INGRES: A Computer Code for the Rate of Air Ingress Into an HTGR Following a Design-Basis Depressurization Accident
R. L. Reid
J. P. Sanders

OAK RIDGE NATIONAL LABORATORY

Printed in the United States of America. Available from National Technical Information Service
 U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161
 Price: Printed Copy \$5.00; Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

```
Contract No. W-7405-eng-26
```

Reactor Division
NOTICE an account of work
This report was prepared as an accoument Nether sponsored by the United Stat Unted States Energy the United States nor the Uniustration, nor any of Research and Developmer any of their contractors, their
subcontractors. or their employees, makes any
and subcontractos,
warranty, express or impled, or assumes any legal warranty, er responsibulty for the accuracy, completeness or usefulness of any information, apparatus, product not process disclosed, or represhts

INGRES: A COMPUTER CODE FOR THE RATE OF AIR INGRESS INTO AN HTGR FOLLOWING A DESIGN-BASIS DEPRESSURIZATION ACCIDENT
R. L. Reid
J. P. Sanders

Work performed for the U.S. Nuclear Regulatory Commission under Interagency Agreement 40-494-75.

DECEMBER 1975

NOTICE: This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

CONTENTS

Page

FOREWORD v
ABSTRACT 1
INTRODUCTION 1
DESCRIPTION OF THE DBDA PROCESS 2
COMPUTATIONAL MODEL 4
Free Convection Loop 4
Expansion-Contraction Process and CO Formation 6
RESULTS FROM THE MODEL 7
Summit and Fulton HTGRs 7
Comparison with GAC Results 11
CONCLUSIONS 14
REFERENCES 15
APPENDIX 17
.
-

FOREWORD

The computer program described in this report was written by R. L. Reid while he was a temporary summer employee at ORNL. His permanent position at the time was on the staff of the Department of Mechanical Engineering at the University of Tennessee. As a consultant during the following academic year, he participated in review meetings concerning the computational techniques and the predicted results from the calculations. The computer code is being maintained at ORNL by J. P. Sanders to be incorporated into a larger accident-analysis computer program.

INGRES: A COMPUTER CODE FOR THE RATE OF AIR INGRESS INTO AN HTGR FOLLOWING A DESIGN-BASIS DEPRESSURIZATION ACCIDENT

R. L. Reid* J. P. Sanders

Abstract

The computer program INGRES was written to calculate the rate of air ingress into the prestressed concrete reactor vessel after a design-basis depressurization accident in a high-temperature gas-cooled reactor. The model includes the free convection loop that can occur in a cold-leg break, the expansion and contraction air exchange mechanisms, and the conversion of oxygen to carbon monoxide. Results are presented for the $2000-\mathrm{MW}(\mathrm{t})$ Summit Power Station and the 3000MW (t) Fulton Generating Station and are compared to computational results provided by the General Atomic Company. The results agree reasonably well even though some differences exist in the two models.

Key words: Air, confinement, convection, gas coolant, computer program, PCRV.

INTRODUCTION

The High-Temperature Gas-Cooled Reactor (HTGR) Safety Study Program for the Division of Reactor Licensing, U.S. Nuclear Regulatory Commission, was in need of a model to calculate the rate of air ingress into the prestressed concrete reactor vessel (PCRV) following a design-basis depressurization accident (DBDA). General Atomic Company (GAC) had developed a computer code to predict the air ingress rate, 1,2 but it was deemed necessary to develop an independent code to compare the results of both codes and to provide a tool for analysis of any HTGR. The air ingress rates and resultant changes in effective molecular weight of the PCRV gas are particularly important in the design of the core auxiliary cooling system.

[^0]Two types of ruptures in the PCRV are considered: a break around the bottom of the steam generator penetration (point A in Fig. 1) where the hot helium enters the cavity (hot-leg break) or a leak near the top of the cavity (point B in Fig. 1) where the helium has been cooled and is returning to the core (cold-leg break). When the leak is initiated, a blowdown occurs from the PCRV, beginning at the operating pressure (about 700 psia) and ending at some low pressure. The blowdown causes pressure and temperature changes in the containment, which is initially near atmospheric pressure and ambient temperature, for a few minutes until relatively steady-state conditions are reached. The entire PCRV and containment then equilibrate at a pressure of 20 to 30 psia, depending on whether the leak was a hot- or a cold-1eg break. The containment temperature at this time is about 100 to $150^{\circ} \mathrm{F}$.

These pressure and temperature excursions are described and calculated by the Contempt-G computer program. ${ }^{3}$ For the present study, the long-term effects (those up to 6 hr) were of interest; therefore, the containment was assumed to reach the steady-state temperature and pressure instantly.

At least four types of mass transfer processes can occur during the DBDA to alter the effective molecular weight of the gas in the PCRV from a value of 4.00 for pure helium. These are (1) expansions and contractions due to temperature changes in the PCRV, (2) establishment of a free convection loop, (3) reaction of the incoming oxygen with carbon in the reactor to form carbon monoxide, and (4) diffusion.

The free convection loop will only be a possibility with the coldleg break that occurs at the top of the steam generator. A stable buoyant situation exists with the hot-leg break at the bottom of the PCRV. Diffusion was determined to be negligible under both of these conditions.

In GAC's description of their calculations in Section 5.1.4 of LTR-1 (Ref. 1), they considered points 1 and 2 (see Fig. 1) above the reactor core. Therefore, a cold-leg break was considered, although this was not stated. In conversations with George Malek of GAC, he mentioned that they included the reaction of incoming oxygen with the graphite in the

Fig. 1. Diagram of core cavity, steam generator penetration of the PCRV, and the containment structure.
core to form CO; this point is not noted in LTR-1. These conversations actually led to the decision to include this reaction in the model described in this report.

