Finishing of Precision Generated Metal Optical Components

Phillip C. Baker, John B. Sonderman

and Theodore T. Saito
August, 1975

This paper ylas prepared for submission to the Society of Photo-Optical Instrumentation Engineers 19th Annual Technical Symposium, San Dtego, California August 19-20, 1975

FINISHING OF PRECISION GENERATED METAL OPTICAL COMPONENTS**

Phillip C. Baker, John B. Sonderman and Theodore T. Saltot
Lawrence Livermore Laboratory (L-140)
P. O. BOx 808, Livemore, CA 94550

Abstract

Diamond turning and precision generation of aspheric metal surfaces has promoted a change in lapping terhniques due to the extremely close figure tolerances and surface finishes that have been achieved. In order to polish the umusual aspheric figures, we utilized special tooling, diamonj abrasive, and silicon oil and techniques which we will describe in detail. Our studies include small flat diamond turned samples of copper, electroplated copper, electroplated silver, electroplated nickel and siliver as well as large aspheres such as an $f / 0.75,35$ cm diameter copper ellipse. Results from cleaning studies on flat samples using ultrasonics and vapor degreasers will also be summarized. Interferograms of wavefront distortion and analysis of focal volume will be included as well as 10.6 jm reflectivity and a summary of laser damage experimerts.

Introduction

The finishing of aspteric surfaces by highly skilled opticians is a time-consuming operation especially wher the Fic ratio of the mirror is small and the slope changes are large. This dictates the size of the teciling end also pits 1 imitations on the shape and rigidity of tooting.

The material is ancther 1 imiting factor especially in the two cases that this paper is based upon. The first mirror was an $\mathrm{f} / 75 \mathrm{f}$ sopper ellipse that was diamond turned at the Lawrence Livermorz Laboratory (LLL). The seconc mirror was a 105° off-axis aleminum parabola that was gonerated by fran' Cooke Optical Co.

Polishing techniques vary fron shop to shop and from optician to optician. Each technique is adapted to the available equipment and the peculiarities of the job. The major concerns of the approach we have teen using is to achieve low surface roughness (10A RMS) and eliminate as much as possible surface disturbance (aifro-sleeks) while keeping reflectivity high and scattering low.

12" f/. 75 Copper Ellipse

Laser damage on polished surfaces (1) is at the moment barely meeting the threshold level to de considered usable in a focusing system. Diamond turned optics meet and exceed the laser damage threshold level, (1) eut scattering, due to the machine marks, causes a lire image (fig. 1). On the copper ellipse 90^{*} of the energy fell within a 50 micrometer-diameter blur size. This measurement was done using a knifeedge test.

The ellipse was preciseiy generated, except for a 4 -inch zone in the center (fig. 2) that was measured as 1.1 mifrometer high, the remainder of the test feil within $\lambda / 2$ peak to peak at 6328 as measured on a Twyman-Green Unequa) Pass Interferometer (Fig. 3). In terms of most N.C. machining, this accuracy had never been achieved before for parts directly off a turning or generating machine. (Fig. 4) This would seem to make the optical finishing easier; however, having to start with a surface finish that was already better than could be polished makes for some nervous monents. Excellent polished surfaces have been produced with relative ease on flats and spherical parts, but when one is considering a 12-inch diameter $f / .75$ eillpse, the difficulties in producing a comparable surface be ome paramount.

FIG. 1. Copper ellipse focal spot

FIG. 2. Four pass interferogram at 0.6 umi of the copper ellipse after the first two days of polishing.

FIG. 4. Interferogran of the copper ellipse as machined.

The ellipse was mounted in an alumirum holder using ring support; centering and holding were done by 8 equi-spaced nylon tipped set screws. The polisining machine was a 22-inch Strasbagh variable-tilt machine. A-pin drive unit designed and built at LLL was mounted on the stroke armi for tool rotation. This gave the ability to run both stroke and spindle speeds very slowly and concentrate material wear at the tool contact point. It also balanced the toof and helped prevent any iocal "rocking" or tilting of the tool. In the working of local zones, the variable spes: of the tool (0 to 175 rpm) gave good control on the rate and position of material removal.

The polishing tools were aluminum with the vertex radius of the ellipse machined on them. A number of different tools were used for any number of different reasons; star tools, ring tools, pie-shaped tools and a full size tool were all applied to the varying conditions of the surface. All of the tooling was pitch based (Gulgoz 64 Swiss pitch) with a beeswax and fine airplane silk coating. The construction of the tool was bujit around the use of diamond powder. The silk traps and holds the diamond to prevent the constant sinking and loss into the pitch. The wax softens the tool-to-surface contact, preventing the diamond from rulling and scratching.

