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Abstract 

It is well known that the spectrum of a signal can be calculated with a Discrete Fourier 
Transform (DFT), where best resolution is achieved by processing the entire data set.  
However, in some situations it is advantageous to use a staged approach, where data is 
first processed within subapertures, and the results are then combined and further 
processed to a final result.  An artifact of this approach is the creation of grating lobes in 
the final response.  The nature of the grating lobes, including their amplitude and spacing, 
is an artifact of window taper functions, subaperture offsets, and subaperture processing 
parameters.  We assess these factors and exemplify their effects. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction 
Radar signal processing is essentially the implementation of a matched filter.  Often, this 
matched filter is about matching to complex sinusoids.  This often entails Fourier 
techniques to estimate time delay characteristics from spatial spectral content in the raw 
data.  Central to this is the Discrete Fourier Transform (DFT), and its inverse.  DFT 
processing is often ‘nearly’ the right processing technique, but not always quite ‘exactly’. 

It is often advantageous to implement the DFT (or its inverse) with subaperture 
techniques, allowing approximate phase error corrections to be implemented along the 
way, or facilitates reuse of partial processing results. 

Several reports and papers discuss subaperture processing approaches to Synthetic 
Aperture Radar (SAR) processing. 

Burns and Cordaro1 discuss the Overlapped Subaperture (OSA) SAR image 
formation technique.  Cordaro elaborates on this technique in several limited-
release reports.  The aim here is to facilitate corrections to data characteristics not 
otherwise possible, or at least in a more efficient manner. 

Doerry2,3,4 discusses multiple tiers of subapertures for SAR image formation in 
several reports and papers. 

Miller, et al.,5 discuss subapertures applied to a VideoSAR processing algorithm.  
The aim here is to facilitate reuse of calculation results in multiple SAR images. 

In this report, we address subaperture processing for Fourier analysis generically, 
unencumbered by needs of specific radar algorithms. 
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“You better cut the pizza in four pieces because I'm not hungry enough to eat six.” 
-- Yogi Berra 
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2 Discussion 

2.1 Sampled Complex Sinusoid 

Consider a sampled function given by 

( ) ( )0expx n j nω= , (1) 

where 

0ω  = a constant phase-increment rate (frequency), and 

2 2
N Nn− ≤ < , where n is an integer that indicates sample index. (2) 

For n outside this range, the function is zero. 

A Discrete Fourier Transform (DFT) of function ( )x n  over index n would yield 

( ) ( )
2 1

2
exp 2

N

n N

uX u x n j n
U

π
−

=−

 = − 
 

∑ , (3) 

where 

2 2
U Uu− ≤ < , where u is an integer. (4) 

Typically, we have U N≥ .  This is usually achieved by zero-padding the input data set. 

We identify the transform pair as 

( ) ( )X u x n⇔ . (5) 

We furthermore identify the function 

( ) ( )
sincsinc

sin
j z Z

Z
zz e

z Z
ππ

π
−= . (6) 

Combining the previous results yields 

( ) 0
2csinc

2N
NX u u

U
πω

π
  = −  

  
. (7) 
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We observe the following 

• The DFT output ( )X u  has a peak value of N. 

• The DFT output ( )X u  has a peak at output index value 

0 02
Uu ω
π

= . (8) 

• The DFT output ( )X u  has frequency spacing 

2
u U

πδ = . (9) 

• The DFT output ( )X u  has nominal frequency resolution 

2
u N

πρ = . (10) 

• The DFT output ( )X u  is periodic with period U.  Therewith we may define 
values for ( )X u  at index values u well outside the limits given in Eq. (4).  That 
is, for integer k, we have 

( ) ( )X u X u kU= + . (11) 

The output can then be written as 

( ) 0csinc u
N

u

uX u ω δ
ρ

 −
=  

 
. (12) 

Note that we are sampling the spectrum of ( )x n  at integer multiples of uδ  rad/sample.  
This is the result of using the DFT.  That is 

( )s uu uω δ=  = frequency samples. (13) 

This allows us to write our result in terms of specific frequency sample positions as 

( ) ( )0csinc s
N

u

u
X u

ω ω
ρ

 −
=  

 
. (14) 
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Other or additional mechanisms would allow sampling the spectrum at other frequencies; 
not limited to the constraints of the DFT.  These techniques might include interpolation, 
Chirp-Z Transform (CZT), or simple correlation.  Nevertheless, we will continue our 
analysis assuming the DFT. 

