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PRESENT STATUS OF MIRROR STABILITY THEORY
ABSTRACT

A status report of microinstability as it app]ies to 2XIIB and MX theory

for mirror machines is presented. It is shown that quasilinear computations

" reproduce many of the parameters observed in the 2XIIB experiment. In regard

to large mirror machines, there are presented detailed calculations of the
linear theory of the drift cyclotron loss-cone mode, with inhomogeneous
geometry and nonlinear diffusive effects. Further, the stability of a mirror

machine to the A]fVénkidn-Cyclotron instability is‘asSesséd, and the

Baldwin-Callen diffusibn is estimated for a spatially varying plasma.

- INTRODUCTION

Theoretical supbort for the mirror program can be divided into three

related parts:

. Understanding and describing existing experiments,
. Predicting stable parameters for larger éxperiments, and
. Determining equilibrium and loss characteristics of both classes of

éxpekiments (with the assumption that they behave stably).

-The third-named effort is of initial importance in designing any
large-scale, high-B experiment and in assessing the economic viability of a
mirror reactor. We have been operating a time-dependent, two-velocity-
Qimensidna1, Fokker-Planck code to which we are now adding the effects of
ﬁxia]-bounce average and velocity-space transport due to'fluctuéting fie]ds.

Two codes have been dcvcloped to generate three-dimensiovnal, finite-g,
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guiding-center equilibria. An axisymmetric, electromagnetic code
investigates the related questions of the B-limits due to the mirror mode,

the possibility of field reversal, and axisymmetric instability thresholds.

The results of these efforts will be described at a later date.

In what fp]]ows, we first describe in detail the results of a
quasilinear modeling of ZXIIB in which it was assumed that the distribution
function was driven to marginal stability, as would be the cése for a plasma
dominated by the drift cyc]otroﬁ loss-cone (DCLC) mode. The corroboration of
theory with experiment is impressive. Next, the results of this theory are
extrapo]afed and combined with.the results of linear theory  for those other
modes thought to be significant. The combination provides a stability-

parameter picture of MX and a mirror reactor.
RESULTS OF QUASILINEAR SIMULATION OF THE 2XIIB EXPERIMENT

Here, we shall describe some of the results of our quasilinear
simulation code as it applies to the 2XIIB experiment. The code itself is
described in Appendix A. The basic equations used in the simulation to
describe the distribution function F and the electron temperature Té are
given by Eqs. (A1) and (A11) in that Appendix. For the growth rate [in
Eq. (A5)], we use'ok =1 and m = 2. We have chosen this "ad hoc" form for
the growth rate because in 2XIIB we expect that the distribution evolves to a
state of marginal stabi]ity'that depends just on the shape of the
distribution function rather than on the detailed dynamics ofvthe modes.]’z':
We have found that our results are insensitive to dk or m. The important .

point is that the diffusion coefficient grows to a level that maintains

marginal stability.



In the results we shall present here, the effect of T, is neglected.
The one-dimensional transport equation used here can only crudely take Tu
into account, and the additions to the HYBRID II code currently being
developed by T. Rognlien (see Appendix B)Awi11 treat the effect of T, more
accurately.

First of all, we shall discuss results neglecting charge exchange from

‘ background gas and keeping the stream current constant. We impose a beam

. . . L -1 -1 -1
current with a total buildup time Tg» where Tg TCHX Tion and
Tion = 1.69 ms is the ionization buildup time, and TeHX = 0.56 ms is the

charge-exchange replacement time. A stream current,

2y _ 17
Jstry = Jﬂ de SSTRM( ) =2.15 x 10

energy spectrum of the beam is centered at 18, 9, and 6 keV with a relative

partic]es/cm3-s, is imposed. The

weight of 6:3:1, respectively. The initial plasma is taken as a Maxwellian
]3 m-3

at 2 keV and a density of 3 x 10
In Fig. 1, we see the normalized distributioﬁ early in time before
turbulent diffusion modifies the distribution. We see the structure of the
three beam components plus the phase-space hole that has developed in the

initial Maxwellian distribution due to the particles that we lost in a
transit time.

Eventually, this distribution reaches a steady state and diffuses into
the steady-state shape shown in Fig. 1. The turbulence is large enough to
spread the input beam width considekab]y although the shape of the
distribution function is influenced by an input beam. |

In Figs. 2(a) through 2(d), we show the time evolution for 0 < t <‘2 ms
of the (a) density; (b) ion and electron temperature; (c) nt of the

| particles, energy, and drag; and (d)Aane energy arising from turbulence. It

is clear from Fig. 2 that a steady state is achieved with a stream input.
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The plasma parameters achieved in this steady state correlate c]osely with

experiment in 2XIIB, as can be seen in the comparison in Table 1.
The scaling laws of the steady state achieved can be understood as
follows. In steady state, we have that the power into electrons is equal to

their power lost out the ends, or

BnL
T =l’]'a—t—T . ) (])

"VDRAG " 1 e |
[See Eq. (A11) for definitions.] Secondly, in steady state the density-loss

rate anL/at is equal to the input'rate SO thaf

on 2 2 2

=N J; dvy SgeamVi) * derpy - (2)
Now,»anL/at can also be estimated from quasilinear theory tb'be the

fraction of the plasma in the loss cone times the transit rate

VTRANgIT ~ 0.5(q<I>/M)]/2/Lp of unconfined particles. TypiCa11y,-q®/Te ~ 3.

At marginal stability, the unconfined plasma density n, is
n, = nAq@/Ti R 3n>\Te/T1. R (3)

where A is a constant of order 0.5. Now, using an /3t = vrpans1Ty® EQ- (1)

becomes

- 33

< Te> 1/2 Tg
NVprag'i = 7 "M\

- | (4)

i

From Eq. (4), we obtain Te as a function of Ti and particle density. .

Expressing T, and T; in units of keV and using VB&AG = n/(1.4 x 10]2 Tg/z),
we find ’
‘ ' 2\V/4 ‘
L. T
= Q -6 (" p_i :
Te = 8.8 x 10 < n ) . (5)



Table 1. Correlation of quasiTinear, steady-state calculation with
stabilizing stream with observed experimental parameters.

Theory Experiment
nt (cm3-s) 8.7 x 100 5.7 x 1010
Density (cm™') 4 x 10" 3 x 103
Ton energy (keV) _ o 13 13
Electron temperature (eV) , 170 140




If‘the stream current greatly exceeds the beam current, we can substitute
Eq. (2), neglecting the beam term, into Eq. (5) and obtain
= 0.6 J8/11L5/]1 2/11 3/]]/A5/]]

3
I

STRM"p j (6)
T, = 7% 107 -6 2/11Lg/11 6/11/( 2/1‘x4/]‘) _

This scaling law correlates with observed simulation results when various
input ﬁarameters,are varied. _Note the steady-state density and electron
temperature thét afe achieved a}e<independent of beam input, but dependent on
the stream input.

Another important point is that the ion-energy containment time fs
basically the‘eleptron-drag time. This can be seen by noting that the ion
powgr-density drain by direct transit loss is less than the power-density

drain to electrons. The transit power drain, P , is
P # 0.5q¢ an /3t . ‘ | (7)

Compéring this éxpression with Eq. (1), we see that PL is less than the
electron-drag drain hVDRAGTi if n > 1.5.

The simulation in Fig. 2 was continued for t > 2 ms by introducing
various‘options of turning off either the stream or the beam. When the
‘stream is turned off, buildup no longer continues, and the density falls. Iﬁ
general, it is found that the turbulence éenerated without the stream
prevents p]aéma buildup. Observe that the ion temperature increases
dramatically Without stream. In fact, the ion distribution runs away to high
énergy until the'ions are 1ost on the upper energy boundary of the
calculation. The continua1.hardening of the ion distfibution in our model
can be qualitatively uhderstood by noting that when an ion is 1ost,‘it leaves
~ with an energy comparab]e‘to the ambipolar potential, which is less than the

mean ion energy. Hence, this.effect tends to increase the jon energy. Only



the electron drag can stop the ion runaway, but as the density is falling,
the eiectron-drag rate continually decreases while the ion-diffusion term,
which is independent of density, contjnues tq cause -ion runaway.

