893	16719	997	
1270C-B	-135	328	292	13780	95	483	13797	78	
T270C-C	-126	278	226	11214	-4 19	705	11256	-162	
T270C-D	-1/3	245	189	9674	-794	739	9726	-846	
T270C-E	-115	211	162	8324	-939	647	8369	-984	
7 27 OC-R	- 80	128	80	4656	-1014	646	U 729	- 1087	
T27CC-H	- 52	68	50	2743	-727	190	2754	-737	
12700-1	-49	<u>48</u>	51	2724	-800	-41	2224	-801	
12760-8	- 54	<u>э</u> п	<u>л</u> О	1680	-1131	-76	1682	-1133	
12700-1	- 52	22	28	1171	-1201	-76	1173	- 1204	
10100-1	- 49	20	20	1107	-1132	- 110	1113	- 1137	
4659670	~ 47	20	20	1107	1152	- () 4	1113		
0270C-à	-114	54	-63	-80	-3448	1554	528	-4055	
027CC-B	- 97	73	-40	838	-2666	1513	1401	- 3229	
027CC-C	- 8Ú	85	-12	1699	-1892	1288	2113	-2307	
0270C-J	-66	94	8	2299	-1291	1142	2631	- 1624	
0270C-B	-63	96	25	2736	-1078	947	29 59	- 1300	
0270C-P	-46	102	62	3671	-279	532	3741	-349	
0270C-G	- 32	91	71	3594	126	266	3614	105	
027CC-H	- 17	77	71	3266	458	74	3268	456	
0270C-J	0	68	57	2743	612	153	2755	800	
0270C-K	14	54	45	2170	1072	116	2182	1060	
0270C-L	22	40	34	1590	1150	76	1603	1.37	
0270C-8	14	40	37	1666	9 14	38	1668	912	

ACCORET ADDRESS OF DETERMINANT AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADD

AXIAL FORCE LOADING, FXC, ON CYLINDER (8000 LB)

	MICRC-STBAIN			STRESSES			PRIN STRESSES	
		******		•				
RO_ETTE	GAGEI	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGNX	SIGHN

T27 1N-1	5.9	h G h	461	20023	8020	n 26	20027	8006
120 JB-8		872	507	20323	0853	200	20337	0952
7270N-C	76	421	545	29423	10600	- 275	29433	10605
127 UB-C	10	676	E04	20032	10033	1050	20090	12026
12/UN-D	140	6 6 0	230	21/80	12090	1004	21000	12020
12/CN-E	100	067	130	31012	14292	-040	31030	14214
127 UN-P	47	E 10	869	30,80	12506	- 197	3/006	12485
1270N-G	59	645	648	28359	10270	- 39	28359	10270
1270n-H	44	465	409	19178	7073	747	19224	7027
1270X-J	129	241	289	11508	7337	-526	11600	7244
127 ON-K	115	185	194	8220	5908	- 118	8226	5902
1276N-L	100	1 18	130	5323	4597	- 157	5356	4565
127 Ch H	94	76	74	3192	3782	39	3784	3190
0270N-A	-170	75	-69	315	-4995	1915	934	- 56 14
0270N-B	-239	40	- 109	-1252	-7536	1993	-673	-8114
027 0N-C	-311	0	~ 197	-2880	~ 10182	1954	-2390	- 10672
0270N-D	- 368	-43	- 197	-4651	-12439	1916	-4205	-12885
0270N-F	-4.28	- 90	-224	-6418	- 16780	1902	-6046	-15152
02708-8	-420	-283	_20h	- 14 38 2	- 17259	1/05	- 13746	-1799/
02708-2	-947	-202	-11	-17099	-12150	435	-12105	-17122
02708-9	-106	- 300	- 271	-16310	- 13 (30	- 77	- 13 103	-16310
	-100	-3//	-3/1	-10310	-0000	-//	-0007	- 10310
U2/UN-J	Ji	-201	- 142	-11010	-218/	- 192	-2102	-11014
UZIUN-K	60	-1/9	-150	-7301	-382	-384	- 30 1	- 1323
027 CN-L	57	-98	-72	-3810	578	- 346	606	- 3837
027 CH-N	57	-20	-20	-962	1433	- 1	1433	-962

د از این است. میشینه میهمد مین است. با میشند که با در مینوند که می کود میشود و میشود و میتود و از این از این ا

高いない ないしょう かいしん ないない ひょう かいしんかん コーレーン たってん ちゅう

「「「

	HIC	RC-STR/	AIN	STRESSES			PRIN SIRESSES		
				•					
ROS ETT E	GAGEI	GIGE2	62623	TRANS	LONG	SHEAR	SIGNI	SIGNN	
I-0-C-*	- 76	- 34	-40	-1534	-2743	77	-1529	-2748	
I-22C-A	-132	-72	-63	-2827	-4809	- 119	-2820	- 4816	
I-45C-A	-146	-80	- 123	-4314	-5684	573	-4106	- 5892	
I-67C-A	-284	-121	-60	-3666	-96 16	-801	-3560	-9722	
I-90C-A	-141	369	363	16247	659	76	16248	659	
I112C-A	-227	- 109	- 1 12	-4612	-8181	36	-4612	-8181	
I135C-A	-106	-109	-52	-3421	-4215	- 76 1	-2960	- 4676	
1157C-A	-118	-52	-40	- 1899	-4105	- 152	- 1888	-4115	
120 20-A	-102	-41	-58	-2063	-3665	228	-2031	- 3697	
1225C-1	-116	- 75	-127	-4324	-4775	693	-3821	-5278	
1247C-1	-295	-171	-145	-6613	- 10839	- 347	-6585	-10868	
129 2C-A	-281	-47	-125	-3457	-9455	1040	- 3282	- 9631	
1315C-A	-142	-119	-84	-4297	-5546	-462	-4145	-5698	
1337C-A	-113	-64	-70	-2806	-4231	77	-2802	- 4236	
I180C-L	-40	-3	- 12	-282	-1280	117	-269	- 1293	
	- •	-							
0-220-1	136	17	39	1078	44 18	- 299	4444	1052	
0-45C-A	187	39	0	641	5788	520	5840	589	
C-67C-1	410	357	33	8118	14725	4 3 1 1	16853	5990	
0-90C-A	-1.34	-45	22	- 355	-4134	- 89 1	-156	-4334	
01120-1	3 09	290	11	6268	11160	3716	13162	4265	
C135C-A	131	-6	22	211	3986	- 372	4022	175	
01570-4	136	58	28	1735	46 10	409	4667	1678	
0180C-A	111	55	58	2377	4050	-38	4051	2376	
0202C-1	106	16	39	1092	3493	- 297	3530	1056	
0225C-A	145	14	- 17	-234	4274	419	4312	-272	
024 7C-A	398	264	8	5992	13745	3680	15213	4524	
0292C-A	3 9 3	40	347	8068	14205	-4097	16255	6018	
0315C-A	168	-6	42	6 17	52 14	- 644	5302	528	
0337C-A	128	20	17	662	4032	38	4032	661	
01900-1	-46	3	0	201	-1200	-76	20 4	- 1202	

AXIAL FORCE LOATING, FXC, ON CYLINDER (8000 LB)

AXIAL FORCE LOADING, FXC, ON CYLINDER (8000 LB)

,

. .

	BIC	RC-STBI	IN.	S -	STRESSES		PRIN S	IRESSES
BOSETTE	GAGE 1	GAGE2	GAGB3	TRANS	LONG	SHEAR	SIGHX	s igan
### #3% #	****	****			****			
I-0-N-+	-90	- 38	-35	- 150 1	-3142	-37	- 1500	-3143
1-228-1	138	47	3	940	4433	589	4529	844
I-4 58-A	-119	-101	-177	-5975	-5358	1022	-4598	-6734
1-674-4	-121	- 145	-290	-9411	-6459	1929	-5506	-10364
1-90H-A	-109	4C1	428	18333	22 16	- 35 3	18341	2209
I1128-A	-109	-248	-177	-9227	-6049	-944	-5790	-9486
11351-1	-104	- 165	-77	-5214	-4670	- 1180	-3731	~€153
1157H-A	-103	-65	-6	-1451	-3540	-785	-1189	-3803
1180N-1	-127	-9	-33	~779	-4045	314	-749	-4075
120 21-1	-89	- 30	-74	-2185	-3319	588	- 1936	-3569
1225H-A	- 85	-114	-146	-5619	-4232	427	-4111	-5740
12478-1	-143	-222	-269	-10620	-7479	622	-7360	- 10738
129 28-1	-88	-239	- 140	-8241	-5105	~1321	-4623	- e724
1315N-A	- 96	- 155	-91	-5288	-4480	-854	-3939	-5829
13378-1	-97	-67	-50	-2468	-3636	-233	-2423	- 368 1
0-221-1	1 18	£0	5	1759	4066	999	4438	1387
0-45N-A	115	193	-6	3980	4644	2650	6983	164 1
0-67#-1	98	8 g 6	170	12549	6698	3150	13923	5324
0-901-A	-217	-4i	20	-219	-6563	-807	-118	-6664
01123-1	40	148	364	11193	4549	-2881	12268	3473
01358-1	99	- 12	170	3381	3991	-2425	6130	1242
01578-1	1 1 6	23	62	1738	4010	~530	4128	1620
01808-1	113	59	62	2545	4164	-36	4165	2544
020 28-1	111	54	9	125 t	3690	600	3830	1111
02258-1	79	142	-34	2276	3060	2349	5050	286
02475-1	54	4G 1	162	12303	5305	3 18 2	13534	4074
029 2N-A	85	162	406	12822	6392	-2993	14000	5214
03158-1	78	- 12	171	3415	3373	-2434	5828	960
03378-1	101	-9	55	916	3298	- 855	3574	640
0~0- H -L	-23	3.4	20	757	-457	-76	762	-462

