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Abstract

Metal particle beds have recently become a major technique for hydrogen storage. In order
to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of
the metal hydride. We are interested in obtaining a a better understanding of the uranium hy-
dride (UH3) decomposition kinetics. We first developed an empirical model by fitting data
compiled from different experimental studies in the literature and quantified the uncertainty
resulting from the scattered data. We found that the decomposition time range predicted by the
obtained kinetics was in a good agreement with published experimental results. Secondly, we
developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a
hydride particle during the decomposition. We used this model to simulate the decomposition
of the particles for temperatures ranging from 300K to 1000K while propagating parametric
uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters
derived from the empirical and physics based models and found that the uncertainty in the ki-
netics predicted by the physics based model covers the scattered experimental data. Finally, we
used the physics-based kinetics parameters to simulate the effects of boundary resistances and
powder morphological changes during decomposition in a continuum level model. We found
that the species change within the bed occurring during the decomposition accelerates the hy-
drogen flow by increasing the bed permeability, while the pressure buildup and the thermal
barrier forming at the wall significantly impede the hydrogen extraction.
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1 Introduction

Hydrogen (H2) storage in metal hydrides has the potential to store hydrogen safely and stably for
long periods of time and release the hydrogen quickly when it is needed [1]. Uranium (U) stores
hydrogen at a density of 8.3 atoms per cm3 of material, higher than most metal hydrides, and at a
low equilibrium pressure (less than 0.1 Pa) [2]. Uranium hydride (UH3) powder beds have been
used extensively for hydrogen isotope storage [3–5]. Stored hydrogen isotopes can be recovered by
heating the hydride up to temperatures of 400-450oC. Understanding the decomposition kinetics
of UH3 is important for hydrogen storage applications. However, a large amount of variation exists
between the few empirical models developed to date [6–9] and no published physics based models
are available.

Condon and Larson (1973) [6] studied the reaction kinetics of the U-H system in a high vac-
uum environment at lower temperatures (60-250oC). The dehydriding reaction was found to be
nearly a zero-order reaction with an activation energy of 72.82 kJ/mol. Significant scattering in
the measured dehydriding kinetics data was observed due to the existence of oxide contaminants.
Stakebake (1979) [7] performed dehydriding experiments at moderate temperatures (200-300oC)
and found an activation energy of 39.76 kJ/mol. The discrepancy between the between this value
and the one measured by Condon and Larson was attributed to the presence of oxidizing contami-
nants during Stakebake’s experiments. Bloch and Mintz (1981) [8] found a substantial dependence
of the UH3 decomposition kinetics on the surrounding pressure. A plateau pressure, below which
decomposition of the UH3 occurs, was evaluated as a function of temperature. Finally, the recent
study of Lindner (1990) [9] resulted in a better understanding of the decomposition mechanism.
Through a more thorough experimental study at high temperatures (400-500oC), it was proved that
the reaction is controlled by the advance of the U-UH3 phase such that the reaction fraction can be
expressed as:

α = 1− [1− k(T,P)t]3 (1)

where k(T,P) is the temperature and pressure dependent kinetic coefficient and t is time. Lindner
derived a more accurate dependence of k on the temperature and pressure given by:

k = k0e−Ea/RT log(P/P0(T )) (2)

where P0 is the hydrogen plateau pressure as a function of temperature. In a recent multiphysics
finite element study [10], oxidation of UH3 was used to generate a high temperature sufficient to
decompose a UH3 bed. The study relied on decomposition kinetics of Condon and Larson [6]
while the UH3 oxidation kinetics to experimental data [11, 12] without any attempt to improve the
decomposition kinetics.

