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PRESENT STATUS OF MIRROR STABILITY THEORY 

ABSTRACT 

A status report of microinstability as it applies to 2XIIB ·and MX theory 

for mirror machines is presented. It is shown that quasilinear computations 

reproduce many of the parameters observed in the 2XIIB experiment. In regard 

to large mirror machines, there are presented detailed calculations of the 

linear theory of the drift cyclotron loss-cone mode, with inhomogeneous 

geometry and nonlinear diffusive effects. Further, the stability of a mirror 

machine to the Alfven ion-cyclotron instability is assessed, and the 

Baldwin-Callen diffusion is estimated for a spatially varying plasma. 

INTRO DU CT ION 

Theoretical support for the mirror program can be divided into three 

related parts: 

Understanding and describing existing experiments, 

Predicting stable parameters for larger experiments, and 

Determining equilibrium and loss characteristics of both classes of 

experiments (with the assumption that they behave stably). 

-The third-named effort is of initial importance in designing any 

» large-scale, high-B experiment and in assessing the economic viability·of a 

mirror reactor. We have been operating a time-dependent, two-velocity­

dimensional, Fokker-Planck code to which we are now adding the effects of 

axial-bounce average and velocity-space transport due to fluctuating fi_elds. 

Two codes have been developed to generate three-d i111~rt!:i iunal, f1n1te"'.'[3, 
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guiding-center equilibria. An axisymmetric, electromagnetic code 

investigates the related questions of the S-limits due to the mirror mode, 

the possibility of field reversal, and axisymmetric instability thresholds. 

The results of these efforts will be described at a later date. 

In what follows, we first describe in detail the results of~ 

quasilinear modeling of 2XIIB in which it was assumed·that the distribution 

function was driven to marginal stability~ as would be the case for a plasma 

dominated by the drift cyclotron loss-cone (DCLC) mode. The corroboration of 

theory with experiment is impressive. Next, the results of this theory are 

exfrapolated and combined with .the results of line.ar theory for those other 

modes thought to be significant. The combination provides a stability­

parameter picture of MX and a mirror reactor. 

RESULTS OF QUASILINEAR SIMULATION OF THE 2XIIB EXPERIMENT 

Here, we shall describe some of the results of our quasilinear 

simulation code as it applies to the 2XIIB experiment. The code itself is 

described in Appendix A. The basic equations used in the simulation to 

describe the distribution function F and the electron temperature Te are 

given by Eqs. (Al) and (All) in that Appendix. For the growth rate [in 

Eq. (A5)], we use ok = 1 and m = 2. We have chosen this 11 ad hoc 11 form for 

the growth rate because in 2XIIB we expect that the distribution evolves to a 

state of marginal stability that depends just on the shape of the 

distribution function rather than on the detailed dynamics of the modes. 1' 2 

We have found that our results are insensitive to ok or m. The important 

point is that the diffusion coefficient grows to a level that maintains 

marginal stability. 
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In the results we shall present here, the effect of Tu is neglected. 

The one-dimensional transport equation used here can only crudely take Tu 

into account, and.the additions to the HYBRID II code currently being 

developed by T. Rognlien (see Appendix B) will treat the effect of Tu more 

accurately. 

First of all, we shall discuss results neglecting charge exchange from 

background gas and keeping the stream current constant. We impose a beam 
-1 -1 -1 current with a total buildup time TB' where TB = TCHX + Tien and 

Lion= 1.69 ms is the ionization buildup time, and TCHX = 0.56 ms is the 

charge-exchange replacement time. A stream current, 
_ Joo 2 2 

JSTRM ~ dv~ 5sTRM(v~) = 2.15 
o 

x 1017 particles/cm3·s, is imposed. The 

energy spectrum of the beam is centered at 18, 9, and 6 keV with a relative 

weight of 6:3:1, respectively. The initial plasma is taken as a Maxwellian 

at 2 keV and a density of 3 x 1013 cm-3. 

In Fig. 1, we see the normalized distribution early in time before 

turbulent diffusion modifies the distribution. We see the structure of the 

three beam components plus the phase-space hole that has developed in the 

initial Maxwellian distribution due to the particles that we lost in a 

transit time. 

Eventually, this distribution reaches a steady state and diffuses into 

the steady-state shape shown in Fig. 1. The turbulence is large enough to 

spread the input beam width considerably although the shape of the 

distribution function is influenced by an input beam. 

In Figs. 2(a) through 2(d), we show the time evolution for 0 < t < 2 ms 

1 of the (a) density; (b) ion and electron temperature; (c) nT of the 

particles, energy, and drag; and (d) wave energy arising from tur:bulence. It 

is clear from Fig. 2 that a steady state is achieved with a stream input. 
~---NOTICE-----. 

This report was prepared as an account of work 
sponsored by the United States Government. Neither 
the United States nor the United States Energy 
Research and Development Administration, nor any of 
their employees, nor any of their contractors. 
subcontractors, or their employees, makes any 
warranty, express or implied, or as.sumcs any legal 
liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infringe prlvalcly owned rights. 
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Fig. 1. Early-time and steady-state ion distribution when 

plasma stream is_present and charge exchang~ with 

background gas absent. Initial parameters are 

JST (stream ~urrent) = 2.15 X 1017 particles/cm3•s, 

ionization time T· = 1.69 ms, and charge-exchange ion 

replacement time TCHX = 0.56 ms. 
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The plasma parameters achieved in this steady state correlate closely with 

experiment in 2XIIB, as can be seen in the comparison in Table 1. 

The scaling laws of the steady state achieved can be understood as 

follows. In steady state, we have that the power into electrons is equal to 

thei~ power lost out the ends, or 

(1) 

[See Eq. (All) for definitions~] se.condly, in steady state the density-loss 

rate anl/at is equal to the input rate so that 

Now, anl/at can also be estimated from quasilinear theory to be the 

fraction of the plasma in the loss cone times the transit rate 

(2) 

vTRANSIT ~ 0.5(q<P/M) 112;LP of unconfined particles. Typ.ically, ·q<P/Te ::::: 3. 

At marginal stability, the unconfined plasma density nu is 

where A is a constant of order 0.5. Now, using anl/at = vTRANSITnu' Eq. (1) 

becomes 

(4) 

From Eq. (4), we obtain Te as a function of Ti and particle density •. 

. -1 /(l 4 l 12 T3/2) Expressing Te and Ti in units of keV and using vDRAG = n . x 0 e , 

we find 

(5) 
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Table l. Correlation of quasilinear, steady-state calc~lation with 
stabilizing stream with observed experimental parameters. 

Theory Experiment 

m: (cm-3·s) 8.7 x l 010 5.7 x 1010 

Density (cm-1) 4 x 1013 3 x l 013 

Ion energy (keV) 13 13 

Electron temperatur~ (eV) 170 140 
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. ' 
If the stream current greatly exceeds the beam current, we can substitute 

Eq. (2), neglecting the beam term, into Eq. (5) and obtain 

(6) 

This.scaling law correlBtes with observed simulation results when various 

input paramete.rs. are varied. Note the steady-state density and electron 

tem~erature that are achieV~d are independent of beam input, but dependent on 

t_he stream input. 

Another important point is that the ion-energy containment time is 

basically the electron-drag time. This can be seen by noting that the ion 

power-density drain by direct transit loss is less than the power~density 

drain to electrons. The transit power drain, PL' is 

Comparing this expression with Eq. (1), we see that PL is less than the 

electron-drag drain nvDRAGTi if n > 1.5. 

(7) 

The simulation in Fig. 2 was continued for t > 2 ms by introducing 

various options of turning off either the stream or the beam. When the 

stream is turned off, buildup no longer continues, and the density falls. In 

general, it is found that the turbulence generated without the stream 

prevents plasma buildup. Observe that the ion temperature increases 

dramatically without stream. In fact, the ion distribution runs away to high 

, energy until the ions are lost on the upper energy boundary of the 

calculation. The continual hardening of the ion distribution in ~ur model 

can be qualitatively understood by noting that when an ion is lost, it leaves 

with an energy comparable to the ambipolar potential, which .is less than the 

mean ion energy. Henc.e, this -effect tends to increase the ion energy. Only 
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the electron drag can stop the ion runaway, but as the density is falling, 

the electron-drag rate continually decreases while the ion-diffusion term, 

which is independent of density, con.ti nues to cause ion runaway. 