Nevertheless, our best estimate of the original signal’s frequency is then calculated as 

( )0 0 0ˆ s uu uω ω δ= = . (15) 

2.2 Subapertures 

We now parse the input data set into subapertures, where 

1 2 2n m m= + ∆ , (16) 

where 

1m  = intra-subaperture index with 1 1 12 2M m M− ≤ < , 

2m  = inter-subaperture index with 2 2 22 2M m M− ≤ < , 

2∆  = constant subaperture offset. (17) 

We note that 

1 2 2N M M= + ∆ , (18) 

In general, the subapertures may overlap each other.  Overlap will occur whenever 

2 1M∆ < . (19) 

Typically, we select parameters such that even with overlap we have 

2 2 1M M∆ >> , (20) 

Nevertheless, the sampled sinusoid can now be written as a function of two indices as 

( ) ( ) ( )( )1 2 0 1 2 2, expx n x m m j m mω= = + ∆ . (21) 

This can be separated as a product of independent functions as 

( ) ( ) ( )1 2 0 1 0 2 2, exp expx m m j m j mω ω= ∆ . (22) 

With malice of forethought, we now also define the frequency index in terms of two new 
indices, namely 
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1 2

1 2 2

v vu
U V V

= +
∆

. (23) 

We expect that one index is perhaps a coarser spacing than the other.  That is 

1 2 2V V≤ ∆ . (24) 

We also typically desire that 2V  specifies the final frequency sample spacing, that is 

2 2V U∆ = . (25) 

Consequently, we equate 

( )1 2
1 2 2

1 2 2

v vu n m m
U V V

 
= + + ∆ ∆ 

. (26) 

The DFT now becomes the summation across both indices, namely 

( )
( )

( )
2 1

2 2 1 1

1 22 2

1 2 1 2
1 2 22 2

1 2 2

,

,
exp 2

M M

m M m M

x m m

X v v v vj m m
V V

π=− =−

  
  

=       
× − + + ∆       ∆    

∑ ∑ . 

 (27) 

Applying this to our original signal results in 

( )
( )( )

( )
2 1

2 2 1 1

0 1 2 22 2

1 2 1 2
1 2 22 2

1 2 2

exp

,
exp 2

M M

m M m M

j m m

X v v v vj m m
V V

ω

π=− =−

  + ∆
  
 =    

× − + + ∆       ∆    

∑ ∑ . 

 (28) 

This can be parsed to 
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( )

( )( )

( )

( )

2

2 2

1

1 1

0 2 22

1 2
2 22

1 2 2
1 2

0 12

1 2
12

1 2 2

exp

exp 2

,
exp

exp 2

M

m M

M

m M

j m

v vj m
V V

X v v
j m

v vj m
V V

ω

π

ω

π

=−

=−

  ∆
  
    

× − + ∆      ∆    =  
  
  ×     × − +      ∆    

∑

∑

. (29) 

At this point for the summation over index 1m  we will make the approximation  

1 2 1

1 2 2 1

v v v
V V V
 

+ ≈ ∆ 
. (30) 

This lets us approximate 

( )

( )( )

( )

( )

2

2 2

1

1 1

0 2 22

1 2
2 22

1 2 2
1 2

0 12

1
12

1

exp

exp 2

,
exp

exp 2

M

m M

M

m M

j m

v vj m
V V

X v v
j m

vj m
V

ω

π

ω

π

=−

=−

  ∆
  
    

× − + ∆      ∆    ≈  
  
  ×     × −          

∑

∑

. (31) 

The summation over index 1m  now becomes a simple DFT with result 

( )

( )( )

( )
2

2 2

1

0 2 22

1 2
2 22

1 2 1 2 2

1
0 1

1

exp

exp 2
,

2csinc
2

M

m M

M

j m

v vj m
X v v V V

M v
V

ω

π

πω
π

=−

  ∆
  
    

× − + ∆      ≈ ∆    
 

   × −       

∑
. (32) 

The approximation of Eq. (30) for this result will be observable as a slight offset in the 
location of the csinc function.  This will ultimately result in a frequency-dependent 
amplitude perturbation, or ripple, in the final result.  More on this will be discussed later.  
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After this DFT we have a partial result where the data is in terms of indices 2m  and 1v .  
This partial result is described by the terms in the square brackets in the following 
rearranged equation 

( )

( )( )

( )

1

2

2 2

1
0 1 0 2 2

1
2

1
1 2 2 2

12

2
2

2

2csinc exp
2

, exp 2

exp 2

M

M

m M

M v j m
V

vX v v j m
V

vj m
V

πω ω
π

π

π

=−

    
 − ∆         
 

   
≈ × − ∆       

    × −       

∑ . (33) 