Other empirical models of the U-H reaction have been published [13–16], but did not study the
decomposition. A mathematical model of the kinetics of isothermal UH3 formation under con-
stant near equilibrium pressure was developed by Chernov et. al. (2008) [16]. They considered
four stages of hydriding: nucleation, skin development, skin growth, and final saturation. The
model was then used to fit a series of experimental curves and evaluate the output for the kinetic
parameters.
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In this work, we derive UH3 decomposition kinetics in two ways. First, we gather the data obtained
from previous experimental studies [6–9] and fit an empirical model of the decomposition kinetics
as an Arrhenius dependence on the temperature. Such empirical model is more accurate than the
previous individual models since it involves more data and covers a larger temperature range. Sec-
ond, we develop a physics based model of the UH3 decomposition that accounts for the hydrogen
diffusion and solubility in U. This model enables the computation of the kinetics as a function of
temperature. In both models, we quantify the uncertainty in the obtained kinetics using polynomial
chaos expansions (PCE). This uncertainty is due to experimental error and limited data. Finally,
we apply the computed kinetics to a continuum level model to study the effect of boundary thermal
resistance and powder morphological changes in a UH3 particle bed during decomposition.
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2 Polynomial Chaos Expansions

In this section we outline the concept of a PCE. We consider random entities parametrized by a
finite collection of real-valued independent and identically distributed (i.i.d.) random variables
ξ1, . . . ,ξd that share a common distribution function, P . If, for example, ξ is a standard normal
random variable on Ω, we write ξ ∼ N (0,1) and Pξ(x) =

1√
2π

e−x2/2 is the Probability Density
Function (PDF) of ξ. Any random variable admits an expansion of the form:

u =
∞

∑
i=0

uiΨi(ξ), (3)

where the {Ψi}∞
i=0 is an orthogonal basis with respect to the density of ξ = (ξ1, . . . ,ξd) such that,

〈ΨiΨ j〉=
∫

Ω

Ψi(x)Ψ j(x)Pξ(x)dx= δi j〈Ψ2
i 〉 (4)

where δi j is the Kronecker delta. The expansion (3) is known as the polynomial chaos expan-

sion (PCE) [17–21] of u. Particularly, in the case where ξm
iid∼ N (0,1), the {Ψi}∞

i=0 are d-variate
Hermite polynomials [22]. In practical computations, we approximate u(ξ) with a truncated series,

u(ξ)≈
P

∑
i=0

uiΨi(ξ), (5)

where P is finite and depends on the truncation strategy adopted. We consider truncations based on
the total degree of the retained polynomials in the series, such that P is a function of the stochastic
dimension n and expansion order p according to:

P+1 =
(d + p)!

d!p!
. (6)

Here p refers to the largest polynomial degree in the expansion. One way to derive the PC coeffi-
cients of u is by projection on the PC basis following:

ui =
〈uΨi〉
〈Ψ2

i 〉
, k = 0, . . . ,P. (7)

This requires numerical evaluation of the projection integrals 〈uΨi〉 using quadrature rules. This
method is referred to as non-intrusive spectral projection (NISP) [21] and will be used in this study.
More details about PCEs and their numerical implementations are found in [21].
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3 Chemical Kinetics Experimental Data

3.1 Experimental Data

The measurement of UH3 decomposition kinetics was the subject of few experimental studies. The
kinetics data is reported as either the kinetics Arrhenius pre-exponent or the reaction front speed
as a function of temperature and exhibits significant scattering. Figure 1 shows the data gathered
from different studies where the units of k were suitably converted to s−1. The empirical fits to
the individual data sets exhibit significant discrepancies which induces uncertainty in the overall
kinetics coefficient and activation energy. We combine different measured kinetics data in order to
cover a bigger temperature range and increase the amount data. Doing so decreases the uncertainty
in the fitting parameters of the Arrhenius relationship according to the central limit theorem [23].