COMPUTATIONAL MODEL

Free Convection Loop

Most of the assumptions used by GAC^{1} were also made in this study, including the assumption that the total cross-sectional area available for inflow and outflow is 100 in. ${ }^{2}$. The height of the buoyant column was taken as 8 ft (the distance from C to D in Fig. 2, which was the effective height of the annular gap). Friction in the column was ignored, because the flow area away from the flow restrictor (point C in Fig. 2) was significantly greater than this minimum flow area. The major inhibitor of flow was assumed to be the entrance and exit losses at the flow restrictor. These were treated as a sudden contraction loss with a loss coefficient about 0.5 and a sudden expansion that can have a loss coefficient as large as 1.0 , depending upon the ratio of flow areas. To be conservative (i.e., to overestimate the rate of air ingress), the sum of these two coefficients was assumed to be 1.2 , which is the same assumption used by GAC. ${ }^{1}$

In the fundamental equation for the free convection loop, the difference in head produced by the different weights of the columns is balanced by the pressure losses in the flow path. With the assumptions discussed above, the equation is given by

$$
\begin{equation*}
K \frac{\rho_{C} V_{C}^{2}}{2}+K \frac{\rho_{R} V_{R}^{2}}{2}=\operatorname{Lg}\left(\rho_{C}-\rho_{R}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& V=\text { velocity } \\
& \rho=\text { density } \\
& K=\text { loss coefficient } \\
& L=\text { height of column } \\
& g=\text { gravitational constant }
\end{aligned}
$$

Subscripts C and R refer to conditions in the gas mixture in the containment and the PCRV respectively.

Fig. 2. Detail of closure at top of steam generator cavity showing flow restrictor and annular gap.

If Eq. (1) is converted to the volumetric flow rate Q using the cross-sectional area A it becomes

$$
\begin{equation*}
K \frac{\rho_{C} Q_{C}^{2}}{2 A_{C}^{2}}+K \frac{\rho_{R} Q_{R}^{2}}{2 A_{R}^{2}}=L g\left(\rho_{C}-\rho_{R}\right) \tag{2}
\end{equation*}
$$

However, $Q_{C}=Q_{R}$, and if the cross-sectional areas for inflow and outflow are assumed to be equal such that $A_{C}=A_{R}=A=50 \mathrm{in} .^{2}$,

$$
\begin{equation*}
Q=A \sqrt{\frac{2 L g\left(\rho_{C}-\rho_{R}\right)}{K\left(\rho_{C}+\rho_{R}\right)}} \tag{3}
\end{equation*}
$$

Transforming this to the mass flow M_{R} of the outflowing gas, the equation becomes

$$
\begin{equation*}
M_{R}=A \sqrt{\frac{2 L g\left(\rho_{C}-\rho_{R}\right) \rho_{R}^{2}}{K\left(\rho_{C}+\rho_{R}\right)}} \tag{4}
\end{equation*}
$$

Equation (4) can be used over a time interval Δt to determine the amount of gas leaving the containment.

Expansion-Contraction Process and CO Formation

The expansion-contraction process is essentially an inventory system using the ideal gas law. However, there are several possible sequences of events and conditions that can be hypothesized. The reaction of oxygen with graphite to form $C O$ is also incorporated into the procedure. The reaction is

$$
\begin{equation*}
2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO} \tag{5}
\end{equation*}
$$

The sequence of events in the expansion-contraction process with chemical reaction proceeds as follows:

1. Equation (4) is first used to calculate the mass of gas mixture leaving the PCRV in the time interval Δt. An equal volume of gas mixture from the containment enters at the containment temperature.
2. The oxygen in the incoming containment gas then reacts to form 2 moles of CO for each mole of O_{2}.
3. The newly formed $C 0$ and the rest of the gas that came from the containment are then heated to the average PCRV temperature.
4. The difference in this expanded volume and the volume of the gas that left the PCRV is then assumed to displace an equal volume of gas from the PCRV to the containment.
5. The new average temperature at the end of the time step is used to calculate a new volume of PCRV gas.
6. If the temperature has increased, the amount of gas that must leave the PCRV to keep the pressure constant is calculated and this amount is removed from the PCRV.
7. If the temperature has decreased, the volume of containment gas that will enter at containment temperature is calculated. The procedure then repeats steps 2 through 4.
8. The entire sequence is repeated starting with step 1.

A complete listing and documentation of the program INGRES is given in the appendix.

RESULTS FROM THE MODEL

Summit and Fulton HTGRs
The computed results for the effective molecular weight of the gas in the PCRV and the helium mole fraction as a function of time are given in Tables 1 and 2 for the 2000- and $3000-\mathrm{MW}(\mathrm{t})$ HTGRs. The input data in the tables were taken from the Summit and Fulton PSARs. ${ }^{4,5}$ These transient molecular weight distributions are plotted in Fig. 3.

One interesting feature of the results is that the molecular weight in the PCRV finally exceeds that of the containment. This at first seems impossible until it is remembered that the chemical reaction to form carbon monoxide creates 2 moles of CO (combined molecular weight of 56) for each mole of O_{2} (molecular weight of 32). The gas from the PCRV increases in molecular weight as it enters the PCRV and the oxygen is reacted.