When the beam i.s turned off and ·the stream is on, one observes a 

decrease of more than a decade in the turbulent wave energy. In part, this 

is due to lack of charge exchange off the beam. The diffusion term, which 

drives the distribution to marginal stability, need not be as large because 

it no longer has to compensate for charge-exchange loss to maintain the shape 

of the distribution function at marginal stability. Further, the electron 

temperature is decreasing, and hence the unconfined region in the 

distribution becomes smaller. Hence, the diffusion -coefficient needed to 

achieve marginal stability becomes less. When the beam and stream are both 

turned off, the results are quite similar to when the stream is turned off. 

When charge exchange on the background gas is included in our equations, 

. we can appreciably alter the response of the system. Apparently, the reduced 

density due to charge exchange reduces the power input into electrons and 

hence cools the electrons. In Fig. 3, we plot the electron and ion 

temperatures and density as a function of a constant charge-exchange time for 

otherwise similar conditions as used for Figs. 1 and 2. 

In addition, we find that in the absence of stream the ion-runaway rate 

is greatly reduced. We can eliminate the ion-runaway rate completely by 

assuming that high-energy particles in 2X are more likely to charge exchange 

with low-energy neutrals because their orbits carry them closer to the edge 

of the plasma where the neutral density is higher. To mock-up this effect, 

we have multiplied the charge-exchange rate by a factor exp (E/ECHX)' where 

we have chosen ECHX = 30 keV in the calculation we report below. 

In order to compare. our simulation in deta11 with an experimental ~un, 

we need to· include the fact that both the charge-exchange rate and stream are 
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continuously time dependent. In the experiment when the beam current is 

turned on, there is a source of gas that enters the plasma chamber that is 

roughly proportional to the beam current and beam-duration time. 

Consequently, in Eq. (Al), we have allowed the charge-exchange rate vCHX to 

increase linearly with time until the beams are shut off, and then remain 

constant. From the observed charge-exchange flux after the beam is turned 

off, one can estimate the final charge-exchange rate. 

Experimentally, Molvik has been able.to infer the stream current by 

using an end-loss analyzer at one of the ends of the mirror machine. On the 

particular run we have analyzed, we find that the end-loss current increases 

a factor of four during the time the stream is on. We have approximated the 

time dependence of the stream with the function 

SSTO [1 + 8 
(et/Tl - 1) ] e - 1 

5STRM = 

SSTO [l + 13] e 
-t/T2 

where·s = 3, -r1 = 1.2 ms, and -r2 = 0.25 ms. For SSTO' we use 

6.8 x 1016 particles/cm3·s. The rise~time parameters of the input beam are 

-rion = 0.60 ms arid TCHX = 0.20 ms. The beams are injected at 14, 7, and 

4.67 keV at a relative weight of 5:4:1. 

In the actual experiment, 300 A of neutral beam is injected, and an end 

current at the computer t = 0 time of about 10 A is inferred (however, there 

is an uncertainty in the absolute calibration of the end current). If the 

end current leaves at an equal rate from both sides of the machine and we 

take a plasma volume of 4.5 t, we infer a stream density of 

2.a x 1016 particles/cm3·s. However, considerable calibration and 

~eometri ca 1 uncertainty exist i.n the experimenta 1 numbers,' and the computer 
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simulation parameters of SSTO and SBEAM were chosen to best fit the 

experimental density rise-time characteri,stics. Actually, the calibration of 

simulation parameters to experiment was do·ne on one experimental run, and 

this synchronized quite well with several other detailed experimental­

simulation comparisons. 

In Fig. 4, we compare the time variation of several physical parameters 

in the computer simulation and in an experimental run. We see that the 

density and ion temperature correlate quite closely in the two runs. The 

electron temperature was measured in the experiment at only one point in 

time, and it is in close agreement with the computer simulation. 

In both the computer simulation and the experiment, there is a break in 

the rise time at 0.4 ms. The experiment was characterized by turbulent 

11 bursting 113 between 0.4 and 0·.7 ms. In the plasma simulation, the noise is 

saturated in the same time interval. An interpretation that appears 

consistent is that at 0.4 ms,. the plasma density achieves the steady-state 

density determined by the stream. However, the stream is increasing with 

time,· and hence the density increases in accordance to the increase in the 

stream-input rate. 

The comparison of the pla'sma-decay rate in the absence of beam is very 

close in both the experiment and the simulation. After the stream is turned 

off, it takes, in the simulation, about 200 µs for the turbulent noise to 

increase to a high-enough level to increase the decay rate. The actual 

experiment takes 150-µs longer before additional noise and more rapid decay 

are observed. The increase in the noise causes the ion temperature to 

~ increase in both experiment and simulation, although the temperature increase 

is more pronounced in the simulation. 
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In summary, we find that a relatively simple, one-dimensional, 

quasilinear model produces very good correlation with experiment in 

predicting density and electron and ion temperatures. We are trying to 

improve the code by including the stabilizing effect of larger radial-scale 

lengths on the unstable modes and to include the effect of T11 that arises 

from ion-ion pitch-angle scattering and the finite-beta mirror condition. 

CRITERIA FOR STABILITY 

The 2XIIB phenomena described in the previous section have been ascribed 

to the drift cyclotron loss-cone mode (DCLC). Experimental incidence for 

this mode identification is given in Ref. 4. 

Many of the results described in the preceding section can be scaled to 

machines of larger size, and the corroboration with current experiments lends 

c<mfidence to this extrapolation. In addition, there are other important 

phenomena, not as dominant as the DCLC mode in 2XIIB, which have been less 

intensively studied and have been only incompletely or inconclusively 

corroborated by experiment. The implication of these modes for mirror 

confinement is now coming under more careful scrutiny. Just as is the case 

with the DCLC mode, the stability boundaries of these modes, as confirmed by 

experiment, wi 11 determine the gross -features of a mirror reactor. In the 

next several sections, the present status of each phenomenon is described. 

Alfven Ion-Cyclotron Mode 

In addition to inverted populations in velocity space that can generate 

instabilities ir1 the ion-cyclotron frequency range, a mirror-confined plasma 

must maintai.n anisotropic ion-velocity distributions. This departure from 
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thermodynamic equilibrium suggests the presence of unstable modes. The 

mirror mode is one such case which puts a limit on B.1... as a function of the 

temperature anisotropy, T .. /T (or equivalently R, the mirror ratio). Such .J... \ 

constraints are an important consideration for buildup and for the achievable 

steady state and are combined with Fokker-Planck studies to determine 

limiting betas. 

Recently it was pointed out5 that a left-hand; ci.rcularly polarized 

Alfv~n wave destabilized by anisotropy might put a more stringent B.J... limit on 

mirror machines. Although these waves can be convective, prior calculations 

of this mode6 ignored finite-geometry effects and produced growth rates and 

frequencies for real k .. , wavenumber parallel to~· 

We are presently ascertaining the influence of this mode on mirror 

machines of finite extent. Specifically, we determine: 

The boundary between absolute and convective instability (gk .. = Imw = o) 
and the influence of finite geometry on this boundary by solving the 

phase integral 7 

= (2n + l hr , 

where s is the distance along a field line, and w is the complex 

eigenfrequency. 

• The convective growth of a wave pocket in the convectively unstable 

region. 

The modifications due to radial variation that are significant for 

plasmas with a few Larmor diameters across the plasma. 