However, if we multiply this interim data by the phase correction that is in fact described 
by the second exponential, we can associate terms as 

( )

( )( )

( )

1

2

2 2

1
0 1 0 2 2

1
2

1
1 2 2 2

12

2
2

2

2csinc exp
2

, exp 2

exp 2

M

M

m M

M v j m
V

vX v v j m
V

vj m
V

πω ω
π

π

π

=−

    
 − ∆        
  

    ≈ × − ∆         
    × −       

∑ . (34) 

This phase correction is equivalent to shifting the original subaperture data prior to the 
transform, i.e. prepending zeroes corresponding to its position in the overall aperture.  
This accounts for a subaperture’s position in the original data sequence.  The square 
brackets now contain the corrected data.  The summation over index 2m  now becomes a 
simple DFT of the entire function in the square brackets, which is our data appropriately 
corrected, with result 

( ) 1 2
1 2 2

1 2 0 1 0 2 1
1 2 2 1

2 2 2, csinc csinc
2 2M M
M MX v v v v v

V V V
π π πω ω

π π
      ∆

≈ − − −         ∆      
, 

 (35) 

which can be written as 

( ) 1 2 1
1 2

1 2

0 1 0 2 1
1 2, csinc csincv v v

M M
v v

v v v
X v v

ω δ ω δ δ

ρ ρ

   − − −
   =
   
   

. (36) 
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where 

1
1

2
v V

πδ =  = coarse-resolution output sample spacing, 

1
1

2
v M

πρ =  = coarse-resolution output nominal resolution,  

2
2 2

2
v V

πδ =
∆

 = fine-resolution output sample spacing, 

2
2 2

2
v M

πρ =
∆

 = fine-resolution output nominal resolution, 

1V  = the zero-padded DFT length over index 1m , and 

2V  = the zero-padded DFT length over index 2m . (37) 

Parameters are typically chosen such that 

2 1v vρ ρ<< , and 

2 1v vδ δ<< . (38) 

A subtle point here is that since 2 2M N∆ <  whenever we employ subapertures, there is a 
slight loss in achievable resolution in the final output spectrum. 

Note that we are sampling the spectrum of our input signal at frequencies   

( ) 1 21 2 1 2,s v vv v v vω δ δ= +  = frequency samples. (39) 

Returning to Eq. (36), we observe that it is a function of two index values.  We may 
advantageously rewrite this in terms of a single frequency index as 

( ) ( )1 2,X u X v v= . (40) 

To relate these indices, we can manipulate the frequency sample locations such that 

( ) 1
2

2
1 2 1 2, v

s v
v

v v v v
δ

ω δ
δ

 
 = +
 
 

. (41) 

We desire the single-index frequency sample locations to be 

( ) 2s vu uω δ=  = frequency samples. (42) 

This implies that  
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1

2

2 2
1 2 1 2

1

v

v

Vu v v v v
V

δ

δ

   ∆
 = + = +     

, (43) 

which is consistent with our earlier formulation.  Note that generally more than one 
combination of legitimate index values for 1v  and 2v  will yield the same new single 
index value u , and in fact a peak in the second csinc function of Eq. (36).  That is, for a 
particular single index value u , the specific index values for 1v  and 2v  are not unique.  
We solve this dilemma by choosing the index pair that yields the smallest value for 2v .   

We note that a unit increment in index 1v  is equivalent to an increase in index 2v  of 

2 2 1V V∆ .  Consequently, we may limit our interest in values for 2v  to the range 

* *
2 2 22 2V v V− ≤ < , (44) 

where 

1

2

* 2 2
2

1

v

v

VV
V

δ

δ
∆

= = . (45) 

Some important observations include 

• Eq. (36) is a product of two csinc functions, one each from DFT processing over 
the two indices 1m  and 2m .  Each of these two sinc functions is a filter.  The fine-
resolution filter has better resolution than the coarse-resolution filter, but allows 
aliasing due to its sampling being decimated by offset factor 2∆ .  The coarse-
resolution filter resolves which of the aliased frequencies is the correct one. 

• The ‘needed’ number of output samples *
2V  will always be less than or equal to 

the ‘available’ number of output samples 2V , and often far less. 

• Under the right conditions, with coarse-resolution output sample spacing equal to 
the desired fine-resolution output sample spacing. i.e. when 

1 2v vδ δ= , then we 

need only a single output sample from the fine-resolution DFT.  That is, *
2 1V = .  