When the beam is turned off and the stream is on, one observes a
; decrease of more than a decade in the turbulent wave energy. In part, this
is due to lack.of charge exchange 6ff’the bgam; The diffusion term, which
drives the distribution to‘mérgina] stability, need not be as large because
it no longer has to compensdte for charge-exchange loss to maintain the shape
of the distribution function-at marginal stability. Further, the electron
temperature 1§ decreasing, and hence the unconfined region in the |
distribution becomes smaller. Hence, the diffusion coefficient needed to
achieve marginal stability becomes less. When the beam and stream are both
‘turned off, the results are quite similar to when the stream is turned 6ff.

-.When charge exchange on the background gas is included in our equations,

_we can appreciably alter the response of the system. Apparently, the reducéd
density due to charge exchange reduces the power input into electrons and
hence cools the electrons. In Fig. 3, we plot the electron and ion
temperatures and.density as a function of a constant charge-exchange time for
otherwise similar conditions as'used for Figs. 1 and 2. |

In addition, we find_that in the absence of stream the ion-runaway rate
is greatly reduced. We can eliminate the ion-runaway rate completely by
assuming that high-energy particles in 2X are more likely to charge exchange
with low-energy neutrals because their orbits carry them closer to the edge
of the plasma where the neutral density is higher. To mock-up thjs effect,
we have multiplied the charge-exchange rate by a factor exp (E/ECHX)’ where
we have chosen ECH* = 30 keV in the calculation we report below.

‘In order to compare our simulation in detail with an experimental run,

we need to include the fact that both the charge-exchange rate and stream are
10 , .
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continuously time dependent. In the experimént when the beam curreht is
turned on, there is a source of gas that enters the plasma chamber that is
roughly proportional to the beam éurrent and beam-duration time. |
Consequently, in qu (A1), we have af]owed the charge-exchange rate VeHX to
increase linearly with time until the beams are shut off, and then remain
conétant. From the observed charge-exchange flux after the beam is turned
off, one can estimate the final charge-exchange rate. |

Exﬁerimenta]]y, Molvik has been able to infer the stream current by
using an end-loss aha]yzer at one of the ends'of‘the mirror machine. On the
particular fun we have analyzed, we find that the end-loss current increases
a factor of four during the time the stream is on. We have approximated fhe
time dependence of the stream with the function

t/
<e T4 _'1> .} t<

SST0 [] YR eTT

SsT0 [1+8]e Cte

STRM =

where B = 3, Ty = 1.2 ms, and T, = 0.25 ms. For SSTO’ we use

6.8 x 1016 partic]es/cm3-s. The rise-time parameters of the ihput beam are

io
4,67 keV at a relative weight of 5:4:1.

Tion = 0.60 ms and TCHX = 0.20 ms. The beams are injected at 14, 7, and

In the actual experiment, 300 A of neutral beam is injected, and an end
current at thé.computer t = 0 time of about 10 A is inferred (however, there
is'an‘uncertainty in the absolute calibration of the end current). If the
end current leaves at an equal rate from both sides of the machine and we
take a p]asma'volume of 4.5 2, we infer a stream density of

16 3

2.8 x 10'" particles/cm”-s. However, considerable calibration and

geometrica] uncertainty exist in the experimental numbers, and the computer

12



simulation parameters of SSTO and SBEAM were chosen to best fit the-
experimental density rise-time characteristics. Actually, the calibration of
simulation parameters to experiment was done 6n one experimenta] run, and
this synchronized quite well with sévera] other detailed experimental-
simu]atioﬁ compafisons.

- In Fig. 4, we compare the tjme variation of several physical paramete?é
in. the bomputer simulation and in an experimental run; 'Weiéee‘that the ‘
density and ion température'cdrrelate quite closely in the two runs. The
electron temperature was measured in the experiment at only one point in
time, and it is in close agreement with the computer simulation.

In both the combuter simu]atioh and the experiment, there is a break in
the rise time at 0.4 ms. The exberiment was characterized by turbulent
"bursting"3 between 0.4 and 0.7 ms. In the plasma simulation, the noise is
saturated-in the same time interval. An interpretation that appears |
consistent is that at 0.4 ms, the plasma density achieves the steady-state
density determined by the stream. However, the stream is increasing with
time, and hence the density increases in accordance to the increase in the
stream-input rate.

The compafison of the plasma-decay rate in the absence of beam is very
close in both the experiment and the simulation. After the stream is turned
off, it takes, in the simulation, about 200 us for the turbulent noise to
increase to a high-enough level to increase the decay rate. The actual
experiment takes 150-u$ Tonger before additional noise and more rapid decay:
are observed. The increase in the noise causes the ion temperature to
fncrease in both éxperiment and simulation, although the temperature increase

is more pronounced in the simulation.

13
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In_summary, we find that a relatively simple, one-dimensional,:
quasilinear model produces very good correlation with experiment in |
predfcting density and electron and ion temperatures. We are trying to
improve the code by 1nc1udfng the stabilizing effect of larger radial-scale
lengths on the unstable modes and to include the effect of T, that arises

from jon-ion pifch—ang]e scattering and the finite-beta mirror condition.
CRITERIA FOR STABILITY

The 2XIIB phenomena described in the pfevious section have been ascribed
to the drift cyclotron loss-cone mode (DCLC). Experimental incidence for |
this mode identification is given in Ref. 4.

Many of the fesu]ts describgd in the preceding section can be scaled to
machines of larger size, and the corroboration with current experiments lends
confidence to this extrapolation. In addition, fhere are other important
phenomena, not as dominant as the DCLC mode in 2XIIB, whiﬁh have béen less
~intensively studied and have been only incompletely or inconclusively
éorroborated by experiment. The implication of these modeé for mirror
confinement is now coming under more careful sﬁrutiny. Just as is the case
with the DCLC mode, the stability boundaries of these modes, as confirmed by
experiment, will determine the gross features of a mirror reactor. In the

next several sections, the present status of each phenomenon is described.

Alfvén Ion-Cyclotron Mode

In addition to inverted populations in velocity space that can generaté
instabilities in the ion-cyclotron frequency range, a'mirrdr-confined plasma

must maintain anisotropic ion-velocity distributions. This departure from
- 15



thermodynamic equilibrium suggests the presence of unstable modes. The
mirror mode is one such case which puts a 1imit on g _as a function of the
temperature anisotropy, T./T, (or equiyg]ent]y R, the mirror ratio). Such
constraints are an 1mpqrtant consideration for buildup and for the achievable
steady state and are combined with Fokker-Planck studies to determine
limiting betas.

Recently it was pointed out5 that a left-hand, c{rcu]ar]y polarized
'Alfvén wave destabi}ized by anisotropy might put a more stringent g, limit on
mirror machines. Although these waves can be conveétive, prior calculations

of this mode6

ignored finite-geometry effects and produced growth rates and
frequencies for real k,, wavenumber parallel to B.
We are presently ascertaining the influence of this mode on mirror
machines of finite extent. Specifically, we determine:
. The boundary between absolute and convective instability <%%: = Imw = O>
and the influence of finite geometry on this boundary by solving the

phase integra17

S |
T |
f kids = (2n + )1 , (%‘{(’-) =0,
-ST n ST

where s is the distanée along a field line, and w is the complex
eigenfrequency. |
. The convective growth pf a wave pocket in the convectively unstable
region.
. The modifications due to radial variation that are significant for
plasmas with a few Larmor diameters across the plasma.
Before presénting results, we review the properties of'the mode. The
dispersion relation is obtained by solving the perpendicular components of

Maxwell's equation (E * B = 0 due to the mobi]ity of electrons alohg_the

16



field 1ine). In the limit k, = 0 (k, is the perpendicular wavenumber), the
solution reduces to a Teft-hénd, circularly polarized Alfvén wave satisfying
the dispersion relation

2,2 _ 3 m _9_ KuVu :
k"va_ e~ W ,[d [ f(v)+3 vf(v)] W= w.: - Kavy ?

n C1i

where Va is the Alfvén velocity, w.; the jon-cylcotron frequency, and f the

ci
. distribution function normalized to unity. In-the asymptotic limit

(kv << jo - , one then obtains

cil)

w R W [1+1' 2—( T")] ,

which for high beta and strong anisotropy produces a strong growth rate that

was the cause for concern. For weak anisotropy, growth rates are
proportional to exp [fBLZ(TL/T" - ])'2] ; i.e., they are exponentially small.
To ascertain the significance of such weakly growing waves requires a study
‘'of the convective growth length, which becomes very small as the mode becomes
absolute. |

To evaluate stability boundaries, we consider two specific
distributions, a bi-Maxwellian (A),

-0 VE -anV%

f~e T e R ‘ ' (8)

and a Holdren-type distribtuion (B),

2
£ v e (R, (9)

Note that in general, distributions should vanish for v - 0; hence N > 0.
However, the present analysis is limited to N = 0 to simplify the algebra; we
are studying the effects of N # 0. Our preliminary results are depicted in

Fig. 5 and Table 2. 1In Fig. 1, we compare the mirror-mode boundary for a

17
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Table 2. Plasma parameter comparison for the Alfvén

jon cyclotron (AIC) mode.