The vehicle used to carry the diampond was $\ddagger 1$ Centistoke Dow Corning Silicon 0il. I used both natural diamond (Pensco) and explosion formed synthetic diamond (du Pont). The final polishing was done with $1 / 4$ micrometer diamond. The only difference I noticed between the two types of diamond was the synthetic appeared to cut faster and more consistently; the surface finishes were comparable.

The difference in polishing action of the diamond using the oil is quite remarkable. I would guess that the removal rate is twice as fast as when using water as a vehicle. The obvious advantage of the oil is its chemical neut.ality of active surfaces like copper and silver. It enables afi optician to figure an aspheric surface and not worry about surface corroston. On larger surfaces the advantage is that when stepping a run, the optician does not have to worry about quickly cleaning the surface before it stains. Femoval of the gil can be done using a solvent bath or vapor degreaser and ultrasonic cleaning. The clearing process for these surfaces should be non-contact cleaning; any kind of wiping produces sleeks or roughans the surface. (1)

On spherical parts ($6-1$ nch diameter) that had been diamond turned, the polishing time to remove the machine marks and bring the surface to a clean condition was approximately 45 minutes. This copper is extremely soft, being in an annealed condition and has to be handied much more carefully than Betu or OFHE unannealed.

The major reason for poitshing the copper ellipse was first to remove the effects of che machine marks (Fig. $5 a, 5 b$) which were more pronounced than the marks on diemond turned spheres or flats, then measure the imaoe and the energy distribution and compare them to the as machined values. (Table 3) (Fig. 6) One of the interesting developments as polishing progressed was ti-at as fringes smoothed out, the wavefront picture became clearer (Fig. 2) indicating the slope errors were hiding the true picture. This finding allowed corrections to be made on the subsequent silver-plated beryllium clamshelis.

FIG. 5a. Interferogram taken with same set-up of Fig. 2 except showing the effects of diamond tociling marks near the center.

FIG. 5b. Machining marks: By blocking the reference bean the effects of the machining marks present in other interiterograms are now more apparent.

FIG. 6. Kлife edge test of energy distribution in the focal spot of the as machined copper ellipse.

Roundness $\mu \mathrm{m}$
Max. slope angle on part $\times 10^{-6}$
Part surface error um
Max. displacement at target $\mu \mathrm{m}$40
9.5

The approach in polishing was to run a small ring-shaped tool using a fast stroke going from edge to center varying stroke position and spindle speeds and reduce the strong slope changes resulting from diamond turning without altering the basic figure. This was accomplished within 4 days time including testing. The fringes had been smoothed out enough to show a few other problems such as out of roundness and asymmetrical areas (Fig. 7a, 7b).

In the course of correcting these problems, I created some of my own. I used some overly flexible tooling and wound up with flat spots and zones. I did not vary the speed randomly or often enough, also the stroke positions should have been more random. These problems can be corrected by the use of a rigid full size tool to average and bridge the errors.

The surface quality approached the original cleanliness of the machined surface. The background condition was not as good, by that I mean micro-sleeking. I feel the surface can be polished as clean as a diamond turned surface. We hope to determine whether or not the Jamage threshold level is raised to equal diamond turned surfaces in our future studies.

Some of the data on 1.5 -inch samples show promise especially the Nomarsky photographs of diamond turned polished copper samples. The surfaces appear as snooth as dianond turned surfaces. (2) The only problem is eliminating the micro-sleeking. The reflectivity at 10.6 pm was as high as 99.3% measured at Kirtland AFB (Table 2). Scatter levels were not as good due to the micro-sleek structure, the lowest total integrated scatter at 0.63 um was 0.5%. At 1.06 um the reflectivity dropped somewhat in comparison to diamond turned parts (Table 2,3)

FI6. 7a. Interferogram showing out of roundness after polishing.

Wgoper clamshell ~ aften second fol sh - 4.27 .75

FIG. 7b. Summary of Flgure: This summary of flgure was obtained from an aralysis of interferogrants taken of the copper ellipse after four days of polishing.

TABLE 2. Comparative values of reflactivity at $10.6 \mu \mathrm{~m}$ and 1.06 ; m for the same mirror.