In this case, the fine-resolution DFT may be replaced with a simple summation 
(which is equal to the calculation of the DC term). 

• If we use strictly DFT calculations, then evenly spaced frequency sample 
locations ( )s uω  will require that 2 2 1V V∆  reduces to an integer value.  
Otherwise we will need additional or more complicated processing. 
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This now allows us to create a single one-dimensional output vector where  

( ) ( ) 1 2 1
1 2

1 2

0 1 0 2 1
1 2, csinc csincv v v

M M
v v

v v v
X u X v v

ω δ ω δ δ

ρ ρ

   − − −
   = =
   
   

. (46) 

where the new single index relates to the original two indices as 

1

2

2 2
1 2 1 2

1

v

v

Vu v v v v
V

δ

δ

   ∆
 = + = +     

. (47) 

with the original indices constrained to 

1 1 12 2V v V− ≤ < , and 
* *
2 2 22 2V v V− ≤ < . (48) 

We identify that the individual csinc functions will exhibit peaks at respective index 
values 

11,0 0 vv ω δ= , and 

( )1 22,0 0 1,0v vv vω δ δ= − . (49) 

To forestall any issue with aliasing, we specify the unique solution where 

1 1,0 12 2V v V− ≤ < , and 
* *
2 2,0 22 2V v V− ≤ < . (50) 

Our best estimate of the input signal’s frequency is then 

( ) 1 20 1,0 2,0 1,0 2,0ˆ ,s v vv v v vω ω δ δ= = + . (51) 

Amplitude Correction 

The approximation of Eq. (30) means any frequency that falls between output samples  
1v  will be attenuated (and phase-adjusted) by the coarse-resolution csinc function.  This 

attenuation function is given as relative to the center of the csinc function as 

( ) ( ) 2
1

1

2
1 2

1

1, csinc v
M

v

v
a u a v v

M
δ

ρ

 
 = =
 
 

. (52) 
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This allows us to correct the output vector by calculating 

( ) ( ) ( )
( )

1 2
1 2

1 2

,
,

,
X v v

X u X v v
a v v

′ ′= = . (53) 

More explicitly, this can be expanded to 

( )

1
1

1 2 1
2

22
1

1

0 1

0 2 1

2

1

csinc

csinc
1 csinc

v
M

v v v
M

vv
M

v

v

v v
X u

v
M

ω δ
ρ ω δ δ

ρδ
ρ

 −
 
   − − ′  =

     
 
 

. (54) 

Examples – Discussion 

We now illustrate some concepts with the following several examples. 

Example 1 divides the data into non-overlapping subapertures.  The input signal is a 
complex sinusoid with 0 cycles per vector, or DC.  The spectrum shows a peak with sinc-
like characteristics at 0 cycles per vector.  It falls off to a zero amplitude at the edge of a 
coarse-resolution bin, at *

2 2V± .  We like this. 

Example 2 has all the same parameters as Example 1, except that the complex sinusoid 
now has frequency of 10 cycles per vector.  The mainlobe still has the main peak at the 
proper frequency and still exhibiting a sinc-like characteristic, albeit not centered in a 
coarse-resolution bin anymore.  However, note the strong grating lobes that have arisen.  
These are in fact aliased mainlobes that are not sufficiently attenuated by the coarse-
resolution csinc function.  The grating lobes do attenuate with distance from the 
mainlobe.  Nevertheless, we don’t like this. 

Example 3 has the same parameters as Example 2 except that the subapertures have been 
overlapped by 50% resulting in an approximate doubling of the number of subapertures.  
The mainlobe still exhibits the same characteristic as before, but the grating lobes have 
slid farther away from the mainlobe by a factor of 2.  Consequently, the tallest grating 
lobes have been reduced in amplitude.  More overlap of the subapertures will push the 
grating lobes even farther away and reduce their levels even more.  We like this better 
than the previous example. 