 $(x_{i},y_{i}) \in \{y_{i},y_{i}\} \in \mathbb{R}^{n}$

Table A.12. In-plane force loading, F_{YC} , on cylinder

	MIC	RC-STR	AIN 	S	SIRESSES			PRIN STRESSES		
EOSETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGHN		
I-0-C-1	104	29	12	768	3361	226	3380	769		
I-0-C-B	73	14	15	558	2372	-2	2372	558		
I-0-C-C	48	9	9	332	1547	-1	1547	332		
I-0-C-D	31	6	6	233	1010	-1	10 10	233		
I-0-C-E	17	6	6	240	592	-1	592	240		
1-0-C-F	0	9	ç	391	129	1	391	129		
I-0-C-G	-2	15	15	645	126	1	645	126		
I-0-C-H	3	20	20	868	351	-1	868	351		
I-0-C-J	14	22	25	1031	733	-37	1036	728		
I-0-C-K	17	23	22	970	805	0	970	805		
I-0-C-L	26	23	20	906	1037	34	1045	897		
0-0-1-1	- 103	- 37	-46	-1706	-3594	14	- 1699	- 360 1		
0-0-C-B	-66	-49	-43	-1935	-2550	-76	- 1925	-2559		
0-0-C-C	-43	-43	-37	-1709	- 1797	-76	-1665	- 184 1		
0-0-C-D	- 29	-37	- 37	-1599	-1336	0	-1336	- 1599		
C-0-C-E	-11	-31	-31	-1367	-753	C	-753	- 1367		
0-0-C-F	6	- 17	-20	-822	-75	38	-73	-823		
0-0-C-G	9	- 14	-11	-574	85	-38	87	-576		
0-0-С-Н	3	- 17	- 17	-756	-141	C	- 14 1	-756		
0-0-C-J	9	-20	- 17	-822	9	- 38	11	-824		
0-0-C-K	14	-20	-20	-891	159	0	15.9	-891		
0-0-C-L	28	-11	-11	-531	694	0	694	-531		

IN-FLANE FORCE ICADING, FYC, ON CYLINDER (1600 LB)

大学のないのである。 御きをたい ちょうしんしょう

بالفجر أمتارها للأط

	AIC	RC-STR	AIN	5	STRESSES			PRIN STRESSES		
BOS ETTE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGUI	SIGHN		
I-0-1-8+	* 0	12	12	510	153	Û	510	153		
1-0-N-C	46	6	0	77	14 16	77	1421	72		
1-0-N-D	29	0	-3	-96	842	39	844	-97		
1-0-8-E	15	-3	-3	- 144	392	C	392	-144		
1-0-N-F	-3	0	0	3	-86	0	3	-86		
I-0-M-G	-6	3	3	134	-134	Û	134	-134		
I-0-1-H	0	3	9	383	115	0	36 3	115		
I-0-#-J	6	12	15	58û	360	-39	587	354		
1-0-#-K	9	18	20	832	521	-32	835	517		
I-0-1-L*	* 17	27	-172	-3222	-443	2648	1 156	-4823		
0-0-8-1	-91	-40	-42	-1703	-3233	38	- 1702	- 3234		
0-0-B-B	-59	- 37	-40	-1612	-2267	38	-1609	-2269		
0-0-1-C	- 38	-35	- 32	-1441	-1577	-39	-1431	- 1587		
0-0-N-D	-21	-32	-29	-1333	-1017	-39	-1012	- 1337		
0-0-B-E	-6	-23	~23	- 1026	-486	0	-486	- 1026		
0-0-1-F	6	-15	-18	-718	-43	39	-41	·• 7 20		
0-0-N-G	5	-9	-9	-397	52	0	52	-397		
6-0-N-3	3	-6	-9	- 333	- 18	40	-13	-337		
0-0-N-J	3	-12	-12	-522	-72	0	-72	-522		
C-0-N-E	Q	- 15	- 18	-719	43	39	45	-721		

IN-FLAME FORCE LCADING, FYC, ON CYLINDER (1000 LB)

152

Table A.12 (continued)

Table A.12 (continued)

IN-PLANE FORCE LCADING, FYC, ON CYLINDER (1000 LB)

		RC-STR	NIN 		STRESSES	PRIN STRESSES		
BOS ETTE	GAGE1	GIGE2	GAGE3	TRANS	LONG	SHEAR	SIGNI	SIGHN
127 OC-1	73	-332	-376	-15633	-2501	594	-2474	- 15659
1270C-B	73	-239	-323	-12438	-1542	1115	-1429	- 1255 1
127 0C-C	65	-175	-251	-9439	-896	1004	- 779	- 9555
127 0C-D	62	-136	-209	-7655	-447	969	-319	-7783
127 OC-E	46	-94	- 174	-5943	-414	1 06 4	-216	-6141
127 OC-F	11	-11	-60	-1500	- 122	646	115	- 1826
127 OC- H	- 20	34	37	1589	-122	-38	1590	-123
127 CC-J	-11	51	83	2959	545	-418	3029	475
127 OC-K	0	74	103	3887	1166	- 380	3939	1114
127 CC-L	26	114	120	5112	2304	-76	5115	2302
1270C-N	31	126	128	5545	2605	38	5546	2605
027 QC-1	148	256	-48	4400	5757	4055	9 190	968
027 DC-E	117	222	-57	3497	4548	3714	7773	272
027 0C-C	97	185	-68	2456	3638	3373	6471	-377
0270C-D	82	165	-63	2 16 0	3122	3032	5711	-429
0270C-E	21	139	-65	1547	2597	2728	4851	-706
027 0C-P	48	74	-40	699	1664	1520	2776	-413
027 CC- G	23	57	-14	915	959	950	1887	-13
027 0C-H	ō	54	17	1567	470	494	1757	280
027 0C-J	- 37	74	46	2673	- 3 10	380	2721	~358
0270C-K	- 60	E6	66	3388	-780	263	3405	-797
C27 0C-L	-97	88	74	3679	- 1805	190	3685	- 1812
02700-#	-117	83	86	3826	-2360	-38	3827	-2350

153

17、「たいのかのないないないないできょう

7

「ないのでのいろう」

IN-PLANE FORCE ICADING, FTC, ON CTLINDER (1000 LB)