Table 1. Composition in PCRV of Sumait Station HTGR

CONTAINMENT PRESSURE BEFORE LBDA $=14.7$ PSIA
VOLUME JF CONTAINMENT $=2280000$. COBIC FEET
TEMPERATURE OF CONTAINMENT $=565.0 \mathrm{DEG}$ R
MASS OF HELIUM IN PCRV BEPORE DBCA $=14700$. LBM
PCRV PRESSURE BEFORE DBDA $=725.0$ PSIA
SYSTEM PEESSUEE APTER DBDA $=23.2$ FSIA
MAXIMUM CROSS SECTIONAL AREA FOR THE LEAK = 100.0 SQ. IN.
THE LOSS COEFFICIENT POR COMBINED INLET
AND OUTLET LOSSES POR EACH COLOMA = 1.2
THE HEIGHT OF THE BUOYANT COLOMN $=8.0 \mathrm{PT}$
holeculak oeight of containhent
IMmediately after dbda is 19.09 Ibh/Lb-MOLE

time	A VG. C	COOLANT TEMPS	holecular	MOLT.
	IN	OU I	DEIGHT	Frac me
(HOURS)	(F)	(F)	(LBM/LB-HOLE)	
0.0	607.	. 1416	4.00	1.000 C
0.0833	367.	. 1520.	6.35	0.9019
0.0892	368.	. 1524.	6.41	0.8994
0.1004	369.	. 1527.	6.53	0.8946
0.2012	372.	- 1558.	7.55	0.8521
0.3008	375.	. 1585.	8.47	0.8137
0.4004	374.	. 1609.	9.31	0.7786
0.5000	373.	. 1631.	10.09	0.7464
0.6064	373.	. 1653.	10.84	0.7150
0.8064	374.	. 1688.	12.12	0.6618
1.0064	376.	. 1719.	13.19	0.6171
1. 2084	387.	. 1744.	14.11	0.5789
1.3954	380.	- 1761.	14.83	0.5487
1. 5994	382.	- 1776.	15.50	0.5207
1.8034	384.	- 1787.	16.07	0.4969
2.0164	386.	- 1793.	16.58	0.4759
2. 1964	387.	. 1794.	16.94	0.4608
2. 3964	388.	- 1793.	17.29	0.4463
2.5964	388.	- 1789.	17.59	0.4339
2. 7964	389.	- 1782	17.84	0.4233
3.0364	389.	- 1771.	18.10	0.4125
3. 3964	388.	- 1748.	18.42	0.3992
3.7964	387.	- 1716.	18.68	0.3883
4. 1964	384.	. 1680	18.87	0.3803
4.5964	380.	. 1641.	19.01	0.3744
5.0364	376.	. 1596.	19.13	0.3697
5.3964	371.	- 1560	19.19	0.3669
5. 7964	367.	. 1519.	19.25	0.3645
5.9964	364.	. 1500.	19.27	0.3636

molecolar meight of containment is non 18.92 LbM/Lb-hole

Table 2. Composition in PCRV of Pulton Station HTGR

CONTAINMENT PRESSURE BEFORE DBDA $=15.7$ PSIA
VOLUME OF CONT AINMENT = 2270000. CUBIC FERT TEMP ERATURE OF CONTAINAENT $=560.0$ DEG R MASS OF HELIUM IN PCRV BEFORE DBEA $=20745 . ~ L B M$ PCRV PRESSURE BEFORE DBDA $=725.0$ PSIA SYSTEM PRESSURE AFTER DBDA $=23.2 \mathrm{PSIA}$ MAXIMUM CROSS SECTIONAL AREA POR THE LEAK = 100.0 SQ . IN. THE LOSS COEPFICIENT FOR COMBINEC INLET AND OUTLET LOSSES FOR EACH COLUMN = 1.2 THE HEIGHT OF THE BUOYANT COLDEN $=8.0 \mathrm{PT}$ MOLECOLAR WEIGHT OF CONTAINMENT IKAEDIATELY APTER DBDA IS 17.43 LBM/LB-MOLE

I IME
AVG. COOLANT TEMPS
MOLECUTAR
(HO UR S)
0.0
0.0833
0.0892
0.1004
0.2012
0.3008
0.4004
0.5000
0.6064
0.8064

1. 0064
2. 2084
3. 3954
4. 5994
5. 8034
2.0164
6. 1964
7. 3964
8. 5964
2.7964
3.0364
9. 3964
10. 7964
11. 1964
12. 5964
5.0364
13. 3964
5.7964
14. 9964

IN OOT
(F)
607.

367
368. 1524.
369. 1527.
372. 1558.
375. 1585.
374. 1609.
373. 1631.
373. 1653.
374. 1688.
376. 1719.
387. 1744.
380. 1761.
382. 1776.
384. 1787.
386. 1793.
387. 1794.
388. 1793.
388. 1789.
389. 1782.
389. 1771.
388. 1748.
387. 1716.
$384 . \quad 1680$.
380. 1641.
376. 1596.
371. 1560.
367. 1519.
364. 1500.

HEIGHT
(LBM/LB-HOLE)

4.00	1.0000
6.05	0.9148

$6.08 \quad 0.9132$
$6.16 \quad 0.9101$
$6.82 \quad 0.8827$
$7.43 \quad 0.8572$
$8.01 \quad 0.8331$
8.550 .8105
$9.09 \quad 0.7878$
$10.05 \quad 0.7481$
$10.89 \quad 0.7129$
$11.65 \quad 0.6815$
$12.27 \quad 0.6555$
$12.87 \quad 0.6303$
13.410 .6080
$13.90 \quad 0.5873$
$14.28 \quad 0.5718$
$14.65 \quad 0.5564$
$14.98 \quad 0.5427$
$15.27 \quad 0.5305$
$15.58 \quad 0.5175$
$15.98 \quad 0.5007$
$16.34 \quad 0.4857$
$16.63 \quad 0.4738$
$16.86 \quad 0.4643$
$17.06 \quad 0.456 \mathrm{C}$
$17.18 \quad 0.4507$
$17.30 \quad 0.4458$
$17.35 \quad 0.4438$

MOLECULAR WEIGHT OF CONTAINMENT IS NOR $17.26 \mathrm{LBM} / L B-M O L E$

Fig. 3. PCRV composition for Summit [2000-MW(t)] and Fulton [3000-MW (t$)$] reactors.

The actual input data for the results given in the letter ${ }^{2}$ from D. S. Duncan were obtained from George Malek and John Peterson of GAC. The GAC results were actually obtained before some of the design conditions for the 2000 - and $3000-\mathrm{MW}(\mathrm{t})$ plants were finalized. Consequently, the GAC results, although presented as being generic for both plants, are not exact for either reactor. In addition, LTR-1 (Ref. 1) indicates a column height of 8.0 ft , but these older results were obtained for a column height of 18.5 ft . The results in Table 3 were obtained using input data that seemed to be the same as the GAC data.