Example 4 has the same parameters as Example 2 except that the coarse-resolution 
transform output has the same bin spacing as the final desired vector.  This means that the 
fine-resolution transform is a simple summation of the processed subaperture outputs.  
Note that the output is a perfect csinc function without any grating lobes.  This simply 
illustrates the linearity property of the DFT.  We like this.  We will address this case 
more fully later. 
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Example 1 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with uniform weighting, 

2∆  = 1M  = 64, for non-overlapped subapertures, 

2M  = 16, processed with uniform weighting, 

1 1V M=  =  64, 

2 212V M=  = 192. (55) 

In this case,  

N  = 1024,  
*
2V  = 192. (56) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 1. 
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Figure 1.  Spectral response for uniformly weighted data and non-overlapping subapertures. 
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Example 2 

Consider subaperture processing with the following parameters 

0ω  = 2π 10, 

1M  = 64, processed with uniform weighting, 

2∆  = 1M  = 64, for non-overlapped subapertures, 

2M  = 16, processed with uniform weighting, 

1 1V M=  =  64, 

2 212V M=  = 192. (57) 

In this case,  

N  = 1024,  
*
2V  = 192. (58) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 2. 
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Figure 2.  Spectral response for uniformly weighted data and non-overlapping subapertures. 
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Example 3 

Consider subaperture processing with the following parameters 

0ω  = 2π 10, 

1M  = 64, processed with uniform weighting, 

2∆  = 32, for 50% overlapped subapertures,  

2M  = 31, processed with uniform weighting, 

1 1V M=  =  64, 

2V  = 384. (59) 

In this case,  

N  = 1024,  
*
2V  = 192. (60) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 3. 
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Figure 3.  Spectral response for uniformly weighted data and overlapped subapertures. 
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Example 4 

Consider subaperture processing with the following parameters 

0ω  = 2π 10, 

1M  = 64, processed with uniform weighting, 

2∆  = 64, for non-overlapped subapertures, 

2M  = 16, processed with uniform weighting, 

1V  =  12288, 

2V  = 192. (61) 

In this case,  

N  = 1024,  
*
2V  = 1. (62) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 4. 
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Figure 4.  Spectral response for uniformly weighted data and non-overlapped subapertures, and 
subaperture output bin spacing equal to final bin spacing. 
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2.3 Subapertures with Windowed Data 

Heretofore we have assumed no windowing or other sidelobe-control filtering prior to the 
coarse-resolution or the fine-resolution transforms.  Consequently our frequency response 
has had a csinc-like mainlobe response with attendant relatively high sidelobes. 

We now explore using window taper functions for sidelobe control in both the coarse-
resolution transform and in the fine-resolution transform. 

We return to Eq. (31) in the previous section, which is the processing model just prior to 
the first (coarse resolution) transform.  However, we rewrite this equation and explicitly 
incorporate window functions as 
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where the window functions are defined as 

( )1 1w m  = window function for coarse-resolution transform, and 

( )2 2w m  = window function for fine-resolution transform. (64) 

Window functions are real-valued and even, and scaled such that 
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These window functions have DFTs that we specify as 
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where we define the constants 

1wa  = mainlobe broadening factor for ( )1 1w m , and 

2wa  = mainlobe broadening factor for ( )2 2w m . (67) 

The summation over index 1m  now becomes a simple DFT with result 

( )
( )( )

( )

( ) ( )

1
1

1

2

2 2

0 1
1,

0 2 22

1 2 1
2 22

1

2
2 2 2

2

exp

,
exp 2

exp 2

v
M

v

M

m M

v
W

j m

X v v vj m
V

vw m j m
V

ω δ

ρ

ω

π

π

=−

   −
   

      
 × ∆ 
  

≈     
× − ∆           

   
× −        

∑ , (68) 

where 

1
1

2
v V

πδ =  = coarse-resolution output sample spacing, and 

1 1
1

2
v wa

M
πρ =  = coarse-resolution output nominal resolution. (69) 

The square brackets now contain the corrected data.  The summation over index 2m  now 
becomes a simple DFT of the entire function in the square brackets but with the 
appropriate window function applied, which is our data appropriately corrected, with 
result 
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where 
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 = fine-resolution output sample spacing, 
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 = fine-resolution output nominal resolution, (71) 
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Amplitude Correction 

The approximation of Eq. (70) means any frequency that falls between output samples  
1v  will be attenuated (and phase-adjusted) by the DFT of the coarse-resolution window 

function.  This attenuation function is given as relative to the center of the DFT of the 
coarse-resolution function as 
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This allows us to as before correct the output vector by calculating 
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Examples – Discussion 

We now build on the discussion of examples from the previous section. 

Example 5 has subapertures overlapped by 50%, much like Example 3, except that the 
signal frequency has been returned to zero (DC), and window taper functions were 
employed during coarse-resolution processing and fine-resolution processing. Note that 
the mainlobe has its near-in sidelobes appropriately reduced as desired, but the frequency 
response departs from ideal at the coarse-resolution bin boundaries.  Grating lobes are 
evident, but the tallest are nearly 40 dB down from the mainlobe peak. 