	MICI	RC-SIR!	NIN	STRESSES			PRIN STRESSES		
BOS ETT B	GAGE1	GAG 12	GAGES	TRANS	LONG	SHEAR	SIGHX	SIGHN	
		~~~~~				*****		*****	
12708-1	-114	-456	-511	-21115	-9743	739	-9695	-21163	
12701-B	-134	-564	-587	-25141	-11566	311	-11559	-25149	
127 08-C	-120	-581	-689	-27783	-11921	1443	- 11791	-27913	
1270H-D	- 155	-716	-625	-29291	-13424	-1207	- 13333	-25382	
127 CB-E	-184	-759	-753	-33043	-15426	-78	-15426	-33044	
1270#-F	-53	-969	-840	- 39679	- 13493	- 1721	- 13380	-39791	
12701-G	- 56	- E 19	-€08	-31290	-11064	-2815	~ 10680	-31675	
1270M-H	-35	-611	- 39 <b>9</b>	-22154	-7707	-2815	-7 178	-22684	
12708-J	-135	-291	-294	-12691	-7861	39	-7861	-12691	
127 CH-K	- 129	-220	-208	-9279	-6661	- 156	~6652	- 9289	
127 CH-L	-112	-132	~129	-5621	-5035	-39	-5033	-5624	
1270 <b>3-</b> 5	-106	-76	-71	-3112	-4106	-78	-3106	-4112	
027 0 4-1	209	267	-01	3660	7377	8789	10619	<b>#</b> 22	
02708-8	297	207	-52	5155	10148	470Q	12991	2322	
02708-5	247	336	- 1	6102	10140	5016	15054	3202	
	A 10	330	23	8361	15076	6767	17577	5905	
02708-8	468	807	74	10076	17052	4438	19209	7919	
02708-1	428	497	342	17954	18215	2067	20 156	16014	
027 01-G	244	497	451	20547	13477	611	20600	13425	
02701-8	80	434	454	19406	8227	-267	19412	8221	
02701-J	-52	259	537	13151	2388	~1036	13250	2289	
02701-K	-84	178	224	8945	176	-614	8988	133	
02703-L	- 72	92	106	4441	-831	- 192	4448	-838	
02708-8	-75	14	26	964	- 1960	- 154	972	- 1968	

IN-PLANE	FORCE	S LOADI	L∎G _# ₽:	IC, ON	CYLINDER	(1000	18)	
	AICH	C-SIB	IN		STRESSES		PRIN ST	RESSES
							*	
<b>BOS ETT E</b>	GAGEI	GAGE2	GAGE 3	TRANS	i Long	SHEAP	SIGHI	SIGHN
	*****		*****			****		*****
T=0=C=#	82	9	26	666	2653	-228	2678	641
I-22C-A	106	54	54	2274	3860	0	3860	2274
I-45C-1	115	69	146	4 593	4813	-1030	5739	3667
I-67C-A	326	229	245	10148	12836	-267	12862	10122
I-90C-1	54	-401	-315	-15788	-3105	-1144	-3003	- 15891
I112C-A	298	23	160	3700	10042	-1831	10533	3209
I135C-1	166	129	140	5732	6701	- 153	5724	5708
1157C-A	126	123	123	5272	5361	0	5361	5272
1202C-A	130	121	124	5253	5475	-38	5482	5246
1225C-A	211	156	162	6751	8351	-77	8355	6747
1247C-1	364	156	38	3853	12074	1578	12366	3561
1292C-X	329	240	234	10 048	12893	77	12895	1:046
I315C-A	121	147	75	4754	5066	962	5885	3935
1337C-A	110	52	52	2 165	5 3942	0	3942	2165
I 180C-L	-35	9	3	292	2 -952	77	297	<del>-</del> 957
0-22C-A	-106	-9	- 40	- 950	) -3451	418	-882	- 3519
0-45C-A	-145	11	0	402	-4229	147	407	-4233
n-€7 <b>C-</b> ↓	-404	-254	44	-4 152	-13368	-3972	-2677	-14843
0-9 0C-A	184	-64	267	4264	6792	-4417	10122	934
01120-1	-410	-348	-114	-9717	-15204	-3118	-8307	-16614
01350-1	-184	47	-39	382	-5405	1150	602	-5625
C157C-A	-159	33	5	1027	-4459	371	1052	- 4484
0180C-A	-131	17	31	1 180	-3577	- 186	1188	-3585
0202C-A	-151	0	31	833	-4268	-408	866	-4300
0225C-A	-233	-60	37	- 235	- /057	-1290	1	- 7292
02470-1	-466	- 101	-105	-9704	-1/491	-3410	-8422	-18774
02920-1	-407	29	-244	-4296	~13487	3637	-3031	-14752
	-142	- 24	0	540		226	221	- 4100
		- 34	- 11	-0/0	-3201	-203	165-	+101+ 740

A LOUIS OF STREET, STRE

1.00

Table A.12 (continued)

IN-SIVRE	FORCE	IOADI	[#G. #1	IC, ON	CYLINDER	(1000	LB)	
	AICE	RC-STE	IN		STRESSES		PRIN S	IRE SSE S
	~~~~				******		*****	
BOSETTB	GAGEI	GAGE2	GAGE3	TRANS	5 LONG	SHEAR	SIGNI	SIGHN
I-0-#-*	90	14	14	53(6 2847	0	2847	536
1-228-1	~132	-50	-9	-1149	9 -43 10	-547	-1057	-49,02
1-45N-A	111	117	164	6074	5154	-626	6391	4837
I-678-A	188	3 17	373	1496	10129	-741	15076	10018
I9CN-A	56	-429	-379	-17838	3 -3680	-665	-3649	-17859
I1128-A	159	294	100	8476	5 7302	2584	10539	5239
17358-A	164	206	107	756	5 7203	783	8188	6580
1 \57 H-A	126	117	114	495	9 5276	40	5281	4954
I 18 CH-A	126	114	115	4893	3 5257	-1	5257	4893
12021-1	132	13 2	123	546	6 5603	116	5669	5400
1225₽-1	154	165	221	831	5 7108	-736	£663	6760
124 78- 1	171	113	290	867	7 7741	-2360	10615	5803
1292 N- A	157	305	331	1380	1 8841	- 348	13826	8817
1315 1-1	96	165	110	595:	3 4658	725	6285	4326
13378-1	96	64	35	2060	3488	367	3586	1962
0-228-2	-101	-58	~9	-1350	-3431	~652	-1162	- 3619
Q-451-1	-98	- 144	34	-230	2 - 3632	-2379	-497	- 54 37
0-678-1	- 49	-412	- 10 1	-1121	6 -4837	-4143	-2797	-13255
0-901-A	250	-92	279	3833	3 866 0	-4949	11752	740
01121-4	-162	-201	-438	-1386	7 -9018	3 147	-7470	-15415
0135¥-A	-96	32	-233	-431	7 -4183	3524	-726	-7774
0 15 7 H- A	-110	63	-62	134	-3275	1666	813	-3554
0180ã-A	-139	15	21	92i	6 -3885	-79	929	-3886
02021-A	-127	-76	50	-44	3 -3955	-1682	233	- 4630
02258-A	-110	-230	35	-417	4 -4563	-3524	-839	- 7898
G2473-A	-165	-466	-216	- 1480	2 -9378	-3333	-7792	-16387
02928-A	- 36	-90	-414	-1105	-4405	4320	-2278	~13179
C3158-A	-75	34	~146	-2.36	3 -2969	2 3 9 7	-250	-5082
0337#-1	-101	-5	-52	-115	3 - 3367	627	-987	- 3532
0-0-1-L	17	-22	-28	-112	0 183	76	188	-1124

Table A.13. Out-of-plane force loading, F_{ZC} , on cylinder

							200 201		
	HIC	BC-STE	AIR	STRESSES PRIN STRESSE					
ros ett e	GAGEI	GAGE2	GAGE3	TRANS	LG 35	SHEAR	SIGHX	SIGNU	
					****		*****		
I-0-C-A	3	-20	8	-254	6	-375	273	-521	
I-0-C-8	3	-23	25	53	98	-636	712	-561	
I-0-C-C	3	- 20	22	56	99	-562	639	-485	
I-J-C-D	0	-23	22	-5	-4	-599	595	-604	
I-0-C-E	3	-23	25	57	98	-637	714	-560	
1-0-C-P	3	-23	22	-8	79	- 599	637	-565	
I-0-C-G	0	- 17	22	1 18	31	-524	600	-452	
I-0-C-8	3	- 19	23	68	110	-558	647	-470	
I-0-C-J	3	- 14	20	125	128	- 446	571	-320	
I-0-C-K	3	-14	17	65	111	-408	497	-321	
I-0-C-L	3	-17	17	6	93	-447	499	-399	
G-0-C-A	1	23	-22	16	25	607	627	-587	
0-0-C-B	-2	21	- 17	88	- 37	499	529	-478	
0-0-C-C	-2	21	-19	33	-53	529	520	-541	
C-0-C-D	-2	18	-20	-35	-76	497	442	-553	
0-0-C-E	-2	18	- 17	30	-53	46C	451	-473	
0-0-C-F	1	18	-19	-35	5	494	480	-509	
C-0-C-G	1	15	-19	-95	-9	457	407	-511	
0-0-С-Н	1	15	- 19	- 100	-2	45E	407	-509	
0-0-C-J	3	20	~20	-3	84	531	573	-492	
0-0-C-K	3	17	-20	-66	66	493	497	-497	
$\Delta = \Delta = C = T$	2	20	- 22	-66	66	560	573	-672	

OUT-OF-PLANE PORCE LCALING. PZC. ON CYLINDER (1200 LB)

Table A.13 (continued)

001-01-1		FUBLE 1	LUALING	e Ille	UN CILI	BDER (1200 701			
	HIC	BC-STF	AIN	5	STRESSES			PRIN STRESSES		
ros ette	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAB	SIGHX	SIGHN		

I-0-1-B	0	-26	23	-83	- 25	-655	602	-710		
I-0-1-C	2	-26	23	-80	48	-659	646	-678		
1-0-1-D	0	-24	23	- 19	- 16	-€22	605	-639		
1-0-1-E	-1	-24	23	-21	-22	-621	599	-642		
1-0-#-P	3	-23	26	51	95	-656	730	-583		
I-0-1-G	0	-26	26	-11	-13	- 698	686	-709		
1-0-1-H	3	- 29	26	-76	55	-735	727	-748		
I-0-#-J	0	-24	26	56	6	-662	693	-632		
I-0-8-K	-3	-24	29	125	-58	-708	747	-681		
I-0-N-L	0	-24	-21	-971	-288	-40	-286	-973		
0-0-1-1	-3	23	-20	60	-72	568	566	-578		
0-0-#-B	0	17	-17	-6	-7	455	448	-461		
0-0-2-C	-6	15	-15	1	-182	390	310	-491		
0-0-B-D	-3	12	- 15	-69	-114	351	260	-443		
0-0-8-E	-3	15	~15	-2	-92	390	346	-440		
C-0-#-P	-3	12	~15	-67	-114	351	26 1	-442		
0-0-N-G	0	11	- 15	-73	- 30	351	300	-403		
0-0-N-H	0	11	-12	-18	- 19	314	296	-333		
0-0-8-3	0	14	- 18	-73	- 26	430	381	-480		
0-0-N-K	0	12	- 15	-67	- 28	351	304	-400		

F

OUT-OP-PLANE FORCE LCACING, F2C, ON CYLINDER (1200 LB)

OUT-OF-PLANE POECE LCACING, FZC, ON CYLINDEE (1200 LB)

HICRC-SIBAIN				9	TRESSES		PEIN S	IRESSES
ROSETTE	GAGE:	GAGE2	GAGE3	TRANS	LCHG	SHEAR	SIGHX	SIGHE
12706-1	<u> 9</u> 1	-658	76	- 11794	-1103	- 6 10 2	8111	-16997
1270C-R	90	-960	101	-9646	-708	-8471	4770	-14624
1270C-C	76	-451	101	-8655	-330	-7877	4416	- 13401
1270C-D	62	-432	103	-7290	-340	-7132	4119	-11749
127 CC-E	68	-400	82	-7050	-74	-6424	3747	-10871
127 CC-P	22	-251	37	-4736	-751	-3840	1582	-7070
127 OC-H	-3	-114	-46	-3517	-1150	-912	-839	- 3828
127GC-J	-9	-75	-63	-3024	-1176	-156	-1163	-3037
127 CC-K	-6	-63	-43	-2323	-877	-266	-829	-2370
127 OC-L	8	-46	8	-838	-6	-722	411	- 1256
127 OC-M	14	-23	40	348	524	- 536	1277	-405
027 00-1	28	-233	168	-1032	540	-5613	5424	-5911
027 CC-B	40	-211	139	-1607	713	•4664	4359	-5254
027 0C-C	46	-182	85	-2177	713	-3565	3115	- 4578
0270C-D	46	- 154	46	-2427	638	-2655	2171	- 3960
027 CC-E	54	-131	14	-2624	835	-1934	1700	- 3489
027 0C-F	66	-66	-80	-3271	968	190	996	-3279
0270C-G	71	- 29	- 120	-3340	1138	1217	1448	- 3649
027 OC-H	68	- 14	- 126	-3149	1110	1483	1576	- 36 14
0270C-J	54	-20	-94	-2568	856	985	1121	-2833
027 UC-K	37	- 17	-71	-1985	517	723	711	-2179
02/0C-L	9	3	-46	~950	-28	646	305	- 1283
02700-8	- 17	26	-26	19	-508	684	489	-978

