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. ABSTRACT 

The neutron detection efficiency is a parameter required in 

the measurement of reactivity by the modified source technique. The 

direct solution 6f the detection efficiency at a p~rturbed state 

is costly. 

To solve for this.,.a particula~·vari~tional f~hctional, the 

Lewins' type variational fu~crtional, was present~d in this study. 

The functional is a ratio of twp oth~r· functicinals, each ·dealing 

with a reaction rate. The evaluation of this particular functional. 

was done by treating the numerator and the denominator functionals · 

separately. This ieads to three flux equations, one for ·forward· 

flux, and two for adjoint {luxes. Th.e advantages of this formulation 

over, and the equivalence of this formulation to, the conventional 

functional presented in the literature are described in detail. 

The flexibility of the.proposed functional was demonstrated by 

using it to estimate the detection efficiency with four different 

methods: variational interpplation, conventional variational, 

variational extrapolat~on, and multi-reference-state variational. 

Results were de~onstrated for one-dim~nsional and two­

dimensional problems. All results were Compared with direct 

calculations. In all cases~ the results show that the .variational 

interpolational ~ethod a~d the multi~r~fere~ce-state variational 

method are efficient and practically acceptable . 

v 
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NOMENCLATURE 

A = mass number 

a, a*£= coefficient vectors with components ai and a*i£ respectively 

Xg = fraction of fission neutrons for group g 

on£ = Kronecker delta function 

E = neutron energy 

E., F. =variational functionals 
1 1 

_E = a small definite parameter 

G = total energy group 

g = subscript for group g 

H = transport operator at perturbed state 

H =core height in Equations (4.1) and.(4.2) 

R. = transport operator at reference state i 
1 

H* = adjoint transport operator of H 

H*. =adjoint transport operator of R. 
1 1 

I = total number of interval (1-D) 

!max = total number of radial interval (2-D) 

IJ = total number of interval (= !max * Jmax) 

Jmax = total number of axial interval (2-D) 

NA = Avogadro's number 

v = average number of neutrons per fission 

~ = cosine of the polar angle 

n = neutron direction 

~ = azimuthal angle 

XV 



~ = neutron flux at perturbed state 

~. = neutron flux at reference state i 
1 

8* = adjoint flux at perturbed state in Equation (2.3) 

8*. = adjoint flux in Equations (2.7) ·and ( 2. 9) ' i = 1 ' 2 
1 

e*. = adjoint flux in Equations (2.11) and (2.12)~ i = 1 ' 1 

s, s = externa 1 neutron source of perturbed and reference 

respectively 

L = total macroscopic cross section 

Ld = macroscopic detection cross section 

Lf = macroscopic fission cross section 

Ls = macroscopic scattering cross section 

~K (r) = reference flux moment at position r of ·group g. gn 

2 

states, 

e*~ (r) = adjoint reference flux moment at position r of group g, 1gn 

i = 1 ' 2 

w = slab width 
<Ll~> 

W [~J = Ll and L2 are two different cross-sectioni n 't' <L ~> ' 
2 

x = phase space in Equations (2.29) and (2.30) 

6x, 6x. = radial interval size at detector position and the ith 
1 

interval, respectively 

= axial interval size at detector position and the jth 

interval, respectively 

YK(Q) = spherical harmonics 
n 

xvi 

,. 
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CHAPTER I 

NATURE OF PROBLEM AND RELATED BACKGROUND 

A. Problem Statement 

An important parameter in the Modified Source Multiplication 

formalism used in the measurement of reactor subcriticality is the 

neutron detection efficiency for fast or t'hermal power 

reactors. (1 ,2,5,18,19,32) 

. ( 32) The neutron detection effi~i~ncy is defined as the numb~r · 

of neutron reactions in the detector per fission in the reactor core 

zone, i.e.; 

w [¢] 
n 

fvd JE Ed(r,E) ¢(r,E) dEdr 

= --~--------------------
fv JE Ef(r,E) ¢(r,E) dEdr 

c 

( 1.1) 

where Ed and Ef are the ma~rpscopi~ neutron cross.sections for response 

in. the ~etector and fission in the reactor core, respectively~ ¢ is 

the neutron flux, and the < > represents the integration, or summation 

over phase space. Vd and Vc are the detector.and core volume, 

respectiv~ly. 

The ~alculation of Wn is usually ~arried out(S,l 2,l 4,1 9,33,43) 

by solving the time-independent neutron Boltzmann transpor.t equation( 4) 

for~' i.e., solve 
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·n • v~(~,E,fi) + t(~,E) ~(~,E,fi) = 

where the symbols used in Equation (1.2) have their conventional 

meaning as specified in reference 4~ For convenience, we will 

express Equation (1 .2) in operator form as: 

H~ = S, 

where 

H- the transport.operatbr for Equation (1.2); 

and 

S =the external neutron source •• 

Once~ is known, Equation (1.1) is solved directly. 

( l. 3) 

The difficulty with the direct computation of Wn lies in the 

expensive computational effort. required for the solution of Equation 

. (1.2). ·A solutibn is required at each state it is desired to compute 

wn. 

we· seek an acceptable approximat~ technique? a v~riational 

method, for the comput~tirin of wn~ . The motivation.for this approach 

is to avoid the repeated calcu1~tio~ of neutron flux by Equation (1.2). 

The tonventional~approach of.'the variational method for a parameter 

is described in deta i 1 in the fo 11 owing section. 

... 
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B. Conventional Variational M,ethod for a Ratio of Reaction Rates 

During the last ten years, Pomraning( 26 - 28 ) and Stacey( 34- 38 ) 

have developed variational methods for the evaluation of neutron 

reaction rates, reaction rate ratios~ and reactor reactivity worths. 

The application of these techniques are suitable for critical systems 

as well as sub~ritical systems. The advantages of using· the vari­

ational method rath~r than .that of directly calculating the perturbed 

flux and co~puting,the parameter ~f interest are threefold:(JS) 

(a) the numerical computations for forward .and adjoint trial· 

functions. (referenGe fluxes) might be more accurate than that for 

the perturbed system, {b) the variational functional is itself a 

stationary property exploiting method; it provides an accuracy of 

second order in the difference of the exact (pe~turbed) and 

approximate (reference) functions, (c) the use of trial functions 

in the variational fun~tional provides an economical means for the 

estimation of the parameter of interest at a given perturbe~_state. 

Equation (1.1) is the ratio of two reaction rates; thusly, 

by the conventional. variational method~ the variational functional 

is:(27,37) 

<Edlj>> 
E [$,8*] = ~ ·+ <S*, S - H$> , 1 .. · · <Ef > 

( 1 • 4) 

where e* is mathematically called a Lagrangian multiplier;( 40) and 

in neutron physics, it i~ an importa~ce function.( 20) It is shown 

(see Appendix A) that Equation (1.4) is a variational principle 

for W [q>] and the stationary conditions'.for· Equation (1.4) are:( 27) 
n 
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Hq, = S, ( 1. 5) 

H*e* = G .. (cp), ( 1 • 6) 

Ed<Ef<j>> - Ef<Ed<j>> 
= . ' . 2 

<Ef<j>> 
(l .. (q,) 

wher~ H* is the adjoint Boltzmann transport oper~tor. (4 ) 

The second term of Equation (1.4) is called the correction 

·term. It corrects the differente( 35 ) between the perturbed (exact) 

flux and the reference (approximate) flux. 

To show that Equation (1.4) is .of.se~ond order in difference 

of fluxes, we s~bstitute 

. <P = <P - o<P ' 

e* = e* - oe*, 

where ~ and e* are tria 1 (reference) forward and adjoint flux 

respectively, into Equation (1.4), then: 

1 
<Edo<J>> 

-<Ed<j>> 
[ 

<Ed<j>:> 
. * s = <Efoq,) + <S. ' >. <Ef<j>> 

1 - .<Ef <P> 

- <oS*,S> ·- <S*,H<P> + <oS*,H<P> 

( 1. 7) 

( 1. 8) 
~· 



5. 

S. . f' t d . . .·. t' (l 3) h t h' h 1nce <Ef8•~ 1s 1rs · or er 1n approx1ma 1on, t e erms 1g er 

than second order. expanded in the bracket .could be neglected, hence 

<Ef.> 

+ <B*,S> - <8B*,S> ·~ ~e*,S> + <8B*,S> + 

( 1. 9) 

where Equations .(1.5), (1.6),. an~ the inner product r~latiori: 

<B*,H•> ·~ <•,H*B*> 

hav~ been employ~d. Equation (T.9) ~hows that first order errdr in 

the for~ard and adjoint fluXe~ results ~n se~ond order error of the 

pa~ameter of interest. 

Conventionally, the value of E1 [~,e*] is evaluated by solving 

th~ forwa.rd and adjoint fluxes by Equations (1.10) and (1.11), 

·.respectively, for a reference state. Then we use these values in 

Equation (1.4). The following two cases show the kinds of difficulties 

that we .will meet in the calculations of the fluxes ~ and e* by 

Equations (1.10) .and (1.11) 

R;j; = s, (1.10) 
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. G .. (~) = (1.11) 

First, the solutions of Equations (1.10) and (1 .11) for the 

variational calculation· of the neutron detection efficiency, computed 

by Equation (1 .4), have the problem of the presence of a negative 

adjoint source in Equation (1.11)~ It is obvious from the right 

hand side of Equation (1.11) that at the location of the neutron 

detector, the value of G .. (~) ·is positive (}:(is:very small for 

fission chamber), and that in another portion of the rea~tor~ 

G .. (~) is negative (~dis zero outside the detector position). 

Second, the source term of Equation (1 .11) consists of both 

the forward and adjoint fluxes $and s*. If the estimation of a 
'. 

parameter of interest, like the problem stated ~n section A of this 

chapter is done by the variati~n~·i in~·~rpolat~onal ~~thod{7) ~ith 
two reference states, one for fqrward flux <t>, the other for adjoint 

flux s*, the solution of Equation· (1 .11) for s* needs the value of 
·' 

the forward flux <1> at the reference state of the adjoint flux. 
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C. _· Objectives 

There are tHree ~bject~ves in. this ~iise~tation. 

The first obje~tive is to devel6p a variational functional,* 

for the eva 1 ua t ion of the neutron .. detection efficiency by the 

variational technique. The Le\':iins• type variational functional is 

a·ratio of two other. varfationaT functions, one for_ the numerator 

of Eq~atici~ (1-~~), i.e.~ <Ed~>, and_ the other for the denominator 

of. the $arne equation, <Ef~>. The proposed technique needs minimum· 

of one forward flux and two adjoint fluxes. 
- -

The s~co~d 6bj~ctiv~ ~~ to show the talcul~tional procedures 

which are required in the determination of a parameter evaluated by 

the proposed technique~ -

The third objective of this diSsertation is th~ demonstration · 

of the high flexibility of the· variational functional form by using 

the ideas of variational interpolational method, (7) variational 

extrapolational method, and multi-:-reference-state variational 

method,(Bl·and the conventfonal v~r~~tional met~od, to-solve the 

problem described in section A of this thapter at various 

perturbation stat~s •· 

-~~;:J. Lewins f t•st proposed a similar variational principle( 2l) 
for ratios in crit cal systems. 



