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" ABSTRACT

.The neutron detect1on eff1c1ency is a parameter requ1red 1n
the measurement of react1v1ty by the modified source techn1que The
direct solution of the detect1dn ‘efficiency at a perturbed state
is costly. o | n

To solve for this, a particular'variationaT functional, the

~ Lewins' type variational'functtonal,'was presented»in this study.

The functional is a ratio of th other"functidna]s; each‘deaiﬁng

with a reaction rate. The eva]uat1on of this part1cu1ar funct1ona1
was done by treating the numerator and the denom1nator funct1ona1s
separately. This 1eads to. three fluX equataons, one for forward
flux, andftwo for adjoint f1uxes; The,advantages_of,thts fornulation
over, and the equiva]ente of this formd]ation to,'tne cenrentiona1
functiona]-presented in the 1iterature‘are'described.in detail.

The-f]exibi]jty ofAthe:proposed.fnnctjonal'was‘demonstrated by

‘using it to estimate the detection efficiency with four different

methods: variational'1nterpolation, conventional variational
variational extrapo]at1on, and multi- reference state variational.
Results were demonstrated for one- d1mens1ona1 and two-
dimensional problems. All resu]ts were compared with direct
calculations. In all cases, the results show that the,variationa]
interpolational method and tne'mu]tt—referenee-state variational

method are efficient and practically acceptable.
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NOMENCLATURE

A = mass number
> > . . .
a, a*2 = coefficient vectors with components a; and a*i

Xg = fraction of fission neutrons for group g

5n2 = Kronecker delta function

E

neutron energy

Ei’ Fi = variational functionals

m
1]

a small definite parameter

G = total energy group

g = subscript for group g

H = transport operator at perturbed state

H = core height in Equations (4.1) and . (4.2)

H, = transport operator at reference state i
H* = adjoint transport operator of H

H*i = adjoint transport operator of hi

I = total number of interval (1-D)

Imax = total number of r&dial interval (2-D)
1J = total number of interval (=.Ima¥ *-Jmax)
Jmax = total number of axial interva1.(2—D)

N, = Avogadro's-number | i | |

A .
average number of neutrons per fission

<1
1}

u = cosine of the polar angle
& = neutron direction
¢ = azimuthal angle

XV

2

respectively



¢ = neutron flux at perturbed state

51 = neutron flux at reference state i

o* = adjoint flux at perturbed state in Equation (2.3)

o*; = adjoint flux in Equations (2.7) and (2.9), i'=1, 2
8% = adjoint flux in Equations (2.11) and (2.12), i =1, 2

S, § = external neutron source of perturbed and reference states,
respectively

r = total macroscopic cross section

™
n

d macroscopic detection cross section

macroscopic fission cross section

macroscopic scattering cross section

™
n

$K (r) = reference flux moment at position r of ‘group g-

6*§gn(F) = adjoint reference flux moment at position r of group g,

i=1,2
w = slab width
<Z.|¢> ‘ h
W el = Ty I, and I, are two d1fferent cross-sections

x = phase space in Equations (2.29) and (2;30)

AX, Axi = radial interval size at detéctor position and tHe 1th
interval, respec#ive]y o

Ay, Ay, = axial interval size.at detector boéftion and the;jth
interval, respectively |

YK(ﬁ) = spherical harmonics |

XVi

&\
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CHAPTER I
NATURE OF PROBLEM AND RELATED BACKGROUND
A. Problem Statement

An important parameter in the Modified Source Multiplication
formalism used in the measurement of reactor subcriticality is the
neutron detection efficiencylfor fast or thermal power
reactors.(]’2’5’]8’]9’32) )

The neutron detection effidiéncy is defined(32) as the number
of neutron reactions in the detector per fission in the reactor core

zone, i.e.;

Iy Jg z4(rsE) o(r,E) dEdr

W 6] = —2 - _
IVC I zf(r,E) o(r,E) dEdr
<% > A '
ALY : |
= Ef-"’? s | (1.1)

where £, and . are the macroscopic neutron cross sections for response
in‘the,detector and fission jn the,reactor core, respectively. ¢ is

the neutron flux, and the < > represents the integration, or summation
over phase space. V, and V. are the detector and core volume,

respectively.

The calculation of wn is usually carried out(s’j2’14’19’33’43)
by solving the time-independent neutron Boltzmann transport eqyation(4)

for ¢, i.e., solve



@+ vo(r,E,Q) + £(r,E) ¢(F,E,f) =

X4TET) 17 \)zf»(Fs.E‘) ¢’(F‘sE’a§’) dE‘dK-Z’ +

I zS(F,E',s'zf+E,s'z) o(r,E-,07) dE“dQ” + S(r,E,Q), . (1.2)

where the syhbo]s used in Equation (1.2) have their conventional
meaning as specified in reference 4, For convenience, we will

express Equation (1.2) in operator form as:

Ho = S, R o O (1.3)
where
| H = the transport operator for Equation (1.2);
and ” |
S = the external neutron. source..

Once ¢ is known, Equation (1.1) is sd]ved diréct]y.

~ The difficu]tylwith the direct computation of Wn Ties in the
éxpensive cpmphtétional'effort'required for—the solution of Equation
;(1.2); A so]utioh is réquired at eachbstate it is desired to compute
wn. | |

We'seek‘an'acceptable approxfhate techhiqdeﬁ’a variational

.methéd,'for the computatidn of wn, _The motivationvfor‘this approach
is to avoid'the repeated calculation of neutron flux by Equation (1.2).
The‘COhventiona1japproéch offthe vériational'method for a parameter

is described in detail in the following section,



3.
B. Conventional Variational Method for a Ratio of Reaction Rates

During the last ten year$,4Pomraning(26-28) and Stacey

(34-38)

have developed variational methods for the eva1uation of neutron

reaction rates, reaction rate ratios, and reactor reactivity worths.

The application of these techniques are suitéblé for critical systems

as well as subéritica] systems. The advantagés of using: the vari-

ational method rather than that of directly calculating the perturbed

flux and computjng}the parameter 6f'interest are.threef01q:(35)

(a) the numerical computations for forward and adjoint trial-

functions. (reference fluxes) might be more accurate than that for

the perturbed system, (b) the variational functional is itself a.'

stationary property exploiting method; it provides an accuracy of

gecond order in the difference of the éxact (perturbed) and

approximate (reference) functions, (c) the use of trial functions

in the variationq} fungtiona]‘providésran economical means for the .

estimation of the baraﬁéter of %ntgrést ét a given perturbed state.
Equation (1.1) 1is the ratio of two feaction rates; thusly,

by the conventional variational'method{ thc variational functional

152(27,37)

<T 49> - _
*<e*, S - He> (1.4)

E-l [¢,6*] = A<Zf$>:_ .

(40)

where 6* is mathematically called énLagrahgian multiplier; and

(20)

in neutron physics, it is an importance function, It is shown

(see Appendix A) that Equation (1.4) is a variational principle

for Wn[¢] and the stationary conditions for Equation (1.4) are:(27)



Heo¥ = 67(4), | L 0.8)

zd<zf¢f - L<Iye>

<Zf¢$? ,.

G-(¢) =

_wﬁere H*.fﬁ the adjoiﬁt éo]tzmannltransporf operator.(4)

The second tefm:of Eqdaﬁion (1.4) is called the correction
"term. It corrects the differénCe(35) between the pertufbed (exact)
f]ﬁx and the reference (abprokimate) f]ux}_' |

To show that.Equation (1.4) is,of,sebond order in difference

. of fluxes, we substitute. .

<1
1l

6-86 5. N
B* = 8% - so*, . N - (1.8)

where ¢ and 6* are trial (reference) forward and adjoint. flux

respectively, into Equation (1.4), then:

. <Zd¢> —,€2d6¢> S . .' o
- *] = » . * . spk - -
L][¢]6 ] , <Zf¢>f',kgfd¢> +.§9 §6 » S - H(o ZGQ)%

<o
_ <Zd¢>.[].' <Zd¢%:j + <o*.S»
ézf¢> 1v- <Zf6¢_, BEDECE
: LT 1

1 - <80%,5> = <B%,He> + <50%,Ho>

+ <0%, Hog> - <80%,H5¢>.



5:..
. 3)

Since <Le89> is first order in approximation, the terms higher

than second order. expanded in the bracket could be neglected, hence
<za¢$'- Tg<Lpd> = Le<fyo>

06,64 = 55 - < -, 80>
‘ <Leg> S

+ <e*,S><-'?66*,S>'ei<e*;S$-+ <§6%,S> +
<H*o*,8¢> - <§6%,Hs¢>,

g . R
= <86%,He¢>, - (19)

' E] [¢,6%] '=A <Igd>

where Equatipns_(l.s), (1.6),.andfthe inner product relatioﬁ:
<% ,Hos = <o, H¥o%>

.have been emp]oyed Equetion (7. 9)‘SHows fhat firsf:order error in
the forward . and adJo1nt f]uxes resu]ts in second order error of the
parameter of 1nterest ' ) _ -
Convent1ona11y, the va]ue of. E [¢ e*] is eva]uated by so1v1ng
the forward and adJo1nt fluxes by Equat1ons (1 10) and (1. 11)
- respectively, for a reference state. | Then we use these values in
Equat1on (1.4).' The fo110w1ng two cases show the kinds of difficulties
‘that we will meet in the calculations of the fluxes ¢ and 6* by

Equations'(1.10).and (1.11)

B A | ~(1.10)



E <§ 5> - E <E $>
d “f 2f d (1.11)
S

6 (5) -

s

First, the solutions of Equations (1.10) and (1.11) for the
variational ca]cu]ation'of the neutron detection efficiency, computed
by Equation (1.4), have the problem of the presence of a negative
adjoint source in Equation (1.11). It is obvious from the right
hand side of Equation (1.11) that at the location of the neutron
detector, the value of G*(¢) s positive (Ef'isfvery small for
fission chamber), and that in another port1on of the reactor,

G- (¢) is negat1ve (Ed is zero outs1de the detector pos1t1on)

Second, the source term of Equation (1.11) consists of both
the forward and adjoint fluxes ¢ and 6*. If the estfmation of a
parameter of interest, 11ke the prob]em stated in sect1on A of th1s
chapter is done by the var1at1ona1 1nterpo]at1ona1 method(7) with
two reference states, one for forward fjux b, the other for'adJo1nt
f]ua‘ét, the“solution of Eqdatton'(] 11) for e* needs the va]ue of

the forward flux ¢ at the reference state of the adJo1nt f]ux

P



s

'C;; Objectives

There are three‘objectﬁveS‘in'thts oissertation

The f1rst ob3ect1ve is to. develop a var1at1ona1 funct1ona1 *
for the eva]uat1on of the néutron . detect1on eff1c1ency by the
Vvar1at1ona1 techn1que' The Lew1ns type var1at1ona] funct1ona1 is
a rat1o of two other var1at1ona] funct1ons, one for the numerator
of Equat1on (1. 1), J.e.s <Ed¢>, and. the other for the. denom1nator
of:the,same»equatton,.<zf¢>. The proposed techn1que needs minimum
of'one forward_f]uxlahd two adJo]nt-fluxes..
| The secohd;objectivé‘ts to show the calculational protedores‘
‘which ahe reQUtreo injthehdetekminotion of.a parameter-eva1oated by
:the proposed techn1que : A | ' ' | A

The th1rd obJectlve of th1s d1ssertat1on 1s the demonstrat1on o
of the high f]ex1b111ty of the var1at1ona1 funct1ona1 form by- using
the 1deas of var1at1ona1 1nterpolat1ona1 method (7)-var1at1ona1 -
extrapo]atjonal method, and mu1t1freferenceestate Variotiohal
method,(g):and'the,conventfona]'vdriétioha]'method; to'solve the
problem described in section A of this Chapter at vartous

perturbation states.

