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Abstract

The HPC architectures of today are significantly different for a decade ago, with high odds that
further changes will occur on the road to Exascale. This paper discusses the “perfect storm” in
technology that produced this change, the classes of architectures we are dealing with, and probable
trends in how they will evolve. These properties and trends are then evaluated in terms of what it
likely means to future Exascale systems and applications.
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Chapter 1

Introduction

This report was prepared as part of the XGC LDRD project at Sandia National Labs, as part of
a yearly update to projections first prepared for the 2008 DARPA Exascale report[16] and then
updated for SC 2011[15] and ISC 2012[14]. The goal is to predict the potential characteristics of
high-end systems across a spectrum of architectures into the future, and with enough lower level
characteristics to allow non-trivial extrapolations against future benchmarks.

The primary focus in this report is on the interaction of technology and architecture; other
issues such as programming models and resiliency receive far less attention.

For this report the term exascale will take on a definition similar to that used in the Exascale
study,[16] namely that the aggregate amount of resources that were needed to achieve a “petascale”
system (whatever that means) could, with upgrades in technology, provide 1000X the computing
capability. For the purposes of this report, the metrics to be used are those associated with sev-
eral benchmarking efforts for which significant historical data is available, including TOP500,1

GREEN500,2, and GRAPH500.3 Extrapolations of trends in the underlying technology as made
by the ITRS4 are used to support these projections.

Also a Stanford Univ. web-based source of data on actual microprocessors5 was used as a
comparative source throughout this report as appropriate.

1.1 Seeing the “Perfect Storm” in Metric Changes

The reason for the need for an analysis as done here was the occurrence around 2004 of a “perfect
storm” of design constraints that has changed forever the framework for designing HPC systems.
While the emergence of power dissipation as a first class design constraint was the major driver, it
was not the only cause of the change. Fig. 1.1 outlines this confluence and its general effects. The
associated explosion of architectural alternatives has made the job of selecting the “most efficient”
ones to pursue as we move towards Exascale systems much more difficult.

1www.top500.org
2www.green500.org
3www.graph500.org
4www.itrs.net
5http://cpudb.stanford.edu/
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Figure 1.1. Time Line for Changes in HPC Architectures.
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Fig. 1.2 then demonstrates numerically some key “before” and “after” characteristics. The
numbers graphed here are Compound Annual Growth Ratios (CAGR) over several years for
several typical metrics. In this case a CAGR for a metric is the ratio of the value of that metric in
year i+1, divided by the metric in year i. A constant CAGR over time of C thus implies that the
value of that metric in year i+k is Ck times the value in year i. A CAGR of 1 implies the metric
does not change; a CAGR > 1 implies the metric increases year-over-year; a CAGR < 1 implies
the metric decreases over time.

The CAGRs in Fig. 1.2 were computed by taking the performance metric Rmax
6 values for

the top 10 systems in each year from the TOP500, averaging them at each year (to get an overall
technology trend), and then computing the CAGR over a 3 year period, and adjusting back to 1
year factors.7

The transition in the year 2004 is clearly visible in these metrics. During this entire period, the
Rmax performance metric averaged about 1.8, meaning the system performance went up by a factor
of 1.8 each year. The other metrics were nowhere near so constant.

• Before 2004, the clock rate increase was comfortably above 1, with multi-year runs above
1.5. After 2004, the clock rate essentially went flat.

• Before 2004, the cores per socket was flat at 1. After 2004, the cores per socket climbed at
about a 1.3X per year rate.

• Before 2004, the cores per system was declining but above 1, meaning the the number of
cores in a system was growing but slowly. After 2004, the CAGR for cores per system
climbed steeply, triggering a continuing explosive growth in total cores.

• Between 2000 and 2004 the memory per core was comfortable above 1.5, meaning that total
system memory more than doubled every 2 years. After 2004 this growth rate went to 1 or
below, meaning that available memory for each core was actually decreasing.

• Before 2004, the total concurrency as measured by the number of parallel operations that
could be performed in each and every clock cycle had a growth rate of 1.25-1.5 per year.
After 2004 this metric exploded.

The rest of this report dives into the details behind these numbers.

1.2 Architectures

This report is about architectures. After 2004, three classes of architectures emerged:
6Rmax is the sustained number of floating point operations per second while performing some dense matrix linear

algebra.
7A 3 year interval was chosen to provide a bit of smoothing and to match the traditional expression of “Moore’s

Law” as performance quadrupling every 3 years.
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• Heavyweight architectures which are the natural progression of what are now the ubiqui-
tous multi-core microprocessors, and are designed to work with a combination of support
chips to provide the most possible performance, typically at high clock rates.

• Lightweight architectures which are essentially single-chip systems, other than memory,
and are run at lower clock rates.

• Hybrid accelerator architectures that combine a multi-core chip designed with very many
floating point units and a small amount of very fast external memory, to a conventional,
usually heavyweight, processor.

The Exascale report[16] identified the first two; the third emerged with the announcement
of Roadrunner and the later convergence of graphics processing units (GPU) and conventional
processing.

In addition, a fourth class of architectures. termed here BigLittle, appears to be emerging from
a mixture of all the above three, where there may be a mix of core designs as in the hybrids but
where both the high performance heavyweight and low power lightweight cores all share the same
ISA. In addition, we expect to see in a fully developed BigLittle architecture the ability of migrate
threads between core types as processing warrants.

Finally, a fifth class of architecture, termed 3D here, may be emerging where processing logic,
memory, and routing are integrated into a three dimensional stack of chips where transport costs
between memory and logic are dramatically reduced.

1.3 Organization

The rest of this report is organized as follows:

• Chapter 2 describes briefly the two classes of benchmarks against which the evaluations will
be made, and overviews the terminology used throughout.

• Chapter 3 discusses the underlying technology driving HPC architectures, including the 2004
confluence.

• Chapter 4 discusses the architectures present both before and after 2004, and new ones that
are liable to emerge in the next few years.

• Chapter 5 discusses the comparative properties of current and past systems and architec-
tures as benchmarked against LINPACK, as in the TOP500, GREEN500 and BFS, as in the
GRAPH500.

• Chapter 6 discusses the approach taken to project these architectures into the future.
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• Chapter 7 summarizes the results.

It is planned that in the near future a revised model based on the 2012 environment will be
prepared and added to this report.

1.4 Versions

Table 1.1 lists the versions of this document.

Version Date Changes
1.0 8/12/13 First version.

Table 1.1. Version History.
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Chapter 2

Benchmarks

Two major benchmarks have become relevant to the exascale community: LINPACK to track
floating point performance, and Breadth-First-Search in large graphs to track communications per-
formance.

2.1 Compute Intensive Computing, LINPACK, the TOP500,
and the GREEN500

The most common benchmark to date for supercomputers has been the solution of dense linear
equations of the form Ax = B[6]. Assuming A is an n by n matrix and B and x are n-element vec-
tors, the nominally most important computational factor is the number of floating point operations
performed in the solution, or flops. The nominal number of such flops is 2n3/3+ 2n2 for an LU
matrix decomposition algorithm.

Benchmarking a system involves executing LINPACK on the system for various sizes of n, and
measuring the execution time. Dividing this into the number of flops for that n gives floating point
operations achieved per second, or flops/s. By trying different values of n, a benchmarker can then
identify the value that yields the largest flops/s. The value of n which maximizes this is Nmax, and
the flops/s number is called the Rmax. A related metric is N1/2 which is the size of the problems
that achieves Rmax/2 flops/s.

The other key metric for a system is Rpeak, which is the peak number of floating point operations
that can be performed by the system, regardless of algorithm or problem size. In most cases this is
the product of the number of floating point units and the clock rate of those units.

The TOP500 web site1 has been recording such measurements for almost 20 years, and ranked
systems on the basis of their reported Rmax. More recently, as power and energy efficiency has
become a major concern, the GREEN500 web site2 has tracked the ratio of a system’s Rmax to the
power it consumes, and ranks the system on the basis of the resulting MFlops/s per Watt (millions
of flops executed per second per watt of power dissipated). An equivalent of this metric that often
provides more insight is the reciprocal of this, or the energy per flop performed. This is typically

1www.top500.org
2www.green500.org
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expressed in units of picoJoules/flop (pJ/flop). where one pJ is 10−12, and where 1 pJ/flop is thus
equivalent to 1012 flops (or 1 teraflop) being executed in 1 second while the system dissipates only
1 Watt.

The nominal goal for the DARPA UHPC Exascale initiative has been at least an Rpeak of 1018

flops/s, with a power budget of 20MW. This corresponds to an energy goal of 20pJ/flop.

The major objection to the validity of the TOP500 benchmark is that it is too regular, and
too floating point intensive. Detailed analyzes such as [22] indicate that in real, large, scientific
codes the percentage of floating point operations is much less than in LINPACK, with address
computations and memory referencing becoming more important to time and energy than floating-
point operations. This trend is expected to grow even further as dynamic grids and multi-physics
become more common.

2.2 Data Intensive Computing and the GRAPH500

The Graph500 benchmarks3 are meant to stress parts of a system not key to LINPACK, such as
handling extremely large data structures that must encompass many nodes, and high amounts of
unpredictable communication between the nodes.

Several benchmarks are planned under this Graph500 umbrella, with only one of them (“Search”),
currently defined and tracked through several generations of systems. Two other benchmarks
(“Shortest Path” and “Maximal Independent Set”) are planned in the near future, and will be added
to future updates of this document as they become available.

In addition, a GREEN GRAPH500 listing has been started which lists the most energy effi-
cient of the submissions to the GRAPH500.

2.2.1 The Graph500 Search Benchmark

The purpose of the kernels defined in this benchmark is to build a very large graph, and then be
able to rapidly start at any random vertex and identify all other vertices that are connected to it.
This exploration for some starting vertex is often called Breadth First Search (BFS)

Fig. 2.1 shows a sample graph. Starting at vertex 0, a valid BFS output would be 0, 1, 2, 9, 3,
5. Starting at 2 a valid output would be 2, 3, 0, 9, 5, 1.

There are three major steps in the benchmarking process:

1. Graph construction: to create a data structure to be used for the BFS. The two configuration
numbers that go into this are:

3www.graph500.org.
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Level Scale Size Vertices (Billion) Memory (TB)
10 26 Toy 0.1 0.02
11 29 Mini 0.5 0.14
12 32 Small 4.3 1.1
13 36 Medium 69 17.6
14 39 Large 550 141
15 42 Huge 4,398 1,126

Table 2.1. GRAPH500 Problem Size Categories.

• Scale: base 2 log of number of vertices (N) in the graph.

• Edgefactor: ratio of total number of edges (M) to total number of vertices (N) in the
graph. The GRAPH500 uses an edgefactor of 16.
Note that all edges are assumed bi-directional so that the average degree of a vertex is
twice the edge factor, or 32.

2. Breadth-First Search: starting at a random vertex, follow all edges from that vertex and all
vertices reached from that edge until as many vertices as possible have been reached. Record
these vertices in level-order: the root vertex, all vertices that are 1 edge away from the root,
all vertices that are 2 away from the root, ...

3. Validation: check that the answer is correct.

The key performance parameter is the time for a BFS search. If M is the total number of edges
within the component traversed by a BFS search (the second step), and T is the time for doing that
search, then Traversed Edges per Second (TEPS) for a particular search is M/T. The time for the
first and third steps is not part of the benchmark.
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As with the TOP500’s Nmax, there is a problem size component to the GRAPH500, although in
this case it is far more important to evaluating the success of a system than it is in TOP500. Table
2.1 lists different classes of problem size and a typical size of the required data structure in bytes,
where an average node and its associated edges take about 282 bytes. The “Level” in this table
is approximately the base10 log of the estimated size in bytes. To date, very few systems have
reached the “Large” category (needing 140TB), let alone the “Huge” category.

Note in Table 2.1 the scale in each problem category goes up by 3 (a growth of 8X) as the level
goes up by 1 (a growth by a factor of 10), except between levels 12 and 13, where there is a growth
by 16X in scale. This extra step is to account for the difference between 83 and 103.

As with the TOP500, there is some criticism of the GRAPH500 in that it is too one-sided:
almost only focused on inter-node communication. Consequently, the GRAPH500 organizing
committee is planning on releasing two additional benchmarks: shortest path optimizations and
computing maximal independent sets. Unlike the scientific-orientation of LINPACK, these bench-
marks are believed to be highly related to five business areas: cybersecurity, medical informatics,
data enrichment, social networks, and symbolic networks.
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Chapter 3

Silicon Technology and the Perfect Storm

This chapter addresses the key properties behind the silicon technology that has driven the high
performance computing environment for decades, with emphasis on what it is that caused a major
disruption in architecture about 2004. Throughout this chapter, data is typically taken from the
ITRS roadmaps1, where updates to projections of the future of silicon chips have been published
yearly since 1994. The data used here is an amalgam of these reports, typically starting with the
earliest and overlaying each years’s future projections. Thus the data for a particular year in the
past was from the most recent year that included it (typically either the same year of the report or
the next year’s report that looked back a year). This ensured that the now “historical” data actually
reflected reality on a consistent basis. The data for years in the future are likewise from the most
recent year, in this version of the report from the 2012 update.

Additional data on actual microprocessors is gleaned both from personal records and the the
CPUDB website2 hosted by Stanford University.

3.1 Moore’s Law

Moore’s Law[21] initially came from a plot in a 1965 paper that showed the number of transistors
doubling every year, with a prediction that it would continue for a while. In [20], Moore is quoted
as saying that a colleague later extended the number to a doubling every 18 months (the typically
reported number), while Moore himself used 2 years starting in 1975 when he had a decade of
data.

At the turn of the millennium, it was popular to interpret Moore’s Law as saying that “per-
formance” of microprocessors and “capacity” of memory chips increase exponentially, the real
statement of most underlying importance is that the key linear dimensions of a transistor (its “fea-
ture size”) shrink by a relatively constant factor every N years. This shrinkage has had two effects:
the overall area of the transistor has dropped, meaning that more transistors can be placed on a die,
and that the inherent delay of the transistor (due largely to the capacitance of its gate) has declined.
The dimensional shrinkage has also been applied to the width of the wiring that interconnects tran-
sistors together, meaning that the area of a multi-transistor circuit, such as a processing core, has

1www.itrs.net
2http://cpudb.stanford.edu
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Figure 3.1. A CMOS Transistor.

decreased likewise by approximately the square of the shrinkage in feature size (both length and
width have shrunken by the same factor).

The first microprocessors used transistors with feature sizes of around 10 microns (10−2 mm);
current transistors are around 22 to 35 nanometers (22 to 35*10−6 mm), with a projected “end-of-
the-road” of around 5 nanometers. The end-of-the-road numbers occur when transistor dimensions
are a very few atomic widths in size. All told, this represents about a 500-fold decrease in linear
dimensions to date (dropping to 2,000-fold in the future) or about a quarter million-fold increase
in transistors per unit area (rising to four million-fold).

It is interesting that in the original paper[21], Moore predicted that power dissipation problems
“won’t happen with integrated circuits. ...” In fact, shrinking dimensions on an integrated structure
makes it possible to operate the structure at higher speed for the same power per unit area.”