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
−3

−20

−15

−10

−5

0

5

1/T [K−1]

lo
g
(k

[s
−
1
])

Stakebake 1979
Lindner 1990
Bloch and Mintz 1981
Condon and Larson 1973
data5
data6
data7
data9

All experimental data fit

UH3 decomposition kinetics

log(k) = k0 −Ea/RT

k0 = 8.25 + 0.96ξ1 [log(s−1)]
Ea = 66.03 + 3.94ξ1 + 0.91ξ2 [kJ/mol]

Figure 1. UH3 decomposition kinetics data gathered from mea-
surement by Condon and Larson [6], Stakebake [7], Bloch and
Mintz [8], and Lindner [9]. The dashed lines represent linear fits
of the individual data. Also shown are the results of the linear
curve fitting of the coefficient k as a function the tempreature T to-
gether with their associated uncertainty. ξ1 and ξ2 follow standard
normal distributions.

Based on this data, we infer according to the method described in [23] an Arrhenius dependence

11



of the kinetics coefficient as a function of the temperature i.e. a linear dependence between log(k)
and 1/T . This results in two uncertain variables k0 and Ea that follow normal distributions. ξ1
characterizes the uncertainty in the log(k) intercept as T → ∞ and ξ2 characterizes the uncertainty
in the slope of the inferred linear relationship between log(k) and 1/T (see Figure 1). The resulting
values of k0 and Ea are given by:

log(k) = k0−Ea/RT
k0 = 8.25+0.96ξ1

[
log(s−1)

]
Ea = 66.03+3.94ξ1 +0.91ξ2

[
kJ.mol−1] (8)

3.2 Quantifying Uncertainty in the Decomposition Time

When modeling thermal decomposition of UH3, a useful quantity of interest is the decomposition
time τ i.e. the time required to transform a given mass of UH3 into U. We consider a lumped
concentration and temperature model. Such model is suitable to predict the evolution of the con-
centration in a small quantity of UH3 as a function of time hence the decomposition time. The U
concentration is thus governed by the following ODE [9, 24, 25]:

du
dt

= 3k(1−u)2/3log
(

P0

P

)
(9)

where u is the U concentration normalized by the initial UH3 concentration, k is the kinetics co-
efficient given as a function of temperature in Eq. 8, P is the local outside pressure and P0 is the
saturation pressure. The term log(P0/P) was introduced by Lindner [9] to account for the effect of
outside pressure of the decomposition kinetics. According to Eq. 9, it is required that P < P0 for
the formation of H2 gas. P0 is measured by Lindner [9] as a function of temperature. It is given by:

P0[torr] = 109.47− 4700
T [K] (10)

Notice that Eq. 9 does not consider any diffusion taking place in the UH3 since we assume a lumped
mass decomposition given the small amount of UH3 powder used in the experiments [6, 7, 9]. τ is
calculated such that:

u(τ) = 0.999 (11)

The kinetics coefficient k involves two uncertain parameters k0 and Ea (see Eq. 8) leading to an
uncertain decomposition time. While different random sampling methods such as Monte Carlo or
Latin Hypercube could be used to quantify the uncertainty in τ, we rely on PCEs to represent the
uncertainty due to the efficiency and flexibility they offer [21]. We express τ as a PCE of the form:

τ =
P

∑
i=0

τiΨi(ξ1,ξ2) (12)
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We compute the τi following Eq. 7 using the NISP scheme, hence we rely on the solution of Eqs. 9
and 11 for given temperature T and pressure P, and for different values of k0 and Ea sampled on
Gauss full quadrature points in the ξ1 and ξ2 dimensions. We have d = 2 stochastic dimensions.
For a reasonable accuracy in the distribution of τ, a convergence study [26] results in an expansion
order p = 4. Hence, according to Eq. 6, we have P = 14. The integral in Eq. 7 is written as the
following summation [27]:

τi =
1
〈Ψ2

i 〉

n

∑
j=1

n

∑
`=1

τ
(
ξ1, j,ξ2,`

)
w jw` for all i = 0, . . . ,P (13)

Where the location of the ξs and their weights w are given in [21]. The number of such ξs is not
straightforward to choose in Monte-Carlo methods since they are slow to converge [21]. How-
ever, in PCE methods, this number of quadrature points n per stochastic dimension is chosen such
that [27]:

n≥ 2p+1
2

, (14)