Mirror	$\begin{aligned} & 10.6 \quad \mu \pi \\ & \text { reflectivity } \\ & \pm 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.06 \mathrm{um} \\ & \text { reflectivity } \\ & \hline \end{aligned}$	$\begin{gathered} 0.63 \mu m \\ \text { reflectivity } \end{gathered}$	$\begin{gathered} \text { P total } \\ \text { integrated } \\ \text { scatter } \\ 0.63 \mathrm{~m} \end{gathered}$
Baker ?	0.992	0.971 ± 0.005	0.92	0.7
Baker 3	0.993	0.980 ± 0.007	0.92	0.6
Baker 4	0.992	0.978 ± 0.002	0.91	0.5

- Reference to company or product name does not imply approval or recommendation of the froduct by the University of California or the $: . S$. Energy Research \& Development Administration to the ext.fusion of others that may be suftable.

Measurement of Nickel Surfaces for Roughness

Recentily an 3 inch dfameter nickel samples using 0.1 pin diamond wave haten obtaining surfaces 50 smooth tha it is hard to mesture and attach any sort of value to it. Neasurements were mide using a Taylor Hobson Talystep profiloneter with a stylus probe that is rectangular in cross-section (0.1 wm by 2.5 uml. The trace was digitized and fit to polynowials up to dth order, in all cases, the deviation as
less than 10 A ms. (Fig, 8) This value will have to be substantlated because of a problem with stylus instruments such as the Talystep which occurs when the spatial wavelength of the surface irregularities is smaller than the largest dimension of the contacting area of the stylus. Consider an extreme example. It would be possible to take many straight pins and bunch them together such that all the points touched a plane. Measuring the "surface" fomed by the plos with a stylus whose jargest contact dimenston was greater than the dianeter of the pins could yield a trace wich wauld indicate a surface with a 0.1 cm peak-tovalley deviation whereas the pins are in reality 50 on long. We know that our nickel surface has microsleeks from our investigations with a Zeiss doubla objective micro-interferoneter (after the design by Linnik) at $1000 x$ and $100 x$. These sleeks are narrower than 1 mm , are about 0.1 mi deep and infrequently occur on the surface. He have not yet found a suitable method of taking these micro-sleeks into consideration when quoting the actual ms surface roughness. F.E.C.O. interferometry is 1 imited in such studies by its resolving power along the surface. Laser damage studies (1) indicate that scratches influence pulsed laser damage threshold. The effects of such micromsleeks or laser damage would be an interesting study.

In 3• nicxel sample measured on talystep

FIG. 8. Talystep profilometer of polished electroplated nickel sample demonstrating extreme smoothness.

Cleaning of Motal Optics

Cleaning of the opitics is important for several reasons. First, it is important to remove the residue of the fabrication pricess from the part before any stain may be 1rreversibly formed. In general, the longer a stain is lefi on a surface the harder it is to remove. Periodic cleaning for many reasons is also required. Improper cleaning will degrade the laser damage by as much as 50% by scratching the soft surface.

A vapor degreaser is an effective non-contact method of cleaning the part. We have been able to remove some 0^{f} the oil-alcohol residue from a diamond turned surface using TF freon at $50^{\circ} \mathrm{C}$.

He have experienced catastrophic results from ultrasonic cleaning. A large (approximately 40 an major axis by 20 cm minor axis) diamond turned OFHC CDA 101 copper mirror was ultrasonically cleaned for about 45 einutes using a solution of radiac (a detergent) and water. The surface of the ratrror was damaged enough by the ultrasonic cleaning to require re-machining. The damage appeared vary severe in snail areas near the edge as if a stream of particles had hit the mirror obliquely, roughening the surface in a strip about 2 mim wide by 10 mm long. There were other blotchy appearing areas about $2-3 \mathrm{~cm}$ diameter where the finish appeared dul1. Similar destructive results have been reported on fused silica in studies done in Australia. (4) Although these times are longer than would be prudently used in cleaning parts, House and co-workers have shown that even 30 minutes of ultrasonic cleaning decreases the laser damage threshold by 20\%. House (5) found that radiac caused more degradation than the micro solution he used.

We feel that ultrasonics can be used to successfully clean metal mirrors if one limits the tinae. He have cleaned dianond turned electroplated copper and silver samples in freon. Inspecting the part with Womarski differential interference contrast microscopy at 177 X we could see no changes in the surfaces for accumplated cleaning of up to 8 minutes on the copper. We have not performed laser damage tests on ultrasonic cleaned samples. Le plan to extend our study wfth more quantitative neasurements of the effects of uftrasonfc and vapor degreaser cieanting technigues.