Subsequent conversations with John Peterson revealed some differences between the calculational procedures followed in this report and the GAC method. As reported in the LTR, ${ }^{1}$ GAC assumed that the total area for leakage ($100 \mathrm{in} .^{2}$) was divided into variable inflow and outflow areas. An equation similar to Eq. (3) then resulted; this equation was differentiated with respect to one of the flow areas, and the derivative was set equal to zero to produce an equation for the area to maximize the flow rate. As discussed earlier, the INGRES results were obtained by assuming a $50-50$ split in the flow areas. A more detailed procedure seemed to be unnecessary considering the approximate nature of the rest of the analysis. Mr. Peterson commented that the split to maximize the flow rate was close to the $50-50$ mark.

Another difference in the method was that the GAC procedure coupled the free convection loop with the expansion-contraction process. If the outflow due to expansion was greater than the inflow due to free convection, no free convection was allowed to occur. As previously described, the analysis in this report considers the free convection to occur before, and independent of, the expansion-contraction process. This is more conservative and appears to be possible under certain actual local pressure and concentration variations in the PCRV and containment volume.

The results of this model are compared with the results of GAC in Fig. 4. Note that, as discussed, these results seem to be conservative in comparison with the results of GAC. In addition, there may be some slight differences in the two sets of input data. Table 3 presents the computer results for this case.

Table 3. Comparision of values from INGRES vith those of GAC

CUNTAINMENT PRESSURE BEPORE DBDA $=14.7$ PSIA
VOLUME OF CONTAINMENT $=1687000$. COBIC PEET
TEMPERATURE OF CCNTAINHENT $=610.0$ DEG R
MASS OF HELIUM IN PCRV BEPORE DBDA $=17420 . ~ L B M$
PCRV PRESSUKE BEFORE DBDA $=700.0$ PSIA
SYSTEM PRESSURE APTER DBDA $=23.2 \mathrm{PSIA}$
MAXIMU日 CROSS SECTIONAL AREA POR THE LEAK = 100.0 SQ. IN.
THE LOSS COEFFICIENT FOR COMBINEL INLET AND OUTLET LOSSES POR EACH CCLUMN $=1.2$
THE HEIGHT OF THE BOOYANT COLUMN $=18.5 \mathrm{FT}$
HOLECULAR UEIGHT OF CONTATNMENT IMMEDIATELY AFTER DBDA IS 15.75 LBM/LB-MOLE

HOLECULAR HEIGHT OF CONTAINMENT IS NON 15.58 LBM/LB-HOLE

Fig. 4. Comparison of results with GAC.

The analysis presented in this report seems to give reasonable results for the gas composition of the PCRV as a function of time following a DBDA. The results compare reasonably well with the independent calculations presented by GAC.

REFERENCES

1. An Analysis of HTGR Core Cooling Capability, Gulf General AtomicReport GA-LTR-1 (Mar. 20, 1973).
2. D. S. Duncan, Mgr., Plant Licensing Branch, General Atomic Company, letter to R. A. Clark, Chief, Gas-Cooled Reactor Branch, Directorate of Licensing, USAEC, Washington, D.C. Subject: Answers to Request for Additional Information No. 1 on Licensing Topical Report No. 1 (GA-LTR-1) (Public Docket for Gulf GA-Al2504) (Feb. 6, 1974).
3. D. I. Macnab, The Contempt-G Computer Program and Its Application to HTGR Containments, General Atomic Company Report GA-A12692 (GA-LTR-6) (Feb. 1, 1974).
4. Delmarva Power and Light Company, Summit Power Station, Preliminary Safety Analysis Report (1973-1974).
5. Fulton Generating Station, Preliminary Safety Analysis Report.

-
-

APPENDIX

The input data specifications; a listing of the Fortran statements in the INGRES program; sample input for the program; sample output; and the Fortran variable names, meanings, and dimensions (where applicable) are given in Tables A.l to A. 5 respectively. A flow diagram that presents the logic of the computation is included as Fig. A.1.

Table A.1. Input data cards

```
Card No. 1 - Format (6F10.0, I3)
    PCI = containment pressure before blowdown, psia
    PRI = PCRV pressure before blowdown, psia
        P = equilibrium PCRV-containment pressure after blowdown, psia
    VC = free volume of containment, ft }\mp@subsup{}{}{3
    TC = temperature of containment, after blowdown, 跙
    HERI = mass of helium in PCRV before blowdown, 1bm
        NP = number of time intervals (including the initial conditions
            at time = 0)
Card No. 2 - Format (6F10.0)
    TI(1) = average core inlet temperature before blowdown
    TO(1) = average core outlet temperature after blowdown
    TIME(1) = initial time (usually zero)
        AMAX = maximum area for leakage, in. }\mp@subsup{}{}{2
        COEFF = flow coefficient for free convection loop
            H = height of free convection columns, ft
Card Set 3-Format (10F8.0)
    TI(2)-TI(NP) = core inlet temperatures
Next Card Set Format (10F8.0)
    TO(2)-TO(NP) = core outlet temperatures
Next Card Set Format (10F8.0)
    TIME(2)-TIME(NP) = time interval, hr
```