3.1.1 The CMOS Transistor and Feature Size

Fig. 3.1 diagrams the cross-section of a CMOS3 transistor (not shown are connections to the
source, drain and gate, typically from metal layers above the transistor). When a voltage of suf-
ficient magnitude is applied between the gate and the substrate, a current can flow in the channel
between the source and the drain. The key parameters of a transistor are its length, width, and thick-
ness of the oxide between the gate and the channel. When placed in a circuit there are “layers” of
metal above the transistor, with vertical “vias” descending to electrically contact each transistor’s
source, drain, and gate. When multiple transistors are wired in parallel and/or series using such

3CMOS stands for Complementary Metal on Silicon
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wires, the resulting circuit can change the voltage at some output point, which in turn can affect
the voltage at the gates of down-stream transistors.

In the semiconductor industry, CMOS technology is grouped into generations based on fea-
ture size, which in turn is related to the linear dimension of one of the smallest objects that can be
patterned on a chip. Today, this is typically the 1/2 distance between two minimum-width wires
in the layers above the transistor, which in turn is itself a small multiple of L, the channel length.
Also typically a change in one linear dimension, such as L, is matched by changes in the other
key dimensions, such as W and tox. While such changes used to be approximately linear in all
directions (Dennard Scaling), current scaling is more difficult. For example different materials are
used than previously in order to change the dielectric constants of portions of a transistor, raising
manufacturing complexity and cost.

Assume for now that the shrinkage between one generation of transistors and the next is a ratio
S. Thus if the feature size of one generation was 90nm, then the next generation would have been
90/S nm, the one after that is 90/S2 nm, and so on.

Clearly if all linear dimensions shrink by a factor 1/S, then the area of a circuit that has exactly
the same relative layout will shrink by 1/S2 in the next generation. This corresponds to a growth of
S2 in the number of transistors per unit area. As an example, a reduction of a factor of 2 in feature
size corresponds to a reduction of a factor of 4 in device area, and thus an approximate growth by
a factor of 4 in the numbers of transistors that can be placed on the same area of silicon.

Fig. 3.2 diagrams the change in feature size for transistors as taken from the ITRS roadmaps
dating from 1988 to the present[11]. Overlaid on this are red squares representing the reported
feature sizes of actual microprocessors at the time. As can be seen, the downward trend has been
declining exponentially for decades at a relatively constant rate, and is projected to continue to do
so through 2026.

Fig. 3.3 then converts the decrease in feature size to an increase in transistor density. Given that
area involves two dimensions that both improve with decreasing feature size, this curve approxi-
mates the square of the reciprocal of the feature size. The upward bumps in these graphs represent
times when a change in layout for SRAM bit cells gave an extra boost to final density above and
beyond the feature size decrease.

3.1.2 Delay

This change in dimensions also affect circuit parameters. The big factor on circuit performance
in CMOS is the time required to move a wire from a high to a low voltage, or vice versa. This
is largely driven by capacitance, which is largely driven by the capacitance of the transistor’s
gate, which in turn can be approximated by the area of the gate over the height tox. If all these
dimensions go down by a factor of 1/S, then the capacitance drops by something approximated by
(1/S2)/(1/S) = 1/S. which means the transistor is “faster.”

Fig. 3.4 diagrams a projected decrease in the delay through an inverter (a two transistor circuit
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that converts a “1” to a “0” and vice versa). The ITRS has reported the “clock rate” for a chain of
12 such inverters, and the numbers here are 1/12th of the reciprocal of these numbers, taken from
the ITRS 2006 roadmap. After this point, the numbers for clock rate reported by ITRS began to
reflect various design constraints that will be discussed in Section 3.3, and not a projection of the
actual intrinsic speed of transistors.

Fig. 3.5 graphs this ITRS delay as a function of feature size, along with a curve using computed
parameters. Again we see an exponential reduction in delay, implying that besides getting smaller,
transistors are in fact getting inherently faster.

3.2 The Halcyon Years

In the years before 2004, Moore’s Law was used in two ways to increase the performance of single
core microprocessors: use the speedup in the transistors to increase the clock frequency of the
core, and use the increasing numbers of transistors to increase the work done per clock cycle.
This double multiplier is what drove the normal interpretation of Moore’s Law as increasing single
core/single thread performance.
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3.2.1 Operating Voltage

A rarely discussed by-product of this feature size decrease was the decrease in the operating voltage
(typically termed Vdd) supplying the circuits. A major parameter to transistor operation is the
electric field within a capacitor formed by the transistor’s internal “gate,” and as feature sizes fell,
a lower and lower operating voltage was needed to keep this electric field more or less constant.
Fig. 3.6 diagrams this voltage trend as a function of time for both high performance and low power
logic chips and memory chips, again from the ITRS roadmap[11]. Again the red squares represent
real data as reported by the Stanford website.

Also included in Fig. 3.6 is the operating voltage for commodity DRAM parts taken from [16]
and other sources. This does not decline as rapidly or as far as logic because the internal structure
of a DRAM array obeys some different constraints than logic circuits.

Lowering the voltage had a critically important side-effect. Power dissipated by a circuit is
expressed by the classical equation P = αCFV 2 , where α is the percent of time during a clock cycle
that capacitance is switched on average, C is the capacitance switched, F is the clock frequency,
and V the voltage. Thus for a constant area of silicon, increasing the number of transistors and
increasing the clock rate were at least partially balanced by the decrease in the capacitance per
transistor times the square of the decrease in voltage. Thus the power dissipation per unit area was
approximately constant.

30



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1
/1

/8
0

1
/1

/8
4

1
/1

/8
8

1
/1

/9
2

1
/1

/9
6

1
/1

/0
0

1
/1

/0
4

1
/1

/0
8

1
/1

/1
2

1
/1

/1
6

1
/1

/2
0

1
/1

/2
4

O
p

e
ra

ti
n

g
 V

o
lt

a
g

e
 (

V
d

d
)

Actual MPU High Performance Logic Low Power Logic DRAM
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Figure 3.7. Die Area for Microprocessors at Introduction.

3.2.2 Die Size

A second phenomena of microprocessors in this time frame was that it became economically feasi-
ble to fabricate bigger chips. Thus not only did the number of transistors per unit area increase, but
the total area of the chip increased, allowing even more transistors to be used in designs. Fig. 3.7
diagrams the die area for microprocessors at the time of their introduction, including real historical
data that shows this increase. Fig. 3.8 diagrams production die area for all chip types, including
DRAM, flash, and ASICs, again from the ITRS roadmap[11]. The production die area is typically
smaller than the introduction die area, as they represent the result of technology shrinks between
the first chip and production chips.

3.2.3 Basic Circuit Area Factors

A third phenomena is that as time goes on, the basic layout of key individual circuits continues
to improve as engineers determine better ways of positioning the basic components (transistors,
contacts, more layers of available wiring, etc.). Thus the “relative” area decreases in addition to
the gains from smaller transistors. Such layout area metrics are typically given in units of “F2,”
where F is the feature size of the technology. As an example for DRAM, F is typically 1/2 of the

32



10

100

1000

1985 1990 1995 2000 2005 2010 2015 2020 2025

M
a

x
 P

ro
d

u
c

ti
o

n
 D

ie
 S

iz
e

 (
s

q
. 

m
m

)

Microprocessor DRAM ASIC Flash

Figure 3.8. Die Areas for All Chip Types at Production.

minimum center-to-center “pitch” distance between two metal 1 wires (the layer of wiring that is
closest to the surface of the die, and finest in dimension), so that the minimum pitch between two
wires is 2F. Given that a DRAM cell consists of a transistor and a capacitor situated under an X-Y
array of such interconnect, the minimum possible area is thus 2Fx2F, or 4F2. Fig. 3.9 plots these
factors.

Over the time period plotted, the basic area of a logic or SRAM cell has improved by about a
factor of 2, with all the projected change having already occurred. This means that the transistor
density trends in Fig. 3.3 had a double gain in the early years: both smaller transistors and denser
packing into basic circuits.

In contrast, there is about a 3X improvement overall from a basic DRAM cell, from about 12F2

down to about 4F2, with one final step from 6F2 today to the ultimate 4F2 left to go.

3.2.4 DRAM Memory

Fig 3.10 summarizes some of the major characteristics of the most important commodity DRAM
memory over several product generations. The following sections address different aspects in more
detail.
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SDRAM 1999 PC!133 1 4 1.1 1.0 5.0 583.1 762 1.0 0.01 1.00

DDR 2000 DDR!133 1 4 2.7 2.5 5.5 257.1 245 3.1 0.09 7.80

DDR2 2004 DDR2!667 2 4 5.3 2.0 5.2 121.4 139 1.8 0.31 3.54

DDR3 2007 DDR3!1333 2 4 10.7 2.0 5.5 64.7 62 2.2 1.38 4.48

DDR4 2013 DDR4!2667 4 8 21.3 2.0 6.6 38.7 39 1.6 4.38 3.18

Hybrid!Stack 2011 Prototype 0.5 32 128.0 6.0 11.1 10.8 13.7 2.8 74.74 17.07

Hybrid!Stack 2013 HMC 2 128 160.0 ? ? ? ? ? ? ?

Figure 3.10. Typical Commodity DRAM DIMM Characteristics
(abstracted from [24]).
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Figure 3.11. Memory Density.

Memory Density

The most obvious parameter for memory is density, how many bits are available for use. The
density of memory chips has improved over time, as pictured in Fig. 3.11, again from the ITRS
roadmap[11]. Memory types graphed include DRAM and NAND flash, where for NAND flash
both single bit cells (SLC) and multi-bit cells (MLC) for 2, 3, and 4 bits per cell4, along with 3D
stacks of NAND flash.5

The density of individual memory chips of any of these kinds is driven by three factors: the
basic Moore’s Law shrink in transistor dimensions over time, the die area used for the chip, and the
relative area of the layout of the basic memory cell that is replicated over and over in rectangular
arrays. As can be seen in Fig. 3.8, a commodity chip’s die area is actually shrinking over time,
due to economic reasons. This is partially offset by the decrease in the area factor for DRAM (Fig.
3.9), but the overall effect is to slow the growth in “bits per chip” for commodity DRAM.

42 bits per cell is common in commodity products today; 3 bits is in production but is not being used where
reliability due to wear-out is a concern; no 4-bit cells are approaching production.

5The term “3D” here is not the same as used later for 3D stacks of die; instead it refers to a single memory die
where multiple layers of transistors are fabricated on top of the die’s surface, as in [3]. Stacked NAND has just
entered production, with up to 24 layers possible; see http://www.samsung.com/global/business/semiconductor/news-
events/press-releases/detail?newsId=12990.
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Memory Concurrency

While density has increased, the circuit constraints of a dense memory circuit are, however, con-
siderably different that a logic circuit, so intrinsic memory access time (termed its row latency)
has improved at best slowly during this time (a widely reported average improvement is about 7%
per year for DRAM). Further, at least for DRAM, the time to transfer data off chip is so much
less than most DRAM’s cycle time that without the ability to overlap multiple access requests, the
interfaces of a standard memory part would be idle a very large percentage of the time.

To prevent this, the micro-architecture of most memory chips[26][12] divides the on-chip mem-
ory into separate banks, each of which has enough independent control logic that it can be per-
forming a separate access while some other bank is transferring data through the off-chip interfaces.
DDR2 chips usually supported 4 banks; DDR3 chips support 8 banks.

Accessing memory then becomes a two-step process. First a row access request is sent through
the chip to the desired bank to perform an access. The results of the access save somewhere
between 1024 and 2048 data bytes per access in what is called a row buffer associated with the
bank. Then a second, and independent, column access request may select and access typically 32
or 64 bits of this row buffer for transfer through the chip’s interface (at 4 to 8 bits at a time).

We note that a write to such a memory requires a row access to retrieve the entire associated
row buffer, followed by a transfer from the outside into just the part of the row buffer associated
with the location to be changed, followed by a restore operation to write the row buffer back into
the bank.6

The number of such banks that may be simultaneously busy is a measure of a memory chip’s
potential for concurrency. Thus a DDR3 DRAM may support up to 8 separate and concurrent
accesses, as long as each is associated with a separate bank.

In a commodity DRAM DIMM7 today, some number of such chips are ganged together on
a small card in groups that are referenced together; each such group is called a rank. All chips
in a single rank (or all chips on the DIMM if there is only one group) receive exactly the same
commands at the same time, and perform identical operations, with the only difference is that each
chip contributes to a separate set of data bits on the overall interface.

Typically a memory controller sits between a microprocessor and such a memory. The mem-
ory controller accepts a stream of access requests from the cores within the microprocessor, and
schedules them so that the concurrency within the memory, and thus the achievable memory band-
width, is maximized. This scheduling is typically quite complicated, with multiple internal queues,
especially as we have moved from single core, in-order, designs to multi-core, out-of-order, de-
signs where requests from different cores can arrive with no address or timing relationship between
them.

6The read operation in a DRAM is “destructive,” reading a row erases the data within that row. At the end of a
reference the row buffer must be written back to the original location in memory to restore the DRAM contents

7DIMM stands for Dual Inline Memory Module.
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For memory channels with multiple ranks (either on the same DIMM or on different DIMMs),
it typically takes some significant time to switch the memory interface from communicating with
one rank to communicating with another. This is due to the usual differing clock phasing between
different ranks, and and the electrical switch time to turn off one set of drivers and another set
turned on along with timing uncertainties. While multiple ranks increase total memory capacity,
the time to switch the interface between them can complicate the memory controller’s scheduling
decisions.

Memory Bandwidth and Power

Memory bandwidth is the rate at which data can be transferred to and from a memory, and is
driven by both circuit and micro-architectural considerations as discussed above. In cases such
as DRAM DIMMs we can also isolate and discuss memory power as it relates to the discrete
memory system. Since most power is drawn when a DRAM is busy, perhaps a more important
metric is an amalgam of bandwidth and power, namely how much energy does it take to access
one bit of data and transfer it in or out of the DIMM. Multiplying this by the amount of data that
is desired for some operation, and dividing by the time frame over which the accesses are needed
then gives an estimate of average power dissipated by a DIMM.

Fig. 3.10 includes the power and bandwidth of several generations of DRAM DIMMs (ab-
stracted from [24]), along with numbers for a next-generation DRAM memory stack as discussed
in 3.5.1. These generations include both technology and architectural improvements.

For each generation the ratio of power to bandwidth gives an approximation of the energy in
pJ/bit to access and transfer a single bit of data. Fig. 3.10 includes both this and an adjusted
set of numbers that reflect some additional system considerations (taken from [24]). Additional
columns then give the improvements in bandwidth and energy on a generation over generation
basis. The second to last column then gives a combined factor reflecting an “energy-bandwidth
factor” (bandwidth over energy) that reflects the ability to access data both faster and and at lower
energy, and where bigger is better. Again there is a generation over generation improvement ratio.