Before presenting results, we review the properties of the mode. The 

dispersion relation is obtained by solving the perpendicular components of 

Maxwell's equation (E • B = 0 due to the mobility of electrons along the ...., ...., 
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field line). In the limit k..1.. = 0 (k..1.. is the perpendicular wavenumber), the 

solution reduces to a left-hand, circularly polarized Alfv~n wave satisfying 

the di~persion relation 

k~Va2 = ww~w~iw + Jd3v[w wc~ w f(v) + --1_2 v~f(v)J w wk11V11 k v ,. 
c1 . ci av 11 . - ci - 11 11 

where Va is the Alfv~n velocity, wci the ion-cykotron frequency, and f the 

di stri bu ti on function .normalized to unity. In the asymptotic limit 

(k11V11 « lw - wcil), one then obtains 

which for high beta and strong anisotropy produces a strong growth rate that 

was the cause for concern. For weak anisotropy, growth rates are 

proportional to exp [-s:2(T..1../T11 - 1)-2]; i.e., they are exponentially small. 

To ascertain the significance of such weakly growing waves requires a study 

·of the convective growth length, which becomes very small as the mode becomes 

absolute. 

To evaluate stability boundaries, we consider two specific 

distributions, a bi-Maxwellian (A), 

f 

2 2 
-Cl..1... V..1.. -Cl11V11 

e e 

and a Holdren-type distribtuion (B), 

2N 2 2 2 f - v e-av g(v,jv ). 

(8) 

(9) 

Note that in general, distributions should vanish for v + O; hence N > o. 

However, the pre~ent analysis is limited to N = 0 to simplify the algebra; we 

are studying the effects of N 1 O. Our preliminary results are depicted in 

Fig. 5 and Table 2. In Fig. 1, we compare the mirror-mode boundary for a 
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Table 2. Plasma parameter comparison for the Alfven 

ion cyclotron (AIC) mode. 

2XllB MX 
Parameters Parameters 

Eions 13 Kev 50 Kev 

B 7 kg 20 kg vacuum 

{31 0.5 0.5 

Pions 4.2cm 3.2cm 

Rfull length 
with plasma 2.8 2.8 

R plasma length 

with plasma 1.64 1.6 

Q 
center to edge 

plasma 
30cm 80cm 

Q center to edge = 7.1 pil = 25 pil plasma 

Lgrowth /Pi = 7.5 } at Alfven ion cyclotron 

'A1 /pi = 14.4 mode boundary 

Lgrowth/pi = 4•4· } at mirror mode boundary 
'A/pi = 8.8 
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Holdren normal-mode distribution to the convective absolute boundary for the 

Alfv~n instability computed for distributions A and B. For these 

distributions, we see that in the infinite-medium limit the maximum S 

attainable is below the mirror-mode limit. 

Present estimates show that for 2XIIB the modifications due to the small 

radius (in units of Larmer radii) are unimportant. 

The effect of the modifications due to length are unclear in· 2XIIB. For 

the experimental configurati'on at 13 keV (see Table 2), it is seen that the 

wavelength of the mode is equal to the length of the plasma, thereby casting 

doubt on the reliability of the calculation. Further, the WKB correction to 

the growth rate is approximately half that of the infinite-medium answer, 

again suggesting a strong distortion. These results all suggest the need for 

a complete treatment of the spatial normal-mode problem. On the other hand, 

the plasma parameters obtained from a Fokker-Planck computat1on of MX buildup 

suggest that the infinite-medium theory should be more accurate here. 

However, it is important to realize that the mode is sensitive to the 

detailed distribution function, and further improvements in our calculations 

await studies with more realistic distributions to be obtained from extended 

two-dimensional Fokker-Planck calculations incorporating turbulent diffusion. 

It should be pointed out that there is a discrepancy between the low beta 

limit predicted by analytic theory and that observed in the experiment and in 

the particle simulation code (SUPERLAYER). 

Stability Boundaries for the DCLC and Negative-Energy Modes 

The stability boundary for the DCLC mode and the negative-energy wave· 

for various warm-plasma fractions and hole size have been determined. Prior 
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calculations (Appendix C) have determined this boundary by setting the local 

dispersion relation evaluated at the midplane equal to zero: 

I(w, kL, s=O, parameters) = 0. The appropriate normal-mode analysis8 shows 

that the pertinent dispersion relation (L is the plasma length) is 

fol J, dsk:_ I(w, kL, s, parameters) = 0. 

In addition to this refinement, we have included the influence of the 

quasilinear turbulent-diffusion coefficient on the particle orbits (orbit 

diffusion) in the dispersion relation through the addition 

for the ions and similarly for the electrons so that 

2 w 
I=~+ 

2 
tuce 

The results of these surveys are depicted in Figs. 6 and 7. In Fig. 6, 

we show the fraction of warm p.lasma required to stabilize a 2XIIB- or MX-size 

plasma as a function of radius for S~ = 0.3 and SL = 0.5 for a range of 
2 (vH/vh) • Note that vH is the average perpendicular velocity of the confined 

plasma and that vh (the hole velocity) is the mean velocity of the missing 

part of the loss-cone distribution. From the graph, we see that there is a 

reduction in required warm-plasma fraction of about a factor 6 in going from 

2XIIB to the high-beta operation in MX. From the predicted electron 

temperature, also plotted on Fig. 6, there is a 10-fold increase in nTE. 

Fig. 7 shows the relation between stable radius and inverse density for a 

mean ion energy of 50 keV for no warm plasma and for fractions of stabilizing 

warm plasma equal to 10-4 and 10-2• For a level of lo-4 , the 

electron-temperature model shown in Fig. 6 gives Te = 3.7 keV; whereas for 

10-~, Te= 0.7 keV, as compared,,with the classical value of 5 keV. 
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The marked reduction in the size of the stable radius at high density is 

due to two cooperative effects. One is the stabilizing influence of beta 

described elsewhere, 9 and the other is that orbit diffusion reduces the 

magnitude of the perpendicular wavenumber, which makes the beta term that 

much more effective. 

In Fig. 7 we also show the maximum axial magnetic scale length 

consistent with stability to the flute-like, negative-energy wave. We are 

determining the maximum scale-length restrictions from the higher axial 

normal modes (qs = 1, 2, ••• ). 

High-Frequency Convective Loss-Cone Mode 

The axial length of a mirror machine is limited by the Rosenbluth-Post 

convective mode. 10 This mode amplifies while propagating almost parallel to 

~with w ...... wpi, A. 0~ > k.._ >> Pil, and k ........ k.._lm/mi. The velocity-space 

scattering resulting from these fluctuations has been obtained by 

Baldwin-Callen, 11 and the form of their result when bounce-averaged is shown 

in Fig. 8. The b~sic scattering time scales as the electron drag time, 

tdrag' modified by the degree of wave amplification. The velocity dependence 

of the scattering is incorporated into the function D(vi), which has a 

maximum< 0(1) in the positive slope of the ion distribution, is linear at 

small v.._, and decreases as v:3 for large v~ •. The number of wave-energy 

e-foldings A is conveniently expressed by a dimensionless quantity 

a{= max neg [yF(y)] in the notation of R-P}, which is a very sensitive 

function of the ion distribution, particularly at low energy where there 

exists the population inversion driving the mode. Electron temperature and 

the axial dependence of plasma parameters taken together reduce the values of 
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a from the R-P values by about 1/4, giving for collisional distribution 

a ~ O~OB(R + 1)-112, although this is increased for analytic models having 

an ambipolar cutoff. For scattering by these fluctuations not to exceed 

classical electron drag, A must be ~5, placing a limit on L/p. of about 
l 

65(R + 1) 112, where Lis the total length, and pi is the midplane Larmer 

radius in the actual magnetic field. 

Just as for the diffusion in the quasilinear model of the drift-cone 

. mode, the convective mode diffuses_ low-energy particles faster than high, as 

is shown by the velocity dependence of D(v ) •. Because of the sensitivity of 
..L 

a to the distribution and the uncertainty of relating diffusion in velocity 

space to particle lifetimes, it will be necessary to develop a velocity-space 

transport code, including axial dependence, to predict accurately the effects 

of this mode. A beginning in this direction has been made by Fader, 12 who 

added to LLL's HYBRID II (a two-dimensional Fokker-Planck code) a term 

similar to the scattering coefficient shown, without consideration of axial 

dependence. His results were surprising, showing a heating of ions and 

little loss of particles, and require reexamination. 