Table A.2. Listing of Fortran progran for INGEES

```
C this Program calculates the rate cf comtainhent gas INgress into the Ingr 1
C PRESTRESSEC COMCRETE REACTOR VESSEL (PCRV) OF A HIGH TEMPERATORE INGR 2
C GAS COOLED REACTOR (HTGR) FOLLOUING A DESIGN BASE DEPRESSURIZATION INGR 3
C ACCIDERT (DBDA). THE HOLECOLAE WEIGHT ANL HOLE fRACTION OF HELIOM INGR 4
C IN the pCry are tabulated as a function of time. INGR 5
    IHPIICIT REAL (A-H,H-Z) INGR 6
    IHTEGER NP INGR
    DIMENSION TI(100).TO(100).TIME(100) INGR 8
100 PORMAT(2H1) INGR 9
101 FORBAT(10F8.0) INGR 10
102 FORGAT (6F10.0,I3) INGR 11
103 FORHAT(6F10.0) INGR I2
104 FORMAT(80日 INGR 13
    1 1 INGR 14
105 FORHAT(1H,F8.4,8X,F5.0,3X,F6.0,8X,F6.2, 8X,F7.4) INGR 15
106 FORHAT(1HO, 3X, 'TIME*,8X,'AVG. COOLANT TEMPS',4X,'HOLECUIAR', 8X,*MINGR 16
    20LE') INGR 17
107 FORMAT(1H , 18X,'IM',6X,0OUT',10X,'WEIGET', 8X,'PRAC HE')
108 FORMAT(1H. 1X,'(HOURS)', 9X,'(F)',6X,'(F)'.7X.'(LBM/LB-MOLE)'')
109 FORBAT(1HO, 'CONTAIHMENT PRESSURE BEFORE DBDA =',F5.1,' PSIA') INGR 20
110 FORMAT(1H, VOLUME OF CONTAINMENT = ',F9.0.' CUBIC FEET')
111 PORMAT(1H.'TEMPERATURE OF CONTAIHMENT =',F6.1,' DEG R') INGR 22
112 PORMAT(1H,*BASS OF HELIUM IN PCRV EEFORE DBDA=*,F7.0,* LBM') INGR 23
113 FORMAT (1H "PCRY PRESSUEE BEFORE [BLA = ',F6.1, 'PSIA')
114 FORHAT(1H.'SYSTEM PRESSURE AFTER DBDA =',F5.1." PSIA')
115 FORMAT(1H, HOLECULAR HEIGHT OF CONTAINGENT'/5X, INGR 26
    1'IMMEDI ATELY APTER DBDA IS',F6.2,' LBM/LB-MOLE')
116 PORMAT (1HO, GOLECULAR WEIGHT OF CONTAINHENT IS NON',F6.2,'LBM/LBINGE 28
    2-MOLE') INGR
29
117 FORMAT (1H *MAXIMOM CROSS SECTIONAL AREA FOR THE LEAK = 'F7.1,'SQINGR 30
```

```
Table A. 2 (continued)
```

```
    2. IN.')
    INGR 31
118 FORMAT(1H "THE LOSS COEPFICIENT FOR COMBINED INLET'/5X, INGR 32
    1'AMD OUTLET LOSSES FOR EACH COIUHM =*,F4.1) INGR 33
119 FORHAT(1H, THE HEIGHT OF THE BUOVANT COLUMN=,.F4.1,'FT')
120 PORMAT (63H0 ( )
    1____
            TAYG(TA,TB) = (TA+TB)/2. +460. INGR
INGR 36
    FLON(RHOC,RHOR)=(AFLOM/(12.*12.))*SQRT(2.*32.2* INGR 38
    2 (RHOC-RBOR)*RHOR*RHOR*H/(COEFP* (RHOR & RHOC))) INGR 39
50 READ (5,104, EXD=99) INGR
    READ(5, 102) PCI,PRI, P, VC,TC, HERI,NP
    READ(5,103) TI(1),TO(1),TIHE(1),ABAX,COEFF,H
        READ(5.101) (TI(I),I=2.NP)
        READ (5,101) (TO(I),I=2,NP)
        READ(5,101) (TIHE(I),I=2,NP)
    #RITE (6,100) INGR
    #RITE (6,104)
    #RITE(6,120)
    WRI TE (6,109) PCI
    WRITE (6,110) YC
    URITE (6,111)TC
    MRITE (6,112)HERI
    #RITB (6,113) PRI
    WRITE (6,114)P
    #RITE (6,117)AMAX
    WRITE (6,118) COEFF
    #RITE(6,i19)H
        R=10.73 INGR
    AFLON = AMAX/2. 
120 POREAT (63HO
INGR 35
    1
IHGR 37
INGR 40
INGR 41
ING
INGR 42
INGR 43
INGR 44
INGR 45
INGR 46
INGR 47
    ) INGR 48
    INGR 50
    *)
INGR 52
    INGR 54
    INGR 55
INGR
INGR
```

Table A. 2 (continued)

```
H2RHF = 0. INGR 60
CORMF = 0. INGR 61
    HERMP=1. INGR 62
N2RH=0. INGR 63
CORG = 0. INGR 64
COCM = 0. INGR 65
COCHF=0. INGR 66
    M㫙=4. INGR 67
    TM=TAVG(TI(1).TO(1)) INGR 68
AIRCM = PCI*VC/(R*TC) INGR 69
HERMI = HERI/4. INGR 70
VR = HERMI*R*TM/PRI INGR 71
HBRH = F*VR/(R*TH) INGR 72
HBCH = HERHI - HEBH INGR 73
    TOTCM = AIRCE +HECH INGR 74
    AIRCMP=AIRCH/TOTCM INGR 75
N2CMF=.8*AIRCMF INGR 76
O2CHF=.2*AIRCMP INGR 77
O2CM =.2*AIRCH INGR 78
N2CH=.8*AIRCK INGR 79
    HECHP=HECM/TOTCM INGR 80
    G#C=AIRCHF*28.8 + HECMF*4. INGR 81
#RITE(6,115) HWC INGE 82
    #RITE (6.106) INGR 83
    WRITB (6.107) INGR 84
    URITE (6,108) INGR 85
#RITE (6,105)TIBE(1),TI(1).TO(1),昭,HERMF INGR 86
    I=0 INGR 87
    J=1 INGR
88
```