2X11B MX
Parameters Parameters
Eions : l 13 KeV 50 KeV
Bvacuum 7 kg ’ 20 kg
B 1 0.5 0.5
pions ' 4.2 cm 3.2cm
Rivith plosma 2.8 2.8
plasma length
with plasma 1.64 1.6
center to edge 30 ¢cm v 80 cm
plasma
Qeehtertoedge =71 o, = 25 b,
plasma i
Ls'PW“' loi = 75 ‘at Alfven ion cyclotron
A, /e, = 14.4 mode boundary
L Ip, = 4.4 A»
)\:'/;v:th - 88 at mirror mode boundary
| .
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Holdren normal-mode distribution to the convective absolute boundary for the
Alfvén instability computed for distributions A and B. For these
distributions, we see that in the infinite-medium 1imit the maximum B
attainable is below the mirror-mode limit. _

Present estimates show that for 2XIIB the modifications due to the sma]f
radius (in units of Larmor radii) are unimportant.

'The effect of the modifications due to length are unclear in 2XIIB. For
the experimental configuratfon at 13 keV (see Table 2), it is seen that the
wavelength of the mode is equal to the length of the plasma, thereby casting
doubt on the reliability of the ca]cdlation. Further, the WKB correction to
the growth rate is approximately half that of the infinite-medium answer,
again suggesting a strong distortion. These results all suggest the need for
a complete treatment of the spatial normal-mode prob]em. On the other hand,
the plasma parameters obtained from a Fokker-P]anck computation of MX buildup
suggest that the infinite-medium theory shoqu be more accurate here.
However, it is important to realize that the mode is sensitive to the
detailed distribution function, and further improvements in our calculations
await studies with more realistic distributions to be obtained from extended
two-dimensional Fokker-Planck calculations incorporating turbulent diffusion.
It should be pointed out that there is a discrepancy between the low beta
1imit predicted by analytic theory and that observed in the experiment and in

- the particle simulation code (SUPERLAYER).

‘Stability Boundaries for the DCLC and Negative-Energy Modes

The stability boundary for the DCLC mode and the negative-energy ane 

for various warm-plasma fractions and hole size have been determined. Prior

20



calculations (Appendix C) have determined this boundary by setting the local
dispersion relation evaluated at the midplane equal to zero:
I(w, k , s=0, parameters) = 0. The appropriate normal-mode ana]ysis8 shows

that the pertinent dispersion relation (L is the plasma length) is
L, .
J- dsk] I{w, k 5 s, parameters) = 0.
0

In addition to this refinement, we have included the influence of the
quasiiinear turbulent-diffusion coefficient on the particle orbits (orbit

diffusion) in the dispersion relation through the addition

Q - Nw_j f w = Nw, +vik20 <%>

for the ions and similarly for the electrons so that

2 2 |
I = SEQ + 1+ wpi _ wc‘i 1+ B_L/z . Z Fn(klai)w
2 2 kK R 7 —
Wea Wi +p wt 1lee W= gy F kD

The results of these surveys are depicted in.Figs. 6 and 7. In Fig. 6,
We.show the fraction of warm plasma required to stabilize a 2XIIB- or MX-size
pTasma as a function of radius for g8, = 0.3 and 8, = 0.5 for a range of
(vH/vh)2 -Note that‘vH is the average perpendicular velocity of the confined
plasma and that Vh (the hole velocity) is the mean velocity of the missing
| part of the loss-cone distribution. From the graph, we see that there is a
reduction in requfred warm-plasma fraction of about a factor 6 in going from
2XIIB to the high-beta opération in-MX. From the predicted electron -
temperature, also plotted on Fig. 6, there is a 10-fold incfease in nTe.

Fig. 7 shows the re]ation between stable radius and.inverse density for a
mean ion energy of 50 keV for no warm plasma and for fractions of stabilizing

warm plasma equal to 10°% and 1072, For a level of 107

» the
electron-temperature model shown in Fig. 6 gives Te = 3.7 keV; whereas for

1074, Ty = 0.7 keV, as comparedhwith the classical value of 5 keV.
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The marked reduction in the size of the stable radius at high density is
due to two cooperative effects; One is the stabilizing influence of beta
described e]sewhere,9 and the other is that orbit diffusion reduces the
magnitude of the perpendicular wavenumber, which makes the beta term that
much more effective.

In Fig. 7 we also show the maximum axial magnetic scale length
consistent with stability to the flute-like, negative-energy wave. We are
determining the maximum scale-length restrictions from the higher axial
normal modes (q. =1, 2, ...).

S

High-Frequency Convective Loss-Cone Mode

The axial length of a mirror machine is limited by the Rosenbluth-Post
convective mode.]0 This mode amplifies while propagating almost parallel to
B with w ~ Wi Aal >k, >> p;], and k, ~ kL/ﬁ;ﬁﬁ;. The velocity-space
scattering resulting from these fluctuations has been obtained by

1 and the form of their result when bounce-averaged is shown

Baldwin-Callen,
in Fig. 8. The basi; scattering time scales as the electron drag time,
tdrag’ modified by the degree of wave amplification. The velocity dependence
of the scattering is incorporated into the function D(vL), which has a
maximum < 0(1) jn the positive slope of}the iph distribution, is linear at
small v , and decreases as v:3 for'1arge V,. The number of wave-energy
e-foldings A is convenient]y expreﬁsed by a dimension]ess‘quantity

af{= max neg [yF(y)] in the notation of R-P}, which is a very sensitive
function of the ion distribution, particularly at low energy where there
existé the population inversion‘driving the mode. Electron temperature and

the axial dependence of plasma parameters taken together reduce the values of
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a from the R-P values by about 1/4, giving for collisional distribution

a = 0,08(R + 1)']/2, although this is increased for analytic models having
an ambipolar cutoff. For scattering by these fluctuations not to exceed
classical electron drag, A must be <5, placing a limit on L/pi of about
65(R + ])]/2, where L' is the total length, and p, is the midplane Larmor

radius in the actual magnetic field.

Just as for the diffusion in the quasilinear model of the drift-cone
_mode, the convective mode diffuses low-energy particles faster than high, as
is shown by the velocity dependence of D(v ). Because of the sensitivity of
a to the distribution and the uncertainty of relating diffusion in velocity
space to particle lifetimes, it will be necessary to develop a velocity-space
transport code, including axial dependence, to predict accurately the effects

12 who

of this mode. A beginning in this direction has been made by Fader,
added to LLL's HYBRID II (a two-dimensional Fokker-Planck code) a term
similar to the scattering coefficient shown, without consideration of axial
debendence. His results were surprising, showing a heating of ions and
little loss of particles, and require reexamination.