Example 6 has its subapertures overlapped by 62.5%, which causes the grating lobes to 
slide farther away from the mainlobe, as expected.  This also suppresses the tallest 
grating lobes to approximately 50 dB down from the mainlobe peak. 

Example 7 has the same processing configuration as Example 6, but now operates on a 
complex sinusoid signal with a frequency of 10 cycles per input vector.  Note that the 
mainlobe is very near a coarse-resolution bin boundary.  Furthermore, note that both 
near-in sidelobes and grating lobes are no longer symmetric, and some grating lobes are 
in fact elevated from the DC frequency case. 

 

 



- 26 - 

 

Example 5 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with −50 dB Taylor window ( n  = 7), 

2∆  = 32, for 50% overlapped subapertures, 

2M  = 31, processed with −35 dB Taylor window ( n  = 4), 

1V  =  64, 

2V  = 384. (74) 

In this case,  

N  = 1024,  
*
2V  = 192. (75) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 5. 
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Figure 5.  Spectral response for tapered data and overlapped subapertures. 
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Example 6 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with −50 dB Taylor window ( n  = 7), 

2∆  = 24, for 62.5% overlapped subapertures, 

2M  = 41, processed with −35 dB Taylor window ( n  = 4), 

1V  =  64, 

2V  = 512. (76) 

In this case,  

N  = 1024,  
*
2V  = 192. (77) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 6. 
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Figure 6.  Spectral response for tapered data and overlapped subapertures. 
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Example 7 

Consider subaperture processing with the following parameters 

0ω  = 2π 10, 

1M  = 64, processed with −50 dB Taylor window ( n  = 7), 

2∆  = 24, for 62.5% overlapped subapertures, 

2M  = 41, processed with −35 dB Taylor window ( n  = 4), 

1V  =  64, 

2V  = 512. (78) 

In this case,  

N  = 1024,  
*
2V  = 192. (79) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 7. 
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Figure 7.  Spectral response for tapered data and overlapped subapertures. 
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2.4 Special Case – Subapertures Processed to Final Output Bin 
Spacing 

We now examine the special case when the coarse-resolution processing produces output 
samples with the final desired bin spacing; the same as after fine-resolution processing.  
This is the case when 

1

2

* 2 2
2

1
1v

v

VV
V

δ

δ
∆

= = = . (80) 

In this case, the fine-resolution transform degenerates into a simple summation of the 
respective bins resulting from coarse-resolution processing. 

Examples – Discussion 

We now offer several examples to illustrate this special case. 

Example 8 divides the data into non-overlapping subapertures, each processed with 
uniform window taper.  The input signal is a complex sinusoid with 0 cycles per vector, 
or DC.  The spectrum shows a mainlobe with near-in sidelobes with spectral 
characteristics consistent with the fine-resolution transform, which is simply a weighted 
summation in this case.  Also obvious are the grating lobes centered at each coarse-
resolution frequency bin.  They are attenuated, but still exist at a relatively objectionable 
level. 

Example 9 has all the same characteristics as Example 8 except that the subapertures are 
now processed with their own window taper function.  The essential result is that near-in 
grating lobes are amplified, but far-out grating lobes are attenuated. 

Example 10 uses subapertures overlapped by 50%, but otherwise keeps the same 
subaperture topology as Example 9.  This causes the grating lobe spacing to double, 
thereby attenuating the grating lobes nearest to the mainlobe.  This represents a 
significant improvement over Example 8. 

Example 11 is identical to Example 10, with the exception that a different window taper 
function was employed for coarse-resolution subaperture processing.  Note that a null has 
been placed on top of the grating lobe centers with sufficient null-width to essentially 
eliminate the grating lobes.  Example 12 is the same processing as Example 11, except 
that the input signal has shifted frequency to 10 cycles per vector. 