Table A. 2 (continued)

```
C FREE CONVECTION LOOP INGR 89
    2 RHOC=P*HWC/ (R*TC)
            RHOR = F* B(R/(B*TM)
INGR 90
            GO=(TIME(J+1) - TIME(J))*3600.*FLOR(RHOC,RHOR) INGR 92
                            INGR 91
            GOH=G O/MWB
                    INGR 92
            HEOM1=HERHF*GOM INGR
                            INGR }9
    INGR 94
            COOM1 = CORMP*GOM
            INGR 95
            N2OH1=N2RAF*GOM INGR 96
                    \nablaI=GO/RHOR INGR97
C CONTAIRMENT MIXTURE ENTERS AND EXPANDS INGR 98
            1 MIXIM = P*VI/(R*TC)
                    INGR
                    HEIM= GECMP*HIXIM
            COIM = COCMP*HIXIM
            N2IM = N2CMP*HIXIM
            02IM = 02CMP*MIXIM
            COIER = COIM + 2.*02IM
            HIXIMR = COIM + N2IM + HEIM
            VEXP = MIXIMR*R*TM/P
C PCRYGAS FCRCED OUT
C PCRVGAS FCRCED OUT
        IMGR 100
            INGR }10
            INGR }10
                    INGR 102
                            *
                    INGR 104
                    INGR 105
INGR 106
INGR 107
        5 GMO=P*GVO/(R*TH)
INGR 108
        HEOM2 =HERHF*GHO
            COOR2 = CORHP*GMO
    N20M2 = N2RMP*GHO
INGR 109
                                    INGR 110
INGR 111
C CORRENT PCRV INYENTORY
            HERM= GEFM - HBOM1 + HEIM - HEOM2
                            INGR 112
    CORH = CORM - COOM1 + COIMR - COOH2
INGR 113
    N2RM = N2RM - N2ON1 + N2IG - N2ON2
    INGR 116
    TOTEM = RERM + CORH + N2RM
```

Table A. 2 (continued)

```
        HERMF=HERM/TOTRM
        CORMF = CORM/TOTRH
        N2RMF = N2RM/TOTRM
    MHR = HERMP*4. + CORMF*28. * M 2RMF*28.
C CORRENT CONTAINME&T INYEMTOGY
    HECH = HECM + HEOM1 - HEIM + HECM2
    02CM = 02CM -02IM
    COCM = COCM + COON1 - COIM +COOM2
    N2CM=N2CH+N2OH1-N2IH +N2OM2
    TOTCM = COCM + N2CH + HECM + O2CM
    COCHF=COCM/TOTCB
    N2CMP = N2CH/TOTCM
    O2CMF = 02CM/TOTCM
        HECMF= HECM/TOTCM
    M#C= HECEF*4. + COCMF*28. * N2CMF*28. + O2CMF*32.
            IF (I-1) 7,6,6
        6 I=0
    WRITE (6,105)TIAE(J),TI(J),TO(J), GWR,HERMF
        IF(J.EQ.NP) GO TO }1
        GO TO 2
        7 J=J+1
C TEMPERATURE CRANGE RESULTS IN EXPANSION OG CONTRACTION
            TH= TAVG(TI(J).TO(J))
        VNE|=TOTRM*R*TB/P
        VI= VR - VNED
        I=1
        IF (VI) 4.4.3
    3 HEOM1 = 0.
    COOM1=0. 
```

 INGR 118
 Table A. 2 (continued)

$\mathrm{N} 20 \mathrm{H1}=0$.	INGR 147
GO TO 1	INGR 148
$4 \mathrm{GVO}=-\mathrm{VI}$	INGR 149
$\mathrm{N} 2 \mathrm{IH}=0$.	INGR 150
O2IH $=0$.	INGR 151
COIM $=0$.	INGR 152
$\operatorname{coonl}=0$.	INGR 153
$\mathrm{N} 20 \mathrm{H1}=0$.	IEGR 154
HEIM $=0$.	INGR 155
HEOM1 $=0$.	INGR 156
COIMR $=0$.	INGR 157
GO TO 5	INGR 158
10 WRITE $(6,116) \mathrm{MBC}$	INGR 159
पRITE $(6,120)$	INGR 160
GO TO 50	INGR 161
99 MRITE $(6,121)$	INGR 162
121 PORHAT(2H1)	INGR 163
STOP	INGR 164
END	INGR 165

Table A.3. Sample input for the INGRES progras

Table A. 3 (continued)

388.0	387.0	384.0	380.0	376.0	371.0	367.0	364.0		
1520.0	1524.0	1527.0	1558.0	1585.0	1609.0	1631.0	1653.0	1688.0	1719.0
1744.0	1761.0	1776.0	1787.0	1793.0	1794.0	1793.0	1789.0	1782.0	1771.0
1748.0	1716.0	1680.0	1641.0	1596.0	1560.0	1519.0	1500.		
0.0833	0.0892	0.1004	0.2012	0.3008	0.4004	0.5000	0.6064	0.8064	1.0064
1.2084	1.3954	1.5994	1.8034	2.0164	2.1964	2.3964	2.5964	2.7964	3.0364
3.3964	3.7964	4.1964	4.5964	5.0364	5.3964	5.7964	5.9964		
15	Table A.4	Samp	of out	put from 2270000.	the IN 560	$\begin{array}{r} \text { ES pro } \\ 2074 \end{array}$	29		
607.	1416.	0.		100.	1.2	. 3			
367.0	368.0	369.0	372.0	375.0	374.0	373.0	373.0	374.0	376.0
387.0	380.0	382.0	384.0	386.0	387.0	388.0	388.0	389.0	389.0
388.0	387.0	384.0	380.0	376.0	371.0	367.0	364.0		
1520.0	1524.0	1527.0	1558. C	1585.0	1609.0	1631.0	1653.0	1688.0	1719.0
1744.0	1761.0	1776.0	1787.0	1793.0	1794.0	1793.0	1789.0	1782.0	1771.0
1748.0	1716.0	1680.0	1641.0	1596.0	1560.0	1519.0	1500.		
0.0833	0.0892	0.1004	0.2012	0.3008	0.4004	0.5000	0.6064	0.8064	1.0064
1.2084	1.3954	1.5994	1.8034	2.0164	2.1964	2.3964	2.5964	2.7964	3.0364
3.3964	3.7964	4.1964	4.5964	5.0364	5.3964	5.7964	5.9964		