The experimental evidence for this mode is limited; it is suspected of 

dominating the low-energy ("quiescent") runs in 2XII, but the mode 

identification was never complete. However, to the extent that the 

identification was valid, at LIP; = 125 it conformed to the above-mentioned 

length limit and provides a basis for confidence in this scaling. As in 

2XII, a concommitant of this scaling is the requirement that the local 
2 2 (S-enhanced) value of wpe/wce exceed unity, preferably by at least 3 or 4. 

Again, 2XII densities in this range decayed with nT values close to the 

classical value for T;/Te :::::: 30. Under stream-stabilized operation of 2XIIB, 

the mechanism of partially filling the loss cone, which is seen as 

stabilizing the drift-cone mode, also reduces the amplification.of the. 
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convective mode to the point that it would not be expected to dominate plasma 

loss. Under nonstabilized operation, of course, plasma loss is dominated by 

the ion-cyclotron noise. 

At 50 keV ~nd 12 kG central field, the proposed MX has an LIP; val.ue 

only 10% larger than that of 2XII, so with respect to this mode its behavior 

should be similar. Such experiments, which stabilize the drift-cone mode by 

increased plasma radius rather than by partial filling of the loss cone, 

permit investigation of the less-virulent convective mode. Present reactor 

desiqns exceed the estimated li.mit by a factor .3 for the large, 900-MW-output 

size and by 50% for the shorter 100-MW case. However, as has been emphasized 

above, the theory at this time is incomplete and is unable to assess all the 

ramifications of increased length, and the scaling of containment time with 

length has not been demonstrated experimentally. 

Summary 

The restrictions imposed by instabilities on mirror configurations can 

be summarized as fol lows: 

The mirror mode and the Alfv~n ion-cyclotron mode provide a limit to the 

maximum beta attainable in a mirror configuration. Limitations on beta 

imposed by generating bad field curvature (ballooning interchange) have 

not been assessed. Such studies require high-beta, three-dimensional 

equilibria that are just beginning.to be generated by our. three­

dimensional, guiding-center equilibrium codes. 

The minimum radius is determined from consideration of the DCLC mode. 

Confidence in our ability to parametrize the stability boundary for this 

mode is based on the ability of the quasilinear simulation to predict 
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the plasma evolution in 2XIIB. As yet, there is no experimental 

information as to how parameters change with increased radius. Such 

information will come from ~n MX experiment. 

• Limits on the axial length are provided by the Rosenbluth-Post 

convective loss-cone mode and the negative-energy wave. Since the loss 

hole in velocity space was nearly filled in by the stabilizing stream or 

by the instability itself in the absence of the stream, and the 

experiment was dominated by ion-cyclotron noise, 2XIIB provided little 

information on the scaling of this mode. In the MX experiment, there is 

a lower required population of untrapped particles at marginal stability 

to DCLC, and the convective modes are expected to have a competitive 

influence on confinement. 

Table 3 summarizes the present status of theory. 

The present results indicate that with axial lengths projected for 

reactors, the maximum beta will be determined not by the mirror mode but 

rather by the Alfv~n ion-cyclotron mode. However, as has also been pointed 

out, these results appear to be sensitive to the details of the distribution 

function, and qualitative predictions await calculations with realistic 

distributions. 

The survey of the DCLC mode has shown that. at moderately high beta, the 

minimum radius for stability is acceptable. One question that immediately 

arises is just how the boundary of the plasma (where beta is low and·the 

.radial scale length is short) can be stabilized. Suggestions put forth have 

been stream stabilization and gas or warm-plasma blankets; this is an area 

where further work is required. 

The situation with regard to the convective loss-cone mode is in a 

partial state of flux in that rough scaling laws appear to be acceptable; 

however, as has been mentioned, answers are quite dependent .upon details bf 
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Table 3. Current theoretical estimate for reactor 

configuration. 

Parameter Controlling factor 

{3 
87rP1 .7 Mirror mode (Alfven ion cyclotron mode?) = ---
Bv2 · 

RP/pi "' 40 Drift cyclotron loss cone mode 

Lscale/pi "' 30 Convective loss cone mode, negative energy mode(?) 

w2 
pe 

3 Convective loss mode --- cone 
w2 

ce 

E."' 2UU keV Reactor optimization 
I 

E "' .1 E. Ion-ion scattering e. I 
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the distribution function, and these are presently under investigation. One 

result of this work not so dependent upon details of the distribution is the 

requirement that (wpe/wce) 2 exceed 3 or 4 to minimize scattering due to this· 

mode. The negative-energy wave likewise requires further work. Results to 

··date show that the flute-like mode leads to axial length comparable to the 

convective mode. Similar analysis on the higher axial mode remains to be 

done. 

The final two entries in the table are a reminder of the energy range 

anticipated in a reactor. The last entry is a .caution as to how important it 

is to avoid anomalous cooling on the electrons. 
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APPENDIX A. QUASILINEAR TRANSPORT MODEL FOR 

MIRROR MACHINES (H. L. Berk and J. J. Stewart) 

In this Appendix, we describe the equations that govern the quasilinear 

transport model. In the first section, we describe the algebraic equations 

of the system, and in the second section we discuss the finite difference 

scheme for these equations. 

Physical Equations 

In mirror machines, the ion-velocity distribution is frequently sharply 

peaked perpendicular to the magnetic field. If one· integrates over v .. , one 

can then model the evolution of the distribution function F(vi,t), where v~ 
2 is the perpendicular ion speed. Flute modes are only a .function of F(v ..... ,t), 

and a self-consistent quasilinear model can be constructed. 
2 We use the following equation to describe the evolution of F(v ..... ,t): 

il. m _a - D( vf) _1£_ i- v E_ .... ( vfF) 
at av: av~ DRAG av~ 

2 2 100 

2 2 2 - .vTRANSIT (v ..... )F + nSBEAM(v ..... ) - F dv ..... [l - aION(v ..... )]SBEAM(v ..... ) 
. 0 

(Al) 

where the normalization is chosen so that n/n0 = l/v2 fo00 

dv: ~(vf) .' n is the 

particle density, n0 is a normalized density, and vis ~ normalized velocity. 

This equation is to be solved over a domain 0 .< v~ < v~ax with the boundary 

conditions given by aF(vf = O)/avf = F(vf = v~ax) = o. 
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The first term on the right-hand side of Eq. (Al) is the quasilinear 

term, and D(v~) is the diffusion coefficient. This term will be discussed in 

detail below. 

The second term is the electron drag with 

where e is the electronic charge, mis the electron mass, M i.s the ion mass, 

Z the ion atomic number, and ln A is the Coulomb logarithm. 
2 .. 

The third term, vTRANSIT(v~)F, 1s the loss term for particles in the 

loss cone. The loss region in a mirror is determined by the relation 

v~ < (v~ + q~/M), where~ is the ambipo1ar p6tential, q =Ziel, and R is the 

mirror ratio. In this code, v~ can only be tracked in the mean, and we 

replace v~ with 2Tu/M. The untrapped particles can only remain in the mirror 

for a .transit time, -cTRANSIT' whlch scales as -cTRANSIT - LP/[M/(T11 + q~)J 1 ' 2 , 
where LP is the axial scale .length of the plasma. Hence, 

vTRANSIT = aT[(T11 + q~)/MJ 112/LP, where aT is a numerical constant that is 

typically taken as 0.5. 

The next term, nSBEAM(v~), is the beam input source and 
. 2 2 ·f 2 2 SBEAM(v~) = I(v~)(crCHX + a 10N)t/q, where dv~ I(v~) is the neutral-beam 

current, crCHX the charge-exchange cross se.ction, a 10N the ionization cross 

section, and t is the path length. For each beam particle input by charge 

exchange, a particle from the distribution is lost. This effect is 

f 2 --2 . 2 2 
represented by. the term -Fn0 dv~/v [l - a10N(v~)J SBEAM(v~), where 

aION = 0 ION/(crCHX + 0 ION). 
. 2 

A low-energy source SST(v~) is used to model the plasma stream that is 

injected axially into the plasma. 