The experimental evidence for this mode is 1imited; it is suspected of
dominating the low-energy ("quiescent") runs in 2XII, but the mode
identification was never complete. However, to the extent that the
identification was valid, at L/pi = 125 it conformed to the above-mentioned
length 1imit and provides a basis for confidence in this scaling. As in
2XII, a concommitant of this scaling is the requirement that the local

(B-enhanced) value of QZ /w2 exceed unity, preferably by at least 3 or 4.
pe’ "¢

e
Again, 2XII densities in this range decayed with nt values close to the
classical value for Ti/Te ~ 30. Under stream-stabilized operation of 2XIIB,
the mechanism of partially filling the loss cone, which is seen as

stabilizing the drift-cone mode, also reduces the amplification of the
26



convective mode to the point that it would not be expected to dominate plasma
loss. Under nonstabilized operation, of course, plasma loss is dominated by
the ion-cyclotron noise.

At 50 keV and 12 kG central fie]d, the proposed MX has an L/pi vélue
only 10% larger than that of 2XII, so with respect to this mode its behavior
should be'similar. Such experiments, which stabilize the drift-cone mode by
increased plasma radius rather than by partial filling of the loss coné,
permit investigation of the less-virulent convective mode. Present reactor
designs exceed the estimated 1imit by é factor .3 for the large, 900-Mw;output
sfze and by 50% for the shorter 100-MW case. However, as has been emphasized
above, the theory at this time is incomplete and is unable to assess all the
ramifications of increased length, and the scaling of containment time with

length has not been demonstrated experimentally.

Summary

The restrictions imposed by instabilities on mirror configurations can
be summarized as follows: ‘

. The mirror mode and the Alfvén jon-cyclotron mode provide a 1imit to the
méximum beta attainable in a mirrqr configuration. Limitations on beta
imposed by generating bad field curvature (ballooning interchange) have
not been assessed. Such studies require high-beta, three-dimensional
equilibria that are just beginning to be generated by our three- -
dimensional, guiding-center equilibrium codes.

. The minimum radius is determined from consideration of the DCLC mode.
Confidence in our ability to parametrize the stability boundary fqr this

mode is based on the ability of the quasilinear simu]afion to predict
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the plasma evolution in 2XIIB. As yet, there is no experimental

information as to how paraméters change with increased radius. Such

information will come from an MX experiment.

. Limits on the axial length are provided by the Rosenb]uth-Post
convective 1oss-cpné mode and the negative-energy wave. Since the loss
hole in velocity space was nearly filled in by the stabilizing stream or
by the instability itself in tﬁe absence o? the stream, and the |
experiment was dominated by ion-cyclotron noise, 2XIIB provided 1ittle
information on the scaling of this mode. -In the MX experimenp, there is
a 1owér reduired population of untrapped particles at marginal stability
to DCLC, and the convective modes are expected to have a competitive
influence on cohfinement.

Table 3 summarizes the present status -of theory.

The present results indicate that with éxial lengths projected for
réactors, the maximum beté wi]] be determined not by the mirror mode but
rather by the Alfvén ion-cyé]otron mode. However, as has also been pbinted
out, these resu}ts appear to be sensitive to the detqi]s of the distribution
function, and qua]ftative predictions await calculations with realistic
distributions.

The survey of the DCLC mode has shown thatAatAmoderate1y high beta, the‘
minimum radius for stability is acceptable. One question that immediately '
.arises is just how the boundary of the plasma (where Beta is low and- the
radial scale length is short) can be stabilized. Suggestioné put forth have
been stream stabilization and gas or warm-plasma blankets; this is an area
where further work is required.

The situation with regard to the convective 1oss-éoné mode is in a
partial state of flux in that rough scaling laws appear to be aéceptab]e; ,

however, as has beeh mentioned, answers are'quite dependentAupon details of
| 28



Table 3. Current theoretical estimate for reactor

configuration.
Parameter Controlling factor
81rPJ_
g = ~ 7 . Mirror mode (Alfven ion cyclotron mode?) .
Bv?
Rp/p;, ~ 40 Drift cyclotron loss cone mode
Lscale/pi;~ 30 Convective loss cone mode, negative energy mode(?)
w:e . ’
> 3 Convective loss cone mode
ce
E, ~ 200 keV Heactor optimization
E,~ .1E lon-ion scattering
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the distribution function, and these are presently under investigation. One
result of this work not so dependent upon details of the distribution is the
)2

requirement that (w__./w exceed 3 or 4 to minimize scattering due to this

pe’ “ce
mode. The negative-energy wave likewise requires further work. Results to
" date show that the flute-like mode leads to axial length comparab]e to the
convective mode. Similar analysis on the higher axial mode rehains to be
done.
The final two entries in the table are a reminder of the energy range

anticipated in a reactor. The last entry is a caution as to how important it

is to avoid anomalous cooling on the electrons.
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APPENDIX A. QUASILINEAR TRANSPORT MODEL FOR
MIRROR MACHINES (H. L. Berk and J. J. Stewart)

In this Appendix, we describe the equations that govern the quasilinear
transport model. In the first section, we describe the algebraic equations
of the system, and in the second section we discuss the finite difference

scheme for these equations.

Physical Equations

In mirror machines,‘the jon-velocity distribution is frequent]y sharply
peaked perpendicular to the magnetfc field. If one integrates over v,, one
can then model the evolution of the distribution function F(vz,t), where vo
is the perpendicu]ar jon speed. Flute modes are only a function of F(vf,t),
and a se]f—consistént quasilinear model can be constructed.

We use the following equation to describe the evolution of F(v%,t):

oF % 2, oF . 3 2
2= & p(vE) =25 vopae S5 (VEF)
9 avz av% DRAG av§

, 2 2 ® 2 2 2
- vegans st () * nSgean(v2) - Ffo 201 - apgy(vE)15gepn(¥2)

| 2 2 ey T2 2 2
+ Sera(v2) = vux (VAF + Sgipy(v2) fo Vi F(vEvg (VD) (A1)

where the normalization is chosen so that n/n0 = 1/sz dvj2L F(vg), n is the

particle density, ng is a normalized density, and v is ? normalized velocity.

This equation is to be solved over a domain 0 < vE < V%ax
T, )

max

with the boundary

conditions given by BF(VE = o)/avi = F(vg =V = 0.
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The first term on the right-hand side of Eq. (A1) is the quasilinear
term, and D(v%) is the diffusion coefficient. This term will be discussed in
detail below.

The second term is: the e]ectron drag with

4 1/2

= (812 /23) 2%n n pe'n/ 232,

VDRAG
where e is the electronic charge, m is the electron mass, M is the ion mass,
Z the ion atomic number, and In A is the Coulomb logarithm.

The third term, vTRANSIT(V*)F’ is the loss term for particles in the
loss cone. The loss region in a mirror is determ1ned by the relation
vg < (v% + q3/M), where ¢ is the ambipolar potential, q = Z|e|, and R is the
mirror ratio. In this code, v% can only be tracked in the'mean,‘and we
replace v% with 2T./M. The untrapped particles can only remain in the mirror
for a transit time, Trpansyts which scales as TIRANSIT ~ Lp/[M/(T" + q@)]1/2,
where Lp is the axial scale length of the plasma. Hence,
VfRANSIT = aT((T" + q@)/M]]/z/L » where a; is a numerical constant that is
typically taken as 0.5.

The next term, nSBEAM(VE)’ is- the beam input source and

BEAM(vJ_) I(V*)(OCHX + oION)z/q, where U/ﬂdv* I(v*) is the neutral-beam

current, OCHX the charge-exchange cross section, SION the ionization cross
section, and & is the path length. For each beam particle input by charge
exchange, a particle from the disthibution is lost. This effect is
represented by. the term Fnov/ii /v [] - “ION(V*)] SBEAM(V*)’ whene
1on = 108 (TcHx * “10n)- o

A 1ow-energy source SST(VE) is used to model the plasma stream that is
injected axially into the plasma.

Particles may also be lost by charge exchange with the 16w-energy gas.

We have treated the charge-exchange loss as if the low-energy gas can
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penetrate the body of the plasma. This assumption is only marginally
adequate in the 2XIIB experiment, but a more detailed model is too difficult
to treat in this spatially zero-dimension code. We then take the loss of hot

ions at a rate vCHX(vE) and input cold ions with a source

SCHX(VE).IﬂdvE vCHX(vE)F, such that .jg dv2 SCHX(VE) = 1.

