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LENS AND MIRROR DESIGN VIA THE PRINCIPAL SURFACE* 
Anne Greenbaum, Alexander J. Glass, and John B. Trenholme 
Lawrence Livermore Laboratory University of California 

Livermore, California 94550 
ABSTRACT 

For many laser applications, i t is desired to focus a collimated beam 

with a specified transformation of the intensity distribution. The trans­

formation p>?perties of a lens or mirror system can be specified in terms 

of the principal surface, r (a) , which maps th-height of the incident 

parallel ray onto a given angle at the focus. The intensity distribution 

at the focus is then given by the relation 1(a) = I(r)r(dr/da)/sina. One 

aspheric surface in an optical system is sufficient to yield diffraction 

limited focusing. By means of two aspheric surfaces, diffraction limited 

performance with a specified principal surface can be achieved. 

The problem of optical design is stated as follows: Given a principal 

surface r (a) , and a maximum focal angle a , find the pair of optical sur­

faces for which diffraction limited focusing is achieved. I t is shown that 

specification of r(a) and a uniquely determines the lens design to within 

a scale factor, given the refractive index of the lens. I t is further 

shown that one straightforward Runge-Kutta integration routine generates 

both surfaces for either a lens or a pair of mirror surfaces. 

The complete family of aplanatic lenses w i l l be described. Deviation 

from sphericity w i l l be discussed, as wi l l the possibil ity of realizing 

the specified lens designs. The family of lenses which map uniform incident 

intensity "'nto uniform illumination about the focus w i l l also ;•••> described. 

Extension of the method to off-axis aberrations wi l l be considered. 

*This work was performed under the auspices of the U.S, Energy 
Research and Development Administration. 



INTRODUCTION 

In the design of focusing optics for laser fusi.-n experiments, 

special requirements arise which are siqnificantly different from the 

considerations which govern the desiqn of typical imaging optics. In 

this paper, we shall outline the special features of laser focusing 

optics which differentiate their design from other systems, and report 

a philosophy of lens design particularly suited to laser focusing optics. 

In particular, we shall develop the formalism for the desiqn of lenses 

from the principal surface, which represents the mapping of ray height 

in the entrance pupil onto ray angle at the focal point. The equivalent 

formulation for reflecting optics w i l l be qiven. Specific examples of 

families of lens surfaces wi l l be presented. 

In laser fusion experiments, one illuminates a spherical target as 

uniformly as possible, over i ts entire surface, keeping the l ight as near 

to normal incidence as possible. The dual requirement of near-normal 

incidence and uniform illumination arises from the desirabil ity of 
(2) creating a uniform heating of the plasma over the entire target surface. 

The l iqht is generated as the output of a large, short-pulse laser, 

usually a Nd:glass laser, radiating at 1.06um. The beam prof i le is 

generally a function of ray height in the entrance pupil only, and is 

given by the operating constraints of the laser system. 

In the design of a large, short-pulse glass laser, the crucial 

parameter is the total integral of the laser intensity along that part 

of the optical path that lies in glass, either laser glass or optical 

glass. This parameter, the so-called "B-Integral", must be kept to a 

minimum, in order to prevent the growth of high spatial frequencies 

(ripples) on the beam, due to the nonlinear coupling of the intense 
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liqht to the optical medium. Thus in designing laser focusing optics, 
the total thickness of the lenses must be kept to a minimum. In addition, 
since optical surfaces are most vulnerable to damage, at high intensities, 
the number of surfaces must be kept to a minimum. These considerations 
militate against the use of a large number of elements in the focusing 
optics. In general, a number of elcr^ents no greater than two is desirable 
in any given focusing lens. 

Laser fusion optics fall in the category of energy delivery systems, 
rather than imaging systems. The quality of the image, in the focal 
plane of the lens, is less important than the pattern of illumination 
generated on the target surface. In addition, due to the special 
features of laser illumination, there are fewer additional constraints 
on the lens design. For example, since the laser beam is qenerally well-
collimated, and incident parallel to the axis of the system, off-axis 
aberrations can be neglected. Also, since the laser is monochromatic, 
chromatic aberration is of no concern. Thus the merit of a particular 
design is entirely specified by how well the illumination requirements 
are met. 