ので、ため、ため、ないないないで、

•

Table A.13	(continued)
------------	-------------

0UT-07-1	PLAKE	PORC3 1		G, FZC,	CN CYL:	INDER (1200 LB)
	EIC	RC-S18	AIN 		STRESSE	5	PBIN S	IRESSES
Ros ette	GAGE!	GÅGE2	GAGE3	TRANS	LONG	SHEAF	SIGHX	SIGHN
127 ON-A	59	-506	0	-11181	- 1700	-6734	1794	- 14675
1270N-B	64	-549	-70	-13691	-2189	-6383	652	-16532
127 ON-C	44	-567	-129	-15346	-3298	-5842	~931	-17713
1270N-D	26	-567	246	- 17999	-4588	-4281	- 3329	-19148
I27CN-E	-3	-558	-205	-16769	-5129	-4710	-3462	-18436
1270N-P	~9	-557	-386	-20724	-6480	-2279	-6124	-21080
1270H-G	-38	-315	-377	-15183	-5702	825	~5631	~ 15254
127CB-8	-62	-136	-283	-3130	-4592	1964	-3861	- 986 1
	-124	-02	-200	-2629	-5402	1847	- 1005	-/300
12/09-6	-88	-44	~ 1 18	-3403	-1040	902	-1625	-4202
	-/1	-20	- 57	-2042	-29 13	943	- 1660	- 3/30
12 <i>"</i> (8-8	- 27	-23	-02	-1941	-2350	432	- 1008	-2023
027 CH-A	20	-279	224	-1230	230	- 6702	6242	-724 1
027 0 - 3	34	-299	299	-46	10 (4	-7967	8469	-7501
0270N-C	75	- 316	379	1302	2E 27	-9269	11257	-7328
0270N-D	63	-322	417	2010	2:195	-9844	12100	-7594
2270H-E	95	-319	460	2985	3735	- 10382	13749	-7028
0270N-F	100	- 155	5 17	7848	5369	-8964	15657	-2440
02701-G	26	- 3	411	8938	3453	-5517	12356	35
C2701-H	- 29	95	276	8178	1589	-2413	8967	800
027 0N-J	-69	112	115	5076	-556	-39	5076	-557
0270H-K	- 64	63	52	3165	-956	499	3225	- 10 16
0270N-L	- 38	49	9	1303	~7 38	538	1436	-87 1
02701-1	- 20	6	3	206	-549	38	208	-551

Table A.13 (d	continued	1)
---------------	-----------	----

0UT-02-1	PLANE	FORCE		5, F2C,	ON CYLI	INDER (1200 LB	
	AIC	RC-SIR	AIN	:	STRESSES	5	PRIN S	TRESSES
				•		•		
BCS ETT E	GAGE1	GAGE2	GAGES	TRABS	LONG	SHEAR	SIGHX	SIGHN
								• • • • • •
I-0-C-*	0	-3	25	492	146	-373	730	-93
I-22C-1	6	-3	29	560	340	-420	884	16
1-4 5C-A	9	50	74	2948	1142	- 191	2968	1122
I-67C-A	117	2C3	303	11007	6824	-1335	11397	6434
I-90C-1	-109	- 163	512	7795	-925	-9003	13438	-6568
I112C-A	-326	-449	-427	-18894	- 15460	- 305	- 15433	- 18921
I 13 5C-A	-43	-180	- 106	-6245	-3162	-992	-2870	-6536
1157C-A	- 17	-66	-23	- 1932	- 1095	-572	-804	-2223
120 2C-A	29	46	90	2952	1752	- 577	3184	1519
1225C-A	81	136	199	7275	4609	-847	7521	4363
1247C-A	445	451	428	18809	18988	308	19219	18578
129 2C-1	-72	-240	- 150	-8490	-4714	-1193	-4368	- 8836
1315C-A	3	-38	-43	-1781	-448	77	- 443	- 1785
1337C-A	0	-20	9	- 254	-76	-385	230	-560
I 18 0C-L	0	- 29	20	- 190	-57	-654	534	-781
0-220-1	-9	26	-9	386	- 141	456	649	-405
0-45C-A	- 22	75	0	1683	-157	1006	2126	-600
-67C-A	-125	134	- 19	2659	-2958	2043	3324	- 3622
0-90C-A	-8	- 178	243	1427	186	-5610	6451	- 4838
0112C-A	399	112	11	2267	12648	1338	12818	2097
01350-1	76	-81	-95	-3934	1085	186	1092	- 394 1
0157C-A	31	20	-61	-942	646	1078	1190	- 1487
01000-1	- 16	50	-42	213	-431	1226	1159	- 1377
C20 2C-A	-53	€2	-3	1357	- 1173	854	1619	- 1434
0225C-A	- 114	74	74	3 372	- 24 09	1	3372	-2409
024 7C-A	-495	-125	-17	-2589	-15636	-1440	-2432	- 15793
029 20-1	74	17	- 159	-3211	1258	2351	.2267	-4220
0315C-A	6	-6	-63	-1512	- 288	759	75	- 1875
0337C-A	6	11	-20	- 198	107	417	399	-483
C18 0C-L	0	85	- 40	122	34	1137	1216	- 1060

1.14

States and States

15

OUT-OP-PLANE FORSE LCARING, PZC, ON CYLINDER (1200 LB)

	MICRC-SIBAIN			9	STRESSES			PBIN SIRESSES	
				•				***********	
ROSEITE	GAGE1	GAGE2	GAGE3	TRANS	LONG	SHEAR	SIGHI	SIGMN	
I-0-¥-*	3	-6	9	60	105	- 192	276	-111	
I-22N-A	-118	-53	-29	-1681	-4041	- 314	-1640	-4082	
I-45N-A	39	56	12	1454	1620	590	2133	941	
I-67¥-A	151	269	210	10 357	76 29	781	10565	7421	
I-9CX-X	- 50	-145	538	8691	11 13	-9089	14749	-4945	
I1125-A	-310	-367	-490	-18927	- 14977	1377	-14545	- 19359	
I1351-A	-80	-112	-159	-5876	-4150	€30	-3945	-6081	
I 1578-A	- 15	-41	-26	-1471	-881	- 198	-820	-1531	
I 18 CN-A	15	3	33	770	67 6	- 392	1118	328	
1202N-A	39	74	68	3085	2084	83	3092	2077	
1225N-A	105	193	1 14	6620	5141	1050	7165	4596	
1247N-A	330	487	438	19965	15882	660	20069	15778	
1292N-A	-96	- 146	-210	-7715	-5199	855	-4936	-7978	
1315N-A	- 17	3	-20	-362	-632	310	- 158	-835	
1337N-1	6	-12	6	- 131	140	-233	274	-265	
0-228-1	- 20	11	3	332	-510	115	347	-525	
C-45N-A	-23	11	49	1348	-294	- 500	1488	-434	
0-678-1	-121	-112	49	-1397	-4054	-2227	- 133	-5319	
0-96N-A	-41	-7.05	265	1366	-807	-6258	6631	-6072	
01128-1	111	65	449	11 17 1	6673	-5116	14510	3334	
0135N-A	.17	-108	65	-991	799	-2311	2332	-2574	
0 15 7N-A	48	- 14	-29	-1001	1137	190	1154	- 10 18	
01808-1	- 18	42	- 32	244	-455	988	942	-1153	
02021-1	-53	14	24	903	- 1622	- 137	911	- 1629	
U225N-1	- 49	-66	102	413	-1341	-2499	2 18 4	-3113	
02472-1	-134	-481	-88	- 12 361	-7727	-5227	-4326	- 15762	
0292N-A	116	÷89	53	~907	3204	- 1894	3944	- 1647	
0315N-A	14	-37	-20	-1256	41	-225	79	- 1294	
0337N-A	8	3	- 12	- 204	188	191	26 ა	-281	
0-0-N-L	0	14	- 17	-63	- 22	411	369	-454	

Table A.14. Out-of-plane moment loading, M_{XN}, on mozzle

001-07-	PLAKE	HOBEST	TOPEIN	IG, MXN,	CH NOZ	ZLE [1	0000 IM-	LB) W/R
	FIC	RC-SIR	AIN	S	TBRSSES		PBIN ST	BESSES
BOSETTE	GAGEI	G1612	GIETS	TRAKS	LONG	SARAR	SIGNI	STGRN
						*****	****	
I-0-C-1	-6	-3	16	288	-84	-262	#23	-220
1-0-C-B	2	-3	18	328	145	-259	540	-57
I-C-C-C	4	-1	14	284	202	-153	440	45
1-0-C-D	é	-3	16	270	273	-259	530	13
I-C-C-E	Ē	-3	16	287	275	-259	541	22
I-0-C-F	4	-6	11	109	152	-229	361	-99
I-C-C-G	1	-6	13	160	86	-262	387	- 142
1-1-0-8	5	0	12	245	209	-163	391	63
I-0-C-J	5	Ó	7	145	180	- 58	262	63
1-0-C-R	2	-3	12	198	116	-157	358	-44
IC-L	2	0	14	300	147	-154	432	15
0-C-C-A	2	7	7	301	143	2	301	1#3
0-C-C-E	-3	2	4	139	-54	- 37	146	-61
0-0-C-C	-6	-3	4	30	- 16 1	- 55	70	-200
0-C-C-D	-5	-6	2	-71	-186	-101	- 12	-244
C-0-C-B	-6	-6	2	-75	- 191	-100	-17	-248
0-C-C-F	-3	-8	-1	- 184	-143	- 57	-64	-263
0-0-C-G	-1	- 10	2	-189	-76	-164	40	-306
0-C-C-H	-1	~8	2	-131	-66	-129	35	-232
C-0-C-J	-1	-9	1	- 166	-51	-128	5	-262
0-C-C-K	-2	-8	-3	-247	-121	-63	-95	-274
0-0-0-1	/1	- 9	_ 1	- 343	- 476	66	4 7 0	0.00