In a mirror plasma, we expect the turbulence arising from the

Al,A2 mode to determine the quasilinear diffusion coefficient.

drift~cyclotron
The spectrum is characterized by k, = 0 and'k¢aH 2 1, where ay is the mean

ion Larmor radius, k. the parallel wave number; and k, the perpendicular wave
'numbef. A difficulty in a straightforward application of quasilinear theory
is that k, = 0 modes do not have any Landau damping in infinite-medium theory
when magnetic field drifts are neglected, In order to avoid this problem, we

introduce an ad hoc correlation frequency Buwy, - For two-dimensional

turbulence, the quasilinear diffusion coefficient is then given by
' Koy 90,

D(vE) = 4n T 92 (= +) ‘ s
k,m ci .

where Py is the perturbed potential, w

2 2
2 m wciAwk

(A2)

2 2 °
[w(k) - mwci] + hw

ci the ion-cyclotron frequency, and
w(k) the radian-oscillation frequency. If the noise is resonant near a
cyclotron harmonic, then only one term in the sum on m in Eq. (A2) need be
taken. If further we assume that the real part of the frequency is at the
cyclotron frequéncy, the diffusion coefficient is then given by
Jz (k,,-v,_) ,
M\ e lq¢k ]2
.M

Awk

D(V_ZL) = 41r2m2 wii . (A3)
k .

In this expression, the integer m is a function of k and is given by

m s w(k)/wci.
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The correlation frequency consists of an intrinsic particle correlation
rate (e.g., due to the transit rate of particles in an inhomogeneous magnetic

fFie1dM3 1

where Aw, = QciaH(TL/T")]/Z/L, where L~ = d In B/ds, a, the thermal
Larmor radius, and T, and T, the perpendicular and parallel ion
temperatures), and a se]f-consistent turbulent correlation due to orbit
diffusion. In the calculations to date, the correlation frequency is taken
as an afbitrary constant. In future calculations, the correlation frequency
will be taken as Aw, =lk2[D0/V2 + D(vg)/vg], where DO/Vz'is a constant. If
DO = 0, Awk is the correlation frequency dde to spatial diffusion that has
been used by Dupree. At low turbulent levels, Amk is constant for a given k.
We have chosen this form so that by using Eq. (A3) we may readily solve for

D(v). Substituting our assumed form for Aw, into Eq. (A3) yields

2 2\ 2
Dvi Dava 2 qo 2 11/2
2 0 0"+ | 2 4 m k
D(V*) s - + (—f_—) + dnviw Z J . (A4)
2v2 o2 i’y ;2' m| M |
The amplitude |¢k|2 is determined by the equation
) 4
31, )
3t 2y (k) |¢k| + a(k) , (A5)

where y(k) is the growth rate, and a(k) is the intrinsic, Tow-level thermal

- fluctuation term. The growth rate is given by the expression

A 2
LN (P B P (k*’*) e (A6)
Wei k Jo avE M AW Buoye

In the current investigation of this work, &k and m were chosen
arbitrarily because we wished to demonstrate that a typical self-consistent
modé] would approach marginal stability. A more realistic form of w(k) and
v(k) for the drift-cone mode near marginal stability will be used for MX

calculations.
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The expressions for the rate of change of density and energy can be
obtained by taking the appropriate moments of Eq. (A1). For the rate of
density change we obtain

2
.fvmax dvg BF(V_ZL)

Z T

(o34 KB}
S
>
o
o

2
nOD(Vmax) aF(vmax -n ® EZj v ' (v )F
av 0 TRANSIT ‘'+

2

: J max dvy '
b F Lo gn (v2) Sgeau(vidn + SSTRM(V*)] (A7) -

The terms after the last equal sign in Eq. (A7) are, respectively: (1) the
diffusive particle-loss term due to the absorbing high-energy Boﬁndary;
(2) the transit-loss term of particles in the loss cone; (3) the particle
input from the beam and stream. Note that there is no direct particle loss
arising from electron drag or charge exchange. Normally, the diffusive loss
terh is a numerical loss term since an infinite energy domain cannot be
treated analytically. However, in practice in a mirror machine there is a
high-energy cutoff since the adiabatic invariant is no Tonger conserved at
sufficiently high energy, and in soﬁe cases the high-energy boundary mocks up
this effect. |

Before we express the rate of change in kinetic energy,
2 'fv'f‘ax 2.2 3F

dV.x.V.s. T
0 3

we shall perform some algebraic manipulations with the diffusion term. When
we construct TE from Eq. (A1), we obtain the following form from the

diffusion term,
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If we integrate by parts, define wgio = 4nn0q2/M and use Eqs. (A3),

(A4), and (A6) Q can be written as

2
n.Mv .
oM g L2 2
Q - —— D(vy) =5 (vi=v__)
2v2 avi' max
v 2 .
g S o
2v 0 v " vy
2
v 2 2
. ong? Zmzj'“a" dvy j]_m_|¢ 2 2. 3F
EEM 0% 0 5?_ Aw, 'k ci g;g
ziOzYk o2 oo 51 ol o (A8)
= PIOS Ky 6= RIS L - A8
ve Kk O K W \k% 9t 9

We note that wave energy of the turbulence can be defined as

3o,
.JIUlE:] ak . (A9)
av? KO ot |

"If we now construct TE from Eq. (A1) and use Eq. (A8), we obtain

2
[V
35 (TE+ W) = 230 o0,
4y k
+°MVED(> (2‘=.v2)' oot TE
2v2 Va 3v+ ~ max DRAG
- T TRANSIT TEBEAM Ecnx * TESTRM’ o (mo0)

o
where f%fRANSIT and TECHX are the rate of energy lost by ions in the loss .

_ o
cone and from charge exchange with the low-energy neutral gas, while TEgeam
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and TESTRM are the rate of energy input of the beam and stream, respectively.
The precise forms of the T%'terms will be given below.

In Eq. (A10), the term wiio/ZV2 2 ak/ck is the rate of work done on
“the plasma by the thermal f]uctuations% Our theory is not refined enough to
account for the fact that the work itself comes from plasma particles.
However, this term can be made negligible by choosing.ak small enough.

The second term.on the right-hand side of Eq; (A10) is the rate of
energy lost by diffusion at the absorbing high-energy boundary.

~ The term v

€T VpRag = !
The TE terms are given by

2
v 2
ngM f max dvi

TE is the energy lost to electrons through electron drag.

[ ]
Terranstt =27 J) 22 Ve VRanstTh
. ) 2
o nOM Jvmax dvz 2 2
Tggan = 27 5 Tz V= Splvid
v
2 a2
oM Jvmax dvi 2 fvmax dvg [ ( 2) ( 2)]
- — —5— Fv; —— L1 -« v )S N
2 Y, 72 0 72 ION'"+/~“BEAM
2
. noM fvn1ax dva 2. 2
TEenx = 27y = VomVIVF
2 . 2
nOM fvmax dvi 2 2 fvmax dv% 9 2
2
. Mng fvmax dvg 2 2
st =7 5 7 VSerlvi) -

To complete our description, we need equations for the electron

‘temperature‘and péra]]e] jon temperature.
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For the electron temperature, we use the equation that the rate of
change of electron energy density is equal to the ion-to-electron power
density transfer minus the power density lost out the mirror ends. The

equation is expressed as

é;- 31 = NVnpaels - EEE T (A1)
at\Z Me DRAG'i ~ 3T e

where n énL/at Ty 1s the rate in which electron energy is lost out the ends
of the mirror machine. "Here, anL/at is the electron density loss rate, and
Ty 1s the mean energy of a Tost electron. Fokker-Planck calculations®
yield n = 5, whf]e empirical 2X data suggest n = 8 is more realistic.
Note that from the quasineutrality condition, the rate in which

electrons leave the mirror is equal to the rate in which the icns leave.

Hence, from Eq. (A8),

2
an o dv v
L _ + 2 < max) aF 2
T "o,g VZ‘YTRANSIT(VJF " n? T 17 U (A12)

The ambipolar potential & is determined from a formula derived by
Pastukhov,A5 which is given by
. o\ '
RZ exp (— %r“) Te

Loz, e
t 3\m/ "DRAG (2R + 1) Tn (4R + 2)qd °

(A13)

Typically, with stream, we find qcb/Te =~ 3.