A, Lew1ns F1rst proposed a similar variational pr1nc1p1e(2])

for ratios in critical systems



CHAPTER 11
"MATHEMATICAL FORMULATION
A.. Introduction

In this chapter, there are two primary objectives. The first
is the formulation of the Lewins' variational functional for the
probTem of interest. fhe'physica1‘meahing of each correction term
in this functional is deséribed,.éhdnthe equivalence between the
Lewins' variational functional and PbmFaning;s functional is proved.
The second objective s to extend the Lewfnsi functional to the
variational interpolation, the variational extrapolation, and the

method of multi-reference-state variational method.
B. Lewins' Variational Functiona].

First, we repeat'Pomrahing's functional Equation (1.4),4and the
stationary conditions, Equations (1.5) and (1.6) here for Tater'cdm-
parisdn with Lewins' variational functional. The Pomraning's

functional is
<Zd¢>

E][asé*] = 4 <é*s S - H$>9 (2-])

<Zf¢>

and the stationary conditions are



where

aﬁd
H = the Boltzmann transport operatdr for the statibnary stéte,'A
¢ = thé steady state angular neutron flux at energy E and the
. position r,
H* = the adjoint Boltzmann transport operator of H,
¢* = the steady state angular adjoint flux at energy E and
position r,
~ S = the external neutron source for the-stationary state, and
G”(¢) = the adjoint source for Equation (2.3).
J. Lewins(Z]) introduced a variational functional for use in
. estimating ratios of integral quantities in critical systems. Lewins'
functional is somewhat different from that functional introduced by

(9)

'Pomraning(zg) (Equation (2.1)); however, Dwivedi proved that

the two functionals are equivalent for ratios in a critical system.
Accordingly, we wish to introduce a lewins' type functional for the
problem of 1nterest.(Equation (1.1)). To this end, we consider the

numerator and denominator of Equation (1.1) separately. For the

numerator, the functional is
Fil8,8%,] = <z > + <B%). S - H>, (2.4)

and for the denominator

Fol3,5%,] = <Icb> + <i%, S - HE>, (2.5)
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with stationary conditions (see Appendix A for methodology):

He = S, (2.6)
H*e*, = 14, (2.7)

for Equation (2.4), and
| Ho = S, (2.8)
H*e*, = i, (2.9)

for Equation (2.5).

The trial flux functions ¢, 5*],

and 5*2, which are different

from the exact (or the stationary) values of the fluxes ¢, e*], and

e*z'so]ved-by Equations (2.6) to (2.9), for Equations (2.4) and (2.5)

are solutions of the following equations for reference state (or

states,.
Hxgx = 7T
Hrex, = 2
H*e*z =3

o (2.10)
(2.m)

(2.12)

The ratio of the functionals F][$, é*]] and F2[5, ‘6*2] is

the Lewins' type variational functional for a ratiplof two reaction

rates:

<zd$> + <g*

1° S - H¢>
(2.13) °

E,Le] =

<Zf¢> + <g*

29 S --H¢>
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"It is clear that, in Equation (2.13),:as the trial function ¢ :°
becomes -the .exact fdnction, i.e., with the perturbed flux, the Lewins'
functional becomes the exact value of the neutron detection

efficiency

ce,

<T (P>

E,[¢] » S W.Lel.

The physicai'meaning of thé second.ferms'in thé numérétof and
denominator of Equatioh'(é.TB) can be made clear by the following

re]ations;' :
First, we substitute fhe equétidn.

P = ¢+ 8¢
into Equation (2.6) to obtain

Hs¢ = S = He. (2.14)
Taking the inner product of Equation (2.14) with 6% (i =1, 2) and
subtracting the inner product of Equations (2.7) and (2.9) with 8¢
leads to* | ‘ '

<9*i ’S .- H¢> = <2_i, 6¢>

Equation (2.15) shows that the second terms in Equatioh‘(2.13) are
the corrections for the flux change from the reference state. Thus

the term <6*], S - H¢> represents the correction for the neutron

count rate in the detector due to the flux difference between the
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perturbed state and the reference state. Similarly, <6*,, S - H¢>

29
represents the correction for the total fission rate in the reactor

core.

C. The Equivalence Befween the Lewins' Functional and

the Pomranihg's Functional

In order to mathematically assure the reliability and the
app]icabiiity of the Lewiﬁé' functional Eqdation (2.13)-for'the
calculation of the ratio of interest, the equivalence between
Equation (2.1) and Equation (2.13) ié ghown below.

We assume that the flux difference Setween fhe reference and
exact state is first order, then we have the relationship of

Equation (2.14),

H§¢ = S - He. (2.14)

Before carrying out the proof for the equivalence, one should
make sure of the order of the term <5*2, S - H¢> in Equation (2.13)
in terms of the flux difference 8¢. If the correction term is first
order in &8¢, then the binomal expansion for the denominator of
Equation (2.13) divided by <z%$> could be approximated by a first
order expansion. To show it, we take the inner product of Equation

(2.14) with 8* then

2’

<5*2, Hs¢> = <8¢, H*5*2> = <§*2, S - Ho>;-
hence '

<%, S - Hp> = <89, H¥G*,>.. : (2:16)
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Equation'(2.16) shows that the correction term of the denominator in

Equation (2.13) is of first order in terms of the flux difference &§¢.

Writing Equation (2.13) as

<z > <f* , S - He> <g*,, S - H¢>
d_ [1+ 1 . 2 -
<Zf¢> <Zd¢> <Zf¢>

-1

E,[¢] =

and making use of Equation (2.16), the second bracket on the right
hand side of the above equation could be approximated by a first

order expansion,

$> <-6-*, ’
neLt——p -2

<Zf¢> <Zd¢> <2f$>

<z

E,[3] -

From here we expand and collect terms for the right hand side of the
above equation to obtain
<zd$> <Zf$> <§*], S - H$>

E,[¢] = +
2 <Zf$> <Zf$>2

<Zd¢> <é*2, S - H($>

<Zf$>2

<Teb> 8%y - <Igp> B -
) _2" ’ - ¢>0
<2f¢>

= W [3] + <

Now we define a new quantity

o . <zf¢> 6*] - <gd¢> 9*2

\ <Zf$>2

, | (2.17)
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then

E,[3] = W8] + <B%, S - Hp>. (2.18)

In Equation (2.18); 6* is an equivalent adjoint flux or the
Lagrangian mﬁ]tip]ier for the variational'functional E2[$]. B* s
a value from a reference state. By Taylor's series expansion, we
show (see Appendix B) that 8* is a first order approximation to the
exact value e*, which is

*x .
i <Teh> Q 1 " <I4¢> 6*2

e* = 2 - . (2.]9)
<Ef¢> '

We are now at a position to show that Equation'(2.19) satisfies
Equation (2.3), and thus the‘equdlity’of-Equation (2.18) with
Equation (2.1). To do this, we operate on Equation (2.19) with H*

and make use of Equations (2.7) and (2.9), then

<Too> H*ox, - <Zé¢> H*o%,

H*e* = -
<Zf¢>2 .

Ly<led> - Lg<iqo>

b

72f¢?2
and ‘
H*e* = G-(¢).
This completes the proof that Equation (2.13) ‘is equivalent to ~
Equation (2.1). B
The equivalence of E1 and Eé can also be shown from the
(4,17)

calculational point of view by the superposition principles

for the solutions of Equation (1.11) (see Appendix C).
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D. Extensions of the Lewins' Functional

The advantages of the Lewins' functional are pointed out by
comparing Equation (2.13) with Equation (2.1) and their associated
equations, i.e., Equations (1.10) and (1.11) as well as Equations
(2.10) through (2.12). The first advantage of the Lewins' functional
is its flexibility in the choice of reference flux functions. For
example, in the conventional variational method, we may choose both
the forward and adjoint fluxes at the same reference state; in the
variational interbolatiohaT method,(7539) the pertﬁrbéd state is 1n§ide
the forward and adjoint reference states; in the variational
extrapolational method, the perturbed state is outside the reference
states; in the multi-reference-state variational method, we may
employ the trial flux functions (forward and adjoint) by 1inéar

cbmbination(8’]6’27’29)

of given reference fluxes. The second
advantage is that the solution for the adjoint flux functions is
independent of the forward flux function. This is clear when we
compare Equations (2.11) and (2.12) with Equation (1.11). 1In
Equations (2.11) and (2.12), there'is no dependence on the forward
flux, while in Equation (1.11), the 'source term contains the
parameters of <Ed$> and <Ef$>. ‘This means that the solution for
Equation (1.11) needs the solution of the forward flux ¢ (or an
estimated source) at the same reference state.

In the remainder of this section, the conventional variational
method, the variational interpolational method, the variational

extrapolational method and the multi-reference-state variational.

method will be presented.
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Conventional Variational Method

Traditionally, both the forward and the adjoint fluxes are

(37) In this case, the calculation

chosen at the same reference state.

of a ratio for a‘perturbed state which ié 1oéated on either the left

side or the right side of the reference state, is shown in Figurell(a).
‘The Lewins' funcfiona1* for this case is

<3gip> + <Byp. S - Hip

E, 3] = —= — — (2.20)
<Tpdq> ¥ By S - Hop

~ where 51,-5*]], and 6*2] are obtained respectively from

H]¢] = S] R - (2.21)
991 = oy (2.22)
and
H*]e*z] = Ig- (2.23)
Variational Interpolational Method
Steinke,(39),and Cheng and Conn(7) described the concept of

the variational interpolational method for the calculation of
reactivity and reaction rate, respectively for any perturbation
state between two reference states.. As shown in Figure 1(b), the
interpolation is done by calculating the reference forward flux
at .one of the two reference states and the reference adjoint

fluxes at the other one.

*The superscript "C" signifies that this E2 is for the
conventional variational method. T
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1

(a) Conventional Variational Method
‘Reference States
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] L‘r//////,,ff—”'\\\\\\\\-.l 1225%90
‘ . % —% X%- [

1

~nN

(b) Vvariational Interpolational Method

Reference States
- ¢ll~d—————r,,/’//,‘ e:é*fe*zz

2

p—

(c) Variational Extrapolational Method

Figure 1. Locations of~Reference States and the Perturbed States
for Various Variational HMethod.
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The Lewins' functional used for this technique is

IR LA M S - Hop>
2871 - = -
<Tehp> + <0%,, S -‘H¢]>
where 51, 6*]2, and 6*22 are obtained respectively from
Aoy =5y
H*28%12 = Zgp»
and
8% 05 = Tgpr

Variational Extrapolational Method

This method is the extended concept‘frbm'the variational
interpolational method. The two reference states are located on

one side of a perturbed state. Its orientation is shown -in Figure

1(c) and the functional form utilized here is

e r- 4 _ “Bg%1> t <8%yps 3 - Hep
E 2[¢1] - - = 3
Tghy> ¥ <BTpps S - Hop

where the reference fluxes are solved by Equations (2.25) through

(2.27).