163

の酒園をおきませんです。

見たなとない

Table	A.14	(continued)
10010		(concrace)

OUT-OF-PLANE HOMENT LOADING, MIN, ON NOZZLE (10000 IN-L5) 4/B

	PICRC-STRAIN			2	stresses			PRIN STRESSES		
BOSBTTE	61611	GAGE2	GAGE3	18A IS	LONG	SBEAR	SIGHX	SIGH		
I-C-X-B	Ú	-8	13	106	32	-287	358	-220		
I-C-N-C	1	-8	14	121	68	-256	391	-203		
I-0-N-D	2	-9	11	51	61	-269	325	-213		
I-C-N-B	1	-11	9	-62	11	-266	243	-294		
1-0-1-1	2	-8	7	-28	44	-152	203	-187		
I-C-N-G	-1	-8	4	-83	-52	-166	100	-235		
I-0-X-8	- 1	-10	4	-131	-66	-154	98	-295		
I-0-N-J	-3	-8	4	-74	- 126	-162	64	-264		
I-0-#-K	-6	-9	ž	-130	-208	-144	- 19	-318		
I-C-N-L	-7	-13	-71	- 1834	-773	777	- 363	- 2245		
C- 0-1-1	-2	8	4	268	35	€3	284	19		
0-0-N-E	-4	8	1	213	-57	55	243	-87		
0-C-X-C	-6	4	-3	28	-167	59	70	-208		
0-0-N-D	-6	4	-6	-33	- 182	130	42	-258		
0-0-H-B	-6	4	-6	-26	-173	131	51	-250		
0-0-1-1	-3	4	-6	-30	-112	1 3 0	65	-207		
0- C-#-G	-1	4	- 8	-96	-63	162	84	-243		
0-0-N-H	- 4	4	-5	-117	-158	170	33	-308		
0- C-N-J	-2	6	22	622	88	-202	690	21		
0-0-N-K	- 4	7	- 8	- 17	-116	156	136	-270		

164

. . .

سر د د د . . .

apprendent of the second of the

Table	A.14	(continued)
		(

001-0P-1	PLANE	Hohent	LOADIN	G, MIN,	CN NO1	22LE [1	0000 I B-	LB) W/B
		RO-SIR	NIN 	5	TRESSES	5	PRIN ST	RESSES
BOSETTE	GAEET	GAEI2	GACE3	1 BA NS	LONG	SHEAR	SIGNI	SIGHN
1276C-A	-82	- 153	-82	-5068	-3976	-950	-3427	-5618
1270C-B	-116	- 180	-87	-5747	-5216	-1246	-4207	-6755
12700-0	-1/8	- 133	-03	-4/43	-70/53	-10:0	-4223	-72/9
12700-1	- 504	-134	-57	- 35 95	-72040	- 1020	-3263	-747
1270C-1	-217	- 12 1	-27	-1509	-6952	-327	-1490	-6972
T270C-B	-162	26	ç	957	-4563	228	967	-4592
1270C-J	-75	54	31	1943	-1654	314	1970	-1681
1270C-K	-23	53	36	1986	-89	229	2011	-114
1270C-L	14	28	24	1126	745	65	1137	734
1270C-N	7	-1	- 1	-43	183	0	183	-43
0270C-A	- 18	62	15C	4674	853	-1168	5003	524
0270C-B	35	- 76	152	4988	2543	-1013	5353	2178
0270C-C	72	87	152	5174	3702	-876	5582	3294
0270C-D	96	94	142	5072	4391	-636	5453	4010
0270C-E	112	103	145	5326	4971	-552	5729	4568
0270C-1	145	i 19	14C	5495	6122	-250	6236	5381
02700-6	137	1/10	118	5083	5637	34	5639	5081
0270C-H	108	103	108	45 33	4604	-69	4646	4491
0270C-J	40	81	75	3478	2243	36	3479	2242
0270C-K	-6	50	57	2374	541	-92	2379	537
C270C-L	-35	11	18	681	-856	- 57	687	-862
0270C-N	-11	-6	-1	+138	- 377	- F B	-119	-303

001-01-1	PLANE	HOHENT	TCSCI	KG, MIN,	CH BOZ	ZLE (10	0000 IN-	·LP) W/B
	BIC	RO-SIR		S -	T FBSSES		PRIN S	RESSES
ROSETTE	GAGEI	GAGE2	GACES	1528S	LCNG	SBEAR	SIGHN	SIGHN
12708-A	-81	-242	- 164	-8840	-5095	- 10 37	-4827	-9108
1270X-B	-47	-274	- 201	- 10369	-4525	-973	-4368	-10527
12708-0	-13	-205	-245	-12233	-4053	9(8	-3963	-12333
1270N-B	-11	-328	-306	- 13907	-4493	-253	-4483	-13916
1270¥-F	11	-443	-436	-19340	-5461	-100	-5460	-19341
12708-G	- 122	-377	-367	-16225	-8513	-131	-8511	-16227
32701-3	- 178	-114	-129	-5150	-6148	-065	-5122	~6186
13708-R	-124	-62	-77	-2926	-4592	196	-2904	- 4615
1270N-L	-89	- 35	-33	- 1389	-3096	-32	-1388	-3097
12768-8	-55	-25	-25	-1050	-1962	-1	+1050	- 1962
0270N-4	-115	21	12E	3351	-2459	-1351	3667	- 2775
0270H-B	- 189	6	128	3159	-4718	-1621	3479	-5039
0270N-C	-230	-11	123	2729	-6085	-1782	3076	-6432
0270W-D	-281	- 15	115	2575	-7656	-1785	2878	-7969
02708-5	- 373 - 395	60	153	2371 5048	-8235	-1050	5162	-8380 -8380
0270X-G	-285	118	187	7027	-6547	-913	7082	-6608
02708-8	-259	136	18 (7219	-5602	-582	7246	-5628
0270N-J	-224	89	104	4491	-5382	-196	4494	- 5386
0270N-K	- 195	50	36	2147	-5213	162	2151	-5216
02708-1	- 120	ן ו ג	-3	515 R0	-3508 -7803	154	523	-1903

041-07-1	PLANE I	BOBENT	LOPCI	IG, MIN,	, OH NOZ	ZLB (10	0000 IH	-LB) W/B
	EIC	RC-SIR;	AIB	2	STBESSE.		PRIN S	TRESSES
BOSETTE	GAEE1	GACE2	GAGE3	TRAAS	LONG	SHEAR	SIGHT	SIGHN
I-C-C-*	-8	7	1€	513	-86	-124	537	-111
I-22C-A	~18	-9	-15	-50%	-690	E4	-472	-723
I-45C-A	-37	- 39	-59	-2125	1763	263	-1622	-2263
I-67C-1	- 172	-252	-116	-7897	-7531	-1820	-5685	-9543
I-90C-1	97	92	175	5749	4637	1107	6432	3954
I112C-A	-213	-226	-311	-11561	-9871	1131	-9304	-12128
I135C-A	C	- 66	-60	-3206	-962	-3:2	-908	-3260
1157C-A	-31	-18	-16	-705	-1129	32	-702	-1131
1202C-A	14	18	31	1071	727	-172	1142	656
1225C-A	53	63	97	3472	2625	-457	3672	2426
1247C-A	278	342	227	12178	11960	1532	13614	10544
1252C-A	197	106	256	7741	8237	-1988	9993	5986
I315C-1	41	66	4€	2406	1941	2 €2	2523	1823
1337C-1	9	21	17	825	574	66	838	501
I180C-L	3	7	-13	-134	5.3	266	242	-323
0-22C-1	13	-4	-2	-144	154	- 20	354	-145
0-450-1	45	- 15	-30	- 1048	1050	154	168	- 1066
C-67C-A	192	46	4	883	6023	553	6782	824
0-90C-A	33	-130	-79	-4629	- 395	-680	-288	-4736
01120-1	263	38	48	1611	8374	-133	3376	1609
0135C-A	68	-23	-30	-1235	1656	\$5	1659	- 1239
0157C-A	26	9	-6	41	790	1 54	838	-7
01800-1	- 3	4	4	183	-46	-3	183	-46
J202C-A	-28	16	- 4	304	-753	2€1	365	-814
0225C~A	-80	31	28	1374	-1981	41	1375	- 1981
02470-1	-336	-40	-50	- 16 26	-10558	1 33	-1624	-10559
0292C-A	-256	-28	-64	- 17 39	-8211	4 8 9	-1703	-8248
0315C-A	-60	26	5	820	-1557	233	842	-1579
0337C-N	- 16	6	14	455	-344	- 59	467	- 356
C180C-T	1	2	- 5	- 147	5	1 2 9	71	-224

Tabl	le	A.]	L4 (continued)
		** * *		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