Particles may also be lost by charge exchange with the low-energy gas. 

We have treated the chnrge~exchnnge loss as if the low-energy gas can 
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penetrate the body of the plasma. This assumption is only marginally 

adequate in the 2XIIB experiment, but a more detailed model is too difficult 

to treat in this spatially zero-dimension code. We then take the loss of hot 

ions at a rate vCHX(v~) and input cold ions with a source 

2 f 2 2 (
00 

2 2 SCHX(v~) dv~ vCHX(v~)F, such that Jo dv~ SCHX(v~) = 1. 

In a mirror plasma, we expect the turbulence·arising from the 

drift-cyclotronAl,A2 mode to determine the quasilin~ar diffusion coefficient. 

The spectrum is characterized by k11 = 0 and k~aH ~ 1, where aH is the mean 

ion Larmer radius, k11 the parallel wave number, and k~ the perpendicular wave 

number. A difficulty in a straightforward application of quasilinear theory 

is that k11 = 0 modes do not have any Landau damping in infinite-medium theory 

when magnetic field drifts are neglected. In order to avoid this problem, we 

introduce an ad hoc correlation frequency t.wk. For two-dimensional 

turbulence, the quasilinear diffusion coefficient is then given by 

2 2 
D(v~) = 4rr L: J~ (:~~~) I q~k· 2 ___ m_w_c_it._w...,.~--.,,..2 , 

. k,m c1 . [w(k) - mwci] + t.wk 
(A2) 

where <l>k is the perturbed potential, wci the ion-cyclotron frequency, and 

w(k) the radian-oscillation frequency .. If the noise i.s resonant near a 

cyclotron harmonic, then only one term in the sum on m in Eq. (A2) need be 

taken. If further we assume that the real part of the frequency is at the 

cyclotron frequency, the diffusion coefficient is then given by 

l q<j>k J 2 w2. 
. M Cl 

(A3) 

In this expression, the integer m is a function of k and is given by 

m:; w(k)/wci· 
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The correlation frequency consists of an intrinsic particle correlation 

rate (e.g., due to the transit rate of particles in an inhomogeneous magnetic 

fieldA3 where ilwk ~ wciaH(T..L./T11) 112;L, where L-l = d ln B/ds, aH the thermal 

Larmor radius, and T_. and Tu the perpendicular and parallel ion 

temperatures), and a self-consistent turbulent correlation due to orbit 

diffusion. In the calculations to date, the correlation frequency is taken 

as an arbitrary constant. In future calculations, the correlation frequency 
2 --2 2 2 --2 will be taken as 6wk = k [D0/v + D(vi)/v...._], where D0/v is a constant. If 

D
0 

= 0, 6wk is the correlation frequency due to spatial diffusion that has 

been used by Dupree. At low turbulent levels, ilwk is constant for a given k. 

We have chosen this form so that by using Eq. (A3) we may re~dily solve for 

D(v:). Substituting our assumed form for ilwk into Eq. (A3) yields 

2 Dav~ [(Dav~)2 2 4 m2 lqcpk 12]1/2 
D(h) = - d' + 2v2 + 41TV~"'ci ~ j( Jm T . . (A4) 

The amplitude lct>kl 2 is determined by the equation 

alct>kl
2 

-a-t-= 2y(k) lct>kl2 + a(k) (AS) 

where y(k) is the growth rate, and a(k) is the intrinsic, low-level thermal 

fluctuation term. The growth rate is given by the expression 

(A6) 

In the current investigation of this work, ak and m were chosen 

arbitrarily because we wished to demonstrate that a typical self-consistent 

model would approach marginal stability. A mo.re realistic form of w(k) and 

y(k) for the drift-cone mode near marginal stability will be used for MX 

calculations. 
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The expressions for the rate of change of density and energy can be 

obtained by taking the appropriate moments of Eq. {Al). For the rate of 

density change we obtain 

2 
. Jvmax dv:_ aF( v~) an _ 

at - no 0 . 7 at 

aF(v2 ) max 
av~ 

. 2 

l oo dv...L 2 
n (v...1..)F 0 O -j2- vTRANSIT 

2 . . 
·V 2 · · 

J 
max dv. 2 . 2 2 

+ no -2 (aION(v...1..)SBEAM(v.)n + 5STRM(v...1..)]. 
0 v 

(A7} 

The terms after the last equal sign in Eq. (A7) are, respectively: (1) the 

diffusive particle-loss term due to the absorbing high-energy boundary; 

(2) the transit-loss term of particles in the loss cone; (3) the particle 

input from the beam and stream. Note that there is no direct particle loss 

arising from electron drag or charge exchange. Normally, the diffusive loss 

term is a numerical loss term since an infinite energy domain cannot be 

treated analytically. However, in practice in a mirror machine there is a 

high-energy cutoff since the adiabatic invariant is no longer conserved at 

sufficiently high energy, and in some cases the high-energy boundary mocks up 

this effect. 

Before we express the rate of change in kinetic energy, 

we shall perform some algebraic manipulations with the diffusion term. When 

we construct TE from Eq. (Al), we obtain the following form from the 

diffusion term, 
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2 . 
- M Jvmax dv~ 2 a 2 aF 

Q = 2 n0 ::z- v~ ::-2 D{ v~) ~ • 
o v av. av. 

If we integrate by parts, define w~iO = 4rrn0q2/M and use Eqs. {A3), 

. (A4), and (A6) Q can be written as 

. M 2 no v. 2 aF 2 2 
Q - -2 D(v_._) -2 (v. = vmax) 

2v av. 

v2 2 2 
= - M_ n "m2 J max dv. Jm I 2 2 aF 

TM 01' O "7 ~wk <Pkl wci av: 

_ ak ) a . 
k 

We note that wave energy of the turbulence can be defined as 

• If we now construct TE from Eq. (Al) and use Eq. (A8), we obtain 

• • 

(A8) 

(A9) 

(AlO) 

where TtTRANSIT and TECHX are the rate of energy lost by ions in the loss 
• 

cone and from.charge exchange with the low-energy neutral gas, while TEBEAM 
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• 
and itSTRM are the rate of energy input of the beam and stream, respectively • 

• 
The precise fonns of the TE terms will be given below. 

In Eq. (AlO), the term w~i0;2v2 ~ cxk/crk is the rate of work done on 

the plasma by the thermal fluctuations. Our theory is not refined enough to 

account for the fact that the.work itself comes from plasma particles. 

However, this term can be made negligible by choosing cxk small enough. 

The second term,on the right-hand side of Eq. (AlO) is the rate of 

energy lost by diffusion at the ab$orbing high-energy boundary. 

The term vDRAGTE is the energy lost to electrons through electron drag • 
• 

The TE terms are given by 

. Jv2 2 • _ n0M max dv ..l.. 2 2 
ITBEAM - -2- -2 v..l.. Sb(v..l..)n 

0 v 

f 2 2 1· v2 2 n0M vmax dv..l.. 2 max dv. 
- - -Fv - [l 2 -2 • -2 n v o v 

To ~omplete our description, we need equations for the electron 

·temperature.and parallel ion temperature. 
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For the electron temperature, we use the equation that the rate of 

change of electron energy density is equal to the ion-to-electron power 

density transfer minus the power density lost out the mirror ends. The 

equation is expressed as 

~t (~ nre) = nvDRAGTi - n ::L Te (A 11 ) 

where n anl/at Te is the rate in which electron energy is lost out the ends 

of the mirror machine. Here, anl/at is the electron density loss rate, and 

. nTe is the mean energy of a lost electron. Fokker-Planck calculationsA4 

yield n = 5, while empirical 2X data suggest n = 8 is more realistic. 

Note that from the quasineutrality condition, the rate in which 

electrons leave the mirror is equal to the rate in which the ions leave. 