Alumfnum Parabola

The off-axis alusinum parabola was quite a different problen. The naterial presented a challenge being G0:1 aluminul which had not been annealed, making it even nore difficult to work, sanples of $6061 \mathrm{T6}$; wich had been polished using the same nethods had better than 85% reflectivity at 1.06 $\mu \mathrm{m}$ as measured on our Cary spectrophotomater.

The generation of the parabolic curve had been done by frank cooke using a continuous diamond brit with an almost int contact at the cutting point. 6 The belt followed a H.C. generated cam as the mirror was swing about the rotational ixis of the mother parabola. This produced a very reasonable overall contour:
however, the steps in the cam reproduced heavily on the surface of tie part, subsequent cuttings were much better after the cam was smoothed. The surface produced was fairly govd in the continuous areas, from visual observations it approached the 15 microinch surface specification. in the stepped zones the damage was much worse. The diamond belt marks went deeper than I had anticipated, and the polishing time was increased accordingly. Initial polishing was done with a full sized plaster tool which was cast on the surface. The lap was pitch based with a painted film of beeswax on top. In the rough stages of polish, Linde "C" and Linde "A" were used with 5 cs. Dow Corning Silicon oil.

The parabola was mounted on a Strasbaugh cylindrical machine using a 2 -axis rotating table alfowing continual positioning of small tooling. After averaging the zones from generating with the full wol, I went to a 3 -inch diameter ring tool of pitch with wax and using a long fast stroke bridged across the steps to quickly reduce their heights as uniformly as possible. While stroking with a constant length in both the "X" and " Y " directions, $\{$ manually rotated and changed positions to equally cover the mirror and average the polishing. Having this type of control while running was very necessary because of the shape and character of the part. Some handwork was done of localized zones, but most of the work was done by machine.

The testing was done using a series of Ronchigratings; 50 line-inch up to 175 line-inch rul ings were used. The parabola was colifmated against a flat and its axial position was established from a reference flat which had been generated on the part. This allowed good repeatable positioning from run to run. The part is still in work and at the time of this writing the fimge size was measured at 0.023 -inch in average diameter; this will be improved. Total man hours spent to get to this point were 140 hrs . So even with a well generated surface, the polishing time is becoming a significant factor in terms of price as well as scheduling.

Sumpation

Both of thase mirrors were considered test pieces to be used to develop techniques and to demonstrate the optician's capabilities. The precise generation of these surfaces allowed the optician to concentrate on the other considerations such as the surface quality and the overall performance criteria. Too often, after many hours of grinding to generate a reasonable figure, these considerations are sacrificed in order to meet the schedule and the budget.

Acknowledgements

He would $1 i k e$ to thank R. Lester of AF Weapons Laboratory, Kirtland AFB, Hew Mexico; the diamond turning group and Metrology headed by Jim Bryan; members of the Optics fabrication Group headed by Norm 8rown and Frank [ooke of Frank Cooke Optical, North Brookfield, Massachusetts.

References

1. T. T. Saito, D. Milam, P. Baker and G. Murphy, "I. 06 um 150 psec Laser Damage Study of Diamond Turned, Diamond Tumed/Polished and Polished Metal Mirrors." UCRL-7822, Lawrence Livenmore Laboratory, Livenmore, CA, 1975, presented to 1975 Bocider Laser Damage Conference, Conference Proceedings to be pufilished.
2. Stover, John C., "Characterization of Smooth Machined Surfaces by Light Scattering", to be published in Appl. Opt. August, 1975.
3. Saito, T. T., " 1.05 um Reflectivity Measurements of Metal Optics", UCID-16815, Lawrence Livermore Laboratory, Livermore, CA 1975.
4. Gitbs, K., Materials Research Laboratories, Vfctoria, Australia, "Ultrasonic Cleaning" private communfation to A. H. Guenther presented as a nost-deadl ine paper to the 1975 Boulder Laser Damage Symposium.
5. House, R. A., Bettis, J. R., Guenther, A. H. and Austin, R., "Ccrrelation of Laser Inducad Damage Resistance with Surface Structure and Preparation Techniques of Several Optical Glasses at i. $06 \mu \mathrm{~mm}$, presented to the Laser Induced Damage Symposium, Boinlder, Colorado, July, 1975.
6. Parks, R. E. "Machining a Copper Off-Ax is Parabola", Appl. Opt. 1a:1753 (1975)
** Worl performed under the auspices of the U.S. Energy Research and Development Amintstration.

+ Detached duty from the Air force Neapons Laboratory, Laser Division, Kirtland AFB, 87117