001-01-1	FIABE	THIBOR	LOACIN	G, BIN,	CI DOZ	ZLE II	0000 1#~	LB) W/1
	BIC	RC-STR	NIW	9	IRESSES	PRUM STRESSES		
ROSETTE	GAEEI	GA 612	GACE3	IRANS	LONG	SHEAR	SIGNI	SIGHN
I-(-¥-*	-8	4	16	457	-98	-159	500	-140
1-221-1	-5C	-30	-30	- 1279	-1881	0	-1279	- 1881
1-458-1	-52	-50	-45	-1934	-2129	-130	-1869	-2194
I-67¥-1	- 153	- 128	-9E	-4758	-6016	-427	-4627	-6147
1-90N-A	27	104	202	6692	2817	-1257	7086	2423
I1128-A	-219	- 197	-214	-8795	-9 20 5	228	-8693	-9307
11358-1	-68	-75	-72	-3160	-2975	- 33	-2969	-3165
1157X-1	-26	-16	-5	-511	-924	- 89	-492	-943
1180N-1	-3	13	- 4	210	-36	221	340	-166
1202N-A	15	24	21	964	751	46	974	742
12258-A	50	87	61	3196	2460	356	3 3 4 1	2316
12478-8	218	237	200	5382	9354	454	9862	8873
1292X-A	144	110	122	4948	5795	-165	5826	4917
1315N-A	36	51	58	2340	1850	- 56	2358	1832
13378-A	8	13	21	746	469	-1C0	778	436
0-228-1	9	11	-6	108	298	226	44E	-42
0-45X-A	4	40	-28	273	194	9 C4	7138	-671
0-678-1	33	137	21	3431	2023	1554	4433	1021
0-90H-A	115	~113	-50	3699	2351	-840	2465	-3814
01128-3	98	28	247	5936	4707	-2908	8293	2349
0135N-A	36	- 40	65	520	1304	-14 (3	2369	-545
01378-1	21	-1	5	165	685	-129	715	134
01808-1	-1	4	6	2 19	32	- 28	223	28
02028-1	-26	-1	4	98	-739	- 64	103	-744
0225# - #	-28	-50	48	-4	-641	-1303	946	-1791
02478-1	-106	-272	-4C	-6745	+5203	-3059	-2781	-9168
0292H-1	-60	-23	-187	~4565	-3171	21 84	-1576	-6160
0315X-A	-11	28	-53	-528	-489	1081	572	- 1589
0337N-A	-16	16	-1	326	- 377	246	404	-454
0-C-X-L	-3	14	- 6	:40	-63	252	348	-271

. . .

Table A.15. In-plane moment loading, M_{ZN}, on nozzle

IN-PLANE MCHENT IOATING, MZS, CN NOZZIE (150CO IN-LL) W/R

	EIC	RO-SIR	NIN 	9	TRESSES	PRIN STRESSES		
RO SETTE	GAGE 1	GAGE2	GAGEE	TEANS	LCNG	SHEAR	SIGBI	SIGHN
1-9-0-1	-232	-42	-2	-709	-7168	-526	- 667	-7211
I-0-C-E	- i54	- 12	-10	-325	-4713	- 24	-325	-4713
I-C-C-C	-88	3	Ê	277	-2561	-27	277	-2561
I-0-C-D	-44	10	ÿ	469	-1177	4	469	-1177
I-C-C-B	-15	11	13	535	-205	- 30	536	-287
I-0-C-F	25	2	C	12	740	29	741	11
I-C-C-G	24	-16	-10	-595	536	-69	540	-599
I-0-C-8	6	14	- 14	-623	-10	5	-10	-623
I-C-C-J	-1	-11	-11	-478	182	1	- 182	-478
1-0-C-K	-2	-5	-11	-435	- 195	32	-197	-439
I-C-C-L	-7	-6	-7	-290	-298	11	- 282	-305
0- C-C-A	228	104	121	4685	8231	-221	8245	4671
0-0-C-E	132	115	10 C	4658	5353	147	5383	4629
0-C-C-C	71	91	83	3741	3240	109	3764	3218
0-0-C-D	35	83	62	3591	2114	22	3591	2113
0-C-C-E	12	61	59	26 30	1151	23	2630	1151
0-0-C-F	-14	30	32	1374	-6	-31	1375	-7
0-C-G	-5	12	15	599	39	-35	601	37
0-0-C-H	4	13	3	447	257	ć9	469	234
0-0-C-J	5	14	ç	5 18	294	€3	537	275
0-0-C-K	-3	8	11	418	32	-29	421	30
0- C-C-L	-9	6	ε	323	-186	- 32	325	-188

169

Charles of the

1

IN-PLARE ROBINT	ICADING.	821,	CH BOZZLE ((150C)) IN-LE) 7/8

	820	RC-SIR	318	5	TBESSES	PEIN STRESSES		
ROSETIE	GAGE1	GAGE2	GAGE3	1628S	LONG	SHEAR	SIGBN	SIGHN
I-0-N-E4	•• 0	-9	-13	-487	- 146	45	- 140	-493
I-0-1-C	-84	3	11	387	-2385	-1 (4	390	-2393
I-C-N-D	-41	9	15	579	-1058	- 61	583	- 1062
1-0-N-1	-10	9	12	478	- 165	- 44	181	-168
I-C-N-F	35	1	3	66	1076	-26	1077	66
I-0-N-G	4 C	- 14	-13	-644	998	-7	998	-644
I-C-N-H	30	-18	-18	-838	647	3	647	-838
I-0-N-3	27	-21	-18	-887	549	-31	550	-888
I-C-N-K	28	- 22	-12	-778	598	-133	611	-790
I-0-N-L	34	-9	16	132	1070	-331	1175	28
0-0-N-A	204	112	115	4858	7582	-102	7586	4854
0-C-#-B	128	99	105	4341	5152	-70	5158	4335
0-0-N-C	74	89	84	3723	3328	€6	3733	3317
0-C-N-D	42	74	74	3195	2218	-2	3195	2218
0-0-N-E	18	59	61	2647	1333	- 33	2648	1333
0-C-d-P	-3	32	35	1476	360	- 37	1477	359
0-0-N-G	7	17	15	682	401	28	685	398
0-0-N-H	15	13	12	551	620	16	623	5¢7
0-0-1-1-1	25	17	- 0 5	-637	551	827	975	-1062
0-C-N-K	21	18	16	725	849	32	857	717

Statements

171

Table A.15 (continued)

IN-PLANE HOMENT ICACING, MZN, ON NOZZLE (15000 IN-IF) W/B

		BC-STB	11H	5	TBESSES	PRIN STRESSE		
BO SETTE	GAGE1	G1 € 12	GAGES	TFAUS	LONG	SELLE	SIGNI	SIGNU
		****		*****	****	*****		
12700-1	7	70	-56	296	311	1677	1980	- 1373
1270C-B	10	128	-114	296	379	3216	3553	-2879
1270C-C	12	151	-134	358	475	3863	4220	- 3387
1270C-E	18	160	-151	174	580	4153	4535	-3780
1270C-B	5	172	- 164	171	197	4474	4658	- 4290
1270C-F	7	151	- 15E	- 1 19	177	4078	4110	-4052
1270C-8	-2	62	-72	-218	-119	1755	1627	- 1964
1270C-J	-2	3	-10	- 148	- 116	174	42	-307
1270C-K	-2	-9	11	50	-35	+ZŠŸ	270	-255
1270C-L	-2	-4	3	77	-46	-164	191	-159
12700-8	- 4	3	3	146	-81	-1	146	-81
02700-1	- 17	422	-430	-153	-560	11354	10999	-11712
C270C-B	-35	397	-410	-249	-1129	10752	10072	-11450
0270C-C	-3C	361	-376	-282	-978	9823	9195	-10459
0270C-D	-21	335	-319	359	- 518	87 11	8643	-8802
0270C-E	-24	278	-298	-432	-845	7674	7038	-8315
0270C-F	2	151	- 165	-323	-40	4212	4033	-4395
0270C-G	2	63	-73	-210	-2	18 16	1714	-1925
0270C-8	2	12	-14	- 40	63	347	362	-339
0270C-J	2	-17	15	45	76	-479	539	-419
0270C-K	1	-11	17	143	61	-378	482	-278
0270 -1	- 1	0	5	102	14	- 65	137	-20
0270C-N	4	3	3	221	152	1	152	121

IN-brybi	NONEN	T ICAN	CINE,	828, QB	NCZZLE	15000	IN-IB)	W/R
	#ICR	O-STR	II	:	STRESSES	5	PBIN ST	RESSES
						•		
ROSETTE	GACET	GA E E 2	GAGES	TEARS	LONG	SHEAR	signi	SIGND
	****						****	
12708-1	22	94	-36	1245	1046	1729	2878	-587
1270N-B	23	53	11	1370	1093	557	1805	658
1270N-C	20	5	59	1386	1026	-731	1959	453
1270H-D	30	-23	50	; 549	1061	-973	1811	-201
1270H-E	35	-75	137	1327	1439	-2832	4216	-1449
12701-1	-27	-216	296	1794	-270	-6827	7667	-6142
1270N-G	-17	-221	266	E 10 17	-212	-64 \$5	6926	-6121
1270N-8	24	-184	120	- 1426	305	-4059	3590	-4710
1270H-J	4 C	-36	52	; 311	1284	-1181	2075	-480
12708-K	18	- 14	20	: 105	561	-460	847	-181
1270H-L	10	6	18	3 514	464	-161	€52	326
12708-8	13	18	1	E 559	551	129	685	426
02708-A	-13	510	-52!	-325	-473	13755	13396	-14194
0270N-B	-13	512	-535	5 -497	-546	13949	13428	-14471
02708-C	** -35	500	-561	7 - 1420	-1466	14213	12770	-15657
0270N-D	14	478	-51'	1 -873	161	13260	12915	-13626
C2708-E	1	451	- 47.	3 -479	- 108	12304	12012	-12599
0270N-P	¢	237	-253	3 -334	- 102	65:1	6314	-6750