Hence, from Eq. (A8) , 

anl £00 dv .1.. 2 ( v2 ) 
( )F - noD ~~x at = no 0 v'2- VTRANS IT v J.. v 

The ambipolar potential ~ is determined from a formula derived by 

Pastukhov,A5 which is given by 

dnl 2 (M) RZ ~xp (- tt;) Te 
crr-- = 3 m vDRAG {2R + 1) ln (4R + 2)q~' 

Typically, with stream, we find q¢/Te ~ 3. 

(A 12) 

(Al3) 

For the parallel ion temperature, we use a simple model which states 

that at fi.nite beta, B = 8TinMv:1s2, Tu needs to be greater than a minimum 

value aBT • In this investigation, we use Tu = Ct.BT , with a chosen 
~ J.. 

arbitrarily. For a more realistic treatment of Tu to both the mirror 

condition and ion-ion co.llisions, a two-dimensional velocity phase space is 

needed. Such a calculation is currently being developed by Rognlien. 
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' .. 

Finite-Difference Scheme 

Equation (Al) is solved by numerical-difference equations. The grid is 

taken with an arbitrary spacing such that we have a list of points 

0 ~ j ~ J + l and 

(Al4) 

2 -2 where xj = vi/v , and t.xj is a predetermined interval with the constraints 
. 2 -2 

that t.x0 = t.x 1 , t.xJ = t.xJ+l' x0 = -t.x0 , and vmax = v (xJ + t.xJ). The 

boundary conditions for Fj :: F(v:) are chosen. such that F0 = F1 and 

FJ = -FJ+l· In finite difference form, our normalization condition is 

dv2 J 
-2..L F(v_:) _ L: c;.F. = n/n

0 v j=l J J 
(Al5) 

where oj = (t.xj-l + 2t.xj + t.xj+l)/2, and n0 is taken as the initial plasma 

density. Equation (Al5) can .be derived from the trapezoidal rule. The end 

·effects of the trapezoidal rule are simplified in Eq. (Al5) due to our 

boundary conditions. The first moment of F, which. is needed to construct the 

kinetic energy~ is expressed as 

f v2 2 max 2 v.l. 2 n0 dv-'- ::::ir F( vJ _ 
0 . v 

c;.x.F. :: nx. 
j J J 

The differential terms ·in Eq. (Al) are represented as follows: 

(Term 1) 

where.Fj 

aF _ 1 (Fn Fa)· .. 
at = t.t j - J ' 

-2 0 = F(x.v , t +fit), F. = 
J J 

second-order accurate in t.t. 

-2 (xjv , t). This representation is 
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(Term 2) 

[
D (F ·+l - f.) D · (f. - F · l)] l 0· j+l J J J J J-

:::::2f J b.x . + b.x . +l - b.x . + b.x · 1 v J J J J-
(Al8) 

where Fj = (Fj + F~)/2. For Dj' we use the expression given by Eq. (A3) with 
2 -2 

v~ = v (xj + b.xj). Equation (Al8) is accurate to second order in time and 

second order in velocity space if the grid is uniform on first order in 

velocity space for a nonuniform grid. 

In the code, we do not use Bessel functions because it is time consuming 

to generate or space consuming to store. Further, physically the 

oscillations of the Bessel function can be expected to be smoothed over by 

the spatial variations of the system. Hence, we use a form that reproduces 

the form of the square of the Bessel function for small argument and the 

average of the square of the Bessel function for large argument. In 

particular, we choose the form 

'J~(y} = Fn(y} H(y)/[Fn(y) + H(y)] , 

where Fn(y) = [(y/2}n/n!J 2 and· H(y) = (ny)"'.'1 • 

The expression, 

ljJk = 

(Al9) 

needed in Dj' is evaluated at t + b.t/2. The finite difference form we use 

for the time evolution of ljJ, given by Eq. (A5), is 

1'>k ( t + ~t) - 1'>k ( t - ~t) = y(k,t) [ 1'>k ( t + ~t) + 1'>k ( t _· ~t)] + akb.t , 

(A20) 

where ak = q2ak/(Mv2) 2 •. The finite difference form of y(k,t) is given by. 
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y(k,t) 
w . 

Cl 

(A21) 

The conservation laws of the zeroth and first moments of the diffusion · 

term given by Eq. (Al8) can now be considered. We have that the change of 

n/n0 due to the diffusion term is 

nn no· _ tit .· J [oj+l (Fj+l - Fj.) 
no - no - v4 jL;, (tixj + tixj+ l ~ 

o.(F. - f. -1)] 
J J . J- -

- (tix. + tix. 
1

) -
J J-

(A22) 

In obtaining the result in Eq. (A22), we have used F1 =F0 and FJ = -FJ+l and 

tixJ = tixJ+l· Observe that our finite difference scheme for the diffusion 

conserves particles except for the leakage at the edge of the grid. 

For th~ change in nx due to diffusion, we have 

x.D.(F. - f. 1·)] J J J J-
- tix. + tix. 1 J J-

~l t xJFJ 
= At D er - F ) + M D - y4 j = 1 j + l j + l j y4 J+ l tix J 

= -2TI L 
k 
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Using Eq. (A23), we find that the change in kinetic and wave energy in 

the finite-difference scheme due to diffusion is 

TE(t + ilt) +WE (t + ~t) -TE(O) - WE(-~t) 

(Mv~ax FJ ...., Mv2) 
= -no L 2 DJ+ 1 t'.lxJ. - akcrk -2-

tit 

-tit Fyk(t +tit) WEk (t + ~t) - t'.lttyk(O) WE(O) t (A24) 

where L WEk = WE. This equation states that the loss of total energy is due 
k 

to kinetic energy flowing out the end of the grid plus the work done by the 

fluctuations to initiate the wave energy. In addition, there is a small 

phase term that corrects itself with each time step. 

For the drag, we use the following difference scheme: 

(Term 3) a 2 
vDRAG -2 ( v .i.F) 

av.i. 

(A25) 

where oj,J is the Kroneker-delta. This expression is second-order accurate 

in tit and second-order acc11rate in tiX if 6.X is uniform or first order in tix 

if tix is nonuniform. 

It readily follows that the zeroth moment of Eq. (A25) is exactly zero 

(note that x0 + x1 = 0). For the change in the first ~oment due to the drag, 

we have 
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(~:r -(~~)a 
vDRAGtit J-1 

= 4 L: x. ( x. + XJ+l· )('F". +l + F.) - x. ( x. + x. 1 )(F. + 'F". 1 ) 
j=l J J J J J J J- J J-

\)DRAG6t J- l · -
= - · 4 L: ( tix . + tix . + 1 )( xJ. + x . + 1 ) ( F . + 1 + F. ) 

j=l . J J J J J 
(A26) 

Equation (A26) is the finite-difference form of the statement that the 

decrease of the kinetic energy due·to drag is the energy absorbed by 

electrons. Note that the right-hand side of Eq. (A26) is not exactly 

proportional to ni but differs from ni to order (tix) 2 for a uniform grid or 

to order tix for a nonuniform grid. 