Multi-Reference-State Variational Method
(27)

. Pomraning

the multistate variational method for- the calculation of a ratio.
According to Conn,(8) the multi-reference-state variational method

has a better accuracy even if the values of the reference fun;tions

are poor.

and Conn(B) have suggested the applications of

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Generally, we choose equal number of reference states for
forward and adjoint functions. The locations of reference states
may be anywhere in the range of inféreSt,'while.the perturbed state
is within reference states. In the case that the system consists
of many reference states, the bettér trial function for the system
might be a linear combinatioh‘of the known functions. Assume that
there are 2N reference points, among them, we choose any N points
for forwafd funcfibné, and-thé fest'fdr adjoint fuhctfoné.' Thus,

(11)

the linear ‘combinations of the trial functions for the system are

N A :
Do - . T
be(x) = 2 a8, (x)=3% , (2.29)
i
and
N - > T >
e*tl(x) ='§ a%; 0% (x) = a*l 8, » (2.30)
where
x = phase space, and
ai,a*i = -combination coefficients of the .forward and adjoint trial

function for the system, respectively.

If we rewrite Equations (2.4) and (2.5) for the“§yétem with

combined trial functions:

Frlogs8%pq] = <igop> + <0% 0, S - Hop>, (2.31)

. N - ] A‘ N = ) . . . . l

F2[¢t,e t2] <STehp> * <%, o, S H¢t> (2.3?)
and substitute Equations (2.29) and (2.30) into Equations (2.31) and
(2.32), then



R
3 «'2: %
3T it 1,
e =1, 2,
PR B e

In .order to find the état{ohary values for a and 3*2, the

first variation with réspect to a and 3*£4are taken which leads to:

R i LN
or o . A . |
. : -1
T - T .. T
3*2 = <422,4$'> <g*2"',‘H$,> s ] (2.34)
and e .
B% LS5 - <BxLHE > 3 = 0, - (2.39)
or 4
> : > -1 l . )
A= @ st e o (2.36)

: =1 L o <
where <, > inverse of a matrix, |

and
p=1, 2,
Lo 7 2 Lge S o
Substituting Equations (2.34) and (2.36) into Equation (2.33)
we have ‘ 4 _ |
F L3351 = .5 i W 2.37)
. b g = <8%,8 < ¢,e 2> ‘ §22,¢;?' S (2.37
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‘where
L =1, 2,
Lo = Zg> Igs
and '
/=
' 9l 4
T - S
<H$,_e>*l> = <H ¢2 LR (6*2]:9',#2239*2)3"3 s e*Q,N)>
LN
- o s <
<O otz <8% o 5He>

ooooooooooooooooooooooooo

©If we substitute Equation (2.37) into EqUation (2.13), the

Lewins' functional form for the multi-reference-state system becomes

(2.38)
> <% _4)» ’
A'Mf,

For Ca1cq1ationa] purpose, the inner products <6*li,H$j>

- may be expressed explicitly byAthe following relations:



S -He =S - Hep + (Hp - 5)
= (S - 9) ; (H-H) ¢
= AS - AHg,
AHG = aS = S + Ho
= - S + Hg,
He = S + aHo , (2.39)

and then

<o* ., H5j> = <§*JL1" S + AH¢J.>

<6*5L'i’ Ss + <6*“, AH¢j>. (2.40)
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CHAPTER III
COMPUTAT IONAL -PROCEDURES

A. Introduction

The objectives of this chapter are to formulate a numerical -
form of the Lewins' functional for computétiona] purpose and to
describe the calculational procedures that are required in the

execution of the variational functional.

B. The Numerica1'FoFm of the Lewins' Functional

For reference purpose,‘we rewrite Equation (2.13) here
_ <Zd$> + <§*], S - H$>

E,[3] = — (3.1)
<Tep> + <e*2,'S - Ho>

and for convenience, we write the numerator and the denominator of

_Equation (3.1) as
Fi[a,é*i] = <Zi$> + <6*i’ S - H¢> , - (3.2)

where

-
]

=1, 2, and
I, = Igs I
The trial neutron flux functions, ¢, 6*1, in Equation (3.2) are

respectively the solutjon of the following equations



and
Axgs. = 3. (3.4)
In order to express Equations (3.2) in a detailed numerical

form, we write Equations (3.3) and (3.4) explicitly as:

X(E) I I Uz"; (r,e-) o(r,E~,0°) dE-dQ~ +
F I (FE-,87 » £,2) 3(F,E7,8°) dE“df” + §(F,E,d), (3.5)

and

VEL(7E)

y I r X(E‘)e*i(r,E‘,Q') dE“dQ~ +

- - - - - - - - - - *
I/ zs(r;E,Q - E*,Q7) e*i(r,E‘,Q') dE-dR- + zi(r,E). . (3.6)

Over the reactor system, on which the parameters of interest are

(4,42)

evaluated, the boundary conditions for Equations (3.5) and

(3.6) are shown in Table 1,
Equation (3.5) and Equation (3.6) are energy dependent
Boltzmann neutron transport eqdations. In practical calculations,

the energy variable can be treated by multigroup method,(4’25)

*The adjoint source of Equation (3.4) is a macroscopic cross
section which is usually independent of neutron direction.
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. TABLE 1

BOUNDARY CONDITIONS FOR FORWARD AND ADJOINT.
NEUTRON TRANSPORT EQUATIONS

Forward Equation

-a— n o- B
b,E,Q) _0, nin Q>O

a1

(
(
(

—
-1

, E, 2) is continuous in the system.

N
-1
=S1

, E, Q) is finite in the system.

w
-1
=1

Adjoint Equation

E, Q) =0, n
2. &*.(r, E, §) is continuous in system.

3. B*.(r, E, &) is finite in the system.

8 Fb represents the boundary coordinates of the reactor

system,
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'that is, the neutron energy range of interest is divided into a

number of subintervals, each subinterval represents an energy group,

and each group has its owﬁ'specified properties and governing equation.
In order to do this, we make an integrati%n for Equations (3.5)

and (3,6) over a definite energy interval, then we have multigroup

neutron transport equations:

for Equation (3.

19 g 19
(vt (r)) G
f - -‘ -
———7E;——41 z’ Xg, s 9*19,(r,9 ) do” +

99" (5.5 . 5- F54) do- + 5. (F
g’ S I3 (r;o > Q7) o*ig,(r,g ) de- + Zig(r)’ (3.8)
for Equation (3.6),
where
- - E 1 - - -
bo(F8) = 177 B(F.E,Q) dE, (3.9)
- - Eg_] - - -
e*ig(r,Q) = Je 9*1(F,E,Q) dE, (3f]0)



><
!
—
el
1
—
><
Camn)
m
S
[« %
m

‘__> - - E E - - - -
B 0 (s e @) = ST T B (RELE - 6, ).

g g -
$(F,E',ﬁ')'dE'dE/5g,(F,ﬁ');
o = = E -1 =, - _ =
S (r,2) = s97" S(v,E.Q) dE,
g\ E.g
and
- - Eg_] -
jg(r) = ng. I,(F,E) dE

Practically, the parameters for the multigroup adjoint-flux
equation are obtained by.constructing the adjoint operator for the

multigroup adjoint equation directly from the.multigrOUp forward

equations.

In order to cancel the conVectivé term of the Boltzmann

equation, we add (Ag - S) to the second term of Equation (3.2),

and after subtracting, we have

Fi[$,§*i] = <zi$> + <6*1, AS - M3,
where

AS =S -§,

MH = H - A, the change of the transport operator,

(3.11)

(3.12)

(3.13)

(3.14)
(3.15)

(3.16)

(3.17)

(3.18)
(3.19)
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The change of a state is due to the changes of material

parameters of the system, from Equation (3.5), we have
MH(r,E,Q) ¢(r,E,2) = az(r,E) o(r,E,Q) -

S foas (r3E”,Q° » E,Q) o(r,E”,Q”) dE-d3~

S HEL ;g a(unFLE) B(RESEY) Rt (3.20)

when Equation (3.20) is substituted into Equation (3.17) and summed

over energy groups, the result is an angular and spatial dependent

functional
G - - -
Filogs o%5q] = gz] 11 6g(T,0) 24 (F) drda +
G - - - - ' - -
Y S s 8%, (r,@) aS_(r,Q) drde -
g=1
G - - - - -
Y s sz (r) 8%, (r,2) ¢ (r,Q) drdd +
= g ig
G s .
VorosLex, (7,8) ) £ asd YRGS > @) 5 L(F,67) dR”] drdd
g=1 ig g°s s , g . .
G X( _ . G _ o . _
) K?rlf f[e*ig(r,g) y A(\)Zf(l")) ¢ .(r,27) d@°] drdQ. (3.21)
g:] g‘:] g g .
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We expand fluxes, scattering cross sections, and sources in

spherical harmonic functions as(4’]5’23)
ISCT n
== v 2n+] “K =y K, =
. = r) Y (&), 3,22
oglfd) = 1) 1 Gga(F) (@) (3.22)
ISCT 2
81y(ra) = 1 <2§Z1> N O R UGN (3.23)
g 2=0 1 e

S
ISCT
_ 2n+1 g°>g, = = =.
= nzo (_EF_) LS (r) Pn(Q Q°), (3.24)
and
ISCT n
_— 2n+1 K =y JK,/=
AS = Q .2
o) = 1 (D) 1 asg (M) v(A), (3.25)

respectively, where the normalized spherical harmonics is defined by

1/2
) (2 -6_,) (n - K)!
YE(Q) - [ (n”E T ] Pﬁ(u) coske, (3.26)
Syp = 1s i K =0,
=0, ifK#0,

and make use of the addition theorem(zz)

3). | (3.27)
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Substitute Equations (3.22-3.25) and (3.27) into Equation 

(3.21) and make use of the re]at{onship

8) YI(R) di = g5 8 s (3.28)

to obtain

g n=0 K=0 1] g' ijJ ign' iJ gn' 1ij iJ
ISCT 1J G n G
2n+1 K g g =K =
nZO U 4n ) ;J vij[gZT KZ ® 1gn( 1J) ,Z]Azsn ( ij) ¢g n(r1J)]}
G iﬂ IJ G - . :
+ V..[e*. (r A(vELlTr, - . . 3.29
Loa JViglegleg) L alrelFih g 5. (Fyp)] (3.29)
where
G = total neutron energy gfoups,
ISCT = the order of scattering,
Vij = the volume of the ijth interval,
1J = total number of intervais.