-66

70

18

-117

-90

-53

-63

47

90

4 Ş

15

108

266

335

298

-186

-118

-177

1646

-1156

-2857

-2462

-1363

-426

-1554

-1001

-2702

-2613

-1467

-545

1754

1406

3018

2311

1259

316

والمراجع والمروي

ارد. از دما الدوان از از این امی **امی و تون تشکیر کردی** و کنوان که است و در دون میکود و تعکیری از فروز کرد. افرای ا

10

10

10

- 5

÷Ē

60

-43

- 95

-53

-17

-107

0270#-G

0270M-8

02708-J

02708-K

0270¥-L

02701-N

IN-PLANE HOMENT ICADING, MZN, CN NGZZLE (15000 IN-LE) W/B

	BIC	BICRC-SIBAIN			ST BESSES			PBIN STRESSES		
ROSETTE	GACEI	GACE2	GACES	164 NS	LCNG	SBEIR	\$IC31	SIGHE		
I-0-C-*	- 195	4	-37	-515	-5999	537	-463	-6051		
1-220-1	-217	- 34	-11	-2031	-6795	JC 	-2057			
1-450-1	-417	150		-733	2010-	-17:2	- 303	-0014		
	-05	-69	202	-21	076	-7610	2055	-2237		
1-30C-A	20	- 30	- 126	-6506	103	-1741	157	-2257		
T175C-1	ć	2,7	51	1205	- 155	-6:9	1549	18		
T157C-1	232	57	37	1809	7507	263	7519	1797		
T2C2C-1	233	39	50	1714	7510	-144	7514	1711		
12250-1	251	70	19	1681	8022	6 8 5	8095	1608		
1247C-1	38	-161	-237	-8850	-7	1011	107	-8964		
12920-1	- 110	238	10 4	£534	-731	1241	8698	-895		
I315C-A	-244	-25	-50	-1391	-7747	328	-1374	-7764		
1337C-1	-234	-50	-4 =	- 1837	-7583	-64	-1836	-7584		
1180C-L	- ċ	9	8	397	-147	10	397	-147		
0-22C-A	228	94	115	4440	8173	-329	8202	4412		
0-450-1	254	150	150	6074	9444	-133	9449	6069		
0-670-1	222	230	306	11584	10135	- 10 45	12131	5588		
0-90C-1	-13	-483	435	- 1043	-698	-12238	11368	-13110		
01120-1	-208	- 203	-285	- 10502	-9276	1100	-8764	-11175		
C135C-1	-230	- 147	- 127	-5754	-8618	-267	-5729	-8643		
01570-1	-245	-125	-108	-4839	-8792	-232	-4825	-8805		
01800-1	-205	- 125	- 115	-5138	-7782	-73	-5136	- 77 8 \$		
02020-1	-214	- 108	-111	-4577	-7789	33	-4577	-7790		
0225C-A	-267	- 131	- 152	-5941	-9804	278	-5921	-9824		
02470-1	-223	-206	-285	-10625	-9880	1112	-9080	-11426		
02920-1	241	269	244	11022	10542	328	11189	10376		
03150-1	263	164	146	5517	9834	241	9851	6500		
C337C-1	234	107	100	4309	8304	\$5	8307	4307		
0180C-L	7 C	-9	-9	~420	164	-1	164	-420		

こので、ためのないななないのであるという。

÷

4.44

. . . .

÷

-
Table	A.15	(continued	D

IN-PLANE	ACHEI	NT ICA	CINC.	HZI, ON	NOZZIE	(15000	IN-LE)	W/R
	EICE	RC-STR	AIN	:	STRESSE	5	PRIN S	RESSES
	****			•		•	*****	نور که که این ملکونه ا
ROSETIE	GAGE1	<u>G1GE2</u>	GAGIS	15ANS	LONG	SBEAR	SIGHT	SIGNN
I-0-N-*	-212	-4	-7	8	-6348	39	8	-6348
I-22H-A	28	25	-66	-935	551	1215	1232	- 1616
I-458-A	-145	44	-211	- 3490	-5384	3358	~910	-7964
I-67N-A	27	327	-98	4997	2320	5668	9482	-2165
I-90N-A	25	-73	93	192	814	-2077	2603	- 1597
I112N-A	-34	138	-299	-3498	~2057	5812	3079	-8634
I135N=X	174	218	- 56	3367	6227	3656	8723	871
1157R-A	191	138	-30	2171	6394	2235	7358	1208
ITEON~A	268	24	62	7588	8518	-502	8554	1552
IZUZN-A	195	-12	145	2/98	6/UJ	-2155	7658	1843
1225N-A	120	-29	245	4602	4990	-3650	8451	1141
124/8-A	-12	-303	00 203	-4/43	-1//0	-5121	2149	- 2030
14720-8	30	- 201	207	-2172	2900	-2050	9100	- 7000
13138-4	- 175	- 156	54	-5172	-501-	-1017	-1274	- / 1 1 7
732/M-W	- 17:	- 120	10	-7101	-3313	-1967	-13/3	-0780
0-22N-A	202	158	73	4840	7506	1131	7921	4425
0-458-2	223	238	107	7326	8885	1743	10014	6195
0-678-1	326	142	164	6373	11683	-252	11699	6357
0-90H-A	-33	- 526	476	- 1066	-1303	-13344	12160	14529
01121-1	- 344	- 181	- 180	-7562	- 12583	- 13	-7562	-12583
0135N-A	-232	- 119	-266	- 82 12	-9433	1956	-6773	-10871
0157N-A	-205	-85	- 146	-4844	-7611	819	-4513	-7836
0180N-A	-233	-139	-140	-5892	-8753	10	-5892	-8753
0202N-1	-200	- 151	-97	- 5235	-7822	-720	-5047	-8009
0225N~A	-213	-230	-105	-7113	-8527	-1661	-6015	-9626
02478-1	-347	- 188	- 168	-7443	-12646	-264	-7429	-12659
02528-1	335	215	203	6809	12694	160	12730	8802
0315N-A	209	105	336	7317	8457	- 1775	\$751	6022
03371-1	202	79	145	4793	7488	-941	7784	4497
C-O-N-1	29	10	11	440	1012	-8	1012	440