CHAPTER II 

. ~ . . . 
. 'MATHEMATICAL FORMULATION 

A .. Introduction 

In this chapter, there are two primary objectives. The first 

is the 'formulation of the Lewins • variati.onal ·functional· for the 

problem of interest. The ·physical· meaning of each correction terin 

in this functional is des~ribed, and ihe equivalenc~ between ·the 

Lewins• variational functional and P6mr~nin~•s fun~iional is prov~d. 

The Second objective ·i~ to .eitend the Lewinsi f~nctional to the 

variatio~al ·interpolation~ the variational extrapolation, and the 

method of multi-reference-st~te variational method . 

. B. Lewins• Variational Functional. 

First, we repeat Pomraning's functional Equati~n (1.4), and the 

stationary condi~ions, Eq~ations (1 .5) ~nd ~1.6) here for iater com­

parison with Lewins• variational functional. The Pomraning•s 

functional is 

<Ed~> 
E1[4,e*] = ---'- + <e*, 

<Ef<j>> 

and the stationary conditions are 

HQ> = S, 

H*s* = G .. (Q>), 

8 

S - H~>, ( 2. 1 ) 

(2.2) 

(2.3) 

, . 
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and 

9 

H = the Boltzmann transport operator for the stationary state, 

~ = the steady state angular neutron flux at energy E and the 

position r, 
H* = the adjoint Boltzmann transport operator of H, 

~* = the steady state angular adjoint flux at energy E and 

position r' 
S =the external neutron source for the stationary state,· and 

G'(~) =the adjoint source for Equation (2.3). 

J. Lewins( 2l) introduced a variational functional for use in 

estimating ratios of integral quantities in critical systems. Lewins• 

functional is somewhat different from that functional introduced by 

·Pomraning( 2B) (Equation (2.1)); however, Dwivedi(g) proved that 

the two functionals are equivalent for ratios in a critical system. 

Accot'dingly, we wi~h to introduce rt LP.wins • type functional for the 

problem of interest (Equation (1.1)). To this end, we consider the 

numerator and denominator of Equation (1.1) separately. For the 

numerator, the functional is 

F1[$,a*1l = <rdrjl> + <8*1 ~ s - H~>, (2.4) 

and for the denominator 

F2[$,6*zJ = <L:f~> + <Ei*2' s - H$>, (2.5) 
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with stationary conditions (see Appendix A for methodology): 

Hcp = S, (2.6) 

(2. 7) 

for Equation (2.4), and 

Hcp = S, (2.8) 

(2.9) 

for Equation (2.5). · 

The trial flux functions~, e*1, and e*2, which are different 

from the exact (or the stationary) values of the fluxes cp, e*1, and 

e*2· solved·by Equations (2.6) to (2.9)~ for Equations (2.4) and (2.5)_ 

are solutions of the following equations for reference state (or 

states, 

HA: = · S ·. 
. 'I' ' ·"( t. 1 0) 

(2.11}. 

(2.12) 

The ratio of the functionals F 1 [~, e*1] and F 2 [~, e*2] is 

the Lewins• type variational .functional for a ratio of two reaction 

rates: 

<Edcp> + <e*1, S- H~> 
E2 [~] = ---'----"'------

<Efcp> + <e*2, S -:H<P> 
(2.13) . 

' 
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·It is clear that;. in'Equation (2.13), :as the trial function <P · 

becomes.the.exact function, i;e., withthe perturbed flux, the -Lewins• 

functional becomes the exact value of the neutron detection 

efficiency 
.. , 

The physical meaning of the second terms in the numerator and 

denominator of Equation (2.13) can be made clear by the following 

relations. 

First, we substitute the equation 

-
<P = <P + o<P· 

into Equation (2.6) to obtain 

Ho<P = S - H~. (2.14) 

Taking· the inner product of Equati.on (2.14) withe*. (i = 1, 2) and 
. 1 

subtracting ·the inner product of Equa.tions ~2.7) and (2.9) with o<P 

leads 'to·· 

<8*.,5- H~> = <L., o<f>> 
1 1 

( 2. ·15) 

Equation (2.15) shows that the second terms in Equation·(2.13) are 

the corrections .for the flux change from the reference state. Thus 

the term <8* 1, S- H~> represents the correction for the neutron 

count rate in the detector due to the flux difference between the 
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perturbed state and the reference state. Similarly, <8*2, S - H~> 

represents the correction for the total fission rate in the reactor 

core. 

C. The Equivalence Between the Lewins• Functional and 

the Pomraning•s Functional 

In order to mathematically assure the reliability and the 

applicability of the Lewins• functional Equation (2.13) ·for the 

calculation of the ratio of interest, the equivalence between 

Equation (2.1) and Equation (2.13) is shown below. 

We assume that the flux difference between the reference and 

exact state is first order, then ·we have the relationship of 

Equation (2.14), 

Hocp = S - H~. (2.14) 

Before carrying out the proof for the equivalence, one should 

make sure of the order of t~e. term <e*2, S- H~> in Equation (2.13) 

in terms of the flux difference ocp. If the correction term is first 

order in ocp, then the binomal expansion for the denominator of 

Equation (2.13) divided by <Ef~> could be approximated by a first 

order expansion. To show it, we take the inner product of Equation 

(2.14) with e*2, then 

hence 

(2~16) 

... ~ 

'r' 
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Equation (2.16) shows that the correction term of the denominator in 

Equation (2.13) is of first order in terms of the flux difference o~. 

Writing Equation (2.13) as 

<Ed~> <S*l, S - H¢> <s*2, S - H¢> -l 
E2[¢J = -'-- [1 + ] [1 + J 

<Ef~> <Ed~> <Ef~> · 

and making use of Equation (2.16), the second bracket on the right 

hand side of the above equation could be approximated by a first 

order expansion, 

From here we expand and collect terms for the right hand side of the 

above equation to obtain 

<Id~> <S*2, S - H$> 

<Ef~> 

Now we define a new quantity 

<Ef~> ~*1 - <~d¢> ~*2 
- 2 

<Ef~> 

(2.17) 
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then 

In Equation (2.18); e* is an equivalent adjoint flux or the 

Lagrangian multiplier for the variational· functional E 2 [~]. e*.is 

a value from a reference state. By Taylor•s series expansion, we 

show (see Appendi~ B) that e* is a ~irst order ~pproxima~i6n to'the 

exact value e*, which is 

<Ef<P> e* - <Ed<P> e* 
e* . 1 2 = . 2 

<Ef<P> 

(2.18) 

(2.19) 

We are now at a position to show that Equation (2.19) satisfies 

Equation (2.3), and thus the· equality' of Equation ('2.1B)' with 

Equation (2.1). To do this, we operate on Equatiori.(2.19) with.H* 

and make use of Equations (2.7) and (2.9), then 

H*e* = 

= 

and 

<Ef<P> H*e*l - <Ed~> H*e*2 
<Ef<P>2 

H*e* = G .. (cp). 

This completes the proof that Equation (2.13) 'is equivai'ent to· 

Equation (2.1). 

The equivalence of E1 and E~ can also be shown from the 

calculational point of view by the superposition principles (4, 17 ) 

for the solutions of Equation (1.11) (see Appendix C). 

.. 
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D. Extensions of the Lewins 1 Functional 

The advantages of the Lewins' functional are pointed out by 

comparing Equation (2.13) with Equation (2.1) and their associated 

equations, i.e., Equations (1.10) and (1.11) as well as Equations 

(2.10) through (2.12). The first advantage of the Lewins' functional 

is its flexibility in the choice of reference flux functions. For 

example, in the conventiona·l vari ati ona 1 method, we may choose both 

the forward and adjoint fluxes at the same reference state; in the 

variational interpolational method,P; 39 ) the perturbed state is inside 

the forward and adjoint reference states; in the variational 

extrapolational method, the perturbed state is outside the reference 

states; in the multi-refer~nc~-state variational method, we may 

employ the trial flux functions (forward and adjoint) by linear 

combination(B,lG, 27 , 29 ) of given reference fluxes. The second 

advantage is that the solution for .the adjoint fl~x functions is 

independent of the forward flux function. This is clear when we 

compare Equations (2.11) and (2.12) with Equation (1.11). In 

Equations (2.11) and (2.12), th·ere'is no dependence on the forward 

flux, while ~n Equation (1.11), the source term contains the 

parameters of <Ed~> and <~f~>. ·This means that the solution for 

Equation (1.11) needs the solution of the forward flux~ (or an 

estimated source) at the same reference state. 

In the remainder of this section, the conventional variational 

method, the variational interpol~tional method, the variational 

extrapolational method and the multi-ref~rence-state variat~onal. 

method w111 be presented. 
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Conventional Variational Method 

Traditionally, both the forward and the adjoint fluxes are 

chosen at the.same r~feience state.( 3l) In this case~ the calculation 

of a ratio for a perturbed state which is located on either the left 

side or the right side 6f the ref~rence state, is shown in Figure l(a). 

The Lewins• functional* for this case is 

= 
<Ed~l> + <B*ll' S- H~l> 

<Ef~l> + <S*21' S - H~l> 

where ~1' e*,' and e*21 are obtained respectively from 

and 

Variational Interpolational Method 

Steinke) 39 ) .and Cheng and Conn(7) described the concept of 

the vari~tional interpolational method for the calculation of 

reactivity and reacti-on rate, respecttvely for any perturbation 

state between two reference states .. As shown in Figure l(b), the 

interpolation is done by calculating the reference forward flux 

at one of th~ two reference states and· the reference adjoint 

fluxes at the other one. 

*The superscript 11 C11 signifies that this E2 is for the 
conventional' variational method. 

(2.20) 

( 2. 21 ) 

(2.23) 
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Reference 
State 

X Perturbed 
State 

I( l~l' 8n·:·2l 

(a) Conventional Variational r~ethod 

Reference States 

-
cj>l 

2 

(b) Variational Interpolational Method 

States 

2 

(c) Variational Extrapolational. t1ethod 

Figu~e 1. Locations of Reference States and the Perturbed State~ 
for Various Variational 1·1ethod. 



18 

The Lewins' functional used for this technique is 

I - <Ed~l> + <~*12' S - H~l> 
E 2[~1] .= - -

<Ef~l> ~ <S*22' S - H~l> 

where ~l, 8*12 , and e*22 are obtained respective·ly from 

Rl ~1 = 51 , 

and 

Variational Extrapolational Method 

This method is the extended concept .from the variational 

interpolational method. The two reference states are located on 

one side of a perturbed state. Its orientation·is shown in Figure 

l(c) and the functional form utilized here is 

<Ed~l> + <~*12' S - H~l> 

<Ef~l> + <~*22' S - H~l> 

where the reference fluxes are solved by Equat1ons (2.25) through 

( 2. 27). 

Multi-Reference-State Variational Method 

.. POmrantng( 2l) and Conn{S) have suggested-the applications of 

the multistate variational me~hod for- the calculation of a ratio. 

According to Conn,(S) the multi-reference-state variational method 

has a better accuracy even if the values of the reference functions 

are poor. 

(2.24). 

(2.25) 

(2.26) 

(2.27) 

·•. 