The application of the forward and adjoint flux moments in

Equation (3.29) is presently used for the two-dimensional problem of

(44)

sensitivity analysis. The use of flux moments instead of angular
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flux in two-dimensional system has a desirable advantage of avoiding
the storage of a large number of neutron angular fluxes. The code
DOT offers both the forward and the adjofnt flux moments, while the
code ANISN offers angular fluxes only. So, for one-dimensional

problems, the numerical form (see Appendix D) for the variational

functional Equation (3.21) employs neutron angd]ar fluxes.
C. Calculational Procedures

The solution of Equation (3.1) is carried out by evaluating
both the numerator and denominator separately, as dictated By
Equation (3.29). The forward and the édjoint refefenée fluxes are
calculated by»so1ving Equations (3.5) ana (3.6), respectively. The
numerical calculation for Equation (3.29) has two steps: (a) calculate
the first tefm with the reference forward flux and the nuclear
parameters af the perturbed étate; (b) evaluate the remainders of
the eduation (i.e., the correlation term of Equatfon (3:2)), by
using the sensitivity code SWANLAKE(3) and the changes of the
nuclear paréﬁeters from the reference state. |

| The calculation of both the forwafd and the adjoint fluxes

(10)

at reference states will be done by ANISN for one-dimensional

problems, and by DOT(27) for two-dimensional prob1éms. The SWANLAKE
code calculates the products of the adjoiht énd the forward(3)

(o* ¢) flux moments for one-dimensional problems by directly inputting
the angular fluxes. For two-dimensional prob]em; an intermediate

code VIP(6) is used to calculate the products of the adjoint and the

forward flux moments. SWANLAKE uses the moment products as input.
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CHAPTER IV
NUMERICAL DEMONSTRATIONS
A. Introduction

There are two classes of prob]emsvto be demonsfrated in this
chapter. Each class ha§ at least two of the four types of calculational
methods, i.e., the variational interpolation, the variational extra-
polation, the conventional variational, and the multi-reference-state
variational method.

The first class are one-dimensional prob]emé. The neutron

fluxes (forward and adjoinf) are calculated by the ANISN(]O)

(45,46)

code
with P3S4l The 50-group neutron croés section set prepared
for the Engineering Mdckup Critical (EMC) facility was employed.

The second class consists of two-dimensional problems. The neutron

fluxes involved in the variational calculations for this second class

(31) .
with P3S4.

The 14-group cross section set used for the two-dimensional problems

were calculated by the discrete ordinate code DOT

were collapsed from the 50-group sets used for EMC by the ANISN code.
The correction terms for the neutron flux change from a reference
'state,-i.e., the second terms in Equation (2.13), were evaluated

by the sensitivity code SNANLAKE<3) for the two classes of‘prob]emé.
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B. One-Dimensional Calculations

Description

The one-dimensional calculation of the detection efficiency
(wn) in this dissertation used the slab model shown in Figure 2.
This model is a mockup of the EMC shown in Figure 3. The calcula-
tion of DE was done for one gram of active materiaj in the detector.

Thusly, from Equation (1.1), we have

<Zd¢>
W el = oo
- L o, ¢ AX
B (Zﬁ; X) g 979
A g
; $ 2(vIg)? ¢ .oX.
ig '3 T9i™3
» . .
_ NAv g 0dgd)g
s(vz) T o .aX.
§ g 15 %9i®%;

where

N, = Avogadro's number,

= average number of heutrons'per fission,
A = mass number of active material,
H = height of the slab,
W = width of the slab,
°dg = groub microscopic cross section in detector,
(vZf)g = product of the number of neutrons per fission and the
macroscopid fissioﬁ créss section for the gth group and

the jth interval.
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Figure 2. Slab (half) Core Configuration for One-Dimensional Calculations.
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ij size of the jth interval,.

¢§j group flux for the jth interval.
The dimensions of.the slab core and the arrangement of material zones

as well as the detector position are shown'in Figure 2. The value of

v is 2.92 neutrons/fission for the 50-group EMC ca]cu]ation.(33)

The reactor core was divided into ]8 zones. The total number of
intervals is 102, fjve intervals for each fueled zone, and seven

intervals for each reflector and shield zone. The forward and adjoint

(10)

fluxes were calculated by ANISN with P3S4; The neutron cross-

section set used is the 50-group set(45’46) prepared for the EMC

calculation.

Reference States and Reference-Flux Calcq]ation

" For variationa1 estimations, there are four core configurations
chosen as the-reference;states.fok fhe calculations of the reference
forward and/or adjpint flux fﬁnction; these states are numbered 2,

5, 8, and 11 in Table 2, which also-shows thé.subCritica1ity of each
state. | |

In Qrdér to‘make numerical demonstrations; the forward
feferencé fluxes were ca]cu]atedlfor all reference states while.
that for the adjpiﬁté were calculated for states 5 and 11 only,

The specification of the fixed source'g-for the forward flux in
Equatioh (2.10) was made by considerihg main]y(]g) the number

density distribution of 240Pu for the,spohtaneous»fission neutrons

in fast reactors. For the ca]cu]atiohs of the adjoint fiuxes
51* and 52* in Equations (2.11) and (2.12), the source specifications

~ were made according‘to the distributions of ‘the macroscopic detection



TABLE 2

STATES AND SUBCRITICALITIES FOR ONE-DIMENSIONAL CALCULATIONS

23ﬂ2$g10£ods ‘Numper of Safety qus Insekted
Inserted 0 _ 1 : 2 3
() o (4) (o (10) 2
4 1:O(0.0$) 0.9661(10.55$) i 0.9412(18.31%) 0.9199(24.9%)
(2) N R m)
5 0.9913(2.71%) 0.9572(13;33$)= B 0.9353(20;14$) o ~0.9146(26.57) -
(3) | 6) .- . (9) (12)
.6 B 0.9817(5.68%) 0.9491(15.86$)

0.9264(22.9%)

0.9037(29.96%)

a(n) the number "n"

inside the bracket represents the state number.

e
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cross section Ed’ and the macroscopic fission cross section Ef in

the detector interval and the fueled reactor zones respectively.

Varijational Calculational Methodology

The numerical calculation for the conventional varijational
method was done by choosing the reference fluxes (forward and adjoint)
at the same state. We chose states 5 and 11 for this purpose. The
computation is done with Equation (2.20), where the two correctjon
terms, <é*]], S - H$]> and <§*2], S - H$1>,‘for the numerator ;nd
denominator respectively, were evaluated by SWANLAKE.(3)

For the variational interpolation and extrapolation methods,
the estimations of the neutron detection efficiency are done by
Equation (2.24) and Equation (2.28) respectively. The selections
of reference states for the two methods are similar; for the
varlational interpolation, we always keep the perturbed state
inside the two reference states chosen, while that for the variational
extrapolation is outside. The reference-state coupleg used for‘these
3 (2,11%), (8,5%), (8,11%), (5,11*), and

(11,5%). The calculations of the correction terms are similar to

calculations are (2,5%),

that for the conventional variational method.
For the multi-reference-state method, the trial flux functions
(forward and adjoint) are the linear combinations of given reference

fluxes. There are two kinds of combinations for the trial flux

a(2 5*) means that we use forward reference f]ux at state 2,
and adjoint reference flux at state 5.
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functions in'this calculation. The first chose the forward fluxes
from states 2 and 8 as compdnents of Equation (2.29), and that for
the-adjoint fluxes we se]ectediétates 5_and 11 as:components of
Equation (2.30). The secpnd used the forWafd and adjoint f]uxes
from states 5 and 11 as components of Equations (2.29) and (2.30).
From Equations (2.38) and (2.40), we kndw'that‘the é]émenté of the

matrix are <z, 51>, <f* 35> was

JL]'"S>’ and <5*21., AH$j>. <3

2’
calculated by ANISN directly; <§f£1; S> was computed by using the

adjoint flux and the fixed source (see Appendix E); <b* ., AH$j>

21
is evé]uated by the SWANLAKE Cddel(see Appendix D).
Results |

| - The detection efficiehcies for a U-235 fission chamber and

a He-3 detector calculated by ANISN for differént'states'ére shown

in Table 3. The detection efficienciéS'estimafed by the conventional
variational method are shown fn Tab]és 4 and 5 for U-235 and He-3
detectors respectively. Tables 6 and 7 show the values evaluated

by the variational 1nterpb]ationa1 methods for U-235 and He-3 |
detectors respéctive]y, while that computed by ‘the variational
extrapolational method are shown in Tables 8 and 9. The multi-
reference-state variational methods estimated detection efficiencies
for the fission chamber and the He-3 detector are shown in Tables

10 and 11.

Discussion of Results

The reference forward and adjoint fluxes for the one-dimensional

(10)

variational calculations were calculated by ANISN using 10 and
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TABLE. 3
THE DETECTION EFFICIENCY  OF U-235

AND He-3 DETECTOR AT EACH STATE
BY ONE-DIMENSIONAL CALCULATION

State - .. Detection Efficiency

Number U-235 He-3
2 | 5,51-72 - 1.84-4
3 |  5.37-7 ' 1.79-4

4 .  e071 2.01-4

5 5.92-7 | 1.97-4

6 | 5.79-7 1.92-4

7 6.36-7 2.12-4

8 .. | . 6.26-7 - 2.08-4

9 ; Co602-7 2.04-4
10 : © 6.65-7 2.21-4
n . o C 6.55-7 - 2.18-4
12 6.42-7 - 2.13-4

7

8pead 5.51 x 1077
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TABLE 4

THE DETECTION EFFICIENCY OF U-235 DETECTOR
BY CONVENTIONAL VARIATIONAL METHOD
FOR ONE-DIMENSIONAL CORE

~Perturbation Detection Error
State - Efficiency (%)
(5,5%)~2 ' 5.54-7 +0.61*
(5,5%)>3 5.45-7 +1.52
(5,5%)~4 5.96-7 -1.10
(5,5%)+6 5.86-7 +1.18 -
(5,5%)~>7 7.36-7 +15.8
(11,11%)-3 5.89-7 +9,62
(11,11*%)>4 6.20-7 +3.00
(11,11%)-9 6.17-7 +0.76
(11,11%)>10 6.64-7 -=0.11
(11,11*)12 6.43-7 +0.23

* M .
_Errors were computed from more precise values, and used the

relation
error % = (

exact - approximate) x 100
exact ' :
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TABLE 5

THE DETECTION EFFICIENCY OF He-3 DETECTOR
BY "CONVENTIONAL -VARIATIONAL METHOD
FOR ONE-DIMENSIONAL CORE

Perturbation Detection Error
State Efficiency (%)

" (5,5%)>2 1.80-4 -1.92
(5,5%)-3 1.78-4 -0.69
(555%)+4 1.97-4 ' -1.93
(5,5%)+6 ©1.98-4 +2.79
(5,5%)+7 '2.58-4 +21.7
(11,11%)-3 1.95-4 ' +8.72
(11,11%)>4 2.06-4 +2.37
(11,11%)+6 ©1.99-4 +3.26
(11,11%)»8 2.09-4 - (40,12

- (11,11%)-9 2.08-4 +1.93
(11,11%)>10 - 2.21-4 - +0.10

C(11,11%)>12 . 2.14-4 . +0.49
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- TABLE 6

THE DETECTION EFFICIENCY OF U-235 DETECTOR
- BY VARIATIONAL INTERPOLATION FOR
ONE-DIMENSIONAL CORE

Perturbation Deteétion Error
State- Efficiency (%)
(2,5%)+32 5.33-7P -0.75°
(2,5%)~4 o 6.77-7 +12.26
(2,11*)*5- | 5.28-7 A‘ -1.75