For the parallel ion temperature, we use a‘simple model which states
that at finite beta, B E‘8ﬂnMyE/Bz, T.w needs to be greater than a minimﬁm
value aBT . In this investigation, we use T, = ofT , with a chosen
arbitrarily. For a more realistic treatment of Tu to both the mirror
condition and ion-ion collisions, a two-dimensional velocity phase space is

needed. Such a calculation is currently being developed by Rognlien.
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Finite-Difference Scheme

Equation (A1) is solved by numerical-difference equations. The grid is
taken with an arbitrary spacing such that we have a list of points

0<j<dJd+1and

where X5 = VE/VQ, and ij is a predetermined interval with the constraints
- _ o 2 _ =2

that Axg = Axq, AXg = AXg.0s Xg = =BXq, and Viax = v”(xJ + AxJ). The

boundary conditions for Fj = F(vf) are chosen such that FO = F] and

FJ = -FJ+]. In finite difference form, our normalization condition is
2
R ()
—— F(v®) = §.F. = n/n, , A - (A15
0 v g 0.

where 85 = (Ax;_y + 20x; + Ax /2, and ny is taken as the initial plasma

g+
. density. Equation (A15) can be derived from the trapezoidal rule. The end
‘effects of the trapezoidal rule are simplified in Eq. (A15) due to our
boundary conditions. The first moment of F, which is needed to construct the
kinetic energy, is expressed as

2
v |
max ve J v 4
f dvf_:r F(vi) = n Z] §.x.F. = nx . ' (A16)

o 0 3733

The differential terms in Eq. (A1) are represenﬁed as follows:

oF _ 1 [en _ L0)
(Term1) £ =L <FJ. FJ.,> . (A17)
where.Fg = F(ijZ, t + At), F? = (xjve, t). This representation is

second-order accurate in At.
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(Term 2) —§7 D(vi) —§§ F =
: oV, vy
1 |l Py - Fy) By (Fy - Fy) (A18)
= °j AX. + AxJ.+1 ij + ij_] ’

where ?5 = (F2'+ F?)/Z. For Dj; we use the expression given by Eq. (A3) with
vg = Vz(xj + ij). Equation (A18) is accurate to second order in time and
second order in velocity space if the grid is uniform on first order in
velocity space for a nonuniform grid.

In the code, we do not use Bessel functions because it is time consuming
to generate or space consuming to store. Further, physically the
oscillations of the Bessel function can be expected to be émoothed over by
the spatial variations of the systém. Hence, we use a form that‘reproduces
the form of the square of the Bessel function for small argument and the
average of the square of the Bessel function for large argument. In

pafticu]ar, we choose the form
Ely) = F () HY/IF,(y) + KD (A19)

where Fn(y) = [(y/2)n/n!]2 and H(y) = (ﬂY)f]-
The expression, ‘

2

]

99,

3

l’) =
k Mv

needed in Dj, is evaluated at t + At/2. The finite difference form we use

for the time evolution of y, given by Eq. (A5), is

B(r ) - (2o 88) vt [y (0 8) e (- 4) ] et
(A20)

where ak = qzak/(MVQ)z. The finite difference form of y(k,t) is given by

41



2 ‘ |
F.J kv
e ( Qmax> } . (A21)
k ci

The conservation laws of the zeroth and first moments of the diffusion -
" term given by Eq. (A18) can now be considered. We have that the change of

n/nO due to the diffusion term is

ot on®ae g Py ) 0E Bl e By
o Mg 34 9 (AxJ + ij+]) (Aax i + AxJ ]) V4 Ax
In obtaining the result in Eq. (A22), we have used F] =F0 and FJ = -FJ+] and

AX, = AX Observe that our finite difference scheme for the diffusion

J J+1°
conserves particles except for the leakage at the edge of the grid.

For the change in nx due to diffusion, we have

(ﬁ)" i <nY>° _ oo | & K0y - Fy) xRy - i)

-1 x . F
_ _ At = - At 3"
= - D. ., F.) +2¢D

2
: ~? JZ <Hﬂ>}"
, 31 BF.y -Fy Omlas JTa
amita?, Tty (¢4 42) | LT, e

i=1 Awk Awk

At

RS MESURIVES

Atwk (t + %ﬁ)
= -2m . [y (t + at) + v ()]
k k |

- AL (x4 ax)D ., Fy/ix (A23)
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Using Eq. (A23), we find that the change in kinetic and wave energy in

- the finite-difference scheme due to diffusion is

TE(t + At) + WE <t + é‘_t> - TE(0) - WE (-gt)

2 —
- -n Z: max FJ S MZE)
0 J+1 AxJ k’k 2

-At Zk:yk(t,+ At) WE, <t + 2——) - AtZyk (A24)

where Ez,wEk = WE. This equation §tates that the loss of total energy is due
to kine:ic energy flowing out the end of the grid plus the work done by the
fluctuations to initiate the wave energy. In addition, there is a small
phase term that corrects ifself with each time step.

For the drag, we use the following difference scheme:

- d
(Term 3) VDRAG 5—7 (VLF)
. vJ-
_ DORAG [y )(F +FO( - 6 )
43 j AEARANNEY J AFTUSE
- (x5 + x5 ) (Fy + Fy 400, (A25)

where 6 ,J is the Kroneker- de]ta This expression is second-order accurate

in At and second-order accurate in Ax if Ax is uniform or first order in Ax

~if Ax is nonuniform.
It readily follows that the zeroth moment of Eq., (A25) is exactly zero

(note that X0 + Xq = 0). For the change in the first moment due to the drag,

we have
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= —4— Jz=:] XJ(X + XJ+])(F 'I + Fj) = XJ-(XJ- + XJ_'I)(FJ- + rJ_])
v At J-1 . '
= DRAG = .=
T & Wy el ) (g o) (k)

Equation (A26) is the finite-difference form of the statement that the
decrease of the kinetic energy due-to drag is the energy absorbed by
electrons. Note that the right-hand side of Eq. (A26) is not exactly
proportional to nx but differs from nx to order (Ax)2 for a uniform grid or
to order Ax for a nonuniform grid.

To represent the transit loss term énd stream term, we use the form
(Term 4) S 2)

=S (A27)

=2 =2 \E
sTRM(Y X;5) = Vrpans 1TV X5 F(V sTRMj ~ VTRans1T()F;-
This form is accurate to second order in At and Ax. The change in the zeroth

and first moments due to this term are

n 0
n n._ _ 1 -
ny " g Tt 2% 85 DvrpanstTt3) Ty - Sorpms]
| ' (A28)
—0
(nx)" ()" _ =
ng T ng o A 2: S5%iVrans1T) Fy - Ssrpul-
(Term 5) We cannot réadi]y maintain second-order time accuracy in the

beam source'sihce it is proportional to the density. If we attempted a
central time difference scheme on the density, we would need to solve
imp]icitiy a full J x J matrix. To avoid this complication, we use the
previous density in our source. In order to conserve particles, we also
introduce this time lag into the charge-exchangé 1055. Thus, we use the

following finite difference representation:
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f v max. 2 -2 2
SBEAM v2 X; A dvi [1 - aION(V xj)] SBEAM(V4)F
= Speamj - Jz;] 85(1 - aron;) Speam; - (A29)

The changes in the zeroth and first moments due to these terms are

n 0

n n- _ 0
i g At ZJ: 6 105F5 Sgeav;
(A30)
v =0 J
nx)" ()" _ 0 :
- = Atn” Y. 8.X: Soraws
o "o 3= J7J TBEAMJ .
J
-At 1;} 8, %;F. 2 8,1 = ay)8y;
(Term 6) Similarly, the charge exchange with background neutral gas is

offset in time to avoid inverting a large matrix. The charge-exchange term

is represented by

2
v .
2 2 2 ".max 19 ) . |2
0 J

where 2: “CHXJ j*© 1.. Equation'(A31) conserves n while the change it

1nduces 1n nx/n0 is given by

—\n =\0 ‘
nx nx 0
() 8 B

no J=1

J
F & 8% Sonxi Z Sfivemg - -~ (As2)

45



The finite-difference equation we have generated produces an implicit
tridiagonal matrix for the unknown Fg for 0 < j < J with the boundary
~ condition FB = F? and FS = -F3+]. This equation is solved by a standard
tridiagonal Gaussian reduction technique.