To represent the transit loss term and stream term, we use the form 

This form is accurate to second order in tit and tix. The change in the zeroth 

and first moments due to this term are 

(A28) 

(Term 5) We cannot readily maintain second-order time accuracy in the 

beam source since it is proportional to the density. If we attempted a 

central time difference scheme on the density, we would need to solve 

implicitly a full J x J matrix. To avoid this complication, we use the 

previous density in our source. In order to conserve particles, we also 

introduce this time lag into the charge-exchange loss. Thus, we use the 

following finite difference representation: 
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The changes in the zeroth and first moments due to these terms are 

· n 0 
!!__ - .!!___ = tit 
no no 

(nx)n ( -)o J 
- nx = titn° E o .x. SBEAMJ .. · 
no no j=l J J 

J J 
-6 t E 6. x. F. I: OJ· ( 1 - a,.) sbJ. . 

i =l l 1 1 j=l 

(A30) 

(Term 6) Similarly, the charge exchange with background neutral gas is 

offset in time to avoid inverting a large. matrix. The charge-exchange term 

is represented by 

-2 -2 -2 Jv~ax 1 2 1 2 2 
-vCHX(v xj) F(v xj) + SCHX(v xj) O dv..i.. F(v.i.) \!CHX(v~) 

J 

= -vCHXj F~ + 5cHXj j~ 0 j F j vCHXj 

where t· SCHXjoJ. = 1.. Equation (A31) r.onserves .n while the change it 
j=l 

induces in nx/no is given by 

( ~~ r -( ~~ )° " -jti 6j'j vCHX/~ 
J J 

+ L oixiSCHXi I: oJ.FJ.vCHXJ' ' 
i=l j=l 

45 

(A31) 

. (A32) 

/ 



The finite-difference equation we have generated produces an implicit 

tridiagonal matrix for the unknown Fj for 0 < j < J with the boundary 

condition F8 = F~ and F~ = -F~+l' This equation is solved by a standard 

tridiagonal Gaussian reduction technique. 

For the change in the electron temperature, we integrate Eq. (Al) over a 

time interval 6t. This yields 

l
t+6t 

The term t nvDRAGTi is the energy transferred from ions to electrons 

and it is given by the last term of Eq. (A26) multiplied·by M°i2-/2. The 

second term on the right-hand side of Eq. (A33) is the electron energy lost 

axially and 6nL is given by [see Eqs. (A22) and (A28)] 

6t DJ+l FJ 
6nL = no6t ~ ojvTRANSIT(j)Fj + v4 6xj 

J . 
(A34) 

Finally, the ambipolar potential which is governed by Eq. (Al3), is 

determined by a Newton-Rhapson iteration procedure after anL/at is replaced 

with 6nL/6t [see Eq. (A34)J. 
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APPENDIX B. SELF-CONSISTENT TURBULENT DIFFUSION IN THE TWO-DIMENSIONAL 

HYBRID II CODE (T. D. Rognlien and T. A. Cutler) 

Introduction 

The HYBRID II Fokker-Planck code has been modified to include the effect 

of turbulent diffusion as caused by electrostatic oscillations. The model 

used is that developed by Berk and Stewart for their one-dimensional 

Fokker-Planck code. In this quasilinear model, the oscillations grow due to 

the loss-cone nature of the distribution function, and those oscillations in 

turn drive the distribution function to marginal stability through turbulent 

diffusion. The calculation is self-consistent in the sense that energy is 

conserved between the waves and the particles. The model gives a growth rate 

that is a reasonable approximation to that for the drift loss-cone 

instability. Below, we give a brief description of the form that the 

diffusion operator and the growth rate take in spherical velocity coordinates 

as used by HYBRID II and discuss the new effects that this two-dimensional 

code can model. 

Diffusion Operator and Growth Rate in Spherical Coordinates 

A general velocity diffusion term, D, enters the Fokker-Planck equation 
~ 

in the following way: 

lf = v ·D·V f + classical collision terms. at v ~ v (Bl) 

For electrostatic waves propagating perpendicular to the magnetic field, one 

has 

D = D i i (B2) 
~ i~i 
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* where D is given by 
.l 

2 2 2 
D.1.(v ) = ~ n wci 

.J. m.v n 1 .1. 

d2k 2 2, kw 6wk 
_.__,,..l._ l<P I J .. ~ 2 • 
(2TI)2 k n W . ( )2 

.1. c1 wk - nwc i + 6wk 
(B3) 

Here, 6wk is the correlation frequency. By using Eq. (B2), one finds the 

diffusion term of the Fokker-Planck equation in spherical coordinates to be 

VyJ!,•V/ = : 2 ~v D }v sin 8) (v2 
sin

2e ~~. + v sin 8 cos 8 ~n 

+ 2 
1

. ~e D (v sin e) (v. sin2e cos e ~~ + sin e cos 2e ~:) • (B4) 
v sine .1. 

These. terms have now been added to the existing HYBRID II code. 
1 2 . 

The growth rate is found by multiplying Eq. (B4) by 2.miv_,_ and then 

integrating over velocity space. This energy integral is then proportional 

to the growth rate, y, since the rate of energy change for the waves is 2y 

times the wave energy. This insures that energy is conserved between the 

··waves and the particles. The constant of proportionality can be obtained 

from a more detailed analysis of the linear dispersion relation. However, 

e~ergy is conserved independent of the value 6f this constant, and only the 

time scale of the wave growth is affected by it. After integrating by parts, 

we find the growth rate in spherical coordinates 

K [ (012: (Ooo Ln n2 J~ v\~) ( 6w~2 2 
Jc Jc ~ wk - nwci + .6wk 

• v2 sin
2s (v sin 8 ~~ + cos 8 ~nJ dvds ' 

y = k 
.J.. 

(B5) 

where K is a constant. The wave amplitudes are then· allowed to grow at this 

rate.; i.e. 

R. C. Davirl~on, Methods .in Nonlinear Plasm~ Theory_ (Academic Press, NY, 
1972)' p. 166. 
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(B6) 

where FLUC is a small, constant, background-noise level. 

The code is thus to be run in the same way as the one-dimensional code: 

·several waves at different k 's are chosen and assumed to have a frequency 
J. 

very near one of the cyclotron harmonics so that only .one term in the sum 

over n is used for each wave [see Eqs. (B3) and (B5)]. It should also be 

mentioned that as in the one-dimensional cod~, we have the capability of 

using any mixture of the exact Bessel function and the envelope of the Bessel 

function. 

New Effects to be Studied with the Two-Dimensional Code 

Pitch-Angle Scattering 

The major effect to be studied with the two-dimensional code is ~hat of 

pitch-angle scattering. This effect could be significant near the loss-cone 

boundary since the particles there have lower velocities and pitch-angle 

scatter somewhat more effectively. Also, particles that cross the loss-cone 

boundary with significant parallel velocity are more energetic and thus 

r~present more of an energy loss than a particle loss. The code has an 

end~loss diagnostic that gives the energy spectrum of these particles leaving 

the system. 

Separate Calculation of Stream and Plasma Distribution Functions 

The HYBRID II code has the option of using multispecies. Thus, the 

stream could be considered one species and the target plus beams as the 

second species. This would help answer the questio~ of whether or not the 

stream is actually trapped by rf or simply flows through the system. 
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Non-Maxwellian Electrons 

The code also has the option of 11 Fokker-Plancking 11 the electrons. We 

have some preliminary results indicating that the electrons are 

non-Maxwellian, which affects the drag on ions. It is not clear how large 

this effect is, however. 

Off-Angle, Neutral-Beam Injection 

Since off-angle, neutral-beam injection may be favorable from a S-limit 

point of view, the two-dimensional code offers the ability to determine the 

effect of such injection on the stability of the plasma and the associated 

loss rates. 
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APPENDIX C. WARM-PLASMA STABILIZATION OF DRIFT-CONE MODE AT 

FINITE BETA* (H. L. Berk and M. J. Gervert) 

Mirror plasmas are susceptible to the drift cyclotron loss modeCl if the 

radial scale length is sufficiently short. PostC2 has estimated the 

amount of warm plasma that is necessary to stabilize this mode in the low beta 

limit. Tang et al~3 show that at finite beta there is appreciable stabili~ 
izing tendency, although appreciabl~ scale lengths are still needed for sta­

bility. In this note, we calculate the fraction of warm plasma 6 ~ nw/nH that 

is necessary to stabilize the drift cone mode at finite beta. Here H refers 

to the confined "hot" plasma and w to unconfined "warm" plasma. 

Fur the distribution function we choose the form 

F ( v .L) = ( v~ - v~ )-1 

+ 
6 

exp (- v2;v~ ). 
v~ 

We see that the loss cone nature of the distribution is simulated by a "hole" 

velocity vh .. Physically, this hole velocity can be interpreted as 
2 1/2 Mi vh ~ q~ + aT,, , where q is the electronic charge, ~ the ambipolar po-

tential, T,, the parallel temperature, and a a constant of order unity. 