In order to obtain an exact computation of the integrals in Eq. 7. We therefore choose n = 5
resulting in nd = 25 evaluations τ i.e. solutions of Eq. 9. Finally, after computing the τis, the PDF
of τ can be built using Kernel Density Estimation (KDE) [27] after sampling the PCE in Eq. 12.
The PCEs were implemented numerically using the UQ toolkit libraries [28]. We plot the PDFs
in Figure 2 based on the temperature and pressure used in the experimental studies of by Condon
and Larson [6] and Lindner [9]. The PDFs are similar to scew-normal distributions with a tail
extending to the high values of τ. Compared to the relative uncertainty in the input parameters k0
and Ea (see Eq. 8), the resulting uncertainty in τ is significantly bigger due to the nature of the ODE
in Eq. 9 known to amplify uncertainty [29]. Decomposition times measured by Condon [6] and
Lindner [9] for a given temperature and background pressure fall within the range of the predicted
uncertainty as shown in Figure 2.
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Figure 2. Plots showing: (Top row) the evolution of the non-
dimensional concentration u as a function of time for the nominal
values of k0 and Ea, and (bottom row) the PDF of the decomposi-
tion time τ generated by propagating the uncertainty in k0 and Ea

in Eq. 9. Also shown is the measured decomposition time in two
case studies in the literature [6, 9], as indicated.
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4 Mathematical Model Formulation

In this section, we develop a physics based model of the UH3 decomposition in order to extract
the chemical kinetics as a function of temperature. We consider a spherical particle of radius
R immersed in a low pressure environment and subjected to a uniform temperature. The UH3
decomposition is thus initiated at the sphere surface and H2 molecules diffuse through a U layer
from the UH3-U interface.

Figure 3. Schematic of the decomposition of a spherical UH3
particle. The UH3 decomposes at r = ρ and diffuses within the
region ρ < r < R. As the decomposition progresses with time, the
surface r = ρ moves toward the sphere center.

At a given time, the UH3 decomposition emanates at the surface r = ρ where the following reaction
takes place:

UH3→ U+
3
2

H2 (15)

In other words, the UH3 molecules dissociate into hydrogen and U molecules. Hence, for r≤ ρ, the
domain comprises pure UH3 while for r > ρ, the domain comprises hydrogen molecules diffusing
in U as shown in Figure 3. As this process evolves with time, the surface r = ρ moves towards
the sphere center and controls the UH3 decomposition [9]. Assuming that this diffusion process
is uniform around the sphere, it can be modeled using the following one-dimensional PDE in
spherical coordinates:

∂c
∂t

=
1
r2

∂

r

(
r2D

∂c
∂r

)
in r ∈ [ρ(t),R] (16)

where c is the H2 concentration, t is time, ρ(t) is the radius of the UH3-U interface. At r = ρ(t),
the H2 concentration is equal to smax the maximum hydrogen solubility in U while at r = R, the
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H2 concentration is equal to s(P,T ), the hydrogen solubility in U as a function of temperature and
outside gas pressure. smax(T ) and s(P,T ) have been measured as a function of temperature in the
experiments of Mallett and Trzeciak [30]. Thus, Eq. 16 is subjected to the following boundary
conditions:

c = smax(T ) at r = ρ(t)
c = s(P,T ) at r = R (17)

As the decomposition and diffusion progress, the decrease of ρ with time is governed by the fol-
lowing mass conservation equation:

−D
∂c
∂r

= Γ
∂ρ

∂t
(18)

where Γ is the bulk concentration of hydrogen in UH3 which is much higher than smax [31]. Eq. 18
signifies that the rate of hydrogen decomposing and diffusing in U is equal to the rate at which the
UH3 particle contracts i.e. the rate at which ρ decreases with time.