3.2.5 Power Dissipation

As discussed above, power dissipation (usually as heat) is roughly αCFV 2, where the aggregate
capacitance C is a function of the capacitance of a transistor and the number of transistors, which is
itself a function of the area of the die, and of the capacitance contributed by wires between circuits.
Clearly if heat dissipation per unit area was roughly constant, then bigger chips, as indicated by
Fig. 3.8, dissipated more heat. Inexpensive air cooling technology, however, was able to keep up
so that power per die went from a watt to in excess of a hundred watts. Much beyond a 100 watts
per chip requires alternative techniques such as liquid cooling, which in turn greatly increases the
cost of a packaged system.
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3.3 2004 - The Perfect Storm

In 2004 a series of technological barriers were hit almost simultaneously that stopped the pre-
dictable growth in capability in its tracks as discussed above:

• The ability to inexpensively extract heat from chips of any size maxed out.

• The ability to lower voltages with decreasing feature size slowed dramatically.

• The design complexity of single core microprocessors hit a point of diminishing returns
where more transistors could add little to the per cycle performance of a core.

• We are approaching a limit on economically viable off-chip interconnect with the technolo-
gies in use at the time, because of electrical issues.

• The cost of increasing wire-based signalling rates also began to grow considerably, espe-
cially in power and complexity of the interface circuits.

• The economics of memory chip production stopped the growth in size of memory die.

• The electrical and power issues associated with driving off of a memory chip at high rates
through inexpensive commodity packaging (such as found on commodity DIMMs) to a mi-
croprocessor chip more than a few inches away reached a point where further improvements
become fairly difficult and/or expensive.

3.3.1 Power Density

Fig. 3.12 diagrams some historical data for the rise in power density (watts dissipated per square
cm of die area), including the projections from ITRS as to maximum power density going forward.
From 1975 to 2005 power density went up three orders of magnitude. For reference, the power
density of several hot objects is included as reference. It is clear why heat sinks started to be
needed in the late 1980s’ and had to increase significantly in complexity over time. It is also clear
why further increases after around 2004 were impractical for inexpensive mass production.

3.3.2 Operating Voltage

Fig. 3.6 also demonstrates the change of slope for operating voltage after about 2001. Before that
we had seen a 4:1 reduction in voltage; going forward there was at best a factor of 2, with perhaps
a 33% decrease between now and the end of the roadmap. Further, the difference between “high
performance” and “low power” logic is also shrinking. This largely removes the ameliorating
effects that the squaring of voltage had on overall chip power.
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Figure 3.12. Microprocessor Power Density.
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Figure 3.13. Historical Clock Rates.

3.3.3 Core Clocks

A vivid example of the effect of this power limit is on the reporting and projection of on-chip
clocks on logic chips. Fig. 3.13 provides some historical data on microprocessor clock rates. The
3 GHz ceiling is obvious from 2004 on.

To understand how this ceiling compares with basic technology, Fig. 3.14 is an overlay of
several ITRS yearly projections of on-chip clock rates from 1999 to the present, and projections
into the future. Before 2006 this was based on a chain of 12 inverters as discussed in Section 3.1.
Also present on this chart is the maximum clock rate of any system in the top 10 of the TOP500
list from 1999 through now.

As can be seen, the ITRS projections through 2004 matched reasonably well the fastest mi-
croprocessors used in TOP500 systems. After that the projections from the ITRS roadmaps got
considerably better, with the 2006 numbers predicting a 20GHz clock by 2012, with a CAGR of
almost 18%.

These projections were right in terms of the basic transistor characteristics, but failed to take
into account the design constraints introduced by the perfect storm. In 2007 through 2011 the
ITRS down-graded their projected clock rates by assuming alternative low power inverter circuits
that they believed reflected a “low power” design philosophy. The CAGR here was about 8%.
Even these, however, proved to be too aggressive, so starting in 2012 they assumed a much more
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Figure 3.14. On-chip Clock from ITRS.

conservative projection assuming very heavily power-limited designs, with a CAGR of a mere
4.3%. At least for 2012 these estimates appear to reflect reality.

The key take-away from this is that the best of the pre 2006 curves, even though they are dated
at this point, reflect relatively well the intrinsic capability of CMOS technology, but that looking
forward, real microprocessors will be giving up something around an order of magnitude in on-chip
clocking rate because of the design issues discussed previously.

3.3.4 Off-Chip “Per Wire” Signalling Rate

Microprocessor chips do not exist as one-chip systems, especially for HPC systems. There are off-
chip memory and I/O that must connect to the microprocessor via wiring on the motherboard that
must connect to contact pads at both ends. Clearly, as the complexity of the cores and their clock
rates increased, there was a need to increase the bandwidth of data between chips. This bandwidth
is driven by the number of wires over which data is being transferred, times the clock rate for the
signalling, times the number of bits that may be transferred per signal clock. This last parameter
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was typically a “1” until perhaps a decade ago, when double data rate (DDR) and quad data rate
(QDR) protocols permitted more bits to be transferred per cycle. DDR, for example, transferred a
different bit on each of the rising and falling edges of the clock.

The product of the last two terms (clock rate and bits per clock) is a raw bit transfer rate which
must be derated by bits needed for overhead and/or error detection and correction (ECC). Ignoring
this overhead, the key technology characteristic is the bits of information transferred per wire per
second, often called the signalling rate.

We will term a path for a single signalling path as a lane. In most commodity systems today a
single lane is a single wire, and multiple such wires work together to transfer aggregates of data.
Each such wire needs one contact on each end to function.

There are many cases, however, where to increase the signalling rate, two wires are used in
what is called a differential pair to make up a single lane. With such protocols, both wires need to
connect to different contacts on both sides of the wire, effectively halving the signalling rate “per
contact.” The upsides of differential signalling are: much faster signal rates (2 - 5 times and more),
ability to go longer distances, reduced signal levels, greatly reduced electrical noise, and greatly
reduced sensitivity to nearby electrical noise sources.

Perhaps the most important such signalling rate is between memory and a microprocessor.
Early on, the data transfers between the two were over a wide parallel bus (typically 32 to 64
data bits), often called the front side bus. Starting around 2000 the gating item in such transfers
was not the microprocessor but the memory, so the bandwidth became dominated by commodity
memory chip technology. Synchronous DRAM (SDRAM) became popular, where the data rate
from a memory chip is tied directly to an explicit clock signal. This quickly led to DDR parts that
transferred 2 bits per clock. Fig. 3.15 shows these single wire rates as taken from [25] for several
generations of parts. Also shown for reference is a CAGR curve of about 17% from the first DDR
chip through the expected end of DDR4 chips;8 following that, the projections from [25] are down
to a 12% CAGR.

Also shown are signalling rates for Graphics Double Data Rate (GDDR) memory chips,
which are used typically by GPUs to provide higher speed access to memory (data taken from
[10]). These parts use larger transistors to drive higher signalling rates and more off-chip wires per
chip over which to transmit data, but have significantly higher power, lower memory capacity, and
thus higher costs than the commodity types.

Next, a variety of alternative signalling protocols have been developed that allow higher sig-
nalling rates per wire, but fewer wires per link. These protocols are designed for strict point-to-
point links, where, unlike DDR protocols (where multiple DRAM chips can be tied to the same
physical wire), there is exactly one chip on each side. Further, wires are paired into lanes, and
where a unique wire in a lane pair transmits data in exactly one direction. This restriction in the
number of chips permits more complex equalization circuits to adjust the waveforms transmitted to
overcome electrical signal distortion and loss in wires so that signal receivers can correctly deter-

8DDR4 chips are in line for availability in 2013; their high cost, however, appears to be delaying their widespread
introduction into widely available commercial systems.
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mine the information content. Protocols that use such signalling include PCI-ExpressTM(PCI-E),
HypertransportTM, and QuickPath InterconnectTM (QPI)TM. Fig. 3.15 includes some recent
values for transfers per second for these interfaces. As can be seen, while there was some growth
between 2004 and 2008, all of them seem to have flattened considerably, at about a peak of 8 Gb/s
per lane.

Finally, some points are included in Fig. 3.15 for differential signalling. These numbers are
taken from the HMC memory stack as discussed in Section 3.5, and are by themselves significantly
above any of the other numbers. However, as discussed earlier, such protocols need two wires, and
thus if we are to compare them on a “per contact” basis, we must divide them by two, as shown
in the dotted lines. When we do so, the rates are in line with the best of the other protocols. Also
included are some recent lab demonstrations of higher rate differential signalling, with Mosys
demonstrating a 25-28 Gbps link in 20119 and Altera with a 32 Gbps link10. It is unclear, however,
when such technology will be commercially viable.

In summary, it is the case that single-ended data rates are approaching practical limits for
distances over an inch or so, while differential signal rates are expected to get to rates exceeding
40 Gb/s. At some point it is expected that optic interconnect is low enough cost to replace a fair
portion of electrical signaling.

3.3.5 Off-Chip Signalling Power

Signalling on wire is not immune to the αCFV 2 phenomena that affected logic so heavily. The
capacitance of contacts and wire between chips has not changed appreciably, meaning that raising
the signalling rate increases the power consumption of the logic that must drive such wires. The in-
crease in off-chip signalling rate for DRAM is illustrative for the effects on any off-chip signalling.
As shown in Fig. 3.15, the signalling rate for DRAM DIMMs using a shared DDR-x protocol
to microprocessor shows a CAGR of about 17% through 2013, nicely matching the expected im-
provement of the basic transistors as discussed above. Part of the reason this was possible was that
the average DRAM chip has only an average 4-8 off chip data wires to run at this rate.

The specialized GDDR parts used for high speed graphics and now GPUs do show a higher
clock rate but the effects of the increased power dissipation and a common interface of 16 or more
data wires per chip has already dropped its actual growth rate well below that of the lower power
DDR DRAM interfaces. After 2013 the projections for commodity DRAM drops to a 12% CAGR,
with what appears to match the current trend in the GDDR component class, which also appears
to be flattening rapidly.

Board technology with better electrical properties can improve signalling power and distance,
but industry has largely avoided this for wide-spread commercial use because of cost. Differential
signaling, in particular, will offer lower energy per bit than single-ended, particularly at higher data

9http://www.chipestimate.com/tech talks/2011/09/20/MoSys-25-28Gbps-SerDes-Design-and-Implementation-
Challenges

10http://newsroom.altera.com/press-releases/nr-20nm-device-altera.htm
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Figure 3.16. Pitch Between Chip I/Os.

rates, but at the cost of multiple traces per signal.

3.3.6 Off-Chip Contacts

Besides signalling rate, the drive to higher chip-to-chip bandwidths is also affected by the total
number of signal I/Os possible from modern microprocessor chips. Fig. 3.16 diagrams the reduc-
tion in “pitch” between pads for different types of chip I/Os over time. This pitch is the minimum
center-to-center distance between two parallel contacts that are not electrically tied together.

When looking at how such contacts can be placed on the surface of a silicon die, there are two
types: peripheral and array. Peripheral contact types can only be placed around the periphery of
a chip, perhaps in 2 or 3 rows. Thus the maximum number of contact is the perimeter of the chip
divided by the pitch, times the number of rows. Array contacts, however, can cover the entire area
of a die, with a total number equalling the area divided by the square of the pitch.

With current packaging, the effective number of “pads” that carry signals off a chip to a socket
or motherboard is less than what might be guessed from these pitches. Fig. 3.1711 lists these
projections for current technology (non-TSV). Also, on average only between 1/3 and 1/2 of these
projected contact pad can carry distinct signals; the rest carry power and ground.

11“MPU” in this figure refers to “Microprocessor Unit.”
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Figure 3.17. ITRS Projected Microprocessor Pad Count.

Clearly, the projections going forwards for improvement in the pitch between contacts is that,
after 2015, there is none. When coupled with the flattening of chip area as demonstrated in Fig.
3.8, the best that conventional technology projects for is a linear increase in off-chip signals of
about 1,500 contacts every 5 years. This is far less than the exponential growth we have seen in
most all other metrics.

The dotted lines back on Fig. 3.16 take the total counts for the MPUs from Fig. 3.17 and
compute backwards to an “equivalent” pitch. As can be seen these equivalent pitches are currently
2-3 times larger than the area array, but are converging slowly towards it. Part of the difference is
that not all chip area can be covered with contact pads. More importantly, however, the substrates
to which the chips are flip-bonded to cannot support the maximum density. Wires on substrates
must be wider than wires on a chip, and thus not so many can “escape” from a single layer under
the die. Increasing the number of layers in the substrate, with different depths of vias from the top,
can increase the number of such wires, but only at significant expense in packaging. The decline
in effective pitch in the dotted lines of Fig. 3.16 are due largely to assumptions about more layers
on the substrate and also with improved chip mounting techniques, but both incur increased cost.
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3.3.7 Off-Chip Contacts versus Transistor Count: Rent’s Rule

Rent’s rule [27] describes an observed relationship between the number of terminals12 presented
by a circuit to the complexity of the circuit (number of transistors, gates, ..). Using data from IBM
computers in the 1960s’, Rent found that the relation T = tGp (where T is the number of terminals,
G the number of gates in an identified logic function, and t and p are constants) fit real data of the
time with great accuracy. The exponent p lay between 0.5 and 0.8. Later studies[4][17] found
very similar relationships for much larger units than simple gates, with the “p” term in tGp lying
between 0.3 and 0.7 depending on the complexity of the functional unit.

Fig. 3.18 diagrams the projections from the ITRS for three classes of microprocessor chips. As
can be seen, the data once again fits the shape of Rent’s rule, but with a much smaller exponent,
around 0.2. Thus the available contacts grow at a rate far less than any of the projections of the
needs of traditional circuit blocks.

3.3.8 Available Off-chip Bandwidth per Unit Logic

An even more interesting metric is shown in Fig. 3.19, where the maximum available signal
contacts for a high performance microprocessor are assumed all used for off-chip data transfers
using either the best of that year’s DDR memory, or GDDR memory, or I/O protocol (PCIe, HT,
or QPI), as graphed in Fig.3.15. The product of the number of signal contacts is multiplied by
the maximum rate for each type of I/O, and then divided by the maximum number of transistors
(in units of a million) that can be placed on such a chip.13 Thus if a core consumed a million
transistors, regardless of feature size, this chart then gives insight into how much exclusive off-
chip bandwidth might be available to just that core at each point in time.

The numbers here are wildly optimistic because not all signal contacts can be data transfers
(there are many control signals to account for), and, especially for GDDR and I/O, the power of
running so many high speed I/Os at the same time probably overwhelms the power problems we
already have for the cores.

However, looking at the graph there is one striking conclusion: once again we have long since
entered a period of time where the bandwidth available “per core” has declined from its peak,
and will continue to decline. By the end of the time period we will have lost about an order of
magnitude from the peak in the early 2000’s.
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3.3.9 Available Off-chip Bandwidth per Unit Computation

Fig. 3.19 graphs available bandwidth as a function of how many millions of transistors are on a
die. This would be accurate if the clock rate for each million transistor unit were the same over all
time. However, clock rates have been increasing, meaning that the same 1 million transistors can
do “more work” over time. Thus, it is appropriate to derate Fig. 3.19 by clock rate to get a better
view of peak possible bandwidth per unit work performed inside the chip.

Fig. 3.20 does this assuming a clock rate that is the minimum shown in Fig 3.14, namely the
peak clock seen in TOP500 systems up through 2012, followed by the ITRS-projected clock rate.
Instead of a 10X drop, we see something approaching a 100X drop in relative bandwidth, with
another 3X loss between now and the end.