For the change in the electron temperature, we integrate Eq. (A1) over a
time interval At. This yields

nan, [(nT )" + (nT)0]

0) (A33)

3 \n
> (NTe) -

I

(7)) = f o "VprAG'i " N
't ' (n" +n

t+At
The term .I. nVDRAGTi is the energy transferred from ions to electrons
t
and it is given by the last term of Eq. (A26) multiplied by MV2/2. The
second tefm on the right-hand side of Eq. (A33) is the electron energy lost

axially and Ang is given by [see Eqs. (A22) and (A28)]

D...F
J | (A34)

J+]
AxJ

fn = ngat XJ: 85vrRans T3 F5 *

<L[Z

Finally, the ambipolar potential which is governed by Eq. (A13), is
determined by a Newton-Rhapson iteration procédure after anL/at is replaced
with 4n /4t [see Eq. (A34)].
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APPENDIX B. SELF-CONSISTENT TURBULENT DIFFUSION IN THE TWO-DIMENSIONAL

HYBRID II CODE (T. D. Rognlien and T. A. Cutier)

Introduction

The HYBRID II Fokker-Planck code has been modified to include the effect
~of turbulent diffusion as caused by electrostatic oscillations. The model
used is thét developed by Berk aﬁd'Stewart for their one-dimensional
Fokker-Planck code. In this quasilinear model; the oscillations grow due to
the loss-cone nature of the distribution function, and those oscillations in
turn drive the distribution function to marginal stability through turbulent
diffusion. The calculation is self-consistent in the sense that energy is
conserved between the waves and the particles. The model gives a growth rate
that is(a reasonable approximation to that for the drift loss-cone
instability. Below, we give a brief description of the form that the
diffusion operator and the growth rate take in spherical velocity coordinates
as used by HYBRID II and discuss the new effects thaf this two-dimensional

code can model.

Diffusion Operator and Growth Rate in Spherical Coordinates

A general velocity diffusion term, D, enters the Fokker-Planck equation

in the following way:

of _ VV-Q;va + classical collision terms. (B1)

ot

For electrostatic waves propagating perpendicular to the magnetic field, one
has '
-7, | o (82)
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*
where Dl is given by

2
2 dk ?.,kw Aw
22 1 2 27 "1 k .
D(v)=—‘L-Z" nwi,  ——— ¢, | . (B3)
tos m?vL n cr (21r)2 kL N W4 (wk - nwci)2 + Aw&

Here, Awk is the correlation frequency. By using Eq. (B2), one finds the

diffusion term of the Fokker-Planck equétion-in spherical coordinates to be

. 19 - 2 ;2. of of
vy Q‘va = Z 5y DJSV>S1n e) (v sin“e 3V'+ v sin 6 cos 6 ae)
1 2 af 2, of
+ v2 T 36 DL(v sin 6) <v sin“o cos © 57-+ sin 6 cos 0 55) . (B4)

These:terms have now been added to the existihg HYBRID II code.

The‘growth rate is found by multiplying Eq. (B4) by ; m; v2 and then
integrating over velocity spaée. This energy integral is then proportional
to the growth rate, vy, since the rate of energy change for the waves is 2y
times the wave energy. This insures that enérgy is conserved between the
" waves and the partic]és. The constant of proportionality can be obtained
from a more detailed analysis of the ]ineér dispersion relation. However,
energy is conserved independent of the value of this constant, and only the
time scale of the wave growth is affected by it. After integrating by parts,

we find the growth rate in spherical coordinates

: k v
W 22 1 4 .
Z (= '.an<wc1‘> . By
kaK sz ? 2 5

0 n v, (wk - o +.Awk

. v2 sinze <v sin g af + cos 8 gg) dvde , ‘ - (B5)

where K is a constant. The wave amp]itudes are then allowed to grow at this

rate; i.e.

R C. Dav1d<nn. Methods .in Nonlinear Plasma Theory (Academ1c Press, NY,
1972) p. 166.
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4o 13,12 = 21, 13, 1% + Fuc, (86)
where FLUC is a small, constant, béckground-noise Tevel.

The code is thus to be run in the same way as the one-dimensional code:
"several waves at:different kL'S are chosen and assumed to have a frequency
'very near one of the cyclotron harmonics so that only one term in the sum
over n is used for each wéve [see Eqs. (B3) and (B5)]. It should also be
menfioned that as in the one-dimensional code, we have the cahabi]ity 6f
using any mixture of the exact Bessel function and the envelope of the Bessel

function.

New Effects to be Studied with the Two-Dimensional Code

Pitch-Angle Scatterfng |

The major effect to be studied with the two-dimensional code is that of
pifch-ang]e scattering. This effect could be significant near the loss-cone
boundary since the particles there have lower velocities and pitch-angle
scatter somewhat more effectively. Also, particles that cross the ]oss-coné

boundary with significant parallel velocity are more energetic and thus
represent more of an energy loss than a particle loss. The code has an
. end;1o$s diagnostic that gives thé‘energy}spectrum of these particles leaving

| the system.

Separate Calculation of Stream and Plasma Distribution Functions

The HYBRID II code has the option of using multispecies. Thus, the
stream could be considered one species and the tafget plus beams as the
second species. This would hé]p answer the question of whether or not the

stream ié actually trapped by rf or simply flows through theléystem,
"~ 50



Non-Maxwelljan Electrons

The code also has the option of "Fokker-Plancking" the electrons. We '
have some preliminary results indicating that the electrons are
non-Maxwellian, which affects the drag on ions. It is not clear how large

this effect is, however.

0ff-Angle, Neutral-Beam Injection

Since off-angle, neutral-beam injection may be favorable from a B-1imit
point of view, the two-dimensional code offers the ability to determine the
effect of such injection on the stability of the plasma and the associated

loss rates.
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APPENDIX C. WARM-PLASMA STABILIZATION OF DRIFT-CONE MODE AT
FINITE BETA" (H. L. Berk and M. J. Gerver')

Mirror plasmas are susceptib]e'to the drift cyclotron loss modeC] if the
radial scale length is suffiéient]y short. PostC2 has estimated the
amount of warm plasma that is necessary to sfabi]ize this mode in the low beta
limit. Tang g;_glps show tHatIat finite beta there is appreciable stabili-
izing tendency, although appreciable scale lengths are still needed for sta-
bility. In this note, we calculate the fraction of warm plasma A = nw/nH that
is necessafy to stabilize the drift cone mode at finite beta. Here H refers
to the confined "hot" plasma and w to unconfined "warm" plasma.

For the distribution function we choose the form

+ —%—- exp <- v2/v6 >. (C1)
W _

We see that the loss cone nature of the distribution is simulated by a "hole"

velocity vh.,APhysical]y, this hole velocity can be interpreted as
1/2 Mi vﬁ = qp + oT, , where q is the electronic charge, & the ambipolar po-
tentié], T, the parallel temperature, and oo a constant of order unity.

The dispersion relation for a k, = 0 mode and finite beta in the Timit
ww .
C; < 1, can be written as.

kLviA

*Originally published as Lawrence Livermore Laboratory Rept. UCRL-77711 dated
January 13, 1976.

TE]ectronics Research Laboratory, University of California, Berkeley,
California 94720.
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* * 2
w v v w v
“~H H H - h H
+ 2 [ezg (2) <1'ar>'2€v—7-a <€T> <" w_) 77
h h Vi, -V
' . ‘ H. "h
2 v * v '
v : W
H H W H ,
t2h — ZR<€T><'E’>E_f]] (€2)
v W W
W
v3 v2 w*
PP Y VA (7 £ - H exp |[._ g2 “H 1. _h
ci (v2 - v2) 'h v v
H h ‘ h
y v3 * v2
W w
B L QA exp (-52) L. B exp —£2 il =0,
w H v w Ve
W w
W ay
where ¢ = k*VH > Ay VH/wci s € = ﬁ;, Rp is the radial scale length,
2.2 | 2
w sV 2 k,ve
H 1 dx exp(-x"~) * +
B = fiu———-, Z,(y) = PU/P-———J1§———— , and w., = —3
N 2 C2 R . TT1/2 (x-y J chiRp
i
Frequently one may replace cot (gg—>vﬁth -i. This replacement is
ci

. . s C
justified when Im w > wci] or when the magnetic field drift, Vps is taken

into account and k;VD > wci'C4 This last inequality is usually realized

so that in K.(C2) we shall henceforth use -irather than COt(“/wci)' In
this case, the dispersion relation is identical with the straight-1ine orbit
approximation.