C(2%)es . - 5887 .. -2.44:1:
(2,11%)-5 5.63-7 | _4.83
(2,11%)+6 5307 - .8.33
(2,11%)57 6207 1,19
(2,11%)-8 5.95-7 -4.89
(2,11%)~9 5.12-7 ~ -16.40
(8,5;)+6 5.70-7 -1.44
(8,5%)~7 6.23-7 -2.03
(8,11%)-9 6.11-7 -0.29
(8,11%)~10 6.75-7 41,44
(5,11%)-6 5.73-7 -1.02
(5,11*%)-7 6.37-7 +0.10
(5,11%)-8 6.19-7 -1.03
(5,11%)-9 5.96-7 -2.65
(11,5%)6 5.65-7 -2.34

(11,5%)~7 5.98-7 -10.14
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TABLE 6 (Continued)

Perturbation Detection ' Error
State Efficiency (%)

(1],5*)+8 5.93-7 -5.24

(11,5%)9 5.93-7 -3.14

(11,5*%)>10 6.47-7 -2.75

%This means that the correction term is calculated by the
forward flux at State 2 and the adjoint fluxes at State 5 for
the perturbation State 3.

bread 5.33 x 1077

c . .
"+" or "-" means over or under estimation.
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TABLE 7

THE DETECTION EFFICIENCY OF He-3 DETECTOR
BY VARIATIONAL INTERPOLATION
FOR ONE-DIMENSIONAL CORE

Perturbation Detection Error
State Efficiency (%)
(2,5%)3 1.81-4 40.90.
(2,5*)+4‘ 2.42-4 +20.6
(2,11*%)-3 1.76-4 -1.49
(2,11%)»4 1.97-4 -1.76
(2,11%)-5 1.89-4 -3.96
(2,11%)-6 1.79-4 ~7.00
(2,11*)>7 2.13-4 +0.86
(2,11*)-8 2.04-4 -2.15
(2,11*)-9 1.87-4 -8.00
(8,5%)>6 1.86-4 -3.28
(8,5%)~>7 2.06-4 -2.80
(8,11%)-9 2.03-4 -0.10
(8,11*)~10 2.25-4 | +1.90
(5,11*)>6 1.91-4 -0.75
(56,11%)~7 2.13-4 -0.64
(5,11*)-8 2.08-4 -0.33
(5,11%)>Y 2.00-4 -1.62
(11,5%)-6 1.82-4 © -5.30
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TABLE 7 (Continued)

" Detection

Perturbation Error
State: Efficiency (%)
(11,5%)-7 1.94-4:° 8:31 -
(11,5%)+8 1.94-4 -6.86
(11,5%)-9 1.94-4 475

-3.48

(11,5%)-10

2.13-4
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. TABLE ‘8

THE DETECTION EFFICIENCY OF U-235 DETECTOR

BY VARIATIONAL -EXTRAPOLATION
FOR ONE-DIMENSIONAL CORE

Perturbation Detection Error
State Efficiency (%)
(2,5%)>7 3.11-7 -51.1
(2,5%)+8 4.22-7 -32.6.
(2,5*)»9 4.73-7 -22.7
(2,5%)>10 4.40-7 -33.7
(8,5%)>2 5.55-7 +0.78
(8,5%)-+3 5.99-7 +11.48
(8,5%)+4 5.80-7 -3.68
(8,5%)-+9 6.30-7 +2.86
(8,5%)+10 7.75-7 +16.6
(8,5%)+11 8.94-7 +36.6
(8,11*)>2 5.94-7 +7.18
(8,11*)-3 5.78-7 +7.65
(8,11*)4 6.21-7 +3.06
(8,11%)-5 6.04-7 +2.10
(8,11*%)-6 5.91-7 +2.,06
(8,11%)>7 6.38-7 +3.00
(8,11*)>12 6.48-7 +0.90
(11,5%)>4 5.74-7 -4.80
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TABLE 8 (Continued)

Error

Perturbation Detection
State Efficiency (%)
(11,5%)>12 6.68-7 44,11
(5,11%)2 5.77-7 . +4.70
(5,11%)>3 5.61-7 +4.43
(5511*)>4 6.07-7 +0.80
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TABLE 9 .

THE DETECTION EFFICIENCY. OF He-3 DETECTOR
BY VARIATIONAL EXTRAPOLATION: FOR

- ONE-DIMENSIONAL, CORE

Perturbation Detection Error. -
State Efficiency (%)

(2,5%)>7 6.24-5 -70.5
(2,5%)+8. 1.11-4 -46.7
(2,5%)>9 1.33-4 -34.5
(2,5%)10 1.26-4 -42.9
(8,5%)+2 1.79-4 -2.89
(8,5%)>3 1.77-4 -1.26
(8,5%)>4 1.88-4 -6.20
(8,5%)>9 2.13-4 +4.,32.
(8,5%)+10 2.67-4 +20.9
(8,5%)>11 3.21-4 +47.4
(8, 11*‘+4 2.04-4 +1.80
(8,11%)+5 2.00-4 +1.67
(8, 11+)+o 1.96-4 +1.84
(8, 11*)+7 2.12-4 +0.28
(8, 11*)+12 2.17-4 +1.85
(5,11*)+2 1.92-4 +4.18
(5,11%)+3 1.86-4 +4.,09
(5,11%)54. © 2.02-4 +0.76

L (5,11%)>12 2.26-4 46,11
(11,5%)-4 1.85-4 8.03
11,5%)312 2.08-4 -2.38
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TABLE 10
THE DETECTION EFFICLENCY OF U-235 DETECTOR

BY MULTI-REFERENCE-STATE VARIATIONAL
~ METHOD FOR ONE-DIMENSIONAL CORE

Perturbation - ~ Detection Error

_State ; Efficiency (%)
. Case A
3 5.42-7 +0.93
4 - 6.05-7  -0.44
6 5.80-7 +0.20
7 6.40-7 " +0.60
9 6.14-7 +0.24
10 6.71-7 - +0.86
12 6.42-7% 40,01
.Case Bb ‘
3 5.42-7 40,95
4 6.07-7* . +0.78
6 5.88-7 +1.55
7 6.39-7 . 40.49
8 6.25-7 , -0.09
9 6.13-7 ' +0.16
10 S 6.69-7 © +0.58

12 ‘ 6.43-7 . 40.19

Case A used forward reference fluxes from States 2 and 8,
and adJo1nt reference-fluxes from States 5 and 11. . -

oo bCase B used forward and adjoint reference-fluxes from States
5 and 11, :

".'The calculated value is fiye position after decimal point.
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. _TABLE 11- .

THE DETECTION EFFICIENCY OF He~3 DETECTOR
BY MULTI-REFERENCE STATE VARIATIONAL
- METHOD FOR ONE-DIMENSIONAL CORE

. Perturbation = - Detection ~ Error
State | bEfficjency : ‘(%)'
- Case A
3 1.73-4 -3.52
4 2.01-4* | +0.21
6 1.93-4 +0.41
7 21344 +0.66
9 24 0.3
0 2.23-4 . +0.98
12 2144 40,51
Cage B |
3 | 1.83-4 .+2;21
4 2.02-4 A +0.62
I 1,964 +1.83
R 2034 40.56
8. 2.084x -0.08
9 2.04-4% - +0.23
0 2.23-4 +0.69
12 2.14-4 +0.29

*The calculated value is fiye position after the decimal
point. . 4 :
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16 outer iterations respectively. The number of outer iterations

for states like 2 and S-was still not sufficient to have a eonvergent
neutron flux distribution. The effect of this nonconvergence will

be noted below. _

Detection efficiencies'for reference states and perturbed
states were calcq]ated:by ANISN-and‘are presented in Table 3. These
values were used for comparison with those estimated by the variational
method proposed in this dissertation.

The results for the cbnventiona1 variational method (shown in
Tables 4 and 5) indicate that when'the‘perturbed state, the state
to be estimated, is far from the reference-state (e.g., state 5 or
state 11), the error becbmes ]aréer. For example, in Tables 4 and
5, the discrebancfes'for the perturbed states 3 and 4 with state 11
as’ reference state were larger than that for states 10 and 12.

In general, this is an expected tendeace, since the application of
the variatianal method has a 11m1tation.

. For the var1at1ona1 1nterp01at1ona1 -method (results shown in
Tables 6 and 7), there are two observat1ons (a) like the conventional
'var1at1ona1Amethod when the perturbed state is far from the forward
reference state (e.g., (2 11*) -3, 4,5, 6, and (11,5*%) - 7, 8, 9,
10), the est1mated parameter has 1arger discrepancy, and (b) the
values est1mated by the variational method employing the adjoint-
fluxes at state 5 were not as accurate as that at state 11; for
example, the values, at pertUrbed'states 6; 7, 8; and 9, estimated

by the reference-state céup1e5<(5,11*) were more accurate than that



53

estimated from (11,5%). The reason for this is that the adjoint

reference-flux at stéte 5 was not yet as cthérgent as that at
state 11. _

Results for the variationa]‘extrépo]atidna] metthiére
bresented in Tables 8 and 9. To compafe spe§ifica11y with the
conventional variational method and theAvariatiohal inferpo]ationai
method, the pertufbed ététes Qith state hgmberltl, or'rZ abouf é'
f0rward~referenée-state were conSideréq.' WéAnofe that the values °
for states.3 and_4 from the reference cpup]es (5,5*)‘1n TabTes 4

and 5 were. less in error than that from the couples (5;1]*) in

.Tables 8 and 9; the values for states 9 and 10 from the couples

(8,11*) in Tables 6'and 7 were also more accurate than that for-the

states 6 and 7 from the.couples (8,11%) in Tables 8 and 9.

~ According to those, the variational extrépolational-resu1ts.Were :

not as accurate as thé:variationa1 1nt¢rp61ationaT and the
conventidha] yéfiatjoha1:resu1t$, ‘But for céses employing the
convergent reference-f]uxeé (bdth'forwafd and adjoint), and the
perturbed state not fér.from'a forward-referencefétate, like that
from the couples (8,1]*)'tb states‘4; 5, 6, énd 7, and from (5,11%)
to states 2, 3, and 4 in Tables 8 and 9, the discrepancies for

the variationaT.exfrapo]ationa] results were less than 5%

‘The results for the mu]tiAreferénce-stafe variational mefhod,
which used tWo-reference-forward-f]uxes énd two reference adjoint-
fluxes, are shown in Tables 10 and 11. A]fhough the number of
Feferencé states was four for cése A (i.e., the forward and the

adjoint trial functions were the linear combinations of the forward
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fluxes at states 2 and 8, and the adjoint fluxes at states 5 and 11,

kespective]y), and two .for case B.(j.e., the forward and the adjoint

trial functions were the linear combinations of the fluxes at states

5 and 11), the estimated results were within 1%.of the actual results
obtained directly.

The multi-reference-state variationa] method is reasonably
insensitivity of the reference state fluxes. This is shown by the
calculated results (see Tables 10.and 11) for the states far from
the reference-states (e.g., 7, 8, 9, 10, and .12) which were not
convergent (states 2 and 5) for forward- and adjoint-fluxes.
Furthermore, results for states 3 and 6 which are near states 2 and -
5 had discrepancies larger than states 7, 8, 9, 10, and 12, but in . ..
comparing with other methods in this dissertation, the effects of
nonconvergent reference-fluxes -on the multi-reference-state
variatijonal results are minimal. -

From the results discussed above, we may draw. the -conclusions
that (1) the Lewins' functional, Equation (2.13), is workable for
the estimation of the neutron detection efficiency in the one-
dimensional problem, and-(2) among the methods considered, the multix
reference-state variational method is the most promising with the
variational interpolational method and the conventional variational-

method as candidates for scoping-applications.
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'd:dC;~‘TWO-Dimensional Ca]cd]ations'

Descr1gt1on .