Table A.4. Sample of output from the INGEES prcgran

CUNIAINMENT PRESSURE BEPORE DBDA $=15.7$ PSIA
VOLTME OF CONTAINMENT $=2270000$. COBIC FEET
TEMPEKATURE OF CONTAINMENT $=560.0$ DEG R
MASS OF HELIUM IN PCRV BEFORE DBIA $=20745 . ~ L B M$
PCEV FRESSURE BEFORE DBDA $=725.0$ PSIA
SYSTEM PRESSURE AFTER DBDA $=9.5$ FSIA
MAXIMUM CROSS SECTIONAL AREA FOR THE LEAK $=100.0$ SQ. IN.
the loss coefficient for conbiner INlet
AND OUTLET LOSSES FOR EACH CCLOMN $=1.2$
THE HEIGHT OF THE BUOYANT COLUMN $=0.3 \mathrm{PT}$
MOLECULAR GEIGHT OF CONTAINMENT
IMMEDIATELY AFTER DBDA IS 17.31 LBM/LB-MOLE

T IME	AVG. CO	NT TPMPs	molecolar	MCLE
	IN	OUT	WEIGHT	FRAC HE
(HOURS)	(F)	(F)	(IBM/LB-MOLE)	
0.0	607.	1416.	4.00	1.0000
0.0833	367.	1520.	5.80	0.9250
0.0892	368.	1524.	5.81	0.9247
0.1004	369.	1527.	5.82	0.9241
0.2012	372.	1558.	5.95	0.9186
0.3008	375.	1585.	6.08	0.9131
0.4004	374.	1609.	6.21	0.9077
0.5000	373.	1631.	6.34	0.9023
0.6064	373.	1653.	6.48	0.8966
0.8064	374.	1688.	6.74	0.8860
1. 0064	376.	1719.	6.99	0.8754
1. 2084	387.	1744.	7.24	0.865 C
1. 3954	380.	1761.	7.47	0.8555
1. 5994	382.	1776.	7.71	0.8453
1. 8034	384.	1787.	7.95	0.8354
2.0164	386.	1793.	8.19	0.8253
2. 1964	387.	1794.	8.39	0.817 C
2.3964	388.	1793.	8.61	0.8079
2. 5964	388.	1789.	8.82	0.7992
2.7964	389.	1782.	9.02	0.7906
3.0364	389.	1771.	9.26	0.7807
3. 3964	388.	1748.	9.61	0.7663
3. 7964	387.	1716.	10.03	0.7489
4. 1964	384.	1680.	10.44	0.7318
4.5964	380.	1641.	10.84	0.7150
5.0364	376.	1596.	11.26	0.6975
5. 3964	371.	1560.	11.57	0.6845
5.7964	367.	1519.	11.92	0.6701
5. 9964	364.	1500.	12.04	0.6648

MOLECULAR WEIGHT OF CONTAIMBENT IS NOW 17.27 LBM/LB-MOLE

Table A.5. List of Fortran variables used in the INGRES program

```
AIRCM = air in containment, 1b-moles
AIRCMF = mole fraction of air in containment
    AMAX = maximum flow area for leakage, in. }\mp@subsup{}{}{2
AFLOW = inflow or outflow leakage area, in. }\mp@subsup{}{}{2
    COCM = CO in containment, lb-moles
    COIM = CO entering PCRV, lb-moles
    CORM = CO in PCRV, 1b-moles
COCMF = mole fraction of CO in the containment
COEFF = flow coefficient
COIMR = CO that enters + CO formed by reaction, lb-moles
COOML = CO forced out by entering containment gas during free convection
    loop, lb-moles
COOM2 = CO forced out by expanding containment gas, lb-moles
CORMF = mole fraction of CO in the PCRV
    FLOW = statement function for free convection flow rate, lbm
    GMO = PCRV gas leaving, lb-moles
    GVO = PCRV gas leaving, ft }\mp@subsup{}{}{3
    GOM = PCRV gas leaving during free convection, lb-moles
    GO = PCRV gas leaving by convection loop, 1bm
HERMF = mole fraction of helium in PCRV
    HERM = helium in the PCRV, lb-moles
HEOM1 = helium leaving PCRV by convection loop, lb-moles
    HECM = helium in containment, lb-moles
HECMF = mole fraction of helium in containment
    HEIM = helium entering PCRV in convection loop, lb-moles
HEOM2 = helium forced out by expanding containment gas that entered,
        lb-moles
    H = height of free convection columns, ft
    HERI = helium in the PCRV before blowdown, 1bm
HERMI = helium in the PCRV before blowdown, lb-moles
    I = 0 or 1 indicates whether free convection or expansion-contraction
        should be calculated
    J = time counter 1\leqq J\leqqNP
MAXIM = containment mixture entering PCRV in convection loop, 1b-moles
```