(2.28) 



P) 

19 

Generally_, we choose equal number of reference states for 

forward and adjoint functions. The locations of reference states 

may be anywhere in the range of int~rest, while the perturbed state 

is within reference states. In the case that the system consists 

of many reference states, the better trial function for the system 

might be a linear combinatiori of the known functions. Assume that 

there are 2N reference points, among them, we choose any N points 
. ' . 

for forward functions, and the rest for adjoint functions. Thus, 

the linear ·combina-tions of the trial f-unctions for 
. ( 11 ) 

the system are 

N 
¢ (X) = E a.~. (X)'"-~ aT~ t 1 1 ' . 

i 
(2.29) 

and 

(2.30) 

where 

x = phase space, and 

a.,a*. =combination coefficients of the forward and adjoint trial 
1 1 

function for the system, respectively. 

If we rewrite Equations (2...4) and (2.5) for the-s'ystem with 

combined trial functions: 

(2.31) 

(2.32) 

and substitute Equatio~s (2~29) and (2.30) into Equations (2.31) and 

("2 .32), then 
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. + +' 
In order to find the stationary values for a and a*R-, the 

+ + 
first variation with respect to a and a*1 are taken which leads.to: 

or 

and 

or 

where <' > 

and 

· +T + T + -rT <E ,~ > - a* <8* ,H~ >. =.0, 1 .. 1 1 . 

+T a 

..:1 
inverse of = 

J/. = 1 ' 2' 

E1 = Ed' Ef. 

. -1 +T .+*. +T = <E ,~ > <8 ,H~ > 
·1. 1 

+ . T + ~ T -1 
= <8* S> · <H~,8~ > 1' 

a matr·i x, 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Substituting Equations (2.34) and (2.36) into Equation (2.33) 

we have 

( 2. 37) 



2i 

where 

.Q. = l, 2; 

L: . = L:d~ L:f' . .Q. 

and 

-
<1>1 

+ + T <H<j>,e*.Q.> = <H <1> 2 

= . . ... . . . . . . . . 

<·-e* . · H:i:N> .'R.-1' 'f' •••• ·• 

·If we substitute Equation (2.37) into Eq~ation (2.13), the 

Lewins• functional form for the multi-reference-state system becomes 

+*T S ++T -1 + 

E~[~] = 
< e 1 '. > <H<P,e*

1
> <L:d,<P>. 

+ T ++T -1 + <e*2,S:-> <H<J>,e*2> <l.:f,rp-:. 

(2.38) 

. - + For calculational ~urpose, the 1nner products <8*
1
i ,H<J>j> 

may be expressed explicitly by the following relations: 
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CHAPTER III 

COMPUTATIONAL PROCEDURES 

A. Introduction 

The objectives of this chapter are to formulate a numerical. 

form of the Lewins• functional for computational p~rpose and to 

describe the calculational procedures that are required in the 

execution of the variat"ional functional. 

B. The Numerical Form of the Lewins• Functional 

For reference purpose, we rewrite Equation (2.13) here 

<Ld~> + <s*1, S- H~> 

<Lf~> + <e*2 , S - H~> 

and for convenience, we write the numerator and the denominator of 

Equation (3.1) as. 

F.[~,e*.] = <L.~> + <S*., S- H~> 
1 1 1 1 

where 

i = 1, 2, and 

The trial neutron flux functions, ~' e*., in Equation· (3.2) are 
1 

respectively the sol~tion of. the following equations 

( 3. 1 ) 
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R¢ = s, ( 3. 3) 

and 

R*e*. = L .• 
1 1 

In order to express Equations (3.2) in a detailed numerical 

form, we write Equations (3.3) and {3.4) explicitly as: 

n • v~(r,E,n) + E(r,E) ~(r,E,n) = 

and 

Ov_er the reactor system, on which the parameters of interest are 

evaluated, the boundary conditions( 4,42 ) for Equations {3.5) and 

(3.6) are shown in Table 1. 

Equation {3.5) and Equation (3.6) are energy dependent 

Boltzmann neutron transport equations. In practical calculations, 

the energy variable can be treated by multi group method, (4, 25 ) 

*The adjoint source of Equation (3.4) is a macroscopic cross 
section which is usually independent of neutron direction. 

(3.4) 

(3.6) 

-· 
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TABLE 1 

BOUNDARY CONDITIONS FOR FORWARD AND ADJOINT 
NEUTRON TRANSPORT EQUATIONS 

Forward Equation 

1. ~(rb, -)a - 0 E, Q = 0, n. . Q > 1n 
2. ~(r, E, ~) is continuous in the system. 

3. ~(r, E, ~) is finite in ihe system. 

Adjoint Equation 

1. e*i (rb, E, ~) 0, -
> 0. = nout . ~ 

2. . e*. ( r, 
1 

E, ~) is continuous in system. 

3. e*. ( r, 
1 

E, n) is finite in the system . 

a rb represents the boundary coordinates of the reactor 
system. 
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that is, the neutron energy range of interest is divided into a 

number of subintervals~. each subinterval represents an. energy group, 

and each group has its own specified properties and governing equation. 

In order to do this, we make an integrati~n for Equations (3.5) 

and (3.6) over a definite energy interval, then we have multigroup 

neutron trans~ort equations: 

G 
+ E J Egs'~g(r;Q'~5) $g,{r,Q') dQ' + s (r,Q), 

g' g . . 
( 3. 7) 

for Equation (3.5), ~nd 

for Equation (3.6), 

where 
E 

$g(r,5) g-1 $(r,E,Q) dE, = JE 
g 

(3.9) 

E 
e*ig(r,5) = g-1 e*.(r,E,Q) dE, JE 

g 1 
(3.10) 

· .. 



.. 
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E- . 
E (r) = J 9 ~ 1 E(r,E) ~(r,E,~) dE/~ (r,n), 
g . E9 .. 9. · 

E 
(vEf(r))

9 
= JE:-l (vEf-(r,E)) Hr,E,n) dE/~9 (r,~), 

E 
x
9 

= !Eg-l X(E) dE 
g 

-g'+g Eg-1 !Eg'-1 
Es (r;Q' + fi) = !Eg Eg~ Es(r;E~,~, + E, ~). 

s.(r,n) g . 
= ~g-1 - - -JE S(r,E,Q) dE,· 

g 

- (-) - Eg-1 - (- ) E. r - J E E. r, E dE. 
·1 g g· 1 

Practically, the parameters for the multigroup adjoint-flux 

equation are obtained .by.constructing the adjoint operator for the 
•. . 

multigroup adjoint equation directly from the multigroup forward 

equat~ons. 

In order to cancel the convective term of the Boltzmann 

equation, we add (R~- S) to the second term of Equation (3.2), 

and after.subtracting~ we have 

where 

l\S = S - S, 

~H = H - R, the change of the transport operator. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17} 

(3.18) 

(3.19) 
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The change of a state is due to the changes of material 

parameters of the system, from Equation (3.5), we have 

(3.20) 

when Equation (3.20) is substituted into Equation (3.17) and summed 

over energy groups, the result is an angular and spatial dependent 

functional 

.. 
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We expand fluxes, scattering cross sections, and sources in 

spherical harmonic functions as( 4,l 5, 23 ) 

and 

ISCT . 2 +l n K K 
I (--n--) I ~gn{r) Yn{Q), 

n=O 41f K=O 

ISCT 2~+1 ~ - m {-) m(-) 
= I ( -v) I e* i 9 ~ r v ~ rz , 

~=0 ·· m=O 

ISCT 2n+l n K K 
~s 9 (r,Q) = I (----41f) I ~s (r) v (Q), 

n=O K=O gn n 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

respectively, where the normalized spherical harmonics is defined by 

K - (2 - ono) (n - K)! l/2 
Yn(rz) = [ (n + K)! ] P~(~) COSK¢, 

o KO = 1 , i f K = 0 , 

= 0, if K f 0, 

and make use of the addition theorem( 22 ) 

( 3. 26) 

( 3. 27) 



30 

Sub~titute Equations (3.22~3.25) and (3.27) 'into Equation· 

(3.21) and make use of the relationship 

to obtain 

G IJ 
F.(~ ,e*. J = I I ~ (r .. ) L (r .. ) v .. + 
1 g 1 g g= 1 i j g 1 J 1 g 1 J 1 J 

G ISCT · . n IJ 
I ·I (2n+l) I I e*~ (r .. ) ~sK (r .. ) 
1 0 4n K 0 . . 1 gn 1 J gn 1 J g= n= = 1 J 

G ISCT 2 + l n IJ _ K _ ) -K ( _ ) 
I I ( ~n) I I ~r. (r .. ) e*ign(riJ. <l>gn riJ. v .. + 

g=l n=O K=O ij · g 1J 1J 

(3.28) 

ISCT IJ G n G ... 
I {(2n+l) I viJ.[ I. I e*~ (r .. ) I ~r.g -+g(r .. ) ·~K. (r .. ·}]} 

n=O 4n ij g=l K=O 1gn 1J g""=l sn 1J g n 1J 

where 

G X IJ 
\ _[ \ [- (- ) + L 4n -~ ViJ. 8\g· rij 

g=l 1J 

G = total neutron energy groups, 

ISCT = the order of scattering, 

v .. 
1J 

=the volume of the ijth interval, 

IJ = total number of intervals. 

(3.29) 

The application of the forward and adjoint flux moments in 

Equation (3.29) is presently used for the two-dimensional problem of 

sensitivity analysis.( 44 ) The use of fluxmoments instead of angular 

.. 

., 
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flux in two-dimensional system has a desirable advantage of avoiding 

the storage of a large number of neutron angular fluxes. The code 

DOT offers both the forward and the adjoint flux moments, while the 

code ANISN offers angular fluxes only. So, for one-dimensional 

problems, the numerical form (see Appendix D) for the variational 

functional Equation (3.21) employs neutron angular fluxes. 

C. Calculational Procedures 

The solution of Equation (3.1) is carried out by evaluating 

both the numerator and denominator separately, as dictated by 

Equation (3.29). The forward and the adjoint reference fluxes are 

calculated by solving Equations (3.5) and (3.6), respectively. The 

numerical calculation for Equation (3.29) has two steps: (a) calculate 

the first term with the reference forward flux and the nuclear 

parameters at the perturbed state, (b) evaluate the remainder~ of 

the equation (i.e., the correlation term of Equation (3.2)), by 

using the sensitivity code SWANLAKE( 3) and the changes of the 

nuclear parameters from the reference state. 

The calculation of both the forward and the adjoint fluxes 

at reference states will be done by ANISN(lO) for one-dimensional 

(27} problems, and by DOT for two-dimensional problems. The SWANLAKE 

code calculates the products of the adjoi~t and the forward( 3) 

(~* ~) flux moments for one-dimensional problems by directly inputting 

the angular fluxes. For two-dimensional problem, an intermediate 

code VIP( 6) is used to calculate the products of the adjoint and the 

forward flux moments. SWANLAKE uses the moment products as input. 
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CHAPTER IV 

NUMERICAL DEMONSTRATIONS 

A. Introduction 

There are two classes of problems to be demonstrated in this 

chapter. Each class has at least two of the four types of calculational 

methods, i.e., the variatiohal interpolation, the variational extra­

polation, the conventional variational, and the multi-reference-state 

variational method. 

The first class are one-dimensional problems. The neutron 

fluxes (forward and adjoint) are calculated by the ANISN(lO) code 

with P3s4: The 50-group neutron cro;s section set( 45 ,46 ) prep~red 
for the Engineering Mockup Critical (EMC) facility was employed. 