連載ないとない

Table A.16. Axial force loading, F_{YN}, on nozzle

AXIAL POECE LOADING, FYR, CK NOZZLE (4000 LF) W/B

	BICRO-STRLIN				TRESSES	PRIN STRESSES		
BO SETTE	GAGE 1	GAGE2	GAGEE	16ANS	TCHE	SBLAR	SIGNI	SIGHN
~~~~~								
I-0-C-1	-227	- 90	-71	- 3294	-7810	-261	-3279	-7825
1-0-C-E	- 17 1	-61	-54	-2333	-5834	- 58	-2331	-5837
I-C-C-C	-120	- 39	-34	- 1477	-4036	-65	-1476	- 40 37
I-C-C-D	~81	-22	-21	-874	-2681	0	-874	-2681
1-0-C-E	-51	-17	-12	~586	-1713	- 85	-582	- 1717
I-0-C-F	Û	- 10	- 5	-317	-92	-65	-75	-335
I-C-C-G	15	- 17	-12	-655	248	-65	253	-660
I-0-C-H	5	- 17	-17	-761	-78	0	-78	-761
I-0-C-J	3	-15	-10	-543	-87	-66	-78	-552
I-C-C-K	C	- 10	-5	-323	-94	-66	-76	-340
I-C-C-L	:	0	:	55	\$3	- 33	113	36
0-0-0-1	328	44	65	2226	7497	- 326	7517	2206
0-C-C-E	152	74	71	3009	5457	33	5457	3009
C-C-C-C	100	69	66	2852	3868	32	3869	2851
0-0-C-D	61	64	73	2947	2722	-130	3006	2663
G-0-C-E	37	54	€1	24yi	1852	- 97	2505	1837
0-C-C-F	-2	32	35	1566	399	- 58	1574	391
C-Q-C-G	-10	15	20	758	-60	-65	773	-65
0-0-C-H	-2	7	15	490	78	- 58	512	56
0-0-C-J	C	3	10	273	86	-58	315	44
0-C-C-K	C	0	Ś	110	37	-65	148	- 1
Ũ-0-C-I	3	-7	- <u>e</u>	-268	-4	-33	0	-272

175

# AXIAL FORCE IOACING, FIN, CN MOZZLE (400C LB) N/E

.

ŝ

, ķ

ş

	PICRC-STRAIN			STRESSES			PRIN STRESSES		
BOSETTE	GAGE1	G1612	GAGE3	18 <b>4 B</b> S	LONG	SEBAR	SIGNI	SZGNN 	
I-C-N-8*	• 0	-61	-fć	-1782	-835	64	-832	-2784	
1-0-x-C	-83	-22	-24	-916	-2763	34	-916	-2763	
1-0-N-F	- 10	- 10	-15	-626	-1745	130	-400	-701	
I-C-W-G I-O-N-B	в 0	-19 -27	-29	- 10 75 - 1391	-409	130	- 343	-1092	
1~C-1-J 1-0-1-K	-17 -19	-32	-41 -37	-1584 -1475	-1022	730 70	-953	-1611 -1486	
I+0-#-L*	* -37	-27	154	2785	- 264	-2376	4084	-1562	
0-C-X-A 0-C-X-B	210 147	61 66	7E 7E	2781 2958	7142 5290	-155 -130	7150 5297	2772 2951	
0-0-1-C 0-C-1-D	101 64	72 67	72 72	3035 2968	3946 2816	0 ∂⊒⊷	3946 2993	3035 2792	
0-0-X-E 0-0-X-F	37 -5	57 42	64 47	26 18 <b>196</b> 0	1897 443	- 59 - 66	2631 1962	1884 441	
0-0-1-G 0-C-1-H	- 12 - 10	27 22	32 27	1319 1102	30 41	-66 -66	1322 1106	27 36	
0-0-X-J+ 0-C-x-R	* -12 -22	22 22	-31 30	- 187 1164	-423 -312	7 16 - 59	420 1171	-1031 -318	

## ARIAL FORCE IGADING, FYN, CN NCZELE (4000 LB) W/E

	EICRC-STRAIN			-	ST BESSES	PBIN STRESSES		
BOSETTE	GAGE 1	GAGE2	GIGES	15ARS	LONG	SBEAR	SIGHI	SIGNN
12700-1	210	276	212	10500	9440	854	10975	8965
1270C-B	261	513 264	215	11312	11237 13284	1314 1478	12585	9960 8327
1270C-D	377	227	111	7011	13421	1544	13774	6658
1270C-B	383	202	84	5856	13252	1567	13570	5537
1270C-1	381	81	10	1592	11901	948	11987	1506
1270C-H	253	-66	-51	-2847	6736	-158	6740	-2851
1270C-J	85	-99	-65	- 3720	1551	-451	1589	-3759
1270C-K	- 29	~9:	-68	-3561	-1937	-360	-1861	-3638
1270C-L	- 16 1	-01	-36	-2385	-5551	- CO-	-2384	- 5553
12700-8	-203	-53	-44	- 1966	-6680	- 58	-1964	-6682
02700-1	- 180	-63	-425	- 10523	-8572	4812	-4637	-14458
0270C-B	-232	-73	-432	-10842	-10203	4781	-5731	-15314
0270C-C	-259	-95	-425	-11135	- 11098	4350	-6727	-15506
0270C-D	- 273	-110	-390	- 1968E	-11401	3738	-7290	-14890
0270C-1	-288	- 141	-393	-11423	-12061	3349	-8378	-15106
02700-1	-289	- 185	-345	-11321	-12069	2137	-9525	-13864
0270C~G	-236	-202	-275	- 10312	- 10 162	1036	-9198	-11276
02700-8	- 175	-180	-236	- 89 37	-7928	745	-7532	-9332
0270C-J	- 39	- 131	-146	- 2041	-2976	194	-2963	-6053
0270C-K	54	-58	-80	-3100	676	251	6S E	- 3122
0270C-L	161	29	15	790	5052	154	5061	781
0270C-X	185	58	56	2311	6238	32	6238	2310

177

Contraction of the local division of the loc

Tabl	е А.	16 (	cont	inued)	)
------	------	------	------	--------	---

## AXIAL FORCE IOADING, FYN, CB NOZZLE (4000 18) W/E

1.14

	BICRC-SIRAIN			S -	STRESSES			PRIN STRESSES	
BOSETTE	GLGE1	GAGE2	G1613	TRANS	LONG	SBLAR	SIGHI	SIGHN	
12708-A	267	477	401	18993	13696	1008	19 178	13511	
1270H-2	218	535	484	22159	13179	683	22210	13127	
1270W-D	164	518 €13	596 565	24316	12214	-1040 650	24405	12125	
12701-B	162	626	726	29526	13704	-1334	29637	13592	
1270X-G	157	697	825	33265	14702	-1706	33421	14546	
1270N-8	234	512	103 126	21977 12887	13606	165	21981	13602	
1270H-K	221	185	212	E462	9182	-361	9332	8312	
12708-L 12708-8	184 153	121 66	121 84	5095 3560	7064 5643	0 33	7064 5644	5095 3559	
0270¥-1	-88	29	-425	- 8589	-5210	6049	-619	-13181	
0270N-E	+34 -13	44 5 2	-432	-8487	-3567	6342	775	~12830	
02708-D	45	34	-425	-8633	-1122	6115	2299	-12053	
0270H-B 0270H-F	64 115	22 - 195	-420	- 6810	⊷735 -825	5888 3350	2367	-11912	
02708-G	17 1	- 349	-442	- 17565	- 140	1236	-53	-17652	
02708-8	222	-398 -299	-395 -245	-17676	1363	- :5	1363	-1/6/6	
0270E-K	263	-209	- 122	-7557	5620	-1167	5723	-7659	
G270W-1	146	-19	-12	-851	4129	-57	4130	-853	

A LOW DOWN DOWN DOWN DOWN

CRAME STREET

## AKIAL ROBCE IGACING, PID, CD NOZZLE (4000 LB) W/B

	BIC	BICRC-STRAID			STRESSIS			PRIN STRESSES		
BO SETTE	GAGE 1	GAGZ2	G1G13	YBANS	LCNG	SHEIR	SIGBI	SIGNN		
I-0-C-*	-155	-66	-88	-3208	-5730	253	-3175	-5764		
I-22C-1	227	- 119	-117	-4740	-8241	101	-4737	-8244		
1-45C-1	-247	- 147	- 145	-6228	··9275	32	-6227	-9275		
1-67C-1	-430	-298	-66	-7528	- 15168	-3058	-6130	-16266		
I-90C-A	269	294	348	13905	12222	-7 17	14081	11945		
I112C-4	- 345	-406	-395	- 17299	15531	- 96	-15525	-17304		
1135C-1	C	- 166	-51	-4774	-1432	- 15 33	-835	-5371		
1157C-A	-205	-32	25	- 75	-6133	-75G	165	-6222		
1262C-A	- 18 E	27	-25	155	-5603	753	262	- 57 02		
12250-1	- 154	-66	-171	-5051	-6142	1465	-4089	-7103		
1247C-A	-441	- 466	-407	- 18686	-18836	~764	- 17974	-19549		
1292C-1	-456	-95	-340	-5074	-16469	3267	-7837	-17796		
1315C-A	-247	- 159	-154	-66 18	-9407	- 66	-6616	- 9409		
1337C-A	-210	- 110	- 100	-4390	-7783	-131	-4385	7788		
1160C-L	-111	-20	-32	-1002	-3640	162	-992	- 3650		
G-22C-1	23E	58	51	2149	7793	56	7794	2147		
0-450-1	301	71	25	1770	9561	6 1 9	9610	1721		
0-670-1	529	367	201	11786	22400	2216	22844	11341		
0-90C-A	-210	-443	-51	- 10625	-9495	- 52 15	-4814	-15306		
01120-1	470	162	34	3789	15230	1655	15476	3543		
01350-1	179	32	-15	1 84	5415	6 20	5488	112		
01570-1	203	179	86	5587	7771	1239	8330	5028		
0180C-1	171	181	188	7934	7521	- 57	7955	7499		
02020-1	155	74	157	4884	6240	-1108	6 86 1	4263		
0225C-1	186	- 17	32	123	5612	-652	5688	47		
02470-1	587	125	35	3002	17322	1139	17412	2912		
02920-1	843	176	332	10465	22417	-2083	22769	10113		
0315C-A	276	15	71	1580	8761	-749	8838	1503		
03370-1	222	20	54	1371	7085	-456	7121	1335		
01900-1	- 128	10	16	677	-2622	- 45	674	- 2822		

÷.

179

## ATTAL FORCE ICADING, PIN, CE NOZZLE (4000 LB) 3/8

e . . .

÷

i g

×

	NICRO-STRAIN			:	SIBBSSES			PRIN STRESSIS		
ro sette	GAGE1	GAGE2	GIGES	<b>TEAN</b> S	LCNG	SBEZR	SIGNI	SIGHN		
I-0-N-*	- 18 1	-76	-76	-3132	-6378	-1	-3132	-6378		
I-22N-A	15C	34	-45	-390	4385	1050	4606	-610		
I-45H-A	-19€	-118	-25C	-7864	-9226	1764	-6272	-9818		
1-67H-A	-245	- 100	-376	- 10069	-10373	3551	-6627	-13815		
I-90N-1	167	543	400	16140	9846	-751	16228	9758		
I112N-A	-295	- 387	-405	- 17176	- 14 124	254	-14096	-17204		
1135X-A	- 145	-228	-76	-65 18	-6293	-2025	-437e	-8434		
1157X-1	- 164	-98	91	236	-4855	-2385	1179	-5797		
1180X-1	-252	76	25	2488	-6827	686	2539	-6877		
12021-1	- 159	71	-96	-360	-4886	2222	548	-5794		
12258-1	-101	-106	-205	-6720	-5056	1312	-4334	-7442		
<u>12+7#-1</u>	-311	-422	- 397	- 17645	- 14613	-328	-14578	-17680		
1292W-A	-215	-350	-128	- 10274	-9521	-2955	-6919	-12876		
1315¥-A	- 16 5	-329	-10€	-7192	-7116	-1641	-5512	-8795		
1337 <b>X-</b> A	- 178	-151	-74	-4525	-6688	-886	-4209	-7005		
			-				7344	- 160		
0-228-1	195	158		3321	6840	2075	1801	2300		
0-45N-A	178	285	:	6120	71/0	3/01	10443	2847		
0- E7X-A	304	516	200	10395	13/48	4215	18200	10277		
0-90¥-1	-175	- 421	í L	-5054	-7968	- 50 70	-20/3	-1414/		
01122-1	123	86	493	12593	7460	-2420	10024	4029		
G135N-A	1/4	-17	201	1991	0371	-4361	0230 7650	6473		
015/8-4	195	128	110	316U	1344	- 47	1=43	3113		
OTSUN-A	197	199	204	2091	7167	-6/	7 147	0404 A720		
UZUZH-A	192	113	111	5031	/ 10 / E 13E	23	6720	5207		
	143	102	-21	4721	3143	2010	16411	8756		
	143	430 50e	75 887	16742	1800E	5343 _ 4475	10711	10380		
4272 <b>5-</b> A	JV3 424	444 . E	131 94 m	17227	673A	- 1650	12022	20500		
	150		424	3344 4640	J/J4 6467	-10#1	5024	1760		
	180	···/	131	4313	-013/	-1041	10740	-055		
~~~ <u>0-0-</u> 1	- 4 %	17	21	1724	- 740	-121	1433	- , , , ,		