Table A. 5 (continued)

```
    MWR = molecular weight of PCRV gas
    MWC = molecular weight of containment gas
MIXIMR = amount of mixture in the PCRV after CO reaction, 1b-moles
    N2CM = N N in containment, lb-moles
    N2IM = N N entering PCRV, 1b-moles
    N2RM = N
N2CMF = mole fraction N}\mp@subsup{N}{2}{}\mathrm{ in containment
N2OM1 = amount of N}\mp@subsup{N}{2}{}\mathrm{ forced out by entering containment gas during free
        convection loop, lb-moles
N2OM2 = amount of N}\mp@subsup{N}{2}{}\mathrm{ forced our of PCRV by expanding containment gas,
        1b-moles
N2RMF = mole fraction N}\mp@subsup{N}{2}{}\mathrm{ in PCRV
    O2CM= O
    02IM = O O2 entering PCRV, lb-moles
O2CMF = mole fraction O}\mp@subsup{O}{2}{}\mathrm{ in containment
        P = equilibrium pressure in containment and PCRV after blowdown, psia
    PCI = initial containment pressure before blowdown, psia
    PRI = initial PCRV pressure before blowdown, psia
    RHOC = density of gas mixture in containment
    RHOR = density of gas mixture in PCRV
    TIME = time stations, hr
    TAVG = average of TO and TI
    TO = average outlet temperature from core, ' }\textrm{R
    TI = average inlet temperature to core, 跙
TOTCM = total lb-moles in containment
TOTRM = total 1b-moles in PCRV
    TM = average temperature of PCRV gas, ' }\mp@subsup{}{}{\circ}\textrm{R
    TC = average temperature of containment gas, }\mp@subsup{}{}{\circ}\textrm{R
    VI = volume to be filled by entering gas, ft }\mp@subsup{}{}{3
    VR = volume of PCRV, ft }\mp@subsup{}{}{3
    VC = total volume of containment, ft }\mp@subsup{}{}{3
    VEXP = expanded volume of containment gas that entered in convection
        1oop
VNEW = PCRV gas after a cooldown period, ft 3
```


Fig. A.1. Flow diagram for the INGRES program.

Internal Distribution

 1. J. L. Anderson
 2. S. J. Ball
 3. J. P. Callahan
 4. D. A. Canonico
 5. J. C. Cleveland
 6. T. E. Cole
 7. J. H. Coobs
 8. D. Constanzo
 9. W. B. Cottrell
 10. F. L. Culler
 11. R. M. DeVault
 12. G. G. Fee
 13. M. H. Fontana
 14. Uri Gat
 15. G. E. Giles, Jr.
 16. M. J. Goglia
 17. H. W. Hoffman
 18. F. J. Homan
 19. J. D. Jenkins
 20-22. P. R. Kasten
23. A. L. Lotts
24. R. E. MacPherson/
J. A. Conlin

1. J. L. Anderson
2. S. J. Ball
3. J. P. Callahan
4. D. A. Canonico
5. J. C. Cleveland
6. T. E. Cole
7. J. H. Coobs
8. D. Constanzo
9. W. B. Cottrell
10. F. L. Culler
11. R. M. DeVault
12. G. G. Fee
13. M. H. Fontana
14. Uri Gat
15. G. E. Giles, Jr.
16. M. J. Goglia
17. H. W. Hoffman
18. F. J. Homan
J. D. Jenkins
20-22. P. R. Kasten
19. A. L. Lotts
20. R. E. MacPherson/ J. A. Conlin
21. A. P. Malinauskas
22. Walter J. McCarthy
23. D. D. Paul
24. H. Postma
25. P. L. Rittenhouse
26. M. W. Rosenthal

31-45. J. P. Sanders
46. Dunlap Scott
47. Myrtleen Sheldon
48. I. Spiewak
49. J. R. Tallackson
50. John J. Taylor
51. D. B. Trauger
52. W. D. Turner
53. G. D. Whitman
54. W. J. Wilcox
55. ORNL Patent Office

56-57. Central Research Library
58. Document Reference Section

59-63. Laboratory Records Department
64. Laboratory Records Department (RC)

External Distribution

65. Director, Division of Reactor Licensing, USNRC, Washington, D.C. 20555
66. Director, Division of Technical Review, USNRC, Washington, D.C. 20555
67. Assistant Director for Reactor Safety, Division of Technical Review, USNRC, Washington, D.C. 20555
68-87. Chief, Gas Cooled Reactors Branch, Division of Reactor Licensing, USNRC, Washington, D.C. 20555
68. Chief, Reactor Systems Branch, Division of Technical Review, USNRC, Washington, D.C. 20555
69. Chief, Core Performance Branch, Division of Technical Review, USNRC, Washington, D.C. 20555
90-91. Director, Office of Nuclear Regulatory Research, USNRC, Washington, D.C. 20555
70. Assistant Director, Advanced Reactor Safety Research, Division of Reactor Safety Research, USNRC, Washington, D.C. 20555
71. Chief, Experimental Gas Cooled Reactor Safety Research Branch, Division of Reactor Safety Research, USNRC, Washington, D.C. 20555
72. Director, Division of Reactor Research and Development, ERDA, Washington, D.C. 20545
95-97. Office of Reactor Safety Research Coordination, ERDA, Washington,D.C. 20545
73. Assistant Director, Gas Cooled Reactor Projects, Division of Re-actor Research and Development, ERDA, Washington, D.C. 20545
74. Assistant Director, Reactor Safety, Division of Reactor Research and Development, ERDA, Washington, D.C. 20545
75. Chief, Gas Reactor Safety Branch, Division of Reactor Research and Development, ERDA, Washington, D.C. 20545
76. Director, Research and Technical Support Division, ERDA, ORO
77. Director, Reactor Division, ERDA, ORO
103-129. Technical Information Center, ERDA, ORO
78. W. H. Beach, EGCRSRB, Division of Reactor Safety Research, USNRC,Washington, D.C. 20555
79. A. Bournia, Gas Cooled Reactors Branch, Division of Reactor Licensing, USNRC, Washington, D.C. 20555
80. R. E. Ireland, Division of Technical Review, USNRC, Washington, D.C. 20555
81. E. Lantz, Gas Cooled Reactors Branch, Division of Reactor Licensing, USNRC, Washington, D.C. 20555
82. R. Lobel, Division of Technical Review, USNRC, Washington, D.C.20555

[^0]: *Temporary summer employee at ORNL from the staff of the Department of Mechanical Engineering at the University of Tennessee.