Initially, a thin film of U metal surrounds the UH3 particle. This film is the result of the hydrogen
nucleation at the particle surface. This process is usually modeled by probabilistic models [32].
In previous studies, this initial film thickness was evaluated by fitting the model to experimental
data [31]. In this study, we assume that nucleation has already occured and characterize the film
thickness by the inital value ρ0. Thus, the solution of Eq. 16 evaluates the growth of the inital
nucleation skin on the UH3 particle. Nucleation is enhanced with temperature [32] such that ρ0 is
a decreasing function with temperature. More details about the variation of ρ0 with temperature
are found in Section 5. At t = 0, the nucleation concentration distribution is given as the following
hyperbolic distribution [16, 31]:

c = smax(T )− (smax(T )− s(P,T ))
R
r

r−ρ0

R−ρ0
(19)

Using Comsol 4.3 [33], we solve the nonlinear set of equations 16 and 18 subjected to the boundary
conditions 17-18 and initial conditions 19, and extract the decomposition kinetics coefficient as:

k =− 1
R log(P0/P)

∂ρ

∂t
(20)

where P0 is given in Eq. 10. It is convenient to divide k by log(P0/P) in order to normalize the
effect of the outside gas pressure. Details about the solution and model parameters are given in
Section 5.
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5 Parametric Uncertainty Quantification

The bulk concentration Γ of hydrogen in UH3 can be estimated by assuming that there is one site
per U atom. U forms a lattice with a parameter equal to a = 0.416 nm [34] and 6 H atoms in a unit
cell. Γ is then 6

NAa3 = 0.138 mol.cm−3, where NA is Avogadro number (6.023×1023mol−1). The
particle radius is set to a constant value R = 0.35µm corresponding to the particle radius obtained
in experiments after several hydriding-dehydriding cycles [35]

The published thermophysical properties of the H-U system are limited and exhibit scattering as a
function of temperature. For instance, the H2 solubility and diffusivity in U is reported in previous
studies [6, 14, 36–38] as correlations as a function of temperature. All these studies relied on the
early raw measurements of Mallett and Trzeciak [30] and Powell et.al. [39] plotted in Figure 4.
Moreover, the nucleation of H2 at the UH3 particle surface is difficult to model and results in an
unknown initial film thickness. All these sources of uncertainty result in uncertain predictions of
the UH3 decomposition kinetics. At a given temperature and pressure, the solubility of H2 in U is
given by:

s(T,P) = 0.021exp
(
−42.57[kJ.mol−1]/RT

)√
P[atm] [mol.cm−3] (21)

For P = 1 atm, this solubility is plotted as function of temperature in Figure 4 (left, green line).

In this paper, we account for the uncertainty in smax the maximum H2 solubility in U, D the diffu-
sivity of H2 in U, and ρ0/R the initial film thickness. Similar to the method used in Section 3.1, we
infer expressions of the pre-exponent and activation energy for D and smax from the data plotted in
Figure 4. These expressions are given in Eqs. 22 and 23.

log(D) = D0−ED,a/RT

D0 = −4.13+0.316ζ1 log[cm2.s−1]

ED,a = 45.77+2.23ζ1 +0.42ζ2 [kJ.mol−1] (22)

log(smax) = smax,0− smax,a/RT

smax,0 = 0.988+0.35ζ3 [log(mol.cm−3)]

smax,a = 62.99+2.21ζ3 +0.82ζ4 [kJ.mol−1] (23)

where all ζi=1...4 ∼ N (0,1). As described in Section 4, we assume that ρ0/R decreases linearly
with temperature. The data of Zaika and Rodchenkova [31] suggest that ρ0/R = 0.96 for T =
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400K. We assume that there is a p = 2% uncertainty in this value. Thus have:

ρ0/R = 0.96(1+ pζ5)−B(400−T ) (24)

Furthermore, we determine B by assuming that at room temperature Ta = 300K the initial film
thickness is negligible i.e. ρ0/R = 0.999 incurring:

ρ0/R =
0.96(1+ pζ5)(T −Ta)+0.999(400−T )

400−Ta
(25)