The second class consists of two-dimensional problems. The neutron 

fluxes involved in the variational calculations for this second class 

were calculated by the discrete ordinate code DOT( 3l) with P3s4• 

The 14-group cross section set used for the two-dimensional problems 

were collapsed from the 50-group sets used for EMC by the ANISN code. 

The correction terms for the neutron flux change from a reference 

state, i.e., the second terms in Equation (2.13), were evaluated 

by the sensitivity code SWANLAKE( 3) for the two classes of problems. 
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B. One-Dimensional Calculations 

Description 

The one-dimensional calculation of the detection efficiency 

(Wn) in this dissertation used the slab model shown in Figure 2. 

This model is a mockup of the EMC shown in Figure 3. The calcula-

tion of DE was done for one gram of active material in the detector. 

Thusly, from Equation (1.1), we have 

where 

NA = 

v = 

A = 

H = 

w = 

Wn[cp] = 
<L:dcjl> 
<L:fcjl> 

NA\i 
= (AHWt~X) 

Avogadro•s number, 

L: CJdgcjlg4X 

L: L:(vL:f)~ cp .l\X. 
j g . J gJ J 

L: CJ cp· 
g dg g 

L: ( v L: f) ~· cp • 4 X . 
g J gJ J 

average number of neutrons per fission, 

mass number of active material, 

height of the slab, 

width of the slab, 

odg = group microscopic cross section in detector, 

(vt:f)J = product of the number of neutrons per fission and the 

macroscopic fission cross section for the gth group and 

the jth interval. 

( 4.1) 
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6X. = size of the jth interval, 
J 

~gj =group flux for the jth interval. 

The dimensio~s of the slab core and the arrangement of material zones 

as well as the detector position are shown in Figure 2. The value of 

v is 2.92 neutrons/fission for the 50-group EMC calculation. (33 ) 

The reactor core was divided into 18 zones. The total number of 

intervals is 102, five intervals ~or each fueled zone, and seven 

intervals for each reflector and shield zone. The forward and adjoint 

fluxes were calculated by ANISN(lO) with P3S4; The neutron cross­

section set used is t~e 50-group set( 45 ,46 ) prepared for the EMC 

calculation. 

Reference States and Reference-Flux Calculation 

· For variational estimations, there are four core configurations 

ctlusen as the reference states for the calculations of the reference 

forward and/or adjoint flux function; these states are numbered 2, 

5, 8, and 11 in Tabl~ 2, which also sho~s the s~bcriticality of each 

state. 

In order to make numerical demonstrations, the forward 

reference fluxes w·ere calcu.lated for all reference states while 

that for the adjoints wer~ calculated for states 5 and 11 only. 

The specification of the fixed sourceS ·for the forward flux in 

Equation (2.10) was madeby considering mainly(lg) the number 

density distribution of 240Pu for the.spontaneous fission neutrons 

in fast reactors~ For the calculations of the adjoint fluxes 

~l* and ~ 2* in Equations (2.11) and (2.12), the source specifications 

were made according to the di~tributibns of the macr6scopic detection 



TABLE 2 

STATES AND SUBCRITICALITIES FOR ONE-DIMENSIONAL CALCULATIONS 

Number of Number of Safety Rods Inserted Control Rods 
Inserted 0 1 2 •J 

(l)a (4) (7) ( 1 0) 
4 .1 . 0( 0. 0$) 0.9661 (10.55$) 0.9412(18.31$) 0.9199(24.9$) 

(2) (5) ( 8) ( 11) 
5 0.9913(2.71$) 0.9572(13:33$). 0.9353(20.14$) . 0.9146(26.57). 

w 
( 3) (6) ( 9) . ( 12) -......! 

6 0.9817(5.68$) 0.9491(15.86$) 0.9264(22.9$) 0.9037(29.96$) 

a(n) the number "n" in:; ide the. bracket represents the state number. 
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cross section Ed' and the macroscopic fission cross section Ef in 

the detector interval and the fueled reactor zones respectively. 

Variational Calculational Methodology 

The numerical calculation for the conventional variational 

method was done by choosing the reference fluxes (forward and adjoint) 

at the same state. We chose states 5 and 11 for this purpose. The 

computation is done with Equation (2.20), where the two correction 

terms, <§•11 , S- H~ 1 > and <§*il, S - H~ 1 >, !or the numerator and 

denominator respectively, were evaluated by SWANLAKE.( 3) 

For the variational interpolation and extrapolation methods, 

the estimations of the neutron detection efficiency are done by 

Equation (2.24) and Equation (2.28) respectively. The selections 

of reference states for the two methods are similari for the 

vdr'lat1onal interpolation, we always keep the perturbed state 

inside the two reference stat~s chose~, while that for the variational 

extrapolation is outside. The reference-state couples used for these 

calculations are (2,5*),a (2,11*), (8,5*), (8,11*), (5,11*), and 

(11 ,5*). The calculations of the correction terms are similar to 

that for the conventional variational method. 

For the multi-reference-state method, the trial flux functions 

(forward and adjoint) are the linear combinations of given reference 

fluxes. There are two kinds of combinations for the trial flux 

a (2,5*) means that we use forward reference flux at state 2, 
and adjoint reference flux at state 5. 
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fun~tions in this calculation. The first chose the forward fluxes 

from states 2 and 8 as components of Equation (2.29), and that for 

the adjoint fluxes we selected states 5. and 11 as· components of 

Equation (2.30). The second used the forward and adjoint fluxes 

from states 5 and 11 as components of Equations (2.29) and (2.30). 

From Equations (2.38) and (2.40), we know that the elements of the 

matrix are <E , i.>, <~* . , S>, and<~* ., 6H~.>. 
Jl. 1 !1.1 . . !1.1 J 

calculated by ANISN directly; <~* . , S> was computed by using the 
.. !1.1 

adjoint flux and the fixed sour~e (see Appendix E); <~*n·• 6H;.> 
. ~1 J 

is eva 1 ua ted by the SI4ANLAKE code (see AppendiX 0) . 

Results 

The detection efficie~cies for a U-235 fission chamber and 

a He-3 detector calculated by ANISN for differ~nt states are shown 

in Table 3. The detection efficiencies estimated by the conventional 

variational method are shown in Tables 4 and 5 for U-235 and He-3 

detectors respectively. Tables 6 and 7 show the values evaluated 

by the variational inte~polational methods for U-235 and He~3 

detectors respectively, while that computed by ·the variational 

extrapolational method are shown in Tables 8 and 9. The multi-

reference-state variational methods estimated detection efficiencies 

for the fission chamber and the He-3 detector are shown in Tables 

lOandll. 

Discussion of Results 

The reference forward and adjoint fluxes for the one-dimensional 

variational calculations were calculated by ANISN(lO) using 10 and 



State 
Number 

2 

3 

4 

5 

6 

.7 

8 

9 

10 

11 

12 
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TABLE 3 

THE· DETECTION EFFICIENCY· OF U-235 
AND He-3 DETECTOR AT EACH STATE 

BY ONE-DIMENSIONAL CALCULATION 

Detection Efficienc~ 
U-235 

5.51-7a 

5.37-7 

6.07-7 

5.92-7 

5.79-7 

6.36-7 

6.26-7 

6.12-7 

6.65-7 

6.!)5-7 

6.42-7 

He-3 

1.84-4 

1 . 79-4 

2.01-4 

1. 97-4 

1. 92-4 

2.12-4 

2.08-4 

2.04-4 

2.21-4 

2.18-4 

2. 1 3-4 
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TABLE 4 

THE DETECTION EFFICIENCY OF U-235 DETECTOR 
BY CONVENTIONAL VARIATIONAL METHOD 

FOR ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State Efficiency (%) 

(5,5*)-+2 5.54-7 +0.61* 

(5,5*)-+3 5.45-7 +1.52 

(5,5*)-+4 5.96-7 -1.10 

(5,5*)-+6 5.86-7 + 1:18 

(5,5*)-+7 7.36-7 +l5.8 

( 11 '11*)-+3 5.89-7 +9.62 

(11 '11 *)-+4 6.20-7 +3.00 

( 11 '11 * )-+9 6.17-7 +0.76 

(11,11*)-+10 6.64-7 . -0.11 

(11,11*)-+12 6.43-7 +0.23 

* . . Errors were computed from more precise values, and used the 
relation exact - approximate 

error % = ( . -~ ) x 100. exile · 
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TABLE 5 

THE DETECTION EFFICIENCY OF He-3 DETECTOR 
BY·CONVENTIONAl·VARIATIONAL METHOD 

FOR ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State Efficiency (%) 

(5,5*)-+2 ' 1 .80-4 -1.92 

(5,5*)-+3 1 • 78-A -0.69 

(5;5*)-+4 1. 97-4 -1.93 

(5,5*)-+6 1. 98-4 +2.79 

(5,5*}-+7 2.58-4 +21.7 

(11 '1l*-)-+3 1. 95-4 +8.72 

(11 '11*)-+4 2.06-4 +2.37 

(11 '11 *)-+6 1. 99-4 ·+3. 26 

( 11 '11 +) "8 ?..09-4 +0.12 

(11 'll*h·9 2.08--4 +1.93 

(11,11*)-+iO 2.21-4 +0.1 d 

(11,11*)-+12 2.14-4 +0.49 

,. 
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-.'TABLE 6 

THE DETECTION EFFICIENCY OF U~235 DETECTOR 
. .. . BY VARIATIONAL INTERPOLATION FOR 

ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State· Efficiency (%) 

( 2, 5* )-+3a 5~33-7b -0~75c 

(2,5*)-+4_ 6. 77-7 +12.26 

( 2' 11 * )-~o3 5.28-7 -1.75 

(2, 11*)-+4 5.88-7 -2.44 

(2, 11*)-+5 5.63-7 -4.83 

(2,11*)-+6 5.30-7 -8.33 

(2, 11*)-+7 6.29-7 -1.19 

(2, 11*)~ 5.95-7 -4.89 

(2,11*)-+9 5.12-7 -16.40 

(8,5*)-+6 5.70-7 -1.44 

(8,5*)-+7 6.23-7 -2.03 

(8,11*)-+9 6.11-7 -0.29 

( 8 ' 11 * ) -+1 0 6.75-7 +1.44 

(5, 11*)~ 5.73-7 -1.02 

( 5,11 *) -+7 6.37-7 +0.10 

(5, 11*)~ 6.19-7 -1.03 

(5, 11*)-+9 5.96-7 -2.65 

(11 ,5*)~ 5.65-7 -2.34 

(11 '5*) -+7 5.98-7 -10.14 
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TABLE 6 (Continued) 

Perturbation Detection Error 
State Efficiency (%) 

(11 ,5*)-+8 5.93-7 -5.24 

( 11 '5*)-+9 5.93-7 -3.14 

( 11 '5* )-+ 1 0 6.47-7 -2.75 

aThis means that the correction tenn is calculated by the 
forward flux at State 2 and the adjoint fluxes at State 5 for 
the perturbation State 3. 

b -7 Read 5.33 x 10 • 

c .. + .. or .. _ .. means over or under estimation. 
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TABLE 7 

THE DETECTION EFFICIENCY OF He-3 DETECTOR 
BY VARIATIONAL INTERPOLATION 
.FOR ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State Efficiency (%) 