Fig. 3.21 repeats this exercise using the projected 12-inverter clock, which was accurate up
until around 2004. Going forward, this would be the more reasonable curve if power dissipation
off the chip were no problem. Here, the derating approaches 1,000X over time, with another loss
factor of 10X from today looking forward.

At least one caveat should be mentioned. Modern microprocessors are 60% or more SRAM

12In this context a terminal is the point in a circuit where the signal (either an input or output) is made accessible to
other circuits.

13The ripples in Figs. 3.19 through 3.21 is an artifact of the way the independent projections of each of the three
terms.
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memory, which both reduces the number of “1 million transistor blocks” that are doing computa-
tion and ups the effective internal bandwidth for heavily re-used data.

3.3.10 Memory

While the number of bits of memory per unit area on a DRAM or flash chip continues to increase
as pictured in Fig. 3.11, the area of such chips is actually declining as pictured in Fig. 3.8, meaning
that the number bits per chip will go through at best a slow increase over time, as pictured in Fig.
3.22. We have dropped from a roughly 4X increase in capacity per chip every 3 years to about a
2X increase every 4 years14.

In terms of HPC systems, this means that if memory capacity is to increase with performance,
more memory chips must be added, which in turn means that there is more capacitance on the
wires between memory and microprocessors, which in turn means more power is dissipated in the
memory subsystem.

Given the flattening of off-chip memory signalling rates, having the bandwidth performance of
memory keep up with increasing on-chip microprocessor performance means that these additional
memory parts need to be spread out onto more memory ports into the microprocessor sockets.
However, there are no more contacts to form such ports with conventional DRAM interfaces.15

Using GDDR memory parts can help in the mid term with extra bandwidth, but their density is
about 1/2 of that for commodity DRAM, meaning that even more memory parts would be needed
to maintain performance. Also, as seen in Fig. 3.15, current projections are that GDDR and DDR4
eventually top off in size at about the same rate, eliminating the advantage.

3.4 The Current Era and The Rise of Multi-core

All of the above constraints have radically affected the architecture of both commodity micropro-
cessors and HPC systems. Microprocessor chips have gone from fast, complex, single-core designs
to slower, simpler multiple cores. Many of these core designs now have a large number of FPUs
(floating point units), greatly upping the aggregate number of peak flops per second possible inside
the chip. At the same time the number of off-chip I/Os for memory and the I/O signalling rate
have roughly flattened, making the aggregate chip bandwidth to memory relatively constant. This
also means that with the number of cores per chip continuing to increase, the available off-chip
bandwidth per core is actually decreasing, as pictured in Fig. 3.19.

Economic pressure on DRAM production has taken away one of the density mechanisms for
DRAM, reducing the density growth. Drives to increase both the number of concurrent accesses

14Part of the reason is that Rent’s ratio of memory size to access width/bandwidth is limiting for standard DIMMs.
15Differential signaling, along with getting rid of the standard interface, offers data rates high enough to reduce the

total number of contacts, but requires new memory interface protocols.
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that can occur within a memory and the rate of off-chip signalling have added area-consuming
complex control circuitry, further reducing area available for memory.

In the HPC arena, the need to link large numbers of nodes together in some sort of topology
has either stolen I/Os from the memory interface, or added heavily I/O-driven router or network
interface chips to the existing interfaces. Further, the need for even more bandwidth has spurred
the development of fiber optic interconnect, which, at least currently doesn’t integrate well with
conventional silicon16.

3.5 The Next Horizon: 3D stacks

To date, commodity technology has been primarily two dimensional: the layout of circuits on the
surface of a chip, or interconnections of chips on a board. Normal off-chip contacts on a silicon
chip are via pads “on the top of” a die, that is a metal pad at the uppermost layer of metal above the
active side of the chip. Standard flip-chip packaging flips the chip upside down so these pads are
on the bottom, with small solder balls placed between the pads and a pad on the substrate below it
and melted to form a contact.

16Although there is intense work on CMOS/optic integration. Optics interconnect, starting first as a board and
cabinet interconnect, can lower system cost and power.
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A new technology termed Through Silicon Vias (TSV) uses a metal-filled or doped-silicon
tunnel etched all the way through the silicon substrate of a chip to allow a signal from the back
side of a chip to reach the active layers and/or another surface pad. Fig. 3.23 shows a cross-section
of a chip with three variants of such TSVs, depending on how high up in the layers of metal (the
dark blue in the figure) the TSV interconnect goes. Via First TSVs go from the backside only
through the substrate, and allow contacts to the first level of metal just like contacts to a transistor
on the same substrate. They are fabricated before transistors or metal layers are formed. Via
Middle go up partway into the metal layers above the substrate, and may make contact with a
metal line where they meet, but do not interfere with the placement of I/O pads on the top of the
chip. Via Last go up all the way through the chip and end at a surface pad at the top, and are
formed after other processing is complete.

If the surface pads on the top of the chip line up with the backside pads of another TSV-
enabled chip, a 3D stack can be formed through multiple die where communication can be not just
horizontal on the surface but vertically up and down in the stack. They can be formed from via
first or via middle TSVs with wire-layer interconnects to electrically connect the top and bottom
bumps. In terms of ITRS notation, this is die-to-die (D2D) bonding of chips, with an arrangement
of back-to-face bonding.

The expected minimum pitch between TSVs is included in the earlier Fig. 3.16. As shown,
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there is the potential for nearly an order of magnitude decrease in pitch over conventional contacts,
meaning there may be up to 2 orders of magnitude more chip-to-chip contacts with TSVs than
discussed earlier, with another factor of two if Via first or Via middle TSVs are used (top and
bottom may then be different signals), which is useful for stacks of different die types.

While promising, there are two caveats. First, this contact density is only between chips in a
stack; once an off-stack contact is needed the density reverts to the traditional numbers discussed
earlier. Second, the fact that the TSV is a “through” via means that transistors cannot be placed
in the region where the TSV comes up from below. Thus there is a loss of effective die area with
the inclusion of TSVs, though this loss will be reduced over time with smaller via diameters along
with other rule improvements.

TSV connections are much shorter (microns rather than inches) and much lower capacitance
than going off-chip conventionally. Thus the complexity and energy to signal through them at high
speeds is far superior to conventional I/O. In addition, as technology matures, the pads needed to
allow top TSV-driven pads from one chip to mesh with bottom pads for the next chip in the stack
can be placed at a far finer pitch than the pads needed for typical off-chip I/O. This means that the
number of TSVs that can be placed on a unit area of silicon far exceeds the number of conventional
contacts needed to go off-chip.

3.5.1 Hybrid Stacks

The concept of hybrid stacks, where dissimilar die types are stacked together, has been reduced
to practice with a demonstration of a logic chip below stacks of modified memory die. The logic
chip contains both memory controllers and high speed routers and signalling to go off chip to other
stacks or even conventional microprocessors.

An example of this is a prototype memory stack termed the Hybrid Memory Cube (HMC)
demonstrated by Micron[24] in 2011, with projected use not just with DRAM but a wide variety
of alternative memory technologies in 2013[25]. A consortium of several companies, called the
Hybrid Memory Cube Consortium17, have recently released a specification for a potential first
generation product using this technology[5].

As pictured in Fig. 3.24, the architecture of such stacks includes a vertical “slice” of all the
DRAM chips that form a vault that together share a TSV-implemented interface down to the logic
base chip. On the logic chip under each of multiple such vaults is a vault controller, which
includes at a minimum a memory controller and switching and link logic to connect each vault to
interfaces that leave the bottom side of the logic chip. Fig. 3.25 is a die photo of a memory die
from the 2011 HMC stack[24]; the locations of the TSVs are clearly visible as small circles.

Fig. 3.26 diagrams the architecture of the HMC stack as described in [5]. The router, link
interfaces, BIST (Built-In Self-Test), and a maintenance capability all share space with the vault
controllers on the base die.

17see http://hybridmemorycube.org/
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Table 3.1 summarizes some reported and projected characteristics.
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2011 Prototype Projected 2015
Characteristic ([24]) ([25],[5])

DRAM Technology 50nm Est. 20nm
Memory die/stack 4 4-8

Memory/die 1Gb Est. 8Gb
Memory/stack 512MB 4-8GB

Logic Technology 90nm Est. 30nm
Logic die/stack 1 1

Number of TSVs Est. 2620 Est. 5000
Number of vaults 16 Est. 32
Memory/die/vault 8MB 32MB

Memory/vault 32MB 128-256MB
Memory banks/partition 2 2

Memory banks/vault 8 8-16
Down vault Bandwidth Est. 10GB/s Est. same

Total Memory to Logic Bandwidth 160GB/s Est. 320GB/s
Off-chip links 4 8

Differential Lanes per link 16 16
Signal Rate/lane direction 10Gb/s 10-15Gbps
Total off-chip bandwidth 160GB/s 320-480GB/s

4-High Stack Power 11.02W Est. 15W

Table 3.1. Reported and Projected Hybrid Memory Stack Char-
acteristics.
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Chapter 4

HPC Architecture Classes

The high level architecture of virtually all HPC systems for the last 20 years has been a collection
of independent nodes, each of which contains one or more computational processor chips, some
amount of local DRAM memory, and some interface logic to permit communications between
nodes or dedicated I/O units. To reflect the relatively high fraction of the node cost taken up by
these compute chips, and to avoid confusion between microprocessors, cores, etc., we refer here to
each compute chip with a significant number of logic transistors (and likely needing a heatsink or
other cooling apparatus) as a socket1.

Depending on the design, there may be separate chips for subsidiary functions such as timing
generators, memory controllers, boot management, performance monitoring, and the like.

Prior to 2004 the predominate computational socket held a single core microprocessor chip
derived from a commercial offering, running at the maximum clock rate of the day, and executing
only one or two threads each. While the complexity of the core increased with time, the number
of FPUs per core stayed relatively small. There were a few exceptions, the most notably being the
Earth Simulator whose sockets held custom-designed SIMD vector units.

After 2004, there has been a tri-furcation of architectures based both on the architecture of the
chips in the sockets and on the nature of the nodes themselves. Using nomenclature first introduced
in the Exascale technology report[16], these include Heavyweight, Lightweight, and over the last
five years Hybrid. In the very near future we may see the rise of BigLittle architectures that
blend aspects of all of the prior three. In addition, there may be an emerging class based on
moving from today’s “2 dimensional” systems (in terms of how chips are designed, packaged, and
interconnected on a node printed circuit card) to “3 dimensional” systems using 3D stacks of chips
as discussed in Section 3.5. Each is discussed below.

For reference, Table 4.1 summarizes many of the characteristics of the different classes for
representative current systems, and Fig. 4.1 pictures typical boards.
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Typical Processor Socket Chip Characteristics
Reference POWER7 Blue Gene/Q Nvidia GK110

Transistors (Billion) 1.47 7.1
Feature Size (nm) 45 28

Cores per Chip 8 16+2 14 SMX
FPUs per Core 4 FMA 64 FMA

Core Clock Rate (GHz) 3.836 1.6 0.732
Rpeak per chip (GF/s) 245.5 204 1312
Memory Ports per chip 2 6
Memory Type on Port DDR3 DRAM chips GDDR DRAM chips

Memory B/W per chip (GB/s) 128 42.7 288
Socket to Socket Interfaces none

Typical Node Characteristics
Reference POWER 775 Blue Gene/Q Cray XK7

Heavyweight Sockets 4 0 4
Lightweight Sockets 0 1 0
Accelerator Sockets 0 0 4

Rpeak per node (GF/s) 982 204 5,800
Main Memory per Node (GB) 128 16 32

Accelerator Memory per Node (GB) 0 0 6
I/O B/W per node (GB/s) 192 44

Power per Node (W) 98 1,760
Nodes per Rack 96 1024 96

Cooling Water Air
Typical System Characteristics

Architecture Heavyweight Lightweight Hybrid
Example System DARPA Trial Sequoia Titan
Compute Nodes 1,980 98,304 4,672

Total Nodes 2,048
Racks 24 96 200

Compute Main Memory (TB) 253 1,572 710
Accelerator Memory (TB) 0 0 112

Rpeak (PF/s) 1.94 20.1 27.1

Table 4.1. Architecture Characteristics.
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4.1 Traditional Chip Set Architectures

A typical computer up through the mid-2000s had upwards of three chips per node as pictured in
Fig. 4.2. There was the microprocessor chip/socket, which in turn connected to a northbridge
chip/socket over a high speed and as wide as possible front side bus (FSB). This northbridge chip
then contained one or more memory controllers that in turn connected to standard memory parts
of some sort. For use in personal computers, it often also held an either a full graphics engine
and/or a high speed interface to such a controller on yet another chip. In addition, it often also
connected to a southbridge chip/socket, which in turn had multiple interfaces (often specialized)
to different classes of I/O devices. This arrangement allowed a microprocessor chip to be designed
relatively independently of the type of memory and mix of I/O and graphics. It also allowed
independent high speed access to memory from either the graphics interface or the I/O devices.

In a typical HPC environment, the northbridge chip needed to support only memory and per-
haps some secondary I/O, with the southbridge replaced by a heavy duty router chip that allowed
a compute node to be placed into a bigger topology. A common topology was a 3D toroidal mesh
with six separate bidirectional links, one each for east/west, north/south, and up/down.

In contrast, Fig. 4.3 diagrams a typical modern multi-core microprocessor socket. The growth
in transistors has allowed integration of much of the north and south bridge chips onto the micro-
processor. In particular, there is often two to four standard memory controllers and their interfaces

1There are modules that contain multiple die but still package like single-chip parts. The term “socket” will refer
to them also.
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(typically DDR3 interfaces), allowing direct attach of memory DIMMs.

In addition there are some number of socket to socket interfaces (labeled “S-to-S”) in the fig-
ure) that utilize some small number of the non-memory higher-speed protocols discussed in Sec-
tion 3.3.4, such as HypertransportTMor QPITM. These interfaces provide links to other processor
sockets so that a memory reference made in any core in any such connected socket can travel to
the correct socket that controls the identified memory location, and fetch the data. There is often
a cache-coherent protocol on top of these links, so that all memory attached to all such intercon-
nected sockets behaves as a single shared memory system, albeit Non-Uniform Memory Access
(NUMA) in access time.

The third kind of off-socket link is to provide access to I/O devices. Again some form of high-
speed multi-lane protocol is typical, such as HypertransportTMagain, or PCI-ExpressTM. Memory
access routing logic internal to the processor socket again allows streaming of data to or from these
interfaces directly from memory, without going through a core.

Again, because of off-chip contact limitations, the number of all such interfaces is limited, and
is unlikely to improve significantly with conventional technology. There will be some improvement
in data rates (perhaps up to 4X for a differential pair over a single wire) but after that higher rates
will need optics.