Example 13 uses the same input signal and processing as Example 11 except that a 
different yet window taper function was employed for coarse-resolution subaperture 
processing.  Although an improvement over the results of Example 10, it still doesn’t 
quite match the results of Example 11. 
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Example 8 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with uniform taper, 

2∆  = 64, for non-overlapped subapertures, 

2M  = 16, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 192. (81) 

In this case,  

N  = 1024,  
*
2V  = 1. (82) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 8. 
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Figure 8.  Spectral response for tapered data and non-overlapped subapertures. 
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Example 9 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with −50 dB Taylor window ( n  = 7), 

2∆  = 64, for non-overlapped subapertures, 

2M  = 16, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 192. (83) 

In this case,  

N  = 1024,  
*
2V  = 1. (84) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 9. 
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Figure 9.  Spectral response for tapered data and non-overlapped subapertures. 
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Example 10 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with −50 dB Taylor window ( n  = 7), 

2∆  = 32, for 50% overlapped subapertures, 

2M  = 31, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 384. (85) 

In this case,  

N  = 1024,  
*
2V  = 1. (86) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 10. 
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Figure 10.  Spectral response for tapered data and overlapped subapertures. 
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Example 11 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with triangular window, 

2∆  = 32, for 50% overlapped subapertures, 

2M  = 31, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 384. (87) 

In this case,  

N  = 1024,  
*
2V  = 1. (88) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 11. 
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Figure 11.  Spectral response for tapered data and overlapped subapertures. 
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Example 12 

Consider subaperture processing with the following parameters 

0ω  = 2π 10, 

1M  = 64, processed with triangular window, 

2∆  = 32, for 50% overlapped subapertures, 

2M  = 31, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 384. (89) 

In this case,  

N  = 1024,  
*
2V  = 1. (90) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 12. 
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Figure 12.  Spectral response for tapered data and overlapped subapertures. 
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Example 13 

Consider subaperture processing with the following parameters 

0ω  = 0, 

1M  = 64, processed with raised cosine window, 

2∆  = 32, for 50% overlapped subapertures, 

2M  = 31, processed with −35 dB Taylor window ( n  = 4), 

1V  =  12288, 

2V  = 384. (91) 

In this case,  

N  = 1024,  
*
2V  = 1. (92) 

The assembled one-dimensional amplitude-corrected output vector ( )X u′  is plotted in 
Figure 13. 
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Figure 13.  Spectral response for tapered data and overlapped subapertures. 
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Gratuitous Observations 

It is interesting to plot the combined weighting factors for the input data. 

Figure 14 illustrates the input data taper for Example 8.  Note the ‘chunky’ nature of the 
summed subapertures.  These discontinuities result in the high grating lobes in the final 
spectrum. 

Figure 15 illustrates the input data taper for Example 11.  The summed subapertures are 
considerably smoothed.  In fact the summed subaperture curve is a series of linear 
segments.  The smoothed nature of this curve is responsible for the grating lobe 
suppression. 

Figure 16 illustrates the input data taper for Example 13.  The summed subapertures are 
considerably smoothed compared to Figure 14, but not as smooth as in Figure 15; 
exhibiting some ripple.  Consequently the grating lobes are less pronounced than for 
Example 8, but more pronounced than for Example 11. 

The effects do depend somewhat on the fine-resolution window taper function.  For 
example, had the fine-resolution window been uniform, then there would be essentially 
no difference in using the raised-cosine subaperture window over the triangle subaperture 
window, or for that matter using a uniform subaperture window. 
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Figure 14.  Input data taper for Example 8, including (a) the individual subapertures, and (b) the 
summation of the subapertures. 
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Figure 15.  Input data taper for Example 11, including (a) the individual subapertures, and (b) the 
summation of the subapertures. 
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Figure 16.  Input data taper for Example 13, including (a) the individual subapertures, and (b) the 
summation of the subapertures.  
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2.5 Subaperture Processing Algorithm 

The steps to implement subaperture processing are detailed in Figure 17. 
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Figure 17.  Processing flow diagram. 
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2.6 Miscellaneous Comments 

We now offer a number of comments concerning various aspects of subaperture 
processing. 

• The biggest issue with employing subapertures is that the output spectrum 
generally exhibits undesirable grating lobes.  These grating lobes are in fact 
aliased mainlobe due to the decimation of the data rate inherent in the subaperture 
offsets. 

• The fine-resolution window taper function determines near-in sidelobe response, 
whereas the coarse-resolution window taper function generally determines the 
nature of the grating lobes insofar as how fast they fall off in amplitude with 
distance from the mainlobe.  The offset and overlap of the subapertures 
determines the spacing of the grating lobes. 

• In some circumstances, the proper choice of coarse-resolution window taper 
function can substantially reduce the amplitude of the grating lobes by placing the 
grating lobes into deep nulls with sufficient null-width.  This is especially true for 
the special case where the subapertures are processed to the final output bin 
spacing. 

• There is an inherent worsening of achievable resolution in the output spectrum by 
a factor ( )2 2N M ∆ .  This is usually small, but very real.  It can be compensated 
by collecting a longer input data vector with this in mind. 