The dispersion relation for a k,, = 0 mode and finite beta in the limit 
WW • 

~ < 1, can be written as. 
k.Lv. 

l 

* Originally published as Lawrence Livermore Laboratory Rept. UCRL-77711 dated 
January 13, 1976. 

tElectronics Research Laboratory, University of California, Berkeley, 
California 94720. 
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.., 

v3 
l /2 ( 1TW ) H 

+ 21T cot ~ r, ( 2 2) 
Cl VH - Vh 

( *) ] WH l 2 
- l w vH exp (-s ) -

where w s = 
k.LvH ' 

£ = 
aH 
~· RP is the radial scale length, 

p 

2 2 

f3 
= wpi vH 

. 2 2 ' 
w . c 

Cl 

Frequently one may replace cot (1Tw.)with -i. This replacement is 
WCl 

justified when Im w > wcf1 or when the magnetic field drift, v0, is taken 
C4 . 

into account and k.Lv0 >we;· This last inequality is usually realized 

so that in Eq.(C2) we shall henceforth use -i rather than cot (n/wci). In 

this case, the dispersion relation is. identical with the straight-line orbit 

approximation. 

Other subsidary approximations that are convenient in our analytic 
v v * 

~nalysis are 6 << l, __b_ « l s __!:!_ « l ' and 
WH 

He also redefine c - << 1~ v ' vh w H 2 
~p include the factor l + B/2 (then wH would be k,vH/[(J) .R (2 + 8) J). 

- Cl p 

T~en Eq.(C2) be~mes w?) 2 

( < ::) _£+s+ !!!+~ ( k.LaH) 2 
VH r - tJ.2 s M 2 R w . vw . p1 . 
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.,. 

7T 
1 /2 

fi v~~~ exp (- <
2 :D] = 0 . 

At moderately hi~h B, B > Be =-(vvHt·1 )2/3 (!!!M + wwpc2~,·. )1/3, and n = 0, this 

dispersion relation has been analyzed by Tang et al.c3 The stability condi-

1/2 

tion is found to be £ 2- 28112 [we~ + *] _ £er. 
wpl . 

For £ > £ , the drift cone mode is unstable,and we need warm plasma to sta­cr 
bilize this mode. The marginal condition is obtained by equating the real and 

imaginary parts. We obtain 

2 

t: 2v~/v~) 1 
vhvH (-= ti ---r- exp 

vw 
2 

(< :: ) = -~ +s +(*+wen VH I 2 2 ti - ZR kJ. aH . 2 v wpl w 

(C3) 

(C4) 

(CS) 

For long wavelengths and £ >> £er' the last term in Eq. (CS) may be neglected. 

(We consider shorter wavelengths later.) For sufficiently small ~. we may also 

neglect the B term. l~e then eliminate vw and find 

3/2 

where y The minimum ti occurs for y ~ 0.5 and timin = 2 3/2( ·1 )I/~ 
£ . vh VH . 

c VVHh. " ("' VVHh ) 1 /2' One can infer from our marginal stability condition that ~ v ~ 

and hence we rl?rp.1ir~ F > vh/vH tn justify Eq. (C3). We sh~ll discuss below 
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• 

·• 

the case when this inequality is violated. 

As S is increased, it becomes competitive in Eq. ( C6) when S - ( :~ c )1 12 
= s1 

For B > s1, the first two terms on the right-hand side of Eq. (C6) are dominant, 

Eliminating vw from Eq. (C4) yields 

In the case E ~ vh/vH , so that the phase velocity of the unstable wave 

is comparable to vh' it is necessary to fill in the entire loss cone with 

* warm plasma .. Simultaneously,wH becomes comparable with w so that the ion den-

sity gradient becomes a drive for the instability as well. In this regim~ 

the minimum density of warm plasma necessary for stabilization is found numer-

ically from Eq. (C2). The results are shown in Fig. C-1 and very roughly 

the fraction of warm plasma needed is 6 = (vh/vH) 2. · 

To compute the curves in Fig. C-1 in the region E - Ecr' we have chosen 

w = wci" When the last term in Eq. (C5) may be neglected, the marginal stability 

curves depend only on ~ = w/klvH' and hence w can be chosen arbitrarily. 

When E - Ecr' the choice w = wci reproduces Tang's result quite closely. 

In summary, in this analysis we have considered three regimes of instabil-

ity. For r.egime (1) •. 2(* s) l/2 .~ E;;; s2 
vh/VH 'stability is achieved for 

l > 2.4 (:~ ) :~ . (C6) 

For regime (2), s2
vh/vH ~ E $ vh/vH , we require 

. (vh )1/2 3/2 
6>2 - E • - v . H . 

(Cl) 
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I n reg i me ( 3 ) , 
vh 

E > - we very roughly found 
- v H 

· ( vh )2 
6. > -- v ' 

(CB) 
w 

although numerical results in this regime ought to be used. In Fig. C-1, we 

present several precise curves for 6. as a function of E. 

The curve in Fig. C-1 can be used to estimate the minimum rate of energy 

drain of a mirror machine. The warm ions will be accelerated by the ambipolar 

potential to an energy ~ Mve;/2 ~(~v~ + q~) when they leave the mirror 

machine in a transit time TL~ Lp/ves (LP is the axial scale length). The 
2 2 minimum power loss per unit volume is thus P . ~ n/J. . ves/TLVH In princi-mrn mm 

ple, further improvement can be achieved because most of this energy is recoverable 

with direct conversion. 

One practical difficulty in using warm plasma to stabilize the drift 

cone mode is how to have the warm plasma penetrate the ambipolar potential, 

especially if, the optimal warm thermal velocity, vw' is less than vh as is the case 

in regimes (1) and (2), If vw - vh in regimes (1) and (2), then a 
2 . 

much higher 6. is required; viz., 6. - (vh/vH) to stabilize the drift cone 
~ mode. The power loss would be a factor (vh/vH) larger thar1 'lr1 Lii~ U1JLi111Lm1 

case. Possible ways to obtain a plasma with v << v1 would be to inject . w ) 

the warm species as a neutral beam or with pellets. 

The analysis used to determine the density of warm plasma needed for 

stability when E < Ecr assumed a long enough wavelength so that the term in 

Eq. (C5) proportional to k~ can be neglected. Another unstable solution to 

Eq.(C2) exists at shorter wavelengths with the dispersion relation given 

approximately as 

. 2 1 /2 
l lT 

[ 
VH. . ( Vu1. ) 3 W~ ] 
--6.-r- +- = 
vh vw . w 
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where we have assumed 

6-D.min around opti.rr1al v/vw 

to be 

£ 
= 2.) Wei . 

. 2 
wpi 

The solution, assuming Im w << Rew; is found 

1 + 

and we see that instability exists for 

The maximum growth rate is found to be 

3/2 2 .· . 

Im~ =0.45(vh) £Y[(i:::i.. + w.ci) (D.v~v /v
3 

w . vH m . 2 h h w 
Cl W · . . pl 

. . 3 3 3 3 
In regime -(1), D.vH/vw = vH exp(3/2)/vw; and in regime (2), D.vH/vw = 1.3 vH/vh. 

To assess the effect of thi !:i i n!:itabil i ty, WQ note that it or curs for 

extremely short wavelengths and that it has a small growth rate compared to· 

. the real frequency. Hence, a relatively small amount of particle diffusion 

(ClO) 

will stabilize these short-wavelength modes. In fact, the diffusion by the 

longer-wavelength modes that may be needed to establish the marginally stable 

states discussed earlier should suffice to stabilize the short-wavelength modes,c5 

and thus the short wavelength instability is not expected to be a factor that 

limits containment. 
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Fig. C-1. Plot of the minimum fraction of warm density, 6, needed for stability 

as a function of £ = aH/RP for various values of B and vH/vw. In these 

curves it is assumed !!!.M >> (w ./w .) 2. 
Cl pl 
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