Other subsidary approximations that are cogvenient in our analytic
. v v w
analysis are A << 1, gn'<< 1, Vﬂ << 1, and Eﬂ << 1. e also redefine €
H h :
;p include the factor 1 + g/2 (then w* would be klvﬁ/[mciRp(Z +8)1).

H
v
(+<)
‘ W

Then Eq.(C2) becpmes

(A v
3 m ci 2
- E.+ B + M + —5 <k16H> - A ;
“pi '

mrNo

z

R

=N
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2 2
v V.V v
- i Vﬂ' /2 g 1-A h3H exp |- 52 -g- =0 . (C3)
h Vi Vi
w\2/3 (m f 1/3
At moderately high 8, B > B v M-+ —7 , and n = 0, this
h wp].
d1spers1on relation has been analyzed by Tang et al.’ €3 The stability condi-
1/2
tion is found to bé e = 281/2 Zei L = ¢
| —_ . 2 M = Cr .

For ¢ > €cp the drift cone mode is unstable,and we need warm plasma to sta-
bilize this mode. The marginal condition is obtained by equating the real and

imaginary parts. We obtain

2 .
A
_ h'H 22,2
1 = A —;§—- exp ( £ vH/v > (C4)
v2 v w 2 ”
H H -€ m ci- 2 2
b7 Ty <€v—> e rerlmt T2 Koy (€3)
v W Wz
W P

For long wavelengths and ¢ >> €ep the last term in Eq.(C5) may be neglected.
(Ye consider shorter wavelengths later.) For sufficiently small g, we may also

neglect the g term. We then eliminate Vi and find

.\ - (iﬁ )1/2 53/2 exp (- 2/3)~ 3/2
VH '.YZR .Y)

H

w

3/2(

1) 2.

where y = £ . - The minimum A occurs for y =0.5 and Amin = 2¢

- oy 1/2
One can infer from our marginal stability condition that ¢ Vﬂ' 4y <€ Vﬂ'> s
' : : h h

and hence we rénquire r > \Ih/vH to justify Eq. (C3). We shall discuss below
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the case when this inequality is violated.
v 1/2
As B is increased, it becomes competitive in Eq.(C6) when B ~ <:¥i e) = 31
. . h
For B > B], the first two terms on the right-hand side of Eq.(C6) are dominant,

so that we have B =¢/f or v = v,e/yB . Eliminating v from Eq.(C4) yields

W
3 3 2 3 _ 3 3 1/2
A= Ve / [y ’exp(-y ) v, B ] ;nd Ain = 2.4 Ve /vh B” for y = (3/2) / .
In the case ¢ > vh/vH , 50 that the phase velocity of the unstable wave
is comparable to Vi s it is necessary to fill in_the entire loss cone with
. 4
warm plasma. ‘Simultaneously,wH becomes comparable with w so that the ion den-
sity gradient becomes a drive for the instability as well.” In this regime,
the minimum density of warm‘p1asma necessary for stabilization is. found numer-
“ically from Eq.(C2). The results are shown in Fig. C-1 and very roughly

the fraction of warm plasma needed is A = (vh/vH) 2.

» we have chosen

To compute the curves in Fig.C-1 in the region ¢ ~ €crp

W= W When the last term in Eq.(C5) may be neglected, the marginal stability
curves depend only on £ = w/klvH, and hence w can be chosen arbitrarily.

When ¢ ~ Eep? the choice w = Wei reproduces Tang's result quite closely.

In summary,in this analysis we have considered three regimes of instabil-

ity. For regime (1), 2(% B) <ecxg 82 vp/vy » stability is achieved for

3
A> 2.4 (X—)E‘— : | (C6)

<
T

h /8

For regime (2), Bzvh/vH <eg vh/vH , we require

v, \1/2 | . 4’
_2<—h> 83/2“ o - (C7)

> .
v

Vi
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In regime (3), e > — we very roughly found

H
’ vh 2
A>t—1} ., (C8)
Vi, ‘

although numerical results in this regime ought to be used. In Fig. C-1, we

i
v

present several precise curves for A as a function of e.

The curve in Fig. C-1 can be used to estimate the minimum rate of energy

drain of a mirror machine. The warm jons will be accelerated by the ambipolar

1,2

potential tb an energy Mvez/z m‘<§Mvw + q@) when they leave the mirror

machine in a transit time v Lp/ves (Lp is the axial scale length). The
I . . 2 2 ..
minimum power loss per unit volume is thus Pmin v nAmin veS/TLvH . In princi-
ple, further improvement can be achieved because most of this energy is recoverable
with direct conversion.
One practical difficulty in using warm plasma to stabilize the drift

cone mode is how to have the warm plasma penetrate the ambipolar potential,

especia]]y if, the optimal warm thermal velocity, wa is less than v, as is the case
in fegimes (1) and (2), 1If v, ~ Vp in regimes (1) and (2), then a
much higher A is required; viz., A ~ (vh/vH)2 fo stabilize the drift cone
mode. The power loss would be a factor (vh/vH)3 larger than 1n Lhe uplimum
case. Possible ways to obtain a plasma with Vi <<V would be to inject
the warm species as a neutral beam or with pellets.

The analysis used to defermihe the density of warm plasma needed for

stability when ¢ < ¢

cr assumed a long enough wavelength so that the term in

Eq. (C5) proportional to kz can be neglected. Another unstable solution to
Eq.(C2) exists at shorter wavelengths with the dispersion relation given

approximately as

2 ' *
3 W
' 2 [m, “i e _ oo 12 (YL YL
(k‘aH) ot - 7 |- % 12'1r v, - A(VW Rl 0‘ , (C9)
p1
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2(m  %i 2,2 -
M + —5 >> B + A VH/VW and

where we have assumed v, /vy << (k.ay)
. oi

A'“Amin around optima1 Vw/VH' The solution, assuming Im w << Rew, is found

to be 3 ) 2 2
= Y v (koa,,) (( w5
: 16211'1/2 L —g t 2H Fn41+ —%—
) . Vh \ \ w i
w _ € : 1+ : W - —— p
oo N 2V
m ci 4 [m | Ci
(keay) | g+ —7 o (kiag) " | g + —2
w_ v Wy 5 _
' v w 2
» . 2 3,3 H m ci
and we see that instability exists for (k*aH) > 2 (; VH/Vw - V;') / mt—>
.
. p'l

The maximum grthh rate is found to be
v 3/2 N 2 - : 1/2
bW h 2/l/m | “ci\, 2 ,3 3 3
Im&)_.—o'45<7_> E/[(fn_ A 2>(Avth/vW-]).(2+[3) :| .
ci H W=
. . p1 .
In regime (1) Av3/v3 = v, exp(3/2)/v_; and in regime (2) Av3/v3 = 1.3 v,/v
g » OVy/Vy = VY EXP w’ g » OV Vg = 19 V¥

To assess the efféct of this instability, we note that it occurs for
extfeme]y short wavelengths and that it hés'a sma]]‘growth rate compared to
_the real frequency. Hence, a relatively small amount of particle diffusion
will stabilize these short-wavelength modes. In fact, the diffusion by the
longer-wavelength modes that may be neéded to estabjish the marginally stable
stafes discussed earlier should suffice to stabilize fhe short-wave]ehgth modes,cs

and thus the short wavelength instability is not expected to be a factor that

1imits containment.
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Fig. C-1.
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NOTICE

“This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research & Development Administration, nor any
of their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy,
completeness or usefulness of any information,
apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.”
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