4.2 Heavyweight Architectures

The class of systems, termed Heavyweight, are the natural descendants of the pre-2004 systems
where one or more traditional, high end, multi-core microprocessor chips have been used in the
compute sockets, often with a variety of support chips connecting to relatively large numbers of
conventional DRAM memory DIMMs, and chips to perform off-node communication and routing,
as pictured in Fig. 4.4. Typically the compute and routing chips are run at very high clock rates
and require large (and “heavy”) heatsinks over them to keep them cool. Typical of such machines
is a Power7+ board (Fig. 4.1(a))2 where much of the board is taken up by the heatsinks for the
processor sockets and the I/O sockets (essentially southbridge chips).

The chips in modern heavyweight processor sockets have eight to sixteen cores, each with
two to four FPUs, and running at or above 3GHz. Typically up to 4 independent memory ports
are supported, with each port supporting two to four high capacity, multi-rank, high bandwidth
DIMMs.

All the cores in a single heavyweight processor socket share access to all the memory attached
to that socket, usually including cache coherence. In many heavyweight designs this sharing of
memory extends to some, usually small, number of other compute sockets in the same node. These
compute sockets then typically share a node network interface that uses a non-memory oriented
protocol. Thus a single node has a moderately large number of cores that share local node mem-

2image from http://www.theregister.co.uk/2012/11/13/ibm power7 plus flex storwize/.
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Figure 4.4. Typical Heavyweight Node Architecture.

ory with each other, but has a more distributed memory interface when dealing with any core or
memory elsewhere in the system, requiring software such as MPI for communication.

Typically at most a 100 or so such nodes can fit in a single rack.

4.3 Lightweight Architectures

The introduction of the IBM Blue Gene/L[29] in 2004 used a compute socket with a dual core
processor chip that included memory controller and I/O and routing functions on a single chip.
The cores were much simpler than for the heavyweight machines, and ran at a much lower clock
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rate. Such a chip, when combined with some memory, made a complete node in the above sense,
as pictured in Fig. 4.5. Two such nodes were then packaged on small cards which plugged into
motherboards that inter-connected them. Because the required heatsink was so much smaller than
for a heavyweight, many of these small cards could be packaged in the same space as a heavy-
weight node (up to 1024 of such nodes in a single rack). Subsequent versions, Blue Gene/P[2] and
now Blue Gene/Q[9], as pictured in Fig. 4.1(b)3, have continued this class of architecture. Blue
Gene/Q in particular has a 16+1 multi-core processor chip, with two memory controllers connected
directly to conventional DDR3 DRAM chips on the same node board.

Again all cores in a node’s processor socket view the node as a single shared memory structure,
but as with the heavyweight nodes, other nodes are viewed in a distributed fashion, requiring
software such as MPI for communication.

4.4 Hybrid Accelerator-based Architectures

The original Exascale report[16] identified only the heavy and lightweight classes. Since then,
however, a third class has surfaced, which combines with a heavyweight socket a second compute
socket where the chip in it boasts a large number of simpler cores, usually with an even larger num-
ber of FPUs per core. Today such chips are derived from Graphics Processing Unit GPUs, such

3image from http://www.cpushack.com/wp-content/uploads/2013/02/IBM51Y7638 BlueGeneQ.jpg
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as the Nvidia Tesla architecture4, the Intel Xeon Phi architecture5, or the AMD GCN architecture6.

Fig. 4.1(c) pictures one such node from the Titan supercomputer7.

As with the heavyweight nodes, something of on the order of a 100 such nodes could be packed
into a single rack.

Memory within such nodes is today usually not as fully shared as in the other classes. Instead,
the accelerator node typically can only access its own local GDDR memory during computation.
Thus the heavyweight host processor must explicitly transfer between the accelerator’s memory
and its own memory. This staging takes both time and program complexity, and derates the useful-
ness of the accelerator when random accesses to larger amounts of data than can fit in the GDDR
is needed.

4.5 BigLittle Architectures

Of the prior classes of architectures, both the heavyweight and lightweight had two points in com-
mon: all cores executed exactly the same ISA and had exactly the same microarchitecture. In
contrast, a hybrid accelerator-class had at least two different core types, different in both ISA and
microarchitectures.

An alternative architecture that is beginning to surface in discussions of high end servers is
termed BigLittle. In such an architecture all cores have the same ISA, but the cores may have
different microarchitectures, most probably even on the same chip and share the same memory.
This difference reflects different optimization points. “Big” cores are optimized for highest per-
formance; “little” cores are optimized for performance per watt. Threads can be initiated on either
core type and get the same answer, but in different times and different energy expenditures. Sharing
the same memory permits such a switch in execution to occur without moving data.

This class of architectures was first proposed by ARM in 2011, with core pairs Cortex-A15
(Big) and Cortex-A7 (Little)[8]. More recently, ARM has announced Cortex-A53 and Cortex-A57
cores to fulfill similar roles8. Recently announced sockets using this technique seem to be clustered
around two different configurations as pictured in Fig. 4.7: 1-to-1 and 2-to-1 in favor of the little
cores. Having a 1-to-1 ratio allows a thread to run on either the big or little as conditions require,
with the “unused” core turned off for energy savings. Having more little cores than big cores
allows either high-speed sequential performance from the big core or high-speed, energy-efficient,
parallel performance from the multiple little cores.

4see http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
5see http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
6see http://www.amd.com/us/Documents/GCN Architecture whitepaper.pdf
7image from http://techreport.com/r.x/2012 10 29 Nvidia Kepler powers Oak Ridges supercomputing Titan/titan-

blade.jpg
8http://www.arm.com/products/processors/technologies/biglittleprocessing.php
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Figure 4.7. BigLittle Architectures.

In addition, a very desirable attribute of such an architecture is the ability to dynamically move
a thread state from one core of one type to another during program execution as conditions dictate
(versus just at thread spawn time). In the case of ARM, there is a cache coherent link protocol de-
signed to connect such cores and allow such migrations9 without having to manage cache contents
of the two cores explicitly.

Arm claims that less than 2,000 instructions are needed to migrate a thread state from one core
to another. This is in comparisons from estimates from the Intel Cilk Plus website that for a thread
on one core to steal work from another core is about 15,000 instructions.

Some benchmark data10 on the relative performance and energy of A7 and A15 cores are
pictured in Fig. 4.8, along with some of the micro-architectural features of the cores and two
trend lines. All points are at of above the equal energy-performance line (in green) indicating
that increasing performance by X takes more than X increase in energy. The red line reflects the
average of these energy to performance ratios of about 1.5 to 1, that is doubling performance on
average triples the energy to do the computation.

Intel may also be on the road to something similar with the Intel Phi chip which contains up
to 61 lightweight Xeon-compatible cores. The June 2013 top supercomputer Tianhe-2 used these
chips as coprocessors to a conventional heavyweight Xeon socket. In this configuration, however,
the two core types do not share the same memory; the little cores on the Phi have a memory
space separate from the host Xeon, and, as in earlier hybrid accelerator architectures, explicit
data transfers must be performed between the two to allow computation. There are also network

9http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php
10http://www.arm.com/files/downloads/big.LITTLE Final.pdf
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differences between cores within the accelerator: Phi uses a very wide dual ring, whereas most
GPUs use something akin to a cross-bar.

4.6 Emerging 3D Architectures

3D stacks have become a major study topic in computer architecture in the last few years. Black et
al[1] studied two forms of die stacking: placing cache chips on top of a conventional microproces-
sor, and splitting such a microprocessor into two die. Ghosh and Lee[7] and Kgil et al[13] studied
microarchitectures that use 3D stacking to reduce energy costs. Loh[18] discussed re-architecting
DRAM die that would stack above a conventional processor core in ways that increase the band-
width and memory level parallelism of the memory as seen by the processor. Udipi et al[30] studied
3D stacks of conventional memory die with a photonic interface base chip. Sun et al[28] discussed
stacking MRAM chips on top of a multi-core processor die. Madan and Balasubramonian[19]
proposed a two die processor stack where the second die performs redundant checking of the first.

The X-caliber project[23] at Sandia Lational Labs was an attempt to advance this style of
architecture beyond a single node, into an architecture that would scale beyond current systems.
Fig. 4.9 outlines the structure of a proposed X-caliber node, and a graphic11 of a mockup of its
possible future implementation on a small substrate. Each such node would have two heavyweight

11image from https://share.sandia.gov/news/resources/news releases/images/2010/Computer.jpg.
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(a) X!caliber Node Architecture

P: multi!core processor socket

M: memory stack

NIC: off!node router

(b) X!caliber Node Mockup

Figure 4.9. X-caliber Memory-Stack Centric Node.

processor sockets surrounded by a large number of memory stacks. The interface between the
processors and the sockets would be a high-speed interface akin to the Hypertransport and QPI
interfaces discussed earlier, and running at speeds in the range suggested by the HMC work from
Section 3.5. Similar interfaces from the memory stacks would go to two router sockets, which in
turn would provide very high radix routing into a much more fully connected topology than a 3D
torus.

For reference, Fig. 4.10 (also taken from [23]) diagrams the architecture of a single memory
stack. The DRAM chips above the base logic are organized as in the HMC, with what was a “slice”
(vertical partition) in the HMC labeled as a “vault” here. For each of the assumed 64 vaults per
stack there is on the logic base chip a memory controller (“MC” in the figure) and a vault atomic
unit (VAU). This VAU is a small processor core of limited capability, but capable of performing
close-in “atomic” operations to memory in the vault slice above it.

Also on the logic chip are some number of more conventional cores, labeled “EMPs” here.
These cores can execute conventional programs, and make memory references to any of the mem-
ory either here or on other memory stacks anywhere in the system. The key to accomplishing this
is an on-chip router that couples all the EMPs, vaults, and off-chip links together, and is capable
of routing memory or processing requests to any vault/VAU from any EMP or cores in the main
processor sockets.

Also, each stack is assumed to have not just the DRAM stack above the base logic chip, but a
second non-volatile memory stack. This non-volatile memory could be used as either a local large
scratch memory, or as local disk replacements.
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Figure 4.10. X-caliber Memory-Stack Logic Chip Architecture.

Figure 4.11. Performance of a Rack of 128 X-caliber nodes.
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Sizings place up to 128 such nodes (256 processor sockets and 2048 memory stacks) for char-
acteristics as shown in Fig. 4.11 (again taken from [23]).
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Chapter 5

Historical Data

The major purpose of this report is to track progress towards “exascale” by the best of current and
projected technology, as a function of architecture. From its beginning, the TOP500 (Section 2.1)
has focused on performance of LINPACK on the leading parallel computers of the day. More re-
cently GRAPH500 (Section 2.2) has arisen to give insight into non-flop-intensive applications. To
allow for year-over-year comparison, the rankings have used a few simple terms to specify both the
hardware architecture and the performance. While satisfactory for most of the early years, with the
rise of SMPs, multi-cores, and now hybrid architectures, making “apples-to-apples” comparisons
has become more difficult, especially when detailed analysis and projections are desired as was
done for the original Exascale report. In the following subsections we review the terminology used
in this paper (and suggest that the use of some variants be defined and measured in future rankings
to simplify future analysis), and then go through historical trend charts for each of the rankings, so
as to understand what has happened in the past.

Throughout these charts an attempt is made to standardize the shape and color of data points
as follows:

• Red squares relate to systems with Heavyweight nodes.

• Green circles relate to systems with Lightweight nodes.

• Purple triangles relate to systems with Hybrid nodes.

• Purple stars relate to systems with architectures different from any of the above (GRAPH500
only).

5.1 Basic System Parameters

Until the November 2008 TOP500 list, the key parameter used by the TOP500 to describe the
architecture of a system was “Processor Count.” This became quite fuzzy with the rise of multi-
core, and was replaced with “core count.” Even that, however, is still inadequate for the kinds of
projections done here. Consequently, the following is the list of terms used in this paper1:

1These definitions were first made for the Exascale report[16], amplified in the SC11 paper[15], and then refined
in a more precise fashion for this document.
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• Core: for a CPU, a set of logic that is capable of independent execution of one or more
program threads concurrently.

For GPUs, the terms SIMD core and Streaming Multiprocessor (SM) have been used by
AMD and NVIDIA respectively. Each such unit has a number (typically 16-48) of repli-
cated simple processors (unified shaders) which contain the ALUs and increasingly FPUs.
However, each such unit executes a common thread of instructions, and thus is counted as a
single core (albeit with a great deal of internal computational concurrency).

• Socket: a package, typically containing a single chip, that provides a very large amount
of logic for key processing functions, and reflects that when one looks at a modern HPC
system, the biggest area on a board is devoted to the heatsink and socket that sandwich such
a chip. The key socket is for processing, but it is not uncommon to see additional sockets for
chips that perform routing and communications functions, often called Network Interface
Controllers or NICs.

In earlier rankings, a processor socket was primarily a single-core microprocessor chip, and
thus counting sockets was equivalent to counting “processors.” Today, a compute socket typ-
ically supports a large number of cores, and may be either a conventional “microprocessor”
or an “accelerator” such as a Graphics Processing Unit (GPU), or, increasingly, a mix.

• Node: the set of sockets, associated memory, and NICs that represent the basic replicable
unit of the system, as seen by application software. Several years ago the term “node” came
into vogue, and was used interchangeably with “processor” and “socket.” With the rise first
of chip sets that couple multiple identical microprocessor chips into a single unified SMP
(Symmetric Multi-Processor), and then by the rise of multi-socket machines with mixes
of heterogeneous microprocessors (as in Roadrunner), it became important to make this
distinction.

• Core Clock: the clock rate of an individual core as it executes instructions. In systems with
multiple types of cores we will distinguish between the clocks of different core types.

• Compute Cycles per Second: With the emergence of hybrid architecture systems there are
at least two major clocks, that for the cores in the main heavyweight socket, and that for the
cores in the accelerator. This metric computes the sum of the product of core count and core
clock rate for both types, and expresses the total number of times per second in which some
core can a cycle of perform computation.

• Memory Capacity: the aggregate physical memory (typically DRAM) that holds non-
transient data and is directly addressable by programs running in cores within sockets, within
nodes, not including caches.

Note that future systems will use non-volatile memory (NVRAM) as an additional first-level
memory to support large static data sets, code, and former disk functions such as checkpoint
storage.

Most accelerator chips today, and systems that use a combination of conventional micropro-
cessors and accelerators, use memory separate from that of the host processor. Such memory
is normally much smaller and used as temporary staging areas for pieces of data in the host
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processor’s memory. Thus, such memory, if present, should be recorded separately from the
host memory, as it is the size of host memory that typically controls the biggest problems
that a system can handle.

• Power: total power consumed by the system. This metric today is often recorded inconsis-
tently across system descriptions, depending on whether or not file systems (disk drives) are
included, and/or whether the power required for cooling and power conditioning is counted.
In the future it may be more consistent to quote perhaps CEC power as the power actu-
ally drawn by the computing electronics, system power to include secondary storage and
local power conditioning, and facility power to include cooling and power conversion and
redundancy effects.

5.2 Performance Metrics

A second set of terms is important from the standpoint of comparing systems. The most obvious
ones are from the prior benchmarks:

• Rpeak and Rmax which drive the TOP500 rankings[6] (Section 2.1), with Nmax and N1/2 as
storage metrics.

• TEPS (Traversed Edges Per Second) which measured the performance from the GRAPH500
(Section 2.2), with problem size as a storage metric.