Clearly, to effect a given transformation of ray height onto focal 
angle with a few elements requires aspheric surfaces. Recent advances 
in aspheric fabrication strongly support this approach. It is becoming 
increasingly feasible to fabricate steep and complicated aspheric surfaces 
at reasonable cost. It must be understood, however, that these are one-of-a -
M n d optical designs, of which only a few copies will be made. The initial 
costs of design,special tooling, and test setup roust be distributed over 
these few copies. The large laboratories working in laser fusion must 
be prepared to bear this increased cost, as part of the price of developing 
a sophisticated and specialized industrial base to support their needs. 
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It is hoped that in thf; long run, the entire optical industry will benefit 
from the advances made and paid for under such specialized programs as 
laser fusion. 
EXPLICIT METHODS OF LENS DESIGN 

Since we are considering very specialized optical systems consisting 
only of a few elements, the customary interactive methods of lens design, 
such as are embodied in generally available lens design programs, are 

not the most efficient methods available for design. It is more efficient 
to desiqn the lens surfaces explicitly in order to obtain exactly the 
desired transformation properties. We shall refer to this approach as 
the use of "explicit methods", instead of iterative adjuscment of surface 
parameters to obtain an optimal approximation to the desired performance. 

In geometrical optics, the objective of design is to determine a 
set of refractive or reflecting surfaces which map a set of rays, specified 
in terms of ray height and angle to the symmetry axis, on a plane in 
object space, Z,, onto a set of rays on a plana in image space, Z,, with 
prescribed ray height and angle to the axis. This transformation can 
be expressed as 

(Zj.Rj.e,) - (Z 2,R 2,9 2), (1) 

where R and 8 represent ray height and angle to the axis respectively. 
In this discussion, the system is assumed to be cylindrically symmetrical, 
and skew rays are not considered. As is pointed out in Luneburg's treatise, 
if the mapping is defined in terms of ray position at the focus, then a 
system free of spherical aberration can be constructed by the specification 
of a single aspheric surface. This is carried out by ensuring that the 
optical path from every point on the object plane to the focal point is 
the same. We shall refer to this as the equal path condition. The 
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mapping can be represented in the form 

(Z1 .R-, ,6,) - (F,o) (2) 

where F denotes the focal plane, and a the angle between the ray and the 
axis at the focal point. In this case, the system is free of on-axis 
aberrations, but the intensity distribution about the focal point is 
completely determined. 

A single aspheric surface can also be used to obtain a desired 
intensity distribution, but in this case, the system is afocal, i.e., 
all rays do not pass through a single focal point. The prescribina mappinn 
is given by 

(Z,,^,^) - (Z 2,R 2) (3) 
but the ray angle at the image plane is completely determined. The 
intensity in the image plane is given by 

I(R 2) = KR,) R1 dRj/Rj dR 2 (41 

where I(R,) is the incident intensity distribution in the object plane. 
This method has been used to design laser illumination systems, and is 
discussed in a separate paper. ^) 

In order to satisfy the equal path condition, and, simultaneously, 
to obtain the desired intensity mapping, the use of two aspheric surfaces 
in the optical system is required. Since the equal path condition is 
satisfied in this case, we can define the transformation in terms of ray 
angle at the focal point (where all ray heights are identically zero). 
We shall assume in the following discussion that the incident beam is 
parallel to the symmetry axis, although the method readily generalizes 
to converging or diverging incident light. Under this assumption, the 
desired mapping is entirely specified hy the function R,(a), where R, 
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is the ray height in the object plane, and a is the focal anqle. This 
function defines a surface in space, referred to as the principal surface, 
since it is tangent to the secondary principal plane at the axis. The 
principal surface is sometimes called the equivalent refracting surface, 
since it represents the intersection between the incident rays in the 
object space, and the focused rays in the image space. Me shall see that 
a knowledge of the principal surface completely determines two aspheric 
surfaces, to within a scale factor, given either the focal angle of the 
marginal ray, a , or the ratio of the back focal length to the lens 
thickness. 
CALCULATION OF THE IENS SURFACES 

In order to simplify the discussion, we shall consider a system of 
two aspheric refracting surfaces. There is no esstntial difficulty in 
introducing an arbitrary number of spherical surfaces in the system, but 
to do so renders the exposition less straightforward, for ease of 
fabrication, one would generally use two elements (four surfaces) with 
one aspheric surface on each element. 