• Not explored herein, but nevertheless not out of the question, is the possibility of 
using different subaperture window taper functions for different subapertures.  In 
fact, no explicit requirement exists to even maintain the same subaperture size, or 
a constant subaperture offset. 

• The concept of subapertures was explored herein in the context of evaluating a 
signal’s frequency spectrum.  These concepts are quite applicable to multi-phase-
center antennas as are commonly employed in high-performance Interferometric 
radar systems.  Furthermore, the concepts herein can be extended to multi-
dimensional apertures, including applications in image processing and in antenna 
systems. 
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“Arrange whatever pieces come your way.” 
-- Virginia Woolf 
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3 Conclusions 
We reiterate the following points and observations 

• Subaperture processing turns a one-dimensional calculation into a two-
dimensional calculation.  More generally, each tier of subapertures increases the 
dimensionality of the processing by one.  For many applications this yields some 
benefit, either in data reuse or mitigation of undesirable data characteristics. 

• Results achieved using subapertures are in several respects not quite as good as a 
single transform across the entire data set, but in turn offer some unique 
advantages not otherwise possible. 

• An artifact of subaperture processing is the generation of grating lobes, whose 
characteristics are dependent on window taper functions used on the subapertures 
and in final trans-subaperture processing, as well as the nature of the overlap in 
adjacent subapertures.  Subaperture processing output bin spacing also plays a 
role. 

• In addition to transforms on individual subapertures, and across the results of the 
multiple subapertures, proper processing also requires intermediate phase 
manipulation and final amplitude corrections. 
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“It is easier to achieve a desired result in short pieces.” 
-- Gustav Mahler 
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Appendix A – The csinc Function 
Consider the exponential sequence 
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A change of index variable allows this to be written as 
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and further to 
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This can be factored to the expression 
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and simplified to 
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Using the Euler formula, we identify that this equates to 
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which can be rearranged to 
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For the moment we will equate 
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which allows us to write 
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which we in turn identify as 

( )csincNX z= . (103) 

Consequently, we identify the closed-form solution to the exponential sequence as 

( ) ( )2 1

2

sin
exp 2 csinc exp

sin

N

N
n N

zn zj z z j
zN N
N

π
π π

π

−

=−

   = = −       
 
 

∑ . (104) 

 

 

 



- 45 - 

 

References
                                                 
1  B. L. Burns, J. T. Cordaro, “SAR image formation algorithm that compensates for the spatially variant 

effects of antenna motion”, SPIE Proceedings, Vol 2230, SPIE’s International Symposium on Optical 
Engineering in Aerospace Sensing, Orlando, 4-8 April 1994. 

2  Armin W. Doerry, "Synthetic Aperture Radar Processing with Tiered Subapertures", Sandia Report 
SAND94-1390, June, 1994. 

3  A. W. Doerry, "Synthetic Aperture Radar Processing with Polar Formatted Subapertures", Conference 
Record of The Twenty-Eighth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, 
California, Oct. 31 - Nov. 2, 1994, pp 1210-1215. 

4  Armin W. Doerry, "Synthetic Aperture Radar Processing with Tiered Subapertures", Ph.D. Dissertation, 
University of New Mexico, Albuquerque, New Mexico, May, 1995. 

5  J. Miller, E. Bishop, A. Doerry, “An Application of Backprojection for Video SAR Image Formation 
Exploiting a Subaperture Circular Shift Register”, SPIE 2013 Defense, Security & Sensing Symposium, 
Algorithms for Synthetic Aperture Radar Imagery XX, Vol. 8746, Baltimore MD, 29 April – 3 May 
2013. 



- 46 - 

 

Distribution 
Unlimited Release 

1 MS 0519 J. A. Ruffner  5349 
1  MS 0519  A. W. Doerry   5349 
1 MS 0519 L. Klein  5349 

1 MS 0532 J. J. Hudgens  5240 

1  MS 0899  Technical Library  9536 (electronic copy) 

 

 



- 47 - 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Abstract
	Acknowledgements
	Contents
	Foreword
	Classification

	1  Introduction
	2  Discussion
	2.1 Sampled Complex Sinusoid
	2.2 Subapertures
	2.3 Subapertures with Windowed Data
	2.4 Special Case – Subapertures Processed to Final Output Bin Spacing
	2.5  Subaperture Processing Algorithm
	2.6 Miscellaneous Comments

	3  9BConclusions
	Appendix A – The csinc Function
	References
	Distribution