The Exascale report added the following metrics:

• Thread Level Parallelism (TLP): the number of distinct hardware-supported concurrent
threads that makes up the execution of a program.

None of the top systems to date have been explicitly multi-threaded, although newer chips
do support at least a low level of “Hyper Threading.” Consequently, for this study each core
as reported in the TOP500 list is assumed to correspond to a single thread of execution.

• Thread Level Concurrency (TLC): is an attempt to measure the number of separate oper-
ations of interest that can be executed per cycle per thread.

For the TOP500 the operation of interest has been floating point. It is computed as the
performance metric (Rmax or Rpeak) divided by the total number of compute cycles in a
second.

TLC is meant to be similar to the Instruction Level Parallelism (ILP) term used in computer
architecture to measure the number of instructions from a single thread that can either be
issued per cycle within a microprocessor core (akin to a “peak” measurement), or the number
of instructions that are actually completed and retired per second (akin to the sustained or
“max” numbers of the current discussion).
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• Total Concurrency (TC): the total number of separate operations of interest that can be
computed in a system at each clock cycle.

For the TOP500 such a measure reflects (within a factor of 2 to account for fused multiply-
add) the total number of distinct hardware units capable of computing those operations. This
metric can be computed as the number of cores times the peak TLC, and is important because
it reflects the explicit amount of concurrency that must be expressed by, and extracted from,
a program to utilize the hardware efficiently.

• Flop/s per watt (FPW): the performance of the system divided by system power.

• Energy per flop (EPF): the reciprocal of the above, in units of Joules (or more conveniently
in most cases “picoJoules” (pJ), 10−12 Joules).

We note that many of these metrics may actually be computable in several forms depending on
which performance metric (Rmax, Rpeak, or TEPS) is used. We also note that the original goal of
the Exascale study was for an exaflop/s at 20MW, which is equivalent to an energy expended per
flop of 20pJ.

5.3 Historical Results: TOP500

5.3.1 Basic Performance Characteristics

The most common observations about the TOP500 come from fitting simple trend lines to the key
system characteristics. Figs. 5.1, 5.2, and 5.3 list Rpeak, Rmax, and system memory capacity as
scatter plots versus time. These graphs plot just the top 10 systems from each of the bi-annual
lists. The first two also are similar to the lead charts from the TOP500 website. Also included on
each are simple curves based on a constant compound annual growth rate that fit key regions of the
plots. This CAGR rate is listed in the legend of each figure.

These graphs also show the introduction of alternative architectures, first the lightweights in
2004 (green circles) and then the hybrids in 2008 (purple triangles).

Both Rpeak and Rmax have increased at virtually the same CAGR for the last 20 years, including
the 2004 transition. It is interesting that Rpeak measurements between the top system and the
number 10 system has consistently been about an order of magnitude, with the same spread for
Rmax being somewhat less.

In contrast, the total memory per system increased from 1992 through 2004 at a slightly higher
rate (2X/year) than either Rpeak (1.9X per year) or Rmax (1.88X per year). However, after 2004
the maximum memory per system was flat for 4 years for the heavyweights, with the lightweight
numbers literally dropping up to an order of magnitude behind the heavyweights.It is only recently
that both lightweight and hybrid systems have come up to the same levels as the heavyweights,
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Figure 5.1. TOP500 Rpeak versus Time.
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Figure 5.2. TOP500 Rmax versus Time.
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Figure 5.3. TOP500 Memory versus Time.

and that is about 10X lower than the memory would have been if it had grown at the 2X rate after
2004.

Also as a note, the hybrid measurements includes both the memory for the heavyweight sockets
and the accelerator memory for the accelerator sockets. Since the accelerator memory is used as
transient intermediate storage, strictly speaking, this should not be included.

5.3.2 Per flops/s Metrics

Two metrics that are ratios of these metrics are efficiency, the ratio of Rmax to Rpeak, and bytes per
flop/sec. The former is a view of how well a system is in converting peak theoretical capability
into sustained capability. The latter is a long term metric where the conventional “rule of thumb”
was that a byte of memory is needed for each flop executed per second.

Fig. 5.4 diagrams the efficiency versus time. This is actually in a tight band from 70% to 90%,
except for a precipitous drop for the hybrid systems, which have efficiency as low as 40%, about
half that of heavy or light weight systems.

An interesting consideration for the hybrids is that there are FPUs in both the main heavyweight
processor and in the GPU accelerator, but most of the core floating point in LINPACK is in the
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Figure 5.4. TOP500 Efficiency versus Time.

accelerator FPUs. Thus this aggregate efficiency is probably too low if we look at just accelerator
flops, and too high if we look at just heavyweight flops. A further study should focus on how many
of each are actually used.

In terms of main memory per flop/sec, Figs. 5.5 and 5.6 show similar trends using both Rmax
and Rpeak. Before 2004, the best systems had in fact about 1 byte per flop/sec, but after 2004, this
ratio has declined by a ratio of 0.75 per year (about 1/2 every 2 years). Also, as can be seen, the
lightweight and hybrid systems are even worse.

5.3.3 Socket and Core Growth

Fig. 5.7 gives a time line for the growth in sockets and cores. The solid points correspond to
sockets; the hollow points correspond to cores. As before, the red, green, and purple refer to
heavyweight, lightweight, and hybrid respectively.

Up until 2004 the core count overlaps the socket count; a core per socket was the norm, and
the maximum count of either in a system was flat at about 10,000. Since then, however, there is a
growing divergence, reflecting the growth in multi-core implementations, with a 10X increase in
sockets and a 100X increase in cores. In particular, the socket count went through a rapid transition
from 10,000 to about 100,000 and has been flat. The core count, however, has been growing at a
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Figure 5.5. TOP500 Bytes/Rpeak versus Time.

CAGR of 1.67 per year. This is clear evidence of the switch from increasing clock rate to increasing
physical parallelism in architectures after 2004.

Note that for single-threaded cores, the TLP metric defined earlier is the same as the core count
in Fig. 5.7.

5.3.4 Clocks and Concurrency Metrics

Perhaps of even more interest are details of the way performance is obtained. Fig. 5.8 graphs the
max clock rate of the cores in a system, with several obvious conclusions. First, from 1992 through
2003 the clock rate grew at a CAGR of about 1.4, but the peak clock rate did in fact flatten around
2004 for the heavyweight sockets. Second, the lightweight machines chose a significantly lower
clock rate than the commodity heavyweight, and even today are perhaps 1/3rd of the heavyweight
maximum. Third, the hybrid systems have two clock measurements, one for the main heavyweight
socket and one for the accelerator socket. The former has followed the heavyweight trends; the
latter the lightweight trends.

An additional insight is the sum total of compute cycles available on all cores per second. Fig.
5.9 diagrams this metric, and with the exception of a few years just before 2000, there was an
uninterrupted CAGR of 1.8 for the entire period.
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Figure 5.6. TOP500 Bytes/Rmax versus Time.
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Figure 5.9. Compute Cycles per Second.
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Figure 5.10. Thread Level Concurrency (TLC): Flops per cycle.

We note that this aggregate cycle count is growing slightly slower than either Rpeak or Rmax.
Clearly the increase in performance must be due to performing more computations per cycle per
thread/core (the TLC metric discussed earlier). Fig. 5.10 diagrams this count of flops per cycle for
both Rmax (solid points) and Rpeak (hollow points). With very few exceptions (primarily the Earth
Simulator in the early 2000s’), the max for this was about 4 until the rise of the hybrids and the
presence of GPU cores with 10s of FPUs.

Again, there is interesting insight to be gained for the hybrid systems if we separate out host
and accelerator.

Next, total concurrency (TC) is the total number of operations that must be “in the air” at each
and every machine cycle. Equivalently, TC is the number of operations “retired” or completed per
second. This is important because it reflects the amount of parallelism that must be dragged out of
the application in each and every cycle. Fig. 5.11 shows this metric by dividing Rmax by the clock
rate of a core in the system (for hybrid systems we compute an “average” rate based on the mix
of heavyweight and accelerator cores). This graph shows for that the long stretch of time when
technology permitted clock rates to rise, the TC value stayed between a few thousand to a few tens
of thousands, at a CAGR of about 1.4. However, once the clock rate flattened (about 2004), the
only way to get additional performance was through brute parallelism, and this number then began
to take off, with a CAGR that grew to 2X/year.
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Figure 5.11. Total Concurrency (TC).
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Figure 5.12. System Power.

5.3.5 Power and Energy

Fig. 5.12 diagrams total system power. The trends here are a bit harder to see, other than an average
peak of 1-3 MW until 2008, when a rapid climb to 10-20 MW after that. Fig. 5.13 is perhaps more
revealing by computing total system power divided by the number of compute sockets. This in-
cludes aggregate power from memory, routers, and other support circuitry. Here the heavyweights
before 2004 showed an average CAGR of 1.32X/year,and then precipitously declined after reach-
ing nearly 700W per socket. The lightweights are in the much lower 20-30W per socket, and the
heterogeneous are now considerably higher per socket than the heavyweight alone. We note that
in the latter case, the socket count includes the microprocessors and the GPUs.

Finally, Fig. 5.14 divides total power by Rmax to get an energy expended per flop executed.
The best of these points, which appear at about 4 year intervals, matches up with a CAGR that
is declining at about 0.6X per year, a reduction of about 8X every 4 years. However, starting
in 2004, the heavyweight systems began to diverge away from this CAGR, while the lightweight
architectures, especially Blue Gene/L, provided a one time improvement that moved the best points
back into the CAGR 0.6X trend, and after 2008 the hybrid architectures also filled in the gap
between the heavyweights and the trend line.
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Figure 5.13. Power per Socket.
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Figure 5.14. Energy per flop with Trend Line.
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Figure 5.15. Energy per Flop vs Time: TOP500 vs Green500.

5.4 Historical Results: GREEN500

As discussed in Section 2.1, the GREEN500 benchmark is the same at the TOP500, but with
flops/sec per watt as the metric, and Rmax used as the point of comparison.

Fig. 5.15 inverts this metric to energy: pJ per flop, and overlays for comparison purposes the
equivalent numbers for the top 10 of the TOP500 rankings from Fig. 5.14. Solid points are from
the TOP500; hollow points are from the GREEN500.

Overall, the GREEN500 systems are more or less consistently better in pJ/flop than the best of
the TOP500 by perhaps a factor of 3X.

The prior figures all looked at these metrics as a function of time, so that improvements could
clearly be seen. Fig. 5.16 graphs the same data points as Fig. 5.15, but measures against the Rmax
value achieved by the energy point. No distinction is made between the different time frames of the
measurements. The key result is that up to about a petaflop there are GREEN500 systems at better
energy than TOP500, but that stops above a petaflop where there are no GREEN500 systems.
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Figure 5.17. TEPS versus Time.

5.5 Historical Results: GRAPH500

The GRAPH500 data, as described in Section 2.2, currently consists of a single benchmark to
perform a breadth-first search through a potentially very large graph (up to 4 trillion nodes). The
performance metric, TEPS, is the total time divided by the number of graph edges traversed.

There are now multiple cycles of performance data recorded, starting in November 2010, with
data on the systems approximately similar in detail to that reported on the TOP500 lists. Unlike
the data analysis for the TOP500, this analysis has used all the entries in all rankings, simply be-
cause there hasn’t yet been a long trail in measurements, and the software approaches to maximize
performances are not as well-developed as for LINPACK.

Fig. 5.17 diagrams the growth in TEPS over these measurements. As can be seen, over the first
five lists the growth in peak reported TEPS was an astonishing 62X per year, but flattened in June
2013.

5.5.1 Architectures

The current data allowed marking data points as being related to approximately the same classes
of architectures as in the TOP500, namely heavyweight, lightweight, and hybrid. In addition,
however, a fourth class of architectures, marked here as other, has become prominent. Two system
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Figure 5.18. Node Count versus Time.

families made up this category:

• The Cray XMT-2 massively multi-threaded system.

This architecture is particularly relevant to the GRAPH500 problem because it natively sup-
ports a large shared memory model, when a core anywhere in the system can directly access
a memory anywhere else, without intervening software.

• Variations of the Convey FPGA-based systems2.

This architecture is also particularly relevant because its memory system, albeit smaller than
that possible with large clusters, has much more internal bandwidth, making it a good match
again to the GRAPH500.

Fig. 5.17 introduces a fourth symbol, a “star” for these system types.

5.5.2 Performance Scalability

Fig. 5.17 shows a 62X improvement in performance per year. Although this has flattened as
of June 2013m it is still important to understand where the scalability comes from within these

2http://www.conveycomputer.com/
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Figure 5.19. TEPS versus Node Count.

architectures.

Fig. 5.18 graphs the number of nodes in these systems versus time, and in terms of peak
numbers, there has been relatively no change over the last 18 months. All of the highest node-
count systems have been Blue Gene systems.

However, if we look at TEPS versus the number of nodes in a system, Fig. 5.19, we see a very
strong correlation. The trend line shown is proportional to the number of nodes to the 0.92 power.
Thus doubling the number of nodes increases TEPS by 90%.

We posit that the less than ideal speedup projected by this factor is probably due to a combina-
tion of two factors:

• In most implementations there are barriers of some sort, where the time for a barrier is often
a nonlinear function of the number of nodes.

• When node-node I/O is used to carry messages about edge traversals around the system, the
more nodes employed, the larger the share of bandwidth per nodes that may be consumed
for traffic that is passing through, reducing the amount available for outgoing messages.

This is particularly appropriate for the Blue Gene architectures (the lightweight category)
where there is no separate router chip and all router functions are within the processor socket.

A curve of TEPS versus the number of cores, Fig. 5.20, shows the same growth coefficient,
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Figure 5.20. TEPS versus Core Count.

although for very small systems, more cores have more effect than this trend line. This is probably
due to many of these smaller machines being shared memory systems, so that node I/O does not
play as great a role as it does for the larger systems.

Fig. 5.21 divides the TEPS by the number of nodes in a system, and plots by time. Fig. 5.22
graphs the same data but against the number of nodes in a system. There are several interesting
observations:

• The best performance per node is from the “Other” category, mostly Convey systems which
have a large number of memory ports in a single node box. From Fig. 5.22, however, the
Convey system have limited scalability, and the XMT systems lose significant performance
per node as they scale up.

• The best lightweight systems are perhaps a factor of 30 less in TEPS per node than the
Convey numbers, but they both scale better, and something in excess of 32 more nodes can
be packaged in the same size as a Convey system today. However, once we get to systems
of 512 nodes or bigger, the lightweight systems provide significantly more performance per
node.

• There are multiple heavyweight systems that provide near best TEPS per node and are sig-
nificantly better than the best of the lightweight, due we would guess to the higher memory
bandwidth available. However, this advantage deteriorates rapidly with system size.
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Figure 5.21. TEPS per Node versus Time.
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Figure 5.22. TEPS per Node versus Node Count.
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Figure 5.23. GRAPH500 Scale vs Time.

• Perhaps most importantly, we seem to have peaked over the last 18 months, with little gain
per node. This may signal that we have hit an implementation limit where some new tech-
nology, perhaps interconnect link bandwidth, will be needed to foster more growth.