(2,5*)+3 1. 81-4 +0.90· 

(2,5*)+4 2.42-4 +20.6 

(2,11*)+3 1 . 76-4 -1.49 

(2,11*)+4 1.97-4 -1.76 

(2,11*)+5 1 .89-4 -3.96 

(2,11*)+6 1.79-4 -7.00 

(2,11*)+7 2.13-4 +0.86 

(2 ,11*)+8 2.04-4 -2.15 

(2' 11 *)+9 1 .87-4 -8.00 

(8,5*)+6 1.86-4 -3.28 

(8,5*)+7 2.06-4 -2.80 

(8, 11 *)+9 2.03-4 -0.10 

(8, 11*)+10 2.25-4 +1.90 

(5,11*)+6 1 • 91-4 -0.75 

(5,11*)+7 2.13-4 -0.64 

(5, 11*)+8 2.08-4 -0.33 

(5, ,., *)+~ 2.00-4 -1.62 

( 11 '5*)+6 1.82-4 -5.30 
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TABLE 7 (Coriiihued) 

Perturbation Detection Error 
State· Efficiency (%} 

(11 ,5~)+7 ·1·. 94-4.· .;.8~ 31 .· 

(11, 5*)+8 1.94-4 -6.86 

(11,5*)+9 1. 94-4 -4.75 

(11 ,5*)+10 2.13-4 -3.48 
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TABLE 8 

THE DETECTION EFFICIENCY OF U-235 DETECTOR 
BY VARIATlONAL:EXTRAPOLATidN 

FOR ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State Efficiency (%) 

(2,5*)-+7 3.11-7 -51.1 

(2,5*)-+8 4.22-7 -32.6 

(2,5*)-+9 4.73-7 -22.7 

(2,5*)-+10 4.40-7 -33.7 

(8,5*)-+2 5.55-7 +0.78 

(8,5*)-+3 5.99-7 + ll. 48 

(8,5*)-+4 5.80-7 -3.68 

(8,5*)-+9 6.30-7 +2.86 

{8,5*)-+10 7.75-7 +16.6 

{8,5*)-+11 8.94-7 +36.6 

(8, 11 *)-+2 5.94-7 +7 .18 

(8, 11*)-+3 5.78-7 +7.65 

(0,11*)-.4 G.21-7 +3.06 

( 8' 11 *)-+5 6.04-7 +2.1 0 

(8,11*)-+6 5.91-7 +2.06 

(8,11*)-+7 6.38-7 +3.00 

(8,11*)-+12 6.48-7 +0.90 

(11 ,5*)-+4 5.74-7 -4.80 
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TABLE 8 (Continued) 

Perturbation Detection Error 
State Efficiency (%) 

• {11,5*)+12 6.68-7 +4.11 

{5, 11*)+2 5. 77-7 .. -f:4.70 

{5, 11*)+3 5.61-7 +4.43 

(5_, 11*)+4 6.07-7 +0.80 

-. 
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TABLE-~-

THE DETECTION EFFICIENCY OF ·He-3 DETECTOR 
BY .VARIATIONAL. EXTRAPOLAT_lON: F.OR 

·· ONE-DIMENSIONA~ CORE 

Perturbation Detection .Error. 
State Efficiency (%) 

(2,5*)+7 6 ... 24-5. -70.5 

( 2 ,5*)+8 L1l-~ -46.7 

(2,5*}+9 l.33-4 -34.5 

(2,5*-)+10 1.26-4 -42.9 

(8,5*)+2 1.79.-4 -2.89 

( 8' 5* )+3. L77-4 -1.26 

( 8' 5* )'+~ 1.88-4 -6.20 

(8, 5*)+9 2. 13-4 +4. 32 .. 

(8,5*)+10 2.6 7-4 +20.9 

( 8 '5* )+ 11 3.21-4 +47.4 
' 

(8,11*)+4 2.04.-4 +1.80 

(8 '11 *)+5 2.00-4 +1 .67 

( 0' 11 * ) .... 6 1.9G-4 +1.84 

(8, 11*)+7 2.12-4 +0.28 

( 8 '11 * )-+'1 2 2.17-4 + 1. 85 

(5, 11*)+2 1.92-4 +4. 18 

( 5,11 *)+3 1 .86-4 +4.09 

(5 '11 * )-+4. 2.02-4 +0.76 

.. (5,11*)-+12 2.26-4 . +6. 1J 

( 11 ,5*)+4 1 .85-4 -8.03 
: " '· 

'( 11 '5* )+ 12 2.08-4 -2.38 
- -
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TABLE 10 

THE DETECTION EFFICIENCY OF U-235 DETECTOR 
BY MULTI-REFERENCE-STATE VARIATIONAL 

· MEtHOD fOR ONE-DIMENSIONAL CORE 

Perturbation 
State 

3 

4 

6 

7 

9 

10 

12 

3 

4 

•6 

7 . 

8 

9 

10 

12 

D(:!tection 
Efficiency 

5.42-7 

6.05-7 

5.80-7 

6.40-7 

6.14-7 

6. 71-7 

6.42-7* 

.Case Bb 

5.42..:7 

6.07-7* 

5.88-7 

6.39-7 

6.25-7 

6. 13.;, 7 

6.69-7 

6.43-7 

Error 
(%) 

+0.93 

-·0.44 

+0.20 

+0.60 

+0.24 

+0.86 

+0.01 

+0.95 

+0.78 

+1.55 

+0.49 

-0.09 

+0. 16 

+0.54 

+0.19 

.aCase A u~ed forward reference-f1 uxes from States 2 an~ 8, 
and adjoint reference-fluxes from States 5 and 11 • 

. bcase Bused forward and adjoint.reference-f1uxes from States 
5.and 11. · 

* . The calculated value is five position after decimal point. 

' " 
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-T,ABLE 11· .. 

THE DETECTION_EFFICIENCY OF He-3 DETECTOR 
BY MULTI -REFERENCE STATE- VARIATIONAL 
. METHOD FOR ONE-DIMENSIONAL CORE 

Perturbation Detection Error 
State Efficiency (%) 

Case A 

3 1 . 73-4 .-3.52 

4 2.01-4* +0. 21 

6 1.93-4 +0.41 

7 2.13-4 +0.66 

9 2.03-4 -0.38 

10 2.23-4 +0.98 

12 2.14.-4 +0. 51 

Case B 

3 1. 83-4 +2. 21 

4 2.02-4 +0.62 

q 1. 96-4 +1.83 

7 2.13-4 +0.56 

8 2.08-4* -0.08 

9 2.04-4* +0.?3 

10 2.23-4 +0.69 

12 2.14-4 +0.29 

*The calculated value is five position after the decimal 
point. 
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16 outer iterations respectively. The number of outer iterations 

for states 1 ike 2 and 5 was still not sufficient t_o have a convergent 
-

neutron flu~ distribution~ The effect of this nonconvergence will 

be noted below. 

Detection efficiencies for reference states and perturbed 

states were calculated.by ANISN and. are presented in Table 3. These 

values were used for comparison with those estimated by the variational 

method proposed in this dissertation. 

The results for the conventional variational method (shown in 

Tables 4 and 5) indicate that when. the perturbed state, the state 

to be estimated, is far from the referenc~-state (e.g., state 5 or 

state 11), the error becomes larger. For example, in Tables 4 and 

5, the discrepancies fo~ the perturbed states 3 and 4 with state 11 

as· reference state were larger than that for states 10 and 12. 

In general, this is an expected tendence, since the application of 

the variational method ha~ a limitation. 

For the variational interpolational method (results shown in 

Tables 6 and 7), there. are two ·observations: (a) 1 ike the conventional 

variational method, when the perturbed state is far from the forward 

reference.-state (e.g., (2,11*)-+ 3, 4. 5, 6, and (11,5*)-+ 7, 8, 9, 

10), the estimated parameter has larger discrepancy, and (b) the 

values estimat~d by the variational method employing the adjoint~ 

fluxes at state 5 were not as accurate as that ~t state 11; for 

example, the values, at pertu~bed states 6, 7, 8, and 9, estimated . . 

by the reference-state couples ( 5,11 *) were more accurate than that· 

·.• 
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estimated from (11 ,5*). The reason· for this is that the adjoint 

reference-flux at state 5 was not yet a~ cori~ergent as that at 

state 11. 

Results for the variational ·extrapolational method are 

ptesented in Tables 8 and 9. To compar~ Specifically with the 

conventional variational method and the variatio~al intetpolational 

method, the perturbed states with state number ±1, or ±2 about a·· 

forward reference-state were con~idered. · We. note that th~ values 

for states 3 and 4 from the ref~rerice couples (5,5*) in Table~ 4 

and 5 were. less in error than that from the couples (5;11*) in 

. Tables 8 and ~; the values fo~ states 9 and 10 from the c6uples 

(8,11*) in Table~ 6 and 7 were also ~ore accurate than that for the 

states 6 and 7 from the ~ouples (8,11~) i~ Tables 8 and 9. 

According to those, the variational extrapolational ·results.were 

not as accurate as th~ variational interpolational and the 

conventiona.l variational results. But .for cases employing the 

convergent reference-fluxes (both forward and adjoint), and the 

perturbed state not far from a forward reference':"'state, like that 

from the couples (8,11*) to states 4, 5, 6, and 7, and from (5,11*) 

to states 2, 3, and 4 in Tables 8 and 9,.the_discrepancies for 

the vari~tional .extrapolational results were less than 5%· 

The results for the multi~reference-state variational method, 

which used two reference-forward-fluxes and two refP.rence adjoint­

fluxes, are shown in Tables 10 and 11. Although the number of 

t'eference states was four for case A (i.e., the forward and the 

adjoint trial functions were the linear combination~ of the forward 
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fluxes ~t states 2 and 8, and the adjoint fluxes at states 5 and 11, 

~espectively), and two for case B~(i.e., the forward and the adjoint 

trial functions were the linear combinations of the fluxes at states 

5 and 11), the estimated results were within 1%. of the actua 1' results 

obtained directly. 

The multi-reference-state variational method'is ·reasonably 

insensitivity of the reference state fluxes. This ·fs shown by the 

calculated results (see Tables 10 .and 11) for the states ·far from 

the reference-states (e.g., 7, 8, 9, 10, and .12) which were not 

convergent (state$ 2 and 5) for forward- and adjoint-fluxes·. 

Furthermore, results for states 3 and 6 which are near states 2 and 

5 had discrepancies larger ·than states 7, 8, 9, 10, and.l2~ but in 

comparing with other methods in this dissertation, the effects of : 

nonconvergent reference-fluxes -on· the multi-reference-state· 

variational resul.ts are .minimal. 

From the·results discussed above, we may draw the -conclusions 

that (1) thelewins' functional, -Equation (2.13), is workable for 

the estimati'on of the neutron detection efficiency in the one­

dimensional problem, and··{2) among the methods considered, the multi..;· 

reference-state variational met~od is the most promising with the 

variational interpolati-onal method and the conventional variational. 

method. as candidates for scoping-applicatio'ns. 

.. 
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C. Two-Dimensional Calculations 

Description 

The ptoced~res for th~ calculation of the ne~tron detettion 
.· . . ·. : 

efficiency for twO~dimensional problems are..similar to that for 

the on~-dimensional.problem treated in Section B of this chapter. 

The core model for· the two._dimensional study is shown in Figure 3, . 

page 35. The numerical formula of the detection efficiency is of 

.the following form. 