He consider the two aspheric surfaces as shown in Fig. 1. The 
principal surface is defined by the function R(a), where the ray heinht 
extends to a maximum value R , corresponding to a maximum value of the 
focal angle, a . The marginal ray which is incident on the system at 
height 1^, intersects the principal surface at the point at which the two 
optical surfaces cross. By inspection, we see that the principal surface 
always passes through the intersection of the two lens surfaces. 

Referring to Fig. 1, we want to integrate the equation for the dis­
placement of the first surface from the lens vertex, Z, as a function 
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of the focal angle i, where R(u) is known. From Snell's law, we can write 
the slope of the first surface in terms of the angle of deflection of the 
ray entering the optical medium, *, as 

dZ = . n sin '.• , 5 > 
dR n cos {• - 1 l ' 

where the minus sign arises from the definition of Z. Here n is the refractive 
index of the optical medium. We define the distance P as the distance in 
object space from the first refracting surface to the principal surface, 
the distance Q as the distance in image space from the principal surface to 
the second refracting surface, and the distance I as the distance traveled 
through the optical medium by the actual ray. From the law of sines, we 
have 

P . Q . * ( 6, 
sin (a - 4>) sin • sin u » ' 

We war.t to express i entirely in terms of the angle i, and the distance Z. 
Simple geometry yields the result 

P = Z + (Pjn'tan ̂ ) - (R/tan a) , (7) 

while the equal path condition takes the form 
(3) 

Z + t p
m ' s i n " V " ( R / s i n a' = p ( n s- n •* " s i n S)/sini<* - t) 

Equating two expressions for P yields the result, 
(9) 

s in( a - •) Z + t y t a n am) - (R/tan a) 
n sin a - sin * TU'a> z + (Rm/sin aj - (R/sin a) 
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Equation 9 can be wr i t t en as 

s in a cos $ + [ f {Z ,< ) - cos « ] s in t • n s in i f ( z , u ) , ( 

and solved fo r * i n any of several ways (see Appendix J) . Combining wi th 

Eq. ( 5 ) , we r?n w r i t e 

dz . /dR\ n s in $ , n . 
do " " d a ' n cos » - 1 l " ' 

which can be integrated using Runge-Kutta * . ^gra t ion . Since the funct ion 

f ( z , a ) i n Eq. (9) i s indeterminate at e ver tex, where R = R and i ~ a , 

l ' H o p i t a l ' s ru le must j e applied to s t a r t the in tegra t ion . At each s tep, 

the funct ion Z(r>) is determined. Since R(-/) is known, the f i r s t surface 

is thus spec i f i ed . The coordinates o f the second surface are then given as 

R* = R - Y s in -i s in ?/s in (a - t) {12) 

and 

Z' - P sin a cos t / s in (a - $) - Z (13) 

where Z' is measured from the ver tex, as shown in F ig . 1 . 

I f we examine the ray along the ax is , we express the equal path 

condi t ion as 

Z + (R m /s in a j = (n - l ) t • (Z + R^tan a J '14.' 

where t is the axia l thickness o f the lens. Canceling the Z in Eq. ( 1 " ) , 

we obtain £ general re la t i on among lens thickness, index, and marginal 

ray parameters, namely, 

( n - l ) t = Rm tan (%/2). (15) 

In the case in which the back focal length, F, and lens thickness, 

t, are specified, we define Z as the distance from the focal plane 

to the intersection of the ray with the first surface. Then all 

of the previous formalism carries over intact, with the exception 
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that in Eq. 9 and 10, the funct ion f ( Z , j ) now takes the form 

f (Z,a) = (Z - R/tan a) / (Z «• ( n - l ) t - R/sin a) (16) 

3"d that the coordinate of the second surface, measured from the focal 
plane, is given by 