5.5.3 Problem Size and Memory Usage

The size of a problem is more important to GRAPH500 than to TOP500. Fig. 5.23 diagrams the
scale of problem achieved versus time. There is only small growth in these numbers, with the only
real observation is that once again it appears the biggest problems are being solved on lightweight
Blue Gene systems.

As a corollary, Fig. 5.24 diagrams the scale of the problem solved versus the aggregate amount
of memory reported available in the system. The trend line is when the memory size is 2 to
the scale achieved, which means that problems are linear in the number of vertices, and reported
implementations used virtually all available memory. This seems to be the case for all but the
smallest systems.

Finally, Fig. 5.25 diagrams the performance achieved versus the scale problem attempted.
Again there is almost linear peak correlation, which makes sense given that the only way to grow
the problem size is to grow the number of nodes, and that as shown earlier. More nodes translates
into more performance.
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Figure 5.24. System Memory versus Problem Scale.
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Figure 5.25. TEPS versus Problem Size.
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Figure 5.26. A TEPS*Size Metric.

5.5.4 An Alternative Metric

Given that GRAPH500 has two key characteristics, TEPS and problem size, rather than just the
flops/s for TOPs500, metrics that combine the two are of interest. Fig. 5.26 multiplies achieved
TEPS by the number of vertices (2 to the scale).

Although the curve flattened in June 2013, there has been a greater than 1000X growth in this
metric before this point, with the lightweight systems dominating.

5.5.5 Improvement in Algorithms - Looking at BlueGene

The initial 62X growth per year from Fig. 5.17 cannot be explained solely by growth in the number
of nodes (only a factor of 8 since the beginning). The rest must be either improvements in node
design and/or algorithm improvements. To study these terms we look at the BlueGene points, since
that represents two versions of the same node design, with many data points over time programmed
by different teams. Table 5.1 summarizes the substantial differences between the two designs.

Fig. 5.27 diagrams the per node TEPS rate of both the P and Q versions over time. It appears
that the P version stabilized very quickly, but the Q version improved by over an order of magnitude
over its two years before it too flattened. Further, the per node performance of Q is close to 100X
that of P. This is clearly the major contributor to performance gain over time.
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Parameter L P Q Change P to Q
Cores/node 2 4 16 4X

Core Clock (GHz) 0.7 0.85 1.6 1.9X
Max Node Memory (GB) 1 4 16 4X
Memory Ports per Node 1 2 2 same

Memory Bandwidth per Port 5.6 6.8 21.35 3.1X
Total Memory Bandwidth (GB/s) 5.6 13.6 42.7 3.1X

Inter-node Topology 3D Torus 3D Torus 5D Torus
Links per Node 12 12 22 4.7X

Bandwidth per Link (GB/s) 0.175 0.425 2 4.7X
Total Link Bandwidth(GB/s) 2.1 5.1 44 8.6

Table 5.1. BlueGene Characteristics.
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Figure 5.27. BlueGene Performance versus Time.
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Figure 5.28. BlueGene Performance versus the Number of
Nodes.

Fig. 5.28 plots the same data versus the number of nodes in the system benchmarked. As
discussed earlier, again there is some loss of performance at the larger system sizes, but Q systems
seem to be somewhat less sensitive. This is most probably because BlueGene nodes employ a
toroidal topology, so that as the number of nodes grow, the through node traffic increases, reducing
the ability of the node to inject traffic of its own.
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Chapter 6

Projections

The 2008 Exascale report[16] performed an analysis of the TOP500 data much as here in Chap. 5,
but with 5 years less data. In addition, and more importantly, this study also made some projections
about the direction of technology (again much as in Chap. 3), and then made assumptions about
how TOP500 system would thus evolve in the future. These assumptions were then propagated
forward and compared with what was at the time to goals of the UHPC project (an Rpeak of 1018

flops/sec) at 20MW. At that time, the two architectures that were extrapolated forward were the
heavyweight and lightweight. In addition, while 3D stacks were assumed as an important part of
the strawman architecture suggested in the report, details and projections were at best limited, in
that there was no implementation prototypes to suggest optimal design choices.

More data from both the TOP500 and the ITRS were available in 2011[15] and early 2012[14],
and the hybrid architecture had emerged. These were factored into the model from 2008, and
projections made going forward.

Section 6.1 chapter reviews the assumptions from 2008, and displays the results of that model
updated with all the intervening data, including a partial model for hybrid architectures. This
projection is to demonstrate the basic validity of the modeling process.

A near-term update to this model will reflect newer data, a revised set of assumptions, and
initial projections for 3D.

6.1 2008 Model

The 2008 Exascale report[16], and then [15], made some assumptions about how systems based
on the heavyweight, lightweight, and (partially) hybrid architectures would evolve through time.
The following subsections review these assumptions, project what that model predicted, and then
analyze how well the model did. All data up through the 2012 TOP500 lists were used.
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Units 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Transistors/Core MT 341 341 341 341 341 341 341 341 341 341

Die Area/Socket mm2 220 220 220 220 220 220 220 220 220 220

Cores/Socket 2 2 3 4 5 9 13 19 27 38

Vdd V 1.20 1.10 1.10 1.10 1.10 1.00 0.97 0.90 0.87 0.85

Flops/cycle/Core 2 2 4 4 4 4 4 4 4 8

Chip to system Years 2 2 2 1 1 0 0 0 0 0

Growth in Mem/Socket 1.0 1.4 3.3 3.8 4.5 6.9 9.0 13.7

Compute Sockets/Board 4 4 4 4 4 4 4 8 8 8

Boards/Rack 24 24 24 24 24 24 32 32 32 32

Max Power/Rack KW 16 16 16 16 16 32 32 32 65 65

Max Racks/System 155 155 155 200 250 300 350 400 450 500

Units 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

Transistors/Core MT 341 341 341 341 341 341 341 341 341 341 341 341 341

Die Area/Socket mm2 220 220 220 220 220 220 220 220 220 220 220 220 220

Cores/Socket 48 60 76 96 121 152 192 242 305 385 485 611 770

Vdd V 0.82 0.8 0.77 0.75 0.73 0.71 0.68 0.66 0.64 0.62 0.61 0.59 0.57

Flops/cycle/Core 8 8 8 8 8 8 8 8 8 8 8 8 8

Chip to system Years 0 0 0 0 0 0 0 0 0 0 0 0 0

Growth in Mem/Socket 17 40 49 56 61 72 89 103 124 148 175 211 245

Compute Sockets/Board 8 16 16 16 16 16 16 16 16 16 16 16 16

Boards/Rack 32 32 32 32 32 32 32 32 32 32 32 32 32

Max Power/Rack KW 65 129 129 129 258 258 258 258 258 258 258 258 258

Max Racks/System 550 600 600 600 600 600 600 600 600 600 600 600 600

Figure 6.1. Assumptions from the 2008 Model.

6.1.1 Heavyweight Scaling Assumptions

The assumptions made in the Exascale report[16] about how the heavyweight architectures would
mature over time drew from a 2004 baseline of the processor used in the 2006 Red Storm: the 2004
90nm dual core Opteron, 95W, 1.35V, 2.4GHz, 220mm2, with a later upgrade that took the same
chip to 2.6GHz. These assumptions, listed below, are for the most part drawn from that report.
Fig. 6.1 lists these assumptions by year. Unless otherwise noted, these assumptions also apply to
the non-heavyweight models as well.

We note that some of these assumptions are liable to be difficult or expensive to achieve in
practice, such as a 300 KW rack, but are included here to permit bounding the possible alternatives.
In particular, combinations of these assumptions, such as 600 separate 300KW racks in particular,
may be theoretically possible but are liable to be jointly infeasible.

1. The microarchitecture for each core in the microprocessor will be approximately unchanged
in complexity (i.e. transistor count) over the baseline, with the area consumed at any point
in time approximated as proportional to the reciprocal of the transistor density as taken from
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the ITRS. This count included amortized caches, memory controllers, and overhead logic,
but did not consider effects of increasing threading, better efficiency, latency tolerance, or
increased fault resilience. The 90nm Opteron thus had an amortized area of 110mm2 per
core, and thus, using ITRS projections for density, have about 341M transistors per core,
most of which are for caches and other memory structures.

2. The die size for the microprocessor chip will remain approximately constant at the 220mm2

of the Opteron, meaning that the number of cores on each microprocessor chip would grow
roughly as the transistor density grows.

3. We do not account for relatively larger (in area) L3 caches to reduce pressure on off-chip
contacts. This actually results in a possible overestimate of peak chip performance because
we end up with more cores per die.

4. Such chips will continue to use high performance logic, with Vdd flattening as in Fig. 3.6.

5. The power dissipation per die has flattened, as projected in the ITRS.

6. Per core, the microarchitecture improves from a peak of 2 flops per cycle in 2004 to a peak
of 4 flops per cycle in 2006, and 8 flops per cycle in 2013. This is for conventional cores,
not GPUs or other accelerators

7. The delay in time from the start of production of a new chip to its inclusion in a new system
was 2 years before 2006, would drop to 1 year in 2006, and then drop to the same year in
2009.

8. The memory used remains commodity memory as architected today; the effects of alterna-
tives such as memory stacks will be addressed later.

9. The system would want to maintain the same ratio of bytes of main memory to peak flops as
in Red Storm. This will be done by using whatever natural increase in density comes about
from commodity DRAM, but assumes additional memory cards as necessary if that intrinsic
growth is insufficient. We note that this is in contrast to the downward slope in memory per
flop per second in recent TOP500 systems.

10. The maximum number of compute sockets per board will double a few times. This is as-
sumed possible because of a possible move to liquid cooling, for example, where more power
can be dissipated and allowing the white space to be used and/or the size of the heat sinks to
be reduced. This projections assumes that this may happen at roughly five year intervals to
a maximum of 16.

There will also be an effect on node size (and number of nodes in a rack) because of the
inclusion of NV memory as a 1st-level component. This has not, however, as yet been
factored in.

11. The maximum number of boards per rack will increase by perhaps 33% once in the 2010 time
frame because of assumed improvements in physical packaging and cooling, and reduction
in volume for support systems. For this projection we will assume this may happen once.
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12. The maximum power per rack will increase by at best a power of 16, to somewhere around
200-300KW. We assume this is a doubling every 3 years.

13. The maximum number of racks in a system was set to 155 in 2006 (to match then current
systems), with an increase by 50 every year, up to a maximum of 600.

14. Secondary storage (and its growth) for scratch, file, or archival purposes is ignored. This
storage must also undergo significant increases.

The above assumptions are reasonable for estimating power in the microprocessor parts of a
system. There is, however, concern for how accurate such scaling rules would be for other parts of
the baseline, particularly the memory system and the routers. This is because a significant amount
of their power comes not from internal processing but from I/O - the transfer of data across chip
boundaries. While such increases can be projected for commodity memory, the number of memory
ports per socket is something that is changing. Also, both the protocols and the bandwidth of the
router chips, and how they tie into the memory and microprocessors in a node may change in a
complex fashion.

Scaled Model

To simplify our projections, we thus continue the approach suggested in the Exascale report by
adopting two energy models: Scaled and Constant. The Scaled model assumes that the power per
microprocessor chip grows as the ITRS roadmap has predicted, and that the power for the memory
associated with each socket grows only linearly with the number of memory chips needed (i.e. the
power per memory chip is “constant”). We also assume that the power associated with both the
routers and other common logic remains constant. This is the same as the “Simplistically Scaled”
model in the Exascale report. In a real sense, we are assuming here that both memory access energy
and the energy cost of moving a bit, either across a chip boundary or between racks, will decrease
(or “scale down”) with technology advances, at least as fast as the increase in flops, with the total
power constant because of a concurrent “increasing” of the flops rate of the microprocessor most
probably requires a higher number of references to memory and a higher traffic through the routers.
This is clearly optimistic.

Constant Model

In contrast, the Constant model assumes the microprocessor power grows as above, but that both
the memory and router power scale linearly with the peak flops potential of the multi-core micro-
processors. This naively assumes that the total energy expended in these two subsystems is used in
accessing and moving data, and that the energy to handle one bit (at whatever the rate) is constant
through time (i.e. no improvement in I/O energy protocol). This is clearly an over-estimate, and
liable to be pessimistic. It is similar to the “Fully Scaled” model from the Exascale report.
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Neither model takes into account the effect of only a finite number of signal I/Os available from
a microprocessor die, and the power effects of trying to run the available pins at a rate consistent
with the I/O demands of the multiple cores on the die.

6.1.2 Lightweight Scaling Assumptions

For consistency, the scaling assumptions used for the lightweight architecture are modified only
slightly from those above for the heavyweight, and again are based on those trends used in the
Exascale report. In particular, we reuse assumptions 1, 2, 3, 8, 10, and 12 in total. The list below
slightly modifies assumptions 4, 6, 7, 9, and 11, in order, from the heavyweight list:

• Vdd flattens as for low power, not high performance, logic.

• Per core, the microarchitecture will improve from a peak of 2 flops per cycle to a peak of 8
flops per cycle in two steps.

• The bytes of main memory per flop ratio will match that of BlueGene/L.

• There is one doubling of compute cards per node board.

• The number of racks in 2005 and 2006 are set to the same as observed in real systems in order
to validate the mode. After 2006, the model assumes growth in racks as for the heavyweight.

The following assumptions are specific to these systems:

• The power dissipation per chip will be allowed to increase gradually to twice what it is for
BlueGene/L.

• The overhead for the rack for power and cooling will be the same percentage as in the Blue
Gene/L.

• For this sizing, we will ignore what all this means in terms of system topology.

6.1.3 Hybrid Scaling Assumptions

For the time being, we will focus on heterogeneous systems utilizing GPUs for their accelerated
performance. Since the leading chip for each GPU family tends to have a high transistor count,
large area, and high power dissipation, the assumptions below are similar in nature to those of the
heavyweight case. It is assumed that these accelerators will remain on daughter cards.

• There will be at most a 50% growth in shaders per core, and a doubling of FMAs per shader.

107



• The conventional microprocessors that provide the non-computational support for each node
will evolve as in the heavyweight case.

• The power dissipation of the GPU will grow as for the heavyweight processor.

• Local memory for individual SMs will double every few years, and the L2 and above caches
will grow so as to use the same amount of space they do now.

• The number of memory ports will be pin limited as for the heavyweight, and thus will change
at best modestly.

• The directly attached memory to each GPU will grow in density in step with the ITRS
predictions, and no faster.

• The ratio of GPU sockets to heavyweight sockets per node will remain the same as today.

• The density of nodes per rack will increase at the same rate as for heavyweight, and with the
same power limitations.

• The number of racks in a full system starts with the number in today’s biggest system (to
validate model) and increases by 50 per year as in the other models, up to 600 at most.

Given that details of energy expenditure in different parts of a GPU chip are not yet available,
only one model is projected here - the Scaled model.

6.2 2008-Based Projections

Fig. 6.2 diagrams the projections for Rpeak, including more historical data from 2008 through
2012. The actual heavyweight points between 2008 and 2010 lay nicely between the scaled and
constant model, and then fell very close to the scaled line after 2010. The lightweight points fell
below either scaled or constant, primarily because real systems did not include as many racks as
were projected until 2012. The hybrid numbers trended much as the scaled model projected.