. ( 4 0 2) 

where ilXi and AYj are the sizes of.the ith radial* interval and 

the jtb axial* iritervar, respectiveiy, other notations were described 

in Section B 0 

The fluxes were calculated by the two-dimensional discrete 

ordinates code [)QT(31) using. P
3
s4 with ·i4neutrur~ g~·oups (!;hown in 

. . . . . 

·Table 12). The 14-gr6up cross s~ctioris were collapsed from the 50-. . . . . . . . 

gro~p cross section sets(45 ,46 ) for EMC.by the one~dimensional code 

ANISNo (lO) 

*According to the DOT manual,( 3l) the radial and axial 
directions represent the X- and ¥-directions, respectively. 
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TABLE 12 .. 

14-ENERGY GROUP STRUCTURE AND FISSION SPECTRUM 

Low.Energy . Fi,ssi on 
Group· Boundary Cev r Spectrum 

i 3·.oi+6a · 0.2105 

2 1.35+6' 0. 3650' v 

3 
•. 

9.07+5 0. i487' 

4 4.08+5 0.1752 

5 1~23+5 0.0632 

6 r. 93+4 I . 0.0167 

7 3.35+3 0 

8 9.61+2 0 

9 '1~01+2 0 

10 2.26+1 .. 0 
. .. 

11 1 • 0 7+ 1 0 

12 5.04+0 0 

13 1 • 13+0 .: . 0 

14 Thermal . o· 
.. 

aRea:d·3;0hlo6. 

'• 
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In searching for the critical core configuration, energy- and 

zone-dependent bucklin~ ~orrections were considered( 24) in the 

direction perpendicular to the X-Y plane' (i.e., the axial-direction). 

The resultant 14-g·roup ·buckling cross section set, (33 ) are presented 

in Table 13. 

Reference States and Flux Calculations 

In order to make numerical demonstrations, four reference 

states were selected from a one-dollar state to the full-shutdown, 

or the 30-dollar state. The control-rod positions for the four 

reference states and the perturbed states are shown in Figure 3, 

page 35, and Table 14. Figure 3, page 35~ is a two-dimensional core 

arrangement for EMC. The core consists of two fuel-zones (inner · 

driver (ID) and outer driver (OD)) and three trisectors as well as 

three shielding-zones. The three trisectors are nearly symmetrical 

in configuration. In Table 14, states Sl and S3 were chosen for 

the calculations of the reference adjoint-flux calculations. The 

calculation of the forward and the adjoint flux~s were done by DOT. (3l) 

The specifications of the fixed sources for both the forward- and 

adjoint-flux calculations were similar to the one-dimensional 

problem, i.e., the c.alcu.latio-n of e* 1 .s·pecifying Ed as adjoint source, 

and that for e*2 specifying Ef in the fueled 2ones as source. 

The selected reference states were symmetric for three 

trisectors. The purpose of this was using the. fluxes at symmetric 

states to estimate the parameter of interest at perturbed states 

which were antisymmetric. 
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TABLE 13 

BUCKLING CROSS SECTIONS IN AXIAL DIRECTION FOR 
CORE ZONES AND ~ADIAL REFl~CTOR (cm-1) 

Inner Outer Radial 
Group Core Core. Reflector 

1 3. 544-3a 3.767-3 3.261-3 

2 2.946-3 2.604-3 1.848-3 

3 1 • 772-3 1. 502-3 1.601-3 

4 1 .455-3 1.537-3 7.335-4 

5 9.509-4 1.009-3 5.939-4 

6 6.233-4 5.841-4 4.209-4 

7 -1.322-4 5.782-5 1.196-4 

8 -6.878-4 -3.645-4 1 . 933-5 

9 -1 .684-3 -2.387-3 -5.935-5 

10 -1.249-2 -0.344-3 1.261-5 

11 -3.585-2 -1.540-2 -2.063-4 

12 -5.369-2 -1.338-2 -8.795-6 

13 -2.416-2 -1.693-2 -3.537-4 

14 -2.599-1 -5.315-2 7.948-4 
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TABLE 14 

CONFIGURATIONS OF REFERENCE STATES AND PERTURBED 
~TATES FOR TWO-DIMENSIONAL CALCULATIONS 

Trisector I Trisector II Trisector I II · 
CR CR SR -PSR CR CR. SR PSR CR CR SR PSR 

S a 522 524 312 702_. 506 508 304 714 514 516 308 . 726. - tates 

Critical W* I* w I w . I w I w I w I 

S·l w cb w I w c W_ I w c ·w I 

P2 w I w I I I w I w I w I 

P3 w I w w I I w I w I _w I 

P4 I I w I I I w I w I. w I U'1 
1.0 

52 I I ,w I . I I w I I . I w I 

P5 I I ·w I I I w I I I I I 

53 w I I I w I I r w I I I 

P6 I I I I I I w I I I . I I 

. 54 I . I I I I I I I I I I I 

as .i ndi-:ates reference state, P indicates perturbed state. 

bconcentrated CR makes Sl one dollar subcritical 

*11 111 is insertion, and 11 W" is withdrawn. 
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Variational Calculational Methodology 

The numerical calculation of the neutron detection efficiency 

by the variational methods, e.g., the variational interpolational 

method and the multi-reference-state variational method, were similar 

to the one-dimensional problem. For the variational interpolation, 

we chose (51, 52*), (51, 54*), (53, 52*), and (53, 54*) as reference-

state couples for the forward- and adjoint-fluxes •. For the multi-

reference-state variational method, we chose states 51· and 53 for 

the forward-fluxes for Equation (2.29), and states 52 and 54 for 

the adjoint-fluxes for Equation (2.30). 

The calculations of the flux-change correction terms <8*1, 5 - H~> 

and <~*2 , 5 - H~> in Equation (2.20) were carried out usin~. iwANLAKE( 3) 

and a code VIP,( 6) which is employed to caiculate( 44 ) the product 

of the flux moments ~*~ in two-dimensional problem (see Chapter 

III, page 30). The parameter <Ld~> at states 51 and 53 were calculated 

by using the 14-group fission cross section set for U-235, as shown 

in Table 15. The value of the parameter <~*i' 5>; i = 1 and 2, was 

computed by a program written for this need ( pre.sented in Appendix F). 

Results of Two-Dimensional Calculations 

The calculational results for the two-dimensional test problem 

are shown in Tables 16, 17, and 18. Table 16 is the directly calculated 

detection efficiencies for the four selected perturbed states and 

the two forward reference states 51 and 53. Table 17 shows the 

values evaluated by the variational interpolational method for 

detectors o1 and 03 (see Figure 3, page 35). Table 18 presents 
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TABLE 15 

14-GROUP FISSION CROSS-SECTION COLLAPSED FROM 50-GROUP SET FOR U-235 

Group 

2 

3 

4 
,... 
J 

6 

7 

8 

9 

10 

11 

12 

13 

i4 

1 *Read 1.514 x 10. 

Cross-Section 
(barn) 

1. 276+0 

1.296+0 

1.249+0 

1. 211+0 

1.395+0 

2 .011+0 

3.498+0 

6.941+0 

1. 514+ 1 * 

3.027+1 

5.635+1 

9.82J+1 

1. 615+ 1 

1. 237+2 
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TABLE 16 

NEUTRON DETECTION EFFICIENCY FOR.FISSION CHAMBERS 
AT D1 AND D3 CALCULATED BY DOT . 

Case D1 D3 

S1 2.894-7* 1. 998-7 

P2 2. 807-7 2.139-7 

P4 2.856-7 2.196-7 

S3 3.389-7 2.356-7 

P5 3.498-7 2.165-7 

P6 3.468-7 2.271-7 

*Read 2.894x1o-1 . .. 
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TABLE 17 

TWO-DIMENSIONAL DETECTION EFFICIENCY ESTIMATED 
BY VARIATIONAL INTERPOLATIONAL METHOD 

Perturbation Reference States (10- 7} 

State ( 1 '2*) ( 1 ,4*) p,2*) . (3,4*) 

Dl 

p2 2.23(4.2%)a 2.21(3.3%) 

p4 2.17(-1.4%) 2.08(-5.5%) 

p5 2.14(-1.'4%) 

p6 2.19(3.5%) 

D3 

p2 2.93(4.3%) 2.93(4.3%) 

p4 2. 53 (-11 • 5%) 2.77(-3.0%) 

p5 3.55(1.5%) 

p6 3.56(2.5%) 

aBracketed values are error percentages compared with 
direct calculation. 
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TABLE 18 

TWO-DIMENSIONAL DETECTiON EFFICIENCY ESTIMATED- BY 
MUL TI-REFEREN,CE-STATE VARIATr'ONAL METHOD 

Perturbation 
State 

Detection Efficiency (l0-7) 

2.69(-4.3%)* 

2.76(-3.4%) 

3.66(4.6%) 

3.55(2%) 

2.20(2.8%) 

. 2.2~(3.6%) 

2.19(0.95%) 

·2.32(2.2%) 

*Values in brackets represent erro~ percentage. 
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results calculated by .the multi-reference-state variational method 

for the four perturbed states using forward fluxes from states 51 

and 53, and adjoint fluxes from states 52 and 54. 

Discussion of Results 

The detection efficiencies for detectors located at o1 and 
. . : . 

03 are presented in Table 16, which were used for the purpose of 

comparison with these results calculated by the variational 

functional in this study. The values for o1 are larger than that 

for o3 because o1 is close to the core zone of the EMC (see Figure 3, 
' 

page 35). ·Table 17 shows the results calculated by the variational 

interpolational method and most were under 6% in error. For the 

multi-reference-state variational method, the results (calculated 

by use of four reference-states, two for forward fluxes and two for 

adjoint fluxes) are presented in Table 18; and all values were under 

5% in error. Concerning these values, we note that the two-dimensional 

problem has a little higher error than that of the one-dimensional 

problem. This was partly contributed by the complication of the 

two-dimensional core configuration (see Figure 3, page 35) i.e., 

the heterogeneous distribution of the reactor material for the 

EMC, and partly by the concentration of the perturbation (or 

variation), like the moving of the control rods in this study. The 

heterogeneity of the core configuration increases the.difficulty 

of reaching a convergent flux-distribution (both forward and 

adjoint), especially the two-dimensional adjoint-flux calculation 

with a point adjoint-source (at D1 or 03 in this study). The 
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concentration of the perturbation intreases the effect of the 

locality of the reference-fluxes at the perturbation site. The 

combination of the last ·two contributions will make an accurate 

estimation of the correction terms<~*., S- H~~. i = 1, 2, in 
. 1 

Equation (2.13) more difficult~ 

Results as demonstrated in this dissertation show that both 

.the variational interpolational method.and the multi-reference­

state variational method are acceptable for practical application 

in the estimation of the neutron detection efficiency in two­

dimensional problem. In particula~; the multi-reference-state 

variational method leads to more accurate results ~n ~eneral when 

applied to a large number of perturbed· states. 



.. 

67 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 

A Lewins' variational functional, ratio of two other variational 

functionals, has been employed in this study for the calculation of 

the neutron detection efficiency. Use of this formulation has been 

applied for two calculational models of a fast test reactor, one 

for the on~-dim~nsional problems and the other for the two-dimensional 

problems, and shown to be an acceptable technique. 