The procedures for the: ca]culat1on of the neutron detection
. efficiency for twogd1mens1ona] problems are_s1mjlar to that for
thelohe;dimensione]-prob]em tfeated in Sectﬁon B of-this chapter‘.
The core model -for the two d1mens1ona] study 1s shown in F1gure 3,
pagev35. The numer1ca] formu]a of the detect1on eff1c1ency is of
.the fo1]ow1ng form._~- o '

. AXAY

L, z( f)?Jcpg M, AY
i g

Wolel = (AHAXAY)

e
. =,"‘(NA'\))" g dg’g '
- A - (vzf)g ¢9 AX1
ij g1, ~

th radia]* fhterva]vand‘

AY
~ where". bX, and AYJ are thels1zes‘of‘the i
vthe th ax1a1* 1nterva1, respect1ve1y, other notations were descr1bed
1n_Sect1on B. o

, . The fTuXes'were calcuTeted oy fhe two- dihensiona] dischete
ordinates code DOT(3]) us1ng P3S4 w1th I4 _neutron groups (s shown in

: Tab]e 12). The 14 ghoup cross - sect1ons were collapsed from the 50-
group cross section sets(45’46) for EMC.by the one4dimensiona] code

anisn. (19)

A :*According to the‘DOT~manua1,(3]) the radial and axial
directions represent the X- and Y-directions, respectively.
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TABLE 12-
14-ENERGY GROUP STRUCTURE AND FISSION SPECTRUM

o Low Energy . Fission
Group’ Boundary (ev)" ' Spectrum
Sy 3.01%62 7 0.2105°

2 1.35¢46 7 0.3650
3 Y9745t T 0.1487
4 4.08+5 0.1752
5 1.23+5 0.0632
6 ST . 0.0187
7 3.3543 0

8 9.61+2 0

9 ©1.0142 0

0 2.2641 0
-h11 - L 1.0741 .0

12 5.04+0 0
13 o 1.1340 . 0
w . Thermal 0

3pead- 3:07x108.
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In searching for the critical core configuration, energy- and
zone-dependent buckling corrections were Considered(za) in the
direction perpendicu]ér to the X-Y p1ane{(i.e., the axial-direction).

(33)

The resultant 14-group buckling cross section set, are presented

in Table 13.

Reference States énd Flux Calculations

In order to make numerical demonstrations, four reference
states were selected from a one-dollar state to the full-shutdown,
or the 30-do11ar‘state. The control-rod posﬁtions for the four
reference states and the pertﬁrbed states are shown in Figure 3,
page 35, and Tébje 14. Figure 3, pége 35, iS a two-dimensional core
arrangement for EMC. The coré consists of two fuel-zones (inner '
driver (ID) and oLter driver (Ob))'énd three trisectors as well as
three shie]ding-zohes., The thréé trisectors are nearly symmetrical
in configuration; In Table 14, states S1 and S3 were chosen for
the ca]cu]atiohs of the referéncé adjoint-f]ux calculations. The
calculation of1the forward and thé adjoint fiuxés were done by DOT.(3])
The specifications of the fixed sources for both the forward- and
adjoint-flux calculations were similar to the oﬁe-dimensional
problem, i.e., the calculation of 5*]A5pec1fying Ed as adjoint source,
and that for 5*2 specifying Ef in the fueled zones as source.

The selected reference states were symmetric for three
trisectors. The purpose of this was using the fluxes at symmetric

states to estimate the parameter of interest at perturbed states

which were antisymmetric.
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TABLE 13

BUCKLING CROSS SECTIONS IN AXIAL DIRECTION FOR
CORE ZONES AND RADIAL REFLECTOR (cm=1)

Outer

' Radial

Inner
Group Core Core Reflector -
1 3.544-3% 3.767-3 3.261-3
2 2.946-3 2.604-3 1.848-3
3 1.772-3 1.502-3 1.601-3
4 1.455-3 1.537-3 7.335-4
5 9.509-4 1.009-3 5.939-4
6 6.233-4 5.841-4 4.209-4
7 -1.322-4 5.782-5 1.196-4
8 -6.878-4 -3.645-4 1.933-5
9 -1.684-3 -2.387-3 -5.935-5
10 -1.249-2 ~0.344-3 1.261-5
1 -3.585-2 -1.540-2 _2.063-4
12 -5.369-2 ~1.338-2 -8.795-6
13 -2.416-2 ,‘ -1.693-2 _3.537-4
14 -2.509-1  -5.315-2 ©7.088-4
3

qpead 3.544x10°



TABLE 14

CONFIGURATIONS OF REFERENCE STATES AND PERTURBED
STATES FOR TWO-DIMENSTONAL CALCULATIONS

. Trisector I - "~ Trisector 11 ‘ Tfisectof'III‘

5 CR CR SR PSR - CR CR. SR PSR - CR CR SR PSR’
States 522 524 312 702 506508 304 714 514516 308 726
Critical TR CO I Wl oW T W1 W
51 W W T W oW WocoW T
P2 WoToowo1 1T W T Wooloow 1
P3 Wl W I o1 W W1 oW I
JI I 1 W I 1 W WoLoW T
52 N T S S S ST ' 1 W1
PS5 I 1 W1 11 W T 1111
$3 w111 w111 W1 1T
6 . 1 1 1.1 1 -1 W 1 I 1 1 I

'S4 | [ 111 o1 - .1 1 1 1

?S.indi:ates reference state, P indicates perturbed state.
PConcentrated CR makes S1 one dollar subcritical

*"1" s insertion, and "W" is withdrawn.

65
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Variational Calculational Methodology

The numerical calculation of the neutron detection efficiency
by the variational methods, e.g., the variational interpolational
method and the multi-reference-state variational method, were similar
to the one-dimensional problem. For the variational {nterpolétion,
we chose (S1, S2*), (S1, S4*), (S3, S2*), and (S3, S4*) as reference-
state couples for the forward- and adjoint-fluxes. For the multi-
reference-state variational method, we chose states S1 and S3 for
the forward-fluxes for Equation (2.29), and states S2 and S4 for
the adjoint-fluxes for Equation (2.30).

The calculations of the flux-change correction terms <6*], S - He>

and <6*,, S - H¢> in Equation (2.20) were carried out using,SwANLAKE(3)
2 : J
44)

and a code VIP,(6) which is employed to caicu]ate the product

of the flux moments 5*¢'in two-dimensional problem (see Chapter

I11, page 30). The parameter <zd$> at states S1 and S3 were calculated
by using the 14-group fission cross section set for U-235, as shbwn

in Table 15. The value of the parameter <B*i, S> 1 = 1 and 2, was

computed by a program written for this need (présented in Appendix F).

Results of Two-Dimensional Calculations

‘The'ca]culational results for the two-dimensional test problem
are ghowh:in Tables 16, 17, and 18. Table 16 is the direct]y calculated
detection efficiencies for the four selected perturbed states and
the two forward reference statés S1 and S3. Table j7 shows the
values evaluated by the variational interpolational method for

detectors Dy and Dy (see Figure 3, page 35). Table 18 presents
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TABLE 15
14-GROUP FISSION CROSS-SECTION COLLAPSED FROM-50-GROUP SET FOR U-235

Cross-Section

Group (barn)
! 1.276+0
2 1.296+0
3 1.249+0
4 1.211+0
5 1.39540
6 ©2.01140
7 ’ 3.498+0
8 6.941+0
9 1.514+1*

10 3.027+1
11 5.635+1
12 9.821+1
13 1.615+1
i4 1.237+2

*Read 1.514 x 10,
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TABLE 16

NEUTRON DETECTION EFFICIENCY FOR.FISSION CHAMBERS
‘ AT D, AND D3 CALCULATED BY DOT

Case o D] ‘ D3
S 2.8 ©1.998-7
P2  2.807-7 2.139-7
P4 O 2.856-7 2.196-7
s3 3.389-7 2.356-7
PS5 3.498-7 2.165-7

P6 3.468-7 2.271-7

*Read 2.894x10'7.
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TABLE 17

TWO-DIMENSIONAL DETECTION EFFICIENCY ESTIMATED
BY VARIATIONAL INTERPOLATIONAL METHOD

Reference States (10-7)

Perturbation .

State (]’2*) (154*) @’2*) . (394*)

| D,y

P, 2.23(4.22)%  2.21(3.3%)

Py 2.17(~1.4%)  2.08(-5.5%)

P 2.14(-1.4%)

Pe 2.19(3.5%)

Dy

P, 2.93(4.3%)  2.93(4.3%)

Py 2.53(-11.5%) 2.77(-3.0%) -

P ‘ 3.55(1.5%)

Pe 3.56(2.5%)

A8 racketed values are error percentages compared with
direct calculation.
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TABLE 18

TWO-DIMENSIONAL DETECTION EFFICIENCY ESTIMATED BY
MULTI-REFERENCE-STATE VARIATIONAL METHOD

Detection ‘Efficiency (]0'7)_
Perturbation - D D
State R D3

P, 2.69(-4.3%)%  2.20(2.8%)

Py 2.76(-3.4%) 12.28(3.6%)

Ps 3.66(4.6%) 2.19(0.95%)

Pe 3.55(2%) 2.32(2.2%)

*Values in brackets represent error, percentage.
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results calculated by the multi-reference-state variational method
for the four perturbed states using forward fluxes from states S1

and S3, and adjoint fluxes from states S2 and S4.

Discussion of Results

The detection efficiencies for‘detécfors 1ocatedratvD].qnd

D3 are preéeﬁted in Table 16, which were used for tﬁe purpose of
comparison with these results ca}culated by the variational v»
functional in this study: Thé va1uesAfor D] are 1argerAtHannthat

for D3 becauseAD]‘is"c1ose to the cbfe zone of the EMQ (seé Figure 3,
page 35)..'Tab1e 17-showsvthe résu1ts caicu]ated by the Qarfationai
1nterpoiationa1 method and mosﬁ were under 6% in errdf. For the
multi-reference-state vaffationai méfhod, the fésu]ts'(calcu1ated

by use of four reference-states, two for forward fluxes and two for
adjoint fluxes) are presented in Table 18, and all values were under
5% in error. Concerning these values, we note that the two-dimensional
problem has a Tittle higher error than that of the one-dimensional
problem. This was partly contributed by the complication of the
two-dimensional core configuration (see Figure 3, page 35) i.e.,

the heterogeneous distribution of the reactor material for the

EMC, and partly by the concentration of the perturbation (or
variation), 1ike the moving of the control rods in this study. The
heterogeneity ot the core configuration increases the difficulty

of reaching a convergent flux-distribution (both forward and

adjoint), especially the two-dimensional adjoint-flux calculation

with a point adjoint-source (at D; or D3 in this study). The
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concentration of the}pertUrbétibn.1htreases the effect of the
1o¢a1ity of the reference-fluxes at the perturbation site. The
combination of the 1ast~th contributions will make an accurate
estimation of the correction terms <6*1, S - He>, i =1, 2, in
Equation (2.13) more difficult.