V = Z - P sin « cos */sin(a - *) (17) 

For reflecting surfaces, exactly the same considerations apply. 
Referring to Fig. 2, we now define the angle (-•?) as the angle of deflection 
of the incident ray. The distance P is the distance in object space from 
the first reflecting surface to the principal surface, which the distance 
(-0) is the distance in image space *rom the second reflecting surface 
to the principal surface. Using these definitions, and taking n=l, we find 
that Eqs. 10-13 carry over without change. We note that the point corres­
ponding to the lens vertex is again the point of intersection of the 
two reflecting surfaces. This point, which \<it of course, never realized 
in d practical system, corresponds to the deflection point of a ray 
which is tangent to the first reflecting surface. 
EXAMPLES OF THE APPLICATION OF THE METHOD 

To illustrate the application of the method, we have computed the 
family of aplanatic lenses, for which the principal surface is given 
by R = sin a/sin a , and the family of lenses which map equal beam 
areas onto equal solid angles at the focus, for which the principal 
surface is given by R = sin(a/2)/sin (a_/2). This latter mapping is 
obtained by requiring that R dR = sin o da. In both cases, the ray 
height at the marginal ray is taken to be R m = 1. In Fig, 3, we see 
lens profiles for aplanatics of increasing numerical aperture. As is 
expected, the asphericity ° f both surfaces increases dramatically with 
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increasing N.A. The same is seen to be true in Fig. 4, where the lens 
profiles for equal area mapping are shown for increasing N.A. All of 
these cases were computed for n = 1.5. The achievable value of N.A. 
is limited by total internal reflection in the lens. The designs were 
computed on a CDC 7600 computer, and each design, embodying 100 points 
across the lens (100 rays) took approximately ZOOmsec. 
SIWWRY 

We have shown that for laser focusing optics, which consists in 
general of a few, aspheric lens surfaces, explicit design methods are 
advantageous. We have presented the general solution of the two-surface 
problem, which is the simplest arrangement which can simultaneously give 
a prescribed mapping of intensity from a beam onto the surface of a 
sphere while satisfying the equal path condition. Examples of the family 
of aplanatic lenses and lenses which map equal beam areas onto equal 
solid angles have been given. 

The explicit design methods outlined in this paper have been applied 
to a number of laser focusing lens desigps in the course of the Lawrence 
Livermore Laboratory Laser Fusion effc-t. The reader is referred to the 

(3) 1974 Annual Report of the Laser Fusion program for further details. 

SOTfCf: 
"This report was prepared as i n account of w j r k 
sponsored by the United Stale , Government. 
Neither the United State, nor the United Stale, 
Enemy Research £ Developmenl Administration, 
nor any o f their empioyeei. nor any of their 
contractors, subcontractor,, or their employees, 
makes any warranty, eaprett or implied or 
assumes any leea' .iabilit, or responsibility for the 
accuracy, completeness or usefulness of any 
tnformation. apparatus, pioducl or process 
disclosed, or represents that its use would not 
infrtntc privarery-auned r i f i i ts." 
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APPENDIX I 
An equation in the form of Eq. 10, namely 

a cos « + h sin ' = c (A-l) 

must be solved with some care, due to ambiquities in sian. It is convenient 
to introduce complex notation, and wite 

(a + ibi = r exp{ir) (A-2) 

Equation A-l then takes the form 

cos{<f - ':) = c/r , (A-3) 

the solution of which can be written 

', = cos'^a/r} + cos'^c/r) (A-4) 

with r - (a + b ) . The sine and cosine of * can easily be obtained 
in teras of the coefficients a,b, and c, by use of standard triqonoroetric 
identities. 
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FIGURE CAPTIONS 
Fig. 1 Definition of ray parameters for refracting surfaces. 
Fig. 2 Definition of ray parameters for reflecting surfaces. 
Fig. 3 Lens profiles for aplanatic lenses of varying N.A. The 

dotted line indicates the principal surface, n = 1.5. 
Fig. 4 Lens profiles for equal area mapping. The dotted line 

indicates the principal surface, n = 1.5. 
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FIGURE 1 
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