Theoretically, it has been shown that the porposed variational 

functional is equivalent to the conventional formulation presented 

in the literature based upon the first order error in neutron fluxes 

(forward and adjoint). The flexibility of the functional has been 

demonstrated by applications employing four different variational 

calculational methods: conventional variational, variational 

interpolation, variational extrapolation, and multi-reference-state 

variational. The results from these four approaches show that 

the multi-reference-state variational method is the most promising 

for the estimation of the neutron detection efficiency, and with 

proper selection of reference states as well as the size of pertur­

bation, the conventional variational method and the variational 

interpolational method are acceptable for practical applications. 
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The computational procedures for the suggested functional have. 

also been developed. And following these procedures, the computation 

time for the functional is much less than that required by the direct 

calculation for a perturbed state~ 

B. Recommendations for Further Study 

The case studies for the application of the functional presented 
. . 

in this diisertation for both the one-dimensinnal and two-dimensional 

problems are all perturbations with control rods Changing positions, 

i.e., no fissile material, such as fuel depletion, is involved 

in the variational calculations. The inclusion of fissile material 

in the perturbation are possible for the suggested functional, 

Equation (3.1) and hence it is recommended that these methods be 

employed in fuel depletion problems. 

For studies of the multi-reference-state variational method 

by the application of Equations· (2.29) and (2.~0), the numbers of 

reference states for both the adjoint and the forward fluxes were 

taken to be equal. The use of. unequal numbers of reference states(?) 

for adjoint. and forward. fluxes is possible for linear functionals. 

Therefore, it is recommended that· the use of unequa 1 forward and. 

adjoint reference states for the functional used herein be explored. 

The calculations of neutron fluxes in this dissertation are 

all done by the discrete ordinates method for neutron transport 

equations. The solut1ons of neutron fluxes at reference states 

could be solved by lower-order scattering transport equations· and 

the effect of the higher-order ·scattering anisotropy of neutron 



-69 

fluxes could be corrected( 3S) by taking it into consideration of 

the correction terms in Equation (3~1).- It is recommended that 

this procedure be explored for the purposes of being able to reduce 

the amount of effort: required to generate the reference-state fluxes. 
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APPENDIX A 

THE VARIATIONAL PRINCIPLE FOR A RATIO 

We define a ratio of two linear functionals as: 

(A. 1) 

where E1, E2 represent two different properties, 

~ is the solution of the following equation 

H~ = S. (A.2) 

The variational method is a mathematical way by which a trial 

solution could be used to estimate a parameter of interest at a 

perturbed state. By using the concept of the Lagrange multiplier,(40) 

the functional used to optimize the parameter of interest W [~] is 
n 

defined as( 27) 

(A. 3) 

where 

$ = ~ - 0~ ' 

and the second term is a flux correction term. 

For Equation (A.3) to be a variational principle for 

estimating Wn[~], the following conditions should be satisfied:( 37) 

(a) E1 is stationary about the function ~s = ~' 
(b) The stationary value of E1 is 



then 

where 
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From Equation (A.3), if we let 

8* + 8* + diS* , 

= w [i + E6i] + <8* + £68*, s - H(i + E6i)>, n 

E is a small definite parameter. 

The first variation of a functional is defined( 40) as 

(A.6) 

From Equation (A.5), we have :· 

= 

~ (<8* + £68*, s - H(~ + E6i)>) 
dE· 

- <8* + £68*, H6i> + <68*, S - H(~ + £6$)>. 

f' 
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Thus 

- <6*, Ho~> + <oe*, s - H~> 

= - <oe*, H~ - S> - <H*e*, o~> 

Ll<L2 ~> - L 2 <Ll~> + < ' o~> 
<L2~> 

<oe*, H~ - S> - <H*e* - G~(~), o~>, (A. 7) 

where 

- -
Ll<L2~> - L 2<Ll~> 

- 2 
<L2~> 

(A. B) 

To find the stationary functions, we let 

oE 1 [~,e*] = o =- <oe*, H~- S>-

<H*e*- G~(~), o~>, 

if oe* and o~ are arbitrary values, but not equal to zero, then the 

requ1re~ent~ for this condition are 

and 

H~ - S = 0 s (A.9) 

(A.l 0) 
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From Equations (A.9) and (A.2), we have fs = ~' and from 

Equations (A.3) and (A.9), the stationary value of the variational 

functional is 

<El~s> 
E1 [~s, es.*] = __;__:__ = W [$ ] = W [~]. 

<E~~s> . · n s n .. 

Thus, E1 ·is a variational principle for Wn[~]. 
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APPENDIX B 

TAYLOR'S SERIES EXPANSION OF 8* 

For a function with three variables, f(x,y,z), the Taylor's 

series expansion( 4l) .in fi.rst order approximation is 

f(x,y,z) = f(a,b,c) + fx(a,b,c) (x-a) + fy(a,b,c) (y-b) 

+ fz(a,b,c) (z-c),. (B. 1 ) 

where (a,b,c) is the position of a given point, f(a,b,c) is the 

value of the function at the point; fi(a,b,c), i = x,y,z represents 

the first derivative of the·function f(x,y,z) with respect to the 

variable i at the given point. 

Equation (2 •. 19) is a function ·8* with three variables 8*l, 

8*2, and ~' we write it here: 

· . <If~> ~*1 - <Id~> 8*2 
8* = 2 

<If~> 

From Equation (B.l), we write the series expansion .about a given 

point as 

(B.2) 

8* ::: e* + (ae* ) 68*l + (ae;) 68* + (ae*) 6"- (B.3) a8*1 a~2 2 a~ T' 

where e* is given by Equation (2.17), and 68*1 is (8*1 - 6*1), etc. 

Substituting Equation (B.2) into Equation (B.3) and carrying out 

the derivatives, we have 
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e* e* + 
<~fcj>> 

oe* 
. <~dcj>> 

oe* + = . - 2 ":' - 2 
<~fcj>> . 

. 1 
<~fcj>> 

2 

[<~f'l> e*, - <~d~]> e*2] ocj> 

<~fcj>> 

2<~d~> [<~f'~> a.*, - <~d~> e*2J.<~d,l> ocj> 
.. - 4 
<~fcj>> 

(8.4)· 

We write Equation (8.3) as 

e* - e* + o6* (B. 5) 

where 

<~fcj>> 
· oe* = --,.--- oe*1 

.<~fcj>> (B. 6) 

Equation (8.4) shows that e* i~ still a first-order approximation 

to 6* if the three. var.iables ~*,' 6*2, and cp are in errors of oe*,' 

oe*2, and oct>, respectfvely. 

.. 
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APPENDIX C . 

SUPERPOSITION PRINCiPLE. FOR A DIFFERENTIAL EQUATION 

. According to G. A. Korn etal., (l 6 ) if there are two solutions, 

<J>1(x) and ·<P 2(x), satjsfyfng the following respective linear . 

differeritial equations 

(c. 1) 

(C.2) 
. . . 

with identical .homogeneous i inear boundary conditi~ns 

(c. 3) 
then. 

(C.4) 

satisfies the differential equation 

H<J>(x) = f(x), (C.5) 

where . 

where a and b are constant coefficiences. 
. . 

The adjoint flux 6* ·at a reference state for Equation (2.3) 

is solved by the following equation: 

id<~f~> - ~f<~d~> 
· R * 6 * = __;____..;.. _ ____;.,__.____::___, 

<~f~>2 
(c. 6) 
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Rearranging the right hand side· of· Equation (C.6) leads to 

We compare EquatioD (C.-7:) with Equation ·(c.S), and speclfy 

that · ... 

1 
a =· -----' 

<I:f<P> 

and 
.•.. <I:d<jl> 
b -· . - -

Then 

1 = 

where e*, and e*2 are solutions of the differential equations: 

and 

H*e* 1 

(c. 7) 

(c. 8) 

(c.9) 

(C.lO) 

(C.ll) 

(C.l2) 
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APPENDIX D 

DISCRETE FORM OF THE VARIATIONAL FUNCTIONAL FOR SLAB GEOMETRY 

From Equation (3.18); 

F~[~,~*.] =<E.~~+ <~* 1 , ~s- ~H~>, 1 . 1 . 1 (D. 1) · 

where t.H~ for slab geometry is given by 
. . ·. . . . : . . ·. . ·.. . 

· ... · .. '• .. '.- ·. &U·. . . . 
~H(x~E,~) ~(x,E,~) = ~E(x,E) ~(x,E,p) - 4n f J ~(vEf(x,E~) .~(x,E~,p~) 

. . ·. . . . . . ·.· . . . . . : . 

we have, after integrati~n ove~ ehergy ~nterVal 

.G 
.I ·/ ~~~~. (x,p) ~Sg(x,p). dxdp -
g=l . . tg . . . 

·G 
.\' . / f ~*. (X~p) ~E (x) ·~ (x,p) dXdit + g;l . 1 g · .. · .g . g . (D. 3) 

G X .· · G . . 
I. ~4 . J J [e*. (x,p) I ~(vEf(x)) ~ J ~· ~(x,p .. ) dQ~] dxdp + 

g=l TI· . 1g . . g~=l g . Q 

G · G · · 
. I. J J {e*. (x,p) [. f; 6i~~+9(x;n~->-Q) .~ ,(x,p~) dQ']} dxd\.1 • 
. g=l ·.· 1g .. g~=l .·· . g .. 

.. 



The scattering cross section as· well·as angular fluxes are expanded 

in the following Legendre polynomals( 3) 
.. . . " .. · ·. : .. .. 

ISCT (. 2n+l). e*.(X,JJ)'= \ .. 
2

. S*, (x)Pn·(JJ), 
1 g .· L 1 gn n=O 

and 

where 
g .. -+g 2 n+ 1 1 g .. -+g 

t::,r, . (x) = 2rr(·--) f . . t::,r, (x·,. ) P (" ) d: · 
s n · 2 -1 , . s ':o n, "'o ·• JJo' 

e*. ( x) 
.. 1 gn . 

= f 1 
. -1 S"': (X, 1J) 

1 g ' . 
p. ( ]J) 
. n d]J 

and 

~gn(x) = f 1 
-1 ~g(x,IJ) Pn(ll) diJ. 

·, 

After substituting Equations (D.4) through (D.lO) into 

Equation (0.3) and making use of the mechanical q~adrature for 

the integration of direction cosine \.1, we have 

(D.4) 

'· (D.5) 

(D. 6) 

(D. 7) 

(D.8) 

(D.9) 

(D.lO) 

,. 
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G I G I NOA 
F.[¢ ,8~ J = I I v.r.. (x.) ¢ (x.) + I.' I v. I e*. (x.,~K) 

1 g 1g ·g=l ·j=l .J 19 J. g J g=lj=l J K=l 19 J 

G I NOA 
• L'IS (x.,~K) WK- I I V.L'lr. (x.) I B*. (x.,~K) ~ (x.,~K) WK 

g J g= 1 j = 1 J g J K= 1 1 g J g J 

G X I 'G 
+ I (f) I v.e*. (x.) [ I L'l(vr.f(x.)) .. ~ .. (x.)J + 

g= 1 j = 1 J 1 g J g "= 1 J g g J 

G I IS CT . G g .. ~g 
\ \ V • \ B*. (X . ) \ L'll. (X . ) ,h (X ) 
L L J L 1 gn J L sn J '~'g·."n J. ' g=l j=l · · n=O g"=l 

where NOA is the total _number of angles, I is the total number of 

intervals, WK is the weighting factor for the Kth angle, and all 

other terms are defined in Section C of Chapter III, page 30. 