Results as demonstrated in this dissertation show that both
Afhe variationa1'1nterpo]ationa1 method and the multi-reference-
.state varﬁationé] method‘aré acceptab]é for practical application
in the estimatfon of the neutfon detection efficiency in two-
dimensional problem. In particular, the multi-reference-state
variational method leads to morevaccurafe results in general when

applied to a large number of perturbed'étates.’
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS
A. Conclusions

A Lewins' variational functional, ratio of two- other variational
functionals, has been employed in this study for the calculation of
the neutron detehtion efftciéncy.hVUse of.this formu]atton:haé been
appTied for two ta]cu]atibné] hode]s of a'tast test rea;tor, oné
for the oné-dtménsional prob]emévand the othér.for the twd-dimensional
prob]ems, and shown to be an acceptab]e techn1que

Theoret1ca11y, it has been shown that the porposed var1at1ona1
functional is equ1va1ent to the convent1ona1 formu]at1on presented
in the 11terature based upon the first order error in neutron fluxes |
(forward and adjoint). The flexibility of the functional has been
demonstrated by applications emp10y1ng four d1fferent variational
calculational methods: convent1ona] var1at1ona1, variational
interpolation, variétiona] extrapo]ation, and mu1ti-reference-stéte
variational. The résu]ts:ffbm thege four approaches show that
the mu]ti-reterence-staté vahiationa] method is the most promising
for the estimation 6? the neutron detection éfficﬁency, and with |
proper selection of refehente statés aé weT1 as the size of pertur-
bation, the conventional variattonh] method and the variational

interpo]at{ona] method are acceptable for practical applications.



68

The computational procedures for the suggested functional have.
also been developed. And following these procedures, the computation
time for the functional-is mdch'less than that required by the direct

calculation for a perturbed state.

B. Recommendations for Further Study

The case studies for the'application of the functional presented
in this dissertation for both the one-dimensional and two-dimensional
problems are all perturbations with control rods éhanging positions,
i.e., no fissile material, such as fuel depletion, is involved |
in the variational éa]cu]ations. Thé int]uéion of fissile material
in the perturbation are possible for the suggested functional,
Equation (3.1) and_hence jﬁ js recommended that these methods be
emp]pyed in fuel depTetion‘prob]ems.

| For,stddfes of the mu]tigreference-state variational method
by the appTication ofrEquafionS-(Z.ZQ) and (2.30), the numbers -of
reference states for both théxadjoint and the forward fluxes were
taken to be equal. The uée of_unqua1 numbers Qf'reférence states(7)
for adjoint and forward.f]uxes'{s possib]é for linear functionals.
Therefore, it is recommended that'thé use of unequal forward énd‘
adjoint reference states for thé fﬁnctiona] used herein be explored.

The calculations of neutron f]u*es'in this dissertatioﬁ afe
all done by the discrete ordinates method for neutron'trénsport
equations. The so]utionslof neutron fluxes at'refefence.states
could be solved by lower-order scattering transport eqﬁations*and

the effect of the higher-brder'scattering aniSotropy of neutron
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fluxes cbu]d beicorrECted(38) by taking it into consideration bf
‘tﬁe correction terms in Equation (3;1). 'ItAis recommended that
this procedure be explored for the purboseS»of‘being‘abié to reduce

the amount of effort required;to.géneraté the‘reféfence-state fluxes.
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APPENDIX A

" THE VARIATIONAL PRINCIPLE FOR A RATIO

We define a ratio of two linear functionals as:

. (A1)

where 215 Ip represent two different properties,

¢ is the solution of the following equation

Ho = S. , (A.2)

The variational method is a mathematical way by which a trial

solution could be used to estimate a parameter of interest at a

perturbed state. By using the concept of the Lagrange mu]tip]ier,(40)

the functional used to optimize the parameter of interest wn[¢] is
defined as(27)

E][5,9*] = wn[a] + <%, S - H¢> , (A.3)

where ’
b =¢- 60, (A.4)

and the second term is a flux correction term.

For Equation (A.3) to be a variational principle for
estimating W [4], the following conditions should be satisfied: (37

(a) E, is stationary about the function 3_ = ¢,

s
(b) The stationary value of E] is

<L ¢>
<22¢>

E,[65505*] = W [¢] =
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From Equation (A.3), if we let
$—>$+‘€6¢’9

8* > 8* + efo* ,

then

E][q? + €8¢, 8% + ¢50%] = wn'[a + €8] + <% + ¢50%, S - H(3 + €53)>,

(A.5)
where
e is a small definite parameter.
The first variation of a functional is defined(40) as
SEy = ;;l , |
- {e=0. ~ - (A.6)

From Equation (A.5), we have -

oF [6-+ edp,0% + e56%] <% ($'+ £84)>
] = 9__( ] : +
de de <22($ R E

-g? (<6% + ¢86%, S - H($ + €83)>)

_ <E186> <22($ + €88)> = <2 (8 + es4)> <5y60>

<22($ + €6$)>2

- <% + co0%, Hop> + <s6%, S - H(F + c6§)>.
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Thus

- oE
SE;[0,0%] =

1 : ; <Z]55> <2é$>1; <22$>.<226$>

e 2

e=0 <22$>

- <o*, H8o> + <80%, S - He>

= - <§0%, Hp - S> - <H*o*, §¢>

T.<E,$> = T,<T >
. — 2°"1 , 63>
<22¢>

= - <80%, H - S> - <H*e* - G*(3), 89>,

where

L.<Z $> - L,<% $>
- 2 1
6°(3) = — e

<22$>2
To find the stationary functions, we let
6E1[5,6*] =0 = - <88*, Hp - S> -

<H*o* - G’(a)’ 6$>9

(A.7)

if s6* and 6§ are arbitrary values, but not equal to zero, then the

requirements for this condition are

H¢S -S=0
and

H*o * - G‘(¢S) = 0.

(A.9)

(A.10)
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From Equations_(A.Q),ahd (A.2), we have 53 = ¢, and from
Equatiohs (A.3) and (A.Q), the stationary value of the variational

functional is -

<39 o ‘
= W.Lo 1 = W [e].

e
El[¢s’ 05" <23s> M

Thus, E; ‘is a Yariatjona]'principle forfwn[¢].
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APPENDIX B
TAYLOR'S SERIES EXPANSION OF e

For a function with three variabTes, f(x,y,z), the Taylor's

(41)

series expansion' '/ in first order approximation is

f(x,y,2) = f(a,b,c) + f,(a,b,c) (x-a) + f (a,b,c) (y-b)

+ f_(a,b,c) (z-c),, o ) | (B.i)

where (a,b,c) is the position of a given point, f(a,b,c) is the
value of the function at the point; fi(a,b,c), i = X,y,Z represents
the first derivative of the function f(x,y,z) with respect to the
Variab]e i at the given point.

Equation (2,19) is a function e* with three variables e*],

6*2, and ¢, we write it here:

V <Igp> 0%y - <I,¢> OF .
p* = 1 5 d 2 . (B.2)
<Zf¢> R

From Equation (B.1), we write the series expansion about a given

point as

=% i % A%k
S5 0%+ (%ﬁ;ﬁ se%, + 32) 69,  (B.3)

e*zé*+( T

where 8* is given by Equation (2.17), and sox is (e* - 6*]), etc.
Substituting Equation (B.2) into Equation (B.3) and carrying out

the derivatives, we have
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<zf¢> ok <Zd¢>

o% = 5% + 7 6%
<Z-f¢> o <Zf¢>

— 88%, +

[<Zf’]> é*] = <zd_’]> 5*2] 5¢ ) 2<Zd$>~ [<Zf3$>f‘§"*] = <Zd$>é*2]<zd’]>6¢

{Zf$>2 o ‘ .' : .'<2f$>4
We write Equation (3.3) as
| g% = Bx o+ g%, - (B.9)
where | | ' |
<5 > : <I 6> ' ‘
Cse* = —1— go* - d_ s6%,
»<2f¢> B O | (B.6)
[<z‘f,1> 'e'*1 - <zd,1> e 2] " g 2<zd¢>[<zf,¢> g* 1 <zd,$> .16*2] <zy»l> .
<Zf¢> | SRR o ' <Zf¢ * |

Equation (B.4) shows that 8* is st1]1 a first-order approximation

to 6* if the three var1ab]es 6*1, 6*2, and ¢ are in errors of Ge*]

66*2, and &¢, respect1ve1y



SUPERPOSITIONTPRINCTPLE,FOR A DIFFERENTiAL EQUAT ION

Accord1ng to G. A. Korn: et al.,

¢1(x) and ¢,(x), satisfying the following respectnvel11near '

differential equations

. 85

APPENDIX C ©

(16)

.

Heple) = £p(0),

With_identicalfhomogeneous linear boundary conditions

~ then .

“ ¢(x)

Bo(x) = 0,

= a¢](x) + b¢2(X),

sat1sf1es the d1fferent1a1 equat1on

where .

f(X)

= af, (x) + bf: (x),

where a and b are constant coeff1c1ences

The adJo1nt flux 8% at-a reference state for Equation (2.3)

is so]ved by the fo]10w1ng equat1on

1f there are two solutions,

(C.1)

(c.2)

(c.5)

(C.6)
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Rearranging the right hand side of Equation (C.6) leads to

g = 5 (—) - E(—L). (c.7)

We compare Equation (C.7) with Equation.(C.5), and specify
that

a=——, (c.8)
<Zf¢>
and - -
- ,<Zd¢> o
b= - —— (C.9)
<Zf¢>
Then a
% = ag*, * be*,
TR L A
= %, - 6%, C.
(—) & - (=) &%, (c.10)
<£f¢> ’ <Zf¢>

where 6*] and 6*2 are solutions of the differential equations:

"
™

' H*e*] d° ‘ (c.11)

and

CHEEE, = E v T e (C.12)
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| APPFNblﬁlojf'L
DISCRETE FORM OF THE VARIATiONAL‘EUN?TiOﬁALTFORuSLAB GEOMETRY
| 4Froﬁ Eéuétgoﬁ (3218),A' |
| -‘%%t$,§*ij = fz%$> +A;5*%;'A5'f‘AH$>,4 A"'f: _i' (b.])-

where AH$-for 51ab:geometry is given by

BH(X,E,u) (%,Eu) = AZ(x,E) B(x,E,u) - Xégl-f 5 VI (X5E7) 3(x,E4,u7)
e dECdR” - s Az (xESE7 > E,8) (x.ESw7) dECdES,  (D.2)

. we have; after,integratién over energy intefva1=“A
Fi[cpg,_e*].g] = 'gZ]f f.):i.g(.x_,u)‘ q)'g(x,lu.),dxdu +

G-
RPN

(x,u) 8S_(x,u). dxdy -
g=1 9 L

9

DG 4
- gZT~f f'e*ig(XfP) AZQ(X) bg(xou) dxdia + ."(D°3)

-G IR G . .- _ '
' (xou) A(vZf(x))g,Af Eg,(x,u‘) d2-] dxdu +

I8
T/ f‘[e*ig U gen

=
G- . o -
* :