Fig. 6.3 diagrams the projected power per system. After 2008, the projected power for the
heavyweight and hybrid systems tracked reasonably with the projections, with the lightweight
systems considerably less than their estimate, again because of fewer racks than in the model.

Fig. 6.4 diagrams the energy per flop (using Rpeak. In this case the number of racks is irrelevant,
and all the 2008-2012 points fits nicely within their projected bounds. Fig. 6.5 shows the same
data but blown up to the same scale to focus between 2004 and 2016.

In both cases, the blue curve is a line that represents what simply reducing energy by technology
advances would buy. This is CV 2 using the ITRS projections alone. As commented on in the 2008
report, this curve nicely matches the best of the historical data until about 2004, when the transition
to energy-efficient designs, especially lightweight and hybrid architectures cam into play. The

108



1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09
1
/1
/2
0
0
0

1
/1
/2
0
0
4

1
/1
/2
0
0
8

1
/1
/2
0
1
2

1
/1
/2
0
1
6

1
/1
/2
0
2
0

1
/1
/2
0
2
4

M
u
lt
i 
R
a
ck

!S
y
st
e
m

!R
p
e
a
k
!(
G
F/
s)

Heavyweight Heavyweight ! Scaled Heavyweight ! Constant

Lightweight Lightweight ! Scaled Lightweight ! Constant

Heterogeneous Heterogeneous ! Scaled

Figure 6.2. Rpeak Projections - 2008 Model.
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Figure 6.3. Power Projections - 2008 Model.
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take-away is that before 2004 virtually all energy efficiency improvements came from technology
alone. After 2004, the introduction of lightweight and hybrid systems did lower the energy curve,
but it appears that once lowered, later data suggests we are back to tracking technology. One
consideration here is that all of these post 2004 system have less relative memory than 2004,
meaning that some of the energy savings may come from that. This is an area worthy of further
study.
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6.3 3D Stack Projections

This section projects how 3D hybrid stacks as discussed in Section 3.5 may evolve, both when
used just as memory subsystems and when additional processing functionality is added to the logic
die.

6.3.1 Stack Projections Through Time

Figs. 6.6 and 6.7 use the 2015 numbers suggested in [25] to develop estimates of what hybrid
stacks in later years may provide in density and dissipate in power. Numbers are given for 4, 8,
and 16-high stacks of DRAM die on top of a logic die. Assumptions made in these estimates
include:

• Features sizes in the out years are assuming the ITRS roadmap numbers for both DRAM and
logic.

• The density numbers for DRAM start with the 2015 projection from [25] (at 8Gb/die this
agrees with the ITRS projections in that time frame), and go forward using the same ITRS
projections.

• There is an assumed 2X increase in 2015 in the number of vaults (from [25]) and another 2X
increase in 2018 to a total of 64. At best small increases are assumed after this on the basis
that TSV density peaks out at about this time frame.

• Each vault requires a memory controller on the logic die, so the number of memory con-
trollers increases linearly with the number of vaults.

• Increasing the number of memory controllers increases the complexity of the on-logic die
router (each controller increases the number of ports). We assume that the logic (and thus
power) for routers goes up as the square of the increase in vaults (probably a bit too pes-
simistic).

• The aggregate off-chip signalling rate doubles in 2015 from the prototype, and goes up again
by another 50% in 2018, and again in 2020.

• [25] indicates that power is split roughly 1/3 for the memory arrays, 1/3 for non-I/O logic die
functions, and 1/3 for off-chip I/O. We thus baseline the original power breakdown on the
current HMC in this way. We also assume that the current logic power is split 50-50 between
router and memory controllers.

• In computing logic die power, we scale by the square of the ratio of voltage decreases (using
the ITRS projections for high performance chips), by the ratio of feature sizes (reflecting the
decrease in capacitance as feature sizes decrease), and by the change in the number of ports
to the on-chip router (whose power is assumed to grow as P*log(P) where P is the number
of ports).
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Figure 6.6. Projecting Possible Stack Density.

• In computing memory array power, we assume the power scales as the number of vaults
(more banks being accessed), but that the power per bank is constant other than a decrease
due to reductions in DRAM core Vdd , and to a 20% factor that [25] mentions is likely to
happen due to DRAM cell rearchitecting.

• Growing the number of die in a stack (such as from 4 to 8 DRAM die) will not increase
the number of banks busy in any one vault, and thus will not significantly increase the vault
power once the vault’s TSV channels have saturated. The only extra power from the other
memory die is refresh power.

• I/O power scales with the total off-chip signalling rate, derated by the relative reduction in
logic chip Vdd .

It is important to note that the power numbers here assume that all resources, vaults, routers,
memory controllers, and I/O, are running at 100%.

Fig. 6.8 summarizes the projected growth of ports within a hybrid stack. Fig. 6.9 projects the
aggregate bandwidths.

We also note that the logic density for a logic chip in 2015 is can be as much as 24 times that
of the 90nm prototype, which should be more than adequate for the assumed increase in memory
controllers and router logic. In 2018 the density is 48X that of the 90nm chip, again more than
sufficient for the additional memory controllers and routers.
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In Fig. 6.7, the top three overlapping curves are the total stack power for 4, 8, and 16-high
stacks. These three curves overlap in this figure because their differences are small as the number
of die increase (only memory referesh power is counted). The two solid curves below this are
the complete logic die (the solid black line) or the single DRAM die (the solid blue line). The
remaining three dotted lines are power for subsystems of the logic die. The peak at 2018 is due
to the simultaneous doubling of the number of vaults (and thus logic die router ports), and the
increase in signalling rates.

6.3.2 Adding Cores

One interesting possibility is that of adding complete cores to the logic die, as suggested in the
X-caliber project (Section 4.6). Section 7.3 of the Exascale report[16] discussed a strawman core
that we will use here:

• 64-bit simple core,

• 32KB I and D L1 caches,

• 4 FPUs, each capable of a fused multiply add per cycle (equivalent to two “flops”),

• running at 1 GHz,

• when implemented in a 32 nm technology at 0.6V, the core + caches were estimated to
consume 141mW, and each FPU another 30mW, for a total of 261mW.

To be a bit more realistic, raising the voltage to the ITRS standard for 32 nm of 0.9V gives a
power per core of 587mW. These numbers were then scaled to match the technology expected for
the logic chip through time, and added to the stack powers as discussed above. No change in clock
rate was assumed. Fig. 6.10 diagrams this power for each of the three stack sizes, along with the
total power assumed for the cores. Again the stack power curves overlap for the 4, 8, and 16 die
stacks, reflecting that once four die is reached, the TSV’s are fully used, and additional die require
only refresh. The bump in core power from 2018 to 2018 reflects the rise from 32 vaults to 64. The
bump in overall power is due to both the core power bump and the increase in I/O bandwidth.

Finally, as a point of comparison, Fig. 6.11 divides this power by the peak flops rate of all the
cores. As a comparison point, this curve includes a line at 20pJ per flop, which was a metric of
interest to the Exascale study.

6.4 Large system power transients

Power transients are an issue for current large HPC systems, and will raise increasing concerns
going into the future.
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Current large systems might have an average power of, say, 5 MW but see something like a
2 MW transient (so to 7 MW) over a time period much less than a single AC cycle. This can be
the case, for example, where an application is at a sync point; when the last processor joins the
sync, all the processors that were basically idle become busy with the next computation cycle. The
transient puts stress on the power system at all levels, and is also an issue for the system’s power
vendor. The vendor must supply the transient without crossing limits on AC supply and on the
power distribution system for both AC and DC supplies, and thus raise costs in the AC base supply
and in the building distribution. The additional costs can be considerable and also affect cabinet
power designs.

New processors are greatly increasing their voltage and clock regulation capabilities. This
lowers the average power for systems, but also increases the ratio of peak power to average power:
bigger transients and therefor more cost and complexity in the power system.

If large systems that currently use power of several megawatts grow to 20 MW, per the current
exascale plans (or past that because things can’t be pushed down enough), the transient increase
will very likely exceed the average power of current systems. Eight or ten MW transients will need
suppression. This is liable to be a considerable challenge.
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Chapter 7

Summary

The conclusions are an extension and elaboration of those from the Exascale report.

7.1 Architectural Trends

• 2004 saw commodity high performance microprocessors hit a power wall in what could be
cooled economically. This was largely driven by a slowing of the rate at which operating
voltage could be decreased, a factor that had been used before 2004 to offset the power
increase due to more transistors on a chip running at higher clocks.

• After 2004 peak core clock rates no longer climbed at the rate that reflected the capabilities
of the underlying devices, but were largely flat.

• Also in 2004, core micro-architecture techniques also hit a wall where adding more transis-
tors could no longer significantly accelerate the single core performance of a core (that is,
could no longer reduce the average cycles needed per instruction).

• This dichotomy led to a bi-furcation of HPC core architecture into two: heavyweight sock-
ets kept clock rates at 2-3 GHz and added power cores per chip until cooling limits were
reached; this was coupled with frequent off-loading of high-performance inter-node com-
munication to separate NIC chips that themselves consumed significant energy. Lightweight
sockets used much simpler cores and greatly reduced clock rates to keep the cooling infras-
tructure down to the point where very dense packaging was possible. In addition, all node
functionality other than memory was integrated onto the same chip.

• Around 2008 the hybrid, heterogeneous, or accelerator-based class of architectures were
introduced, which saw the coupling of a heavyweight socket with an equally high power-
consuming multi-core accelerator socket where both the ISA and the microarchitecture of
the accelerator’s cores is radically different, with an emphasis on massive floating point par-
allelism. In addition, the accelerator socket had separate memory than did the host socket,
with a direct attach to higher speed, but lower density, GDDR-class DRAM. Also, this sep-
aration of memory spaces required explicit memory-to-memory copying before the accel-
erator could process data not in its memory, and before the heavyweight could access and
distribute the data to other nodes as needed.
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• The near term may begin to see a merger of these architectures, with variations of BigLittle
architectures which combine heavyweight and lightweight cores on the same socket, all with
the same ISA. Large numbers of such lightweight cores may then take on the functionality
of an accelerator. In addition, the ability of threads to dynamically pass from heavyweight
to lightweight cores, and back, may provide avenues to optimize power-performance on a
dynamic basis.

• The mid term is liable to see the emergence of 3D stacked memory, both as attached mem-
ory for conventional sockets and then as stand-alone mergers of processing and logic, with
multiple cores on the bottom logic die of the stack.

7.2 Summary Projections

• Regardless of architectures, power will remain the number one design issue.

• The number of cores, and thus number of independent program threads, that will be needed
to grow overall application performance will continue to grow massively, greatly complicat-
ing our ability to create efficient programs.

• Memory is also constraining the shape of applications that can utilize the performance ca-
pabilities of all classes of architecture; both in available capacity, latency of access, and
bandwidth to the processing logic.

• Memory capacity per node and per core compute cycle are decreasing very rapidly, espe-
cially for hybrid architectures, and are currently almost two orders of magnitude less than
historical levels.

• Although not discussed in detail here, both the growth in parallelism and the need to go
to extraordinary lengths to reduce power will result in systems with more logic that has
less reliability than before, complicating the overall task of keeping systems up enough to
perform large applications.

• The BigLittle architectures potentially combine the best of all three of the above architec-
tures, but by sharing a common ISA may make code development simpler.

• While no 3D system has as yet been built for HPC applications, there is at least the potential
for very significant simultaneous improvements in virtually all the metrics that dominate the
other architectures.

7.3 TOP500 Energy Model

• Although in need of a refresh to the basic model, the TOP500 energy per flop projection
model made in 2008 seems to be holding relative true, with the actual data since then falling
roughly in the middle of the bonds.
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• Of all the architecture classes, the heavyweight class are the most limited by both power and
memory bandwidth, and are likely to top out before the other architectures. They do, how-
ever, have, in the bulk synchronous message-passing model, the most mature programming
environment.

• The lightweight architectures are significantly more power-efficient than the heavyweights,
and permit a natural extension of today’s heavyweight programming paradigms, but have
limited memory and, because of the extra numbers of cores needed for a performance level,
may exceed the point where these programming paradigms are sufficient for real applica-
tions.

• The hybrid architectures today are more energy efficient that the lightweights, but suffer from
significantly lower memory capacity and require new programming paradigms that have as
yet not proved as applicable as current ones.

• While systems at the top of the GREEN500 list were more energy efficient than those from
the top of the TOP500, none of them scaled near the performance levels of the TOP500.

7.4 GRAPH500 Observations

• Unlike TOP500, GRAPH500 has both a memory capacity and performance dimension.

• In terms of just performance, there was a CAGR of 62X per year over the first two years of
the benchmark, but that seems to have flattened.

• Both performance and problem size seem to be heavily driven by node count, with TEPS
growing almost linearly in the number of nodes to the 0.92 power.

• The peak systems have been flat in terms of the number of nodes over the last two years.

• TEPS per node grew considerably in the first two years but has now flattened.

• A side study of just Blue Gene system performance shows that BlueGene/P performance per
node flattened almost immediately, but BlueGene/Q showed a better than 10X increase per
node on the same hardware over time. This can only reflect a greatly improved algorithm,
but resent results seem to indicate that performance has flattened.

• The best performance per node is from the “Other” category, mostly Convey systems which
have a large number of memory ports in a single node box. However, the Convey system
have limited scalability, and the XMT systems lose significant performance per node as they
scale up.

• The best lightweight systems are perhaps a factor of 30 less in TEPS per node than the
Convey numbers, but they both scale better, and something in excess of 32 more nodes can
be packaged in the same size as a Convey system today. However, once we get to systems
of 512 nodes or bigger, the lightweight systems provide significantly more performance per
node.
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• There are multiple heavyweight systems that provide near best TEPS per node and are sig-
nificantly better than the best of the lightweight, due we would guess to the higher memory
bandwidth available. However, this advantage deteriorates rapidly with system size.

• Perhaps most importantly, we seem to have peaked over the last 18 months, with little gain
per node. This may signal that we have hit an implementation limit where some new tech-
nology, perhaps interconnect link bandwidth, will be needed to foster more growth.

7.5 3D Stack Projections

• 3D stacks of just memory have the potential to significantly affect the currently declining
“memory per” curves in a positive direction, with the potential of up to a “terabyte per
DIMM-like structure” in a few years.

• Power per memory stack. when used to support a conventional processing socket of any
architectural class, is liable to average in the 10 watt range for a long time, with a large
fraction of this in the off-chip I/O. This is sufficiently low to avoid area-consuming cooling
structures, but may cause problems if dozens of such stacks are to be integrated in a small
area, such as a DIMM. However, if systems do not need all this bandwidth, there is the
potential for significant savings.

• Adding cores to each vault has the potential to change the architecture of the overall system,
with the potential of getting within a small factor of the original Exascale 20pF/flop goal.
However, the power per stack may grow to the 25 watt range, assuming that all cores and all
I/O are running at 100%. Further studies are needed to determine what real algorithms may
demand, and thus if any scale-back on either core complexity and/or I/O is rational.
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