(D.ll) 
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APPENDIX E 

CALCULATION OF <S*,S> FOR ONE-DIMENSIONAL PROBLEM 

A. Introduction · 

The purpose of this appendix is to describe the program used 

to calculate the parameter <S*,S> for one-dimensional problem. A 

description of input and the code listing are also included •. 

where 

B. Program Description 

The numerical formulation for the integral parameter <S*,S> is 

ce*,S> = ff .e*{r,E) S(r,E) dEdr 

G I 
e I I o+ (J) s (J) ~XJ 

g=l J=l g g 

G = total neutron energy group number, 

I = total space interval number, 

~XJ =the size of the Jth interval, 

Sj(J) = x
9
s(J). 

- ( ) th th e* J =the adjoint flux at g group and the J interval. 
g 

The integration is carried out by summing the products e*g(J)Sg(J) 

over the energy-groups and the space-intervals. The adjoint flux 

e*g(J) is calculated by ANISN code,(lO) and the fixed source for 

•• 
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each interval S(J) is specified by the way we solve the flux 

equation 

H<P = S. · 

The specification of interval size should be the same as that for 

calculation of the adjoint flux. ·We ~alculate the intetval size 

by giving the zone boundaries. The code is written for 50-group, 

18-zone, and a total of 102 intervals. 

Card 1 (20A4) 

Title Card. 

Card 2 6(3X, F9.0, 8X) 

I= 1, 50 

C. Input Cards 

(PHI(I,J), J = 1, 102) Adjoint scalar flux :of each group. 

Card 3 (7E11.5) 

CHI Fission spectrum of each group, start 

.from group 1. · 

(E.2) 

Card 4 (6Fl0.6) 

SN Source distribution of each core zone. 

Card 5 (6F\2.5) 

ZR Zone boundartes. 



92 

D. Listing of the Code 

C CAL OF PKI*S*V IN 1-0 
DIMENSION PHI (50, 102) ,S( 50, 102) ,R{ 103), 

1Af20J ,CHit50),SN(12),ZRll8) 
READ(5.;2) A 

2 fORMAT ( 20A4l 
wRITE (6,1J (A( I) ,1=1,20) 

1 f0RMAT('0',4X~20A4J 
DO 7 1=1;,50 

7 REA0(.5,10,END=200) .CPHI(I,JJ,J=l,102l 
10 f0RM~T(6(3X,F9.0),8X) 

WRITE (6,81) 
81 FORMAT(20X, 1 FLUX'/) 

Jl=O 
DO 90 11=1 o 49.; 8 
J1=Jl+8 
1Flll.E0.49) jl=SO 
WRITEI6~80) ((PHICI,JJ,I=I1,Jl),J=l,l02i10J 

8 0 F 0 R.MA T ( 1 0 X , 8 E 12 • 5 J 
90 CONT l NUE 

C RcAu SOURCES 
200 DO 3~ 1=1,50 

DO 3J J= 1, 102 
30 s (1 ,. J , =0. 

READ( 5,25) CHI 
25 FORMATC7El1.5) 

wRITE(6,27J CHI 
27 FORMAT(//4X, 1 CHI'//50(/4X,1PE12.5)J 

REAO(S,SOJ SN 
50 FORMAT(6f10.6) .. : 

WRITEf6,55) SN 
55 FORMAT(//4X, 1 SN'//12l/4X,fl0.6)) 

DO 60 1=1,12 
L=l 2+1 1-U*S 
LP!: =:.L+l 
LL.i=l+4. 

DO 40 J= 1, 50 
S(J,LJ=CHIIJJ*SN(l) 
DO 45 II1~LPl,Lll 

45 S(J,lll)=S(J,() 
40 CONTINUE 
flO CONTINUE 

C ~EAO ZONE BOUNOERIES 
READ(5,70) ZR 

70 FORMATC6Fl2.5) 
WRIT-E (6,66) ZR 

66 FORMAil//4X,'ZR 1 //18(/4X,Fl2.5)) 
C RADIUS FOR INTERVALS 

R(lJ=O. 
R(8l=ZR(l) 
DO 77 11=1,3 
ll=U I-1 1*7+2 

If! 
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12= Il +6 
IF< I.: .Eo.u .12=7 
DO 7 1 I = I 1 ., I 2 
IF(ll.,EO.l) GO TC 69 
R ( I l = ( l R (I I ) -z R ( II -1 ) ) /7. * ( I -11 + 1) + l R t I I -1 ) 
GO Ti.J 71 

69 Rlll=38.0727/6.*{I-11+1) 
71 CJ!H l NUE 
77 CONT l NUE 

DO 72 11=4.,15 
ll=23+(II-4l*5 
12=11+4 
DO 74 1=11.,12 

74 R( ll-= ( ZRt I I l-ZR (I I-1) l/5.*{ I-I 1+1) +ZR (l I-U 
72 CONTINUE 

RC9n=205.223 
DO 7 5 II = 16 , 1 8 

ll=(i 1..;.16) *7+83 
I 2= I 1+6 

IFlli.f0.18) 11=98 
DJ 76 I=Il.,I2 

Iflll.E0.18} GO TO 82 
R ( I ) = t l R t I I ) -z R ( I I-1 ) ) /7. * ( I- I 1 + 1) + l R ( I I- U 
GO TO 76 

82 RllJ=(ZR(l8l-205.223)/6.*{1-Il+1)+R(97) 
76 COrH I NUE 
75 CQ:H i NUE 

C PRIN( OUT 
WRITt(6.,78) 

78 FORMATtlOX.,'RADIUS'/J 
WR1Tc(6.,79) R 

79 FO~M~TtlOX.,El2.5) 
C SJURCES OUT 

WR Il E ( 6, 94) 
94 FORM~T(20X., 1 SOURCES'/) 

J 1=0 
DO 1100 11=1.,49,H 
Jl=Jl+8 
lF(Il.E0.49J J1=50 
WR1TEC6,95) {(S(I.,J).,I=Il,Jl),J=l,l02,10) 

9 5 F 0 r{MA T ( 5 X, 8 E 14. 6) 
1100 COiH! NUE 

PS 1=0. 
DO 3u0 I=l., ~0 
DO 300 J=22,81 . 

300 PSI=PSI+PHI(I,JJ*S(5Q-I+1.,J)*(R(J+ll-R(J)) 
C P~INT OUT PSI 

WRITc(6,400) PSI 
400 FO~MATtlOx.,•INNER PRCOUCT = •,F15.8) 

STJP 
END 
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APPENDIX F 

CALCULATION OF <S*,S> FOR TWO-DIMENSIONAL PROBLEM 

A. Introduction 

The objectives of this appendix are: (a) description of the 

routine used to calculate the value of <S*;S> for two-dimensional 

problem and (b) ·present a description of input and the pro~ram 

listing. 

B. Program Description 

The numerical formula for the parameter <S*,S> is explicitly 

written as: 

where 

G Imax Jmax 
= I 

g=l 
I I e* (i,j) s (i,j) ~::,x.~::,y, 

i=l j=l g g 1 j 

Imax =the total number of radiala interval. 

Jmax = the tota 1 numb·er of ax i a 1 b i nterva r 

{i,j).= the i nterva 1 at the ( i ,j) position, 

M. 
1 

= the size of the .th 
1 i nterva 1 in the 

~::,y. = the size of the j th interval in the 
J 

others are specified in Appendix E. 

a11 Radial 11 here means the ·x-direction. 

b11 Axial 11 means they-direction. 

axial direction, 

axial"direction, 

(F. 1 ) 

and 

and 
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At the time of this calculation, G was 14, !max was 43, and 

Jmax was 41. s*g(i,j) was calculated by the DOT code,( 3l) and input 

by tape for this computation. The specifications of the fixed 

source and the interval size are the same as used for DOT. Since 

the source is zero outside the fueled region of the reactor, the 

program makes the interval summation over core zones only. 

Card 1 (7E11.5) 

CHI 

Card 2 (7E11.5) 

J = 9' 29 

(S(I,J), I 

Card 3 ( 15A4, 12) 

TITLE 

NFLSV 

= 12' 34) 

C. Input Cards 

Fission spectrum of each group, 

start from group number 1. 

(Source in fueled zone only.) 

Fixed source distribution for 

each interval. 

Title for the run. 

Logical number of the flux gape. 
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D. Listing of the Code 

C CODE FCR PH,•S,2-D 
r ?FAn N-240 OTSTPI~LTJC~ 

FOR EACH lNTFRVAL 
C ~I=Af) CHI 'v.!\LUE OF l4-G°C 

D!f-1r::f\~10N (1-!! (14) ,DH(43 ,4U ,S·(43, 1tll,T!TLE(l.5) 
DAT,~ Sl~.J/' YZT'/ 
!)FAD (~,lC) CHI 

1 0 F GR. r., .t\ 1 ( 7E 11. 5) 
WPI TE (t:,ll) CHI. 

11 cno,~Al(lHC,llXr'SnECTRU~' ,14(/lOX,F.l2.5l) 
oc z c .J=9 ,zg 

20 ~r:AD(5,l5) (S{!,Jl,J-=12,34l 
1 5 F 0 P. M A 1 ( 7F 11. 5 l 

L ·=0 
00 4S ,15=9,29,7 

L -=L+ 1 
. .ll=J5 
J 2=l :.+ 1+ 8 
JF(~~.f:Q.29l J2=29 
!AqiTF(6,12l (SIJBJ,J,J=Jl,J2) 

12 FORMAl(/2)<,' XP.R',7(4X,A4,I3,3X)) 
I"')(} 45 !=12,34 

WR!1E(6,56) I ,(S(I,LJl ,tJ=J1,J2l 
4 5 C ON T I I\! tF. 
56 FCRMA1(3X,I3,7(2X,Fl2.5)) 
4 S C CNT I NLE 

1 D. E AD ( 5 , 7, E NO= 1 0 0) 1! T L E , NFL S V 
7 !=f)RMA1(15A4,!2) 

o F ~ 1 NO NF l S V 
C READ FllX FROM TAPE NFLSV 

~ ~UM=C. 
r, 51= C. 
DC 4C IG=l,l4 
P E A D ( 1\ F l S V ) P!-J 

C D 0 00CCT OF FLUX AND S 
Sl·=c. 
SlJMP=C. 
on 47. J=9,29 
no 41 1=12,34 
S L M r = ~ U M P + PH P , J l ~ S (T , J) 
Sl=Sl+S(I , . .J} 

41 C CNTI NLE 
42 CCNT!NLE 

G ~ l=G ~1+ S1....,CHI ( H~ l 
GSUM=GSUM+SUMt*CH!(l5-IGl 

4 0 C 0 N T I N Lf. 



r; 

·~ 

·'' I 

• 

? 

~Sl=GS1*5.5245~62. 
~5LM~GSUM*5.5245~•2. 

WPITE(6,'SC) SSUM,TYTLF,GSl 

97 

':iO FOR.MAT(//lOX,' 0 H>1S= ',fl2.5,3X,'FC~ CllSF. ',15-14//4X,'$1U?Sf ·= '• 
v= u. 3, 

q, F tal I ~ D NF L S V 
GO TO ·1 

lCC SlCP 
F f\D 
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