G g . o .
3 asd TR R) §.(xeu7) @41} dxdu.
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The scattering cross section as well-as angular fluxes are expanded

in the fo]]owing Legendre po]ynoma1s(3)

99(,.5-.5\ = g7>g,,.
Azg (x3;07Q) bzg (X’“o)_ N

IsCT ;. g7>g, e
= L ey ), (09)
ﬁ ISCT
igln) = L B 5% (0 Pw)s o (0.5)
and . [ser
,, S :
Fgbxan) = 1 (BF 3,000 (), (0.6)
where o -
Azg;fg(x) =2 (2n;1) {%.gzg' g(x;yo) Pn(uo) du; 5 (D.7)
n
Palug) = P (u) P (u7) + 2 Z] (n-m)! PR(u) PR(u") Cosm(o-0°)
o . (D.8)
#1gn(*) 7 03 Figlxa) P(u) du (0.9)
and
$gn(x) = {} 0,(%su) P (u) du. . (p.10)

After substitutiﬁg Equétions (D.4) tHrough'(D.lo) into
Equation (D.3) and making use of the mechanical quadrature for '

the integration of direction cosine py, we have
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6 1 ) 6 1 NOA
Filegroigl = Lk Vatighty) dgbigd ™ Lid Vg b 85l
6 1 NOA
85q\xjou) Wy - 921 ihy V5tglg) b By dglxgmd Wy

G I ISCT _ G

o3 ove ) e (k)3 838 () el (x.),
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where NOA is the total number of angles, I is the total number of

th

intervals, W,6 is the weighting factor for the K~ angle, and all

K
other terms are defined in Section C of Chapter III, page 30.
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APPENDIX E
CALCULATION OF <@*,S> FOR ONE-~-DIMENSIONAL PROBLEM
A. Introduction

The purpose of this appendix is to describe the program used
to calculate the parameter <é*,S> for one-dimensional problem. A

description of input and the code 1isting are also included.
B. Program Description

The numerical formu]ation for the integral parameter <8*,S> is

<8%,S> = ff 8*(r,E) S(r,E) dEdr

G I .
= gZ] JZ] 5*g(J) Sg(J) AXJ (E.1)
where
G = total neutron energy group number,
I = total space interval number,

AXJ the size of the Jth interval,
S.(J
,J()

8%, (9)

X S(J »
g )

the adjoint flux at ¢~ group and the Jth interval.

The integration is carried out by summing the products §*g(J)Sg(J)

over the energy-groups and the space-intervals. The adjoint flux

6* (J) is calculated by. ANISN code,(10) and the fixed source for

g9
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each interval S(J) is specified by the way we solve the flux
equation o _ _

CHe=s. (E.2)
The specification of interval size should be the same as that for
calculation of the adjoint flux.‘ we‘ca1éu1ate.the interval size
by giving the zone boundaries. The code js written for 50-group,

18-zone, and a total of 102 intervals.

C. Input Cards

Card 1 (20A4)

Title Card,
Card 2 6(3X, F9.0, 8X)

I =1, 50

(PHI(I,Jd), J =1, 102) Adjoint scalar flux of each group.
Card 3 (7E11.5) -

CHI Fission spectrdm of each group, start

from group 1. - P

Card 4 (6F10.6) '

SN ‘ Source distribution of each core zone.
Card 5 (6F12.5)

LR Zone boundaries.
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D. Listing of the Code

CAL OF PHI*S*V IN 1-D
DIMENSION PHI(50,102),S(59,102),R{103),
1A{20) ,CHI{50),SN{12),2ZR(18)
READ(5:2) A
2 FORMAT(20A4%)
- WRITE1641) (ACI),]I= 1 20)
1 FORMAT('0%,4X;20A4%)
DO 7 1=1,50
7 READ(5410,END=200) (PHI{I,4),4=1,102}
10 FORMAT(6(3X,F9. 0)'8X)
WRITE(6,81)
81 FORMAT({20X,*FLUX"/)
J1=0
DO 90 T1=1,49,8
Ji=J1+8 .
IF(I1.EQ.49) J1=50
WRITE(6+80) ((PHI{I,J),I=11,J1),4d=1, 102510}
80 FORMAT{10X,8E12.5)
S0 CONT I NUE
RCAD SOURCES
200 DO 30 I=1,50
D0 39 J=1,102
30 S{IsJ)=0.
READ( 5,25) CHI
25 FORMAT(7Ell.5)
WRITE(6,27) CHI
27 FORMAT(//74X4*CHI*//50(/4Xs1PE12.5))
READ{5,50) SN
50 FORMAT({6F10.6)
WRITE(&,55) SN
55 FORMAT (//4Xy*SN'//121/4XsF10.6))
DO 60 I=1,12
L=22+{1-1)%*5
LPL=L+]
LLi=L+4
DO 40 J=1,50
SUJ,L)=CHI{J)I*SN({I)
D0 45 II1=LPl,LL1
45 S{J,111)=S{J,L)
40 CONTINUE
€0 CONTINUE
READ ZONE BOUNDERIES
READ(5,70) 2R
70 FORMAT(6F12.5)
WRITE (6,66) ZR
66 FORMAT(//4X4y*ZRY//18(/4X4F12.5))
RADIUS FOR INTERVALS
R(1,=Oo
R(8)=ZR({1)
DO 77 11=1,3
I11={11-1)%7+2

H
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12=11+6
IF(Ii «EQ.1) 12=7
DO 71 I=11,12
IF(1Ii+EQ.1) GO TC 69
RIII=CZR(ITII~ZR(II=1) )/ T % (1~-1141)+ZR{II~1)
GO Tu 71
69 R{11=38.0727/6.*{1~-11+1)
71 CONTIiNUE
77 CONTiNUE
- DO 72 11=4,15
11= 23+(II—4)*5
12=11+4
DO 74 I=11,12
74 RUIJ=(ZRL{TTII=-ZR(II-1))/5*{I-11+41)+ZR{(11-1)
72 CONTINUE
R(97)=205.223
DO 75 I1=16,18
I1=(iI1-16)%7+83
[2=11+6
IF(1i.FQ.18) 11=9G8
D3 76 1=11,12
[F{li.E0.18) GO TO 82
RIII=(ZR{III=ZR{II-1))/T7.*({1-1141)+ZR(11I-1)
GO ToO 76
82 R{IJI={ZR(18)-205.223)/6.%{1-11+1)+R{(97)
76 COWNT{iNUE
75 CONTINUE
PRINT OUT
WRITE(6,78)
78 FORMAT(10X,*RADIUS'/)
WRITE(&,79) R
79 FORMAT(10X,E12.5)
SJURKCES OUT
WRITE(6,94)
94 FORMAT (20X, 'SOURCES?®/)
J1=0
DO 1100 11=1,49,8
J1=J1+8
IF(I1 .EQ.49) J1=50 _
WRITE(£+95) ({S(1,J),1=11,01),J=1,102,10)
95 FORMAT (5X,8EL14.6)
1160 CONT i NUE
PSI=0.
DO 330 I=1,5%0
00 3u0 J=22,81
300 PSI=PSI+PHI(T,J)1%5(50-1+1,J)*{R(J+1)~-R{J))
PRINT OUT PSI
WRITE (64 400) PSI :
400 FORMAT(10X,*INNER PRCDUCT = *,F15.8)
STIP ’
END
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APPENDIX F
CALCULATION OF <6*,S> FOR TWO-DIMENSIONAL PROBLEM
A. Introduction

The objectives of this appendix are: (a) description of the
" routine used to calculate the value of <6*,S> for two-dimensional
problem and (b) present a description of input and the program

listing.
B. Program Description

The numerical formula for the parameter <6*,S>‘is explicitly

written as:
<0*S> = rf o*(r,E) s(F,E) dEdr a
G Imax Jmax _ o o ; _ .
] 921 R jZ1 Tgl1:3) Sql1:3) ox30 (F-1)
where
Imax = the total number of radial® interval.
Jdmax = the total number of axialb interval
(i,§).= the interval at the (i,j) position,
oax; = the size of the i™ interval in the axial direction, and
by; = the size of the it interval in the axial direction, and

others are specified in Appendix‘E. _ . -

a . C L ¢
"Radial" here means the x-direction.

b”Axia]" means the y-direction.
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At the time of this calculation, G was 14, Imax was 43, and

(31) and input

Jmax was 41, 6*g(i,j) was calculated by the DOT code,
by tape for this computation. The specifications of the fixed

: sburce and the interval size are the same as used for DOT. Since
the source is zero outside the fueled region of the reactor, the

program makes the interval summation over core zones only.
C. Input Cards

Card 1 (7E11.5)
"CHI . Fission spectrum of each group,
start from group number 1.
(Source in fueled zone only.)
Card 2 (7E11.5)
J =09, 29 Fixed source distribution for
(S(1,3), I =12, 34) each interval.
Card 3 (15A4, 12) |
TITLE Title for the run.

NFLSV Logical number of the flux gape.
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D. Listing of the Code

CODE FCGR PH=S,2-D
READ N=240 DISTRIBCLTICN
FOR EACH INTERVAL V
READ CHI VALUE OF 14-Go°
DIMENSION CHI(L4) 4PH(43 ,41),S043,41),TITLE(L1S)
DATA SL8J/Y YZITY/
RPFAD 5,1C) CHI
10 FORMAT(TEL1L. 5)
WPITE(€Es411) CHI : . .
11 =C2MAT(IHC, 11X, "SPECTRUNM ,14(/10X4512,5))
NC 20 J=93,26
20 SLAD(S5,15) {S(1I,J),1=12,34)
15 FOPMAT(TFLll.5)
L=0 .
DG 4¢< J5=G,29,7
L=t+1
CJd1L=J5
J2=L#7+8
TFE(JELEQa29)Y J2=29
ARTTE(6,12) (SUBJJdyd=Jly J2)
12 FORMAT(/2 X, XRR',7(4X 4A4,13,3X1})
NG 45 1=12,34 :
WRITE(€,56) T,(S(1,LJY,LJd=J1,02)
CONTINUE
FCRMAT(3X,13,7(2X,4F1245))
CCNTINLE
READ(S,7,END=100) TITLELSNFLSY
FORMAT(19A4,12)
CEWIND NFLSYV
READ FLUX FRCM TAPE NFLSV
~<l=Ce.
DC 4C 1G=1,14 A
PEAD(NFLSV) PH
oeONULECT NF FLUX AND S
S1=Ce.
NN 42 J=9,29
DO 41 1=12,34
SUMFP=SUMP+PH(TY 4 J) 2S(T1,J)
S1=S1+S(1,4)
41 CCNTINLE
42 COCNTINLE
GS1=GS1+S1=CHI(TR)
G SUM=G SUM+ SUME=CHT (15-1G)
40 CONTINLUE

Hoan b
~ = U

v

ra.
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RS1=GS145,5245452,

G SLM=GSUM*5, 5245942,

WRITE(6,5C) SSUM,TITLE ,GS1

50 FORMAT(//L0X, 'OH¥S= #,F12,5,3X, 'FCO CASE ', 1584//4X,'SOUSE = v,

¢ 1F 13, 2)

REWIND NFLSV

60 10 1

> 1¢C ST0P

F ND

%

%,
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