The assumptions above resulted in five stochastic dimensions that characterize the sources of un-
certainty in the particle scale decomposition model of UH3. We propagate the uncertainties using
the NISP scheme similar to Section 3.2. However, since we have a relatively larger number of
dimensions we rely on Gauss sparse quadrature points in the ζi=1...5 dimensions [21] in order to
decrease n (see Eq. 13) and alleviate the computational cost of the NISP procedure. Note that the
ζs in this section are different than the ξs in Section 3.2 since they characterize different sources
of uncertainty. Using the projection equation 7, we derive the PCE for the kinetic coefficient k as
a function of temperature as:

k(T ) =
P

∑
i=0

ki(T )Ψi(ζi=1...5) (26)

This PCE enables to computation of the standard deviation of k as a function of temperature as
follows [21]:

σk(T ) =
P

∑
i=1

ki(T )2〈Ψ2
i (ζi=1...5)〉 (27)

Figure 5 shows the computed kinetics coefficient k (thick blue line) plotted as a function of 1/T
together with its associated uncertainty level (±3σk(T )). The computed kinetics is in agreement
with the measured values found in the literature. The computed mean activation energy is higher
than the measured value probably due to the assumptions introduced in the particle model. For
instance, there are uncertainties about the shape of the UH3 particles, their size and their shrinking
process upon decomposition. These phenomena are not captured in the model. Moreover, the one-
dimensional assumption on the hydrogen diffusion in uranium might not be a good approximation.
Nevertheless, the uncertainty quantified in the model covers the scattering in the measured values
mainly for moderate and low decomposition temperatures that are preferred in practice.

Unlike the empirical model developed in Section 3, this model can be further detailed to account
for other uncertainties and physical phenomena occurring during the decomposition such as the
particle size and shape, the existence of contaminants, etc. Additionally, the mathematical model
alleviates the burden of expensive experiments.
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6 Continuum Model

In this section, we develop a continuum scale numerical model of UH3 powder decomposition. The
model aims to understand the different physical phenomena involved in the process, such as the
pressure buildup in the powder bed, the bed permeability, the morphological changes in the bed,
etc., and their effects on the H2 extraction rate. The model relies on the decomposition kinetics
extracted from the physics-based model in Section 4 and comprises the governing equations for
momentum, energy and mass transport, and the chemical reactions [10]. Unless otherwise stated,
the units of the variables are CGS.

Figure 6. A schematic showing the axisymmetric reactor where
UH3 is decomposing. The H2 leaves the reactor at the cylinder up-
per surface where a low pressure is imposed. The heat is provided
to the UH3 bed by either imposing a temperature in the whole do-
main or by setting a temperature at the right wall as indicated.

We consider the closed axisymmetric bed illustrated in Figure 6. The bed is filled with a mass m
of UH3 powder giving an initial porosity:

φ0 = 1− m
ρUH3Vbed

(28)
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where ρUH3 = 10.95g.cm−3 is the density of the solid UH3 and Vbed =1.571 cm3 is the total bed
volume. There is an opening at the upper boundary of the bed where the H2 gas is extracted
by imposing a low suction pressure. We assume that heat is supplied to the bed in two different
ways. First, we consider that the whole bed is uniformly heated to a given temperature. In this
case, the temperature is constant throughout the bed for the whole simulation time, thus the energy
heat conduction equation is not solved. Secondly, we assume that the right boundary is set to a
given temperature such that heat can be conducted to the bed. In the second case, we consider the
situation where a thermal barrier forms on the bed wall due to the shrinkage of the solid particles
upon the species change from UH3 to U. In both cases we account for the variability of the porosity
in the bed also due to species change.

6.1 Governing Equations

The consumption (resp. production) of UH3 (resp. U) is governed by the following chemical
reaction:

UH3→ U+
3
2

H2 (29)

The production of U is described by the conservation equation:

d[U]

dt
= RUH3 (30)

where the transport of these two species either by diffusion or mechanical deformation is neglected.
Eq 30 is the dimensional form of Eq. 9. Thus RUH3 is given by:

RUH3 = 3k ([UH3]0− [U])2/3 [UH3]
1/3
0 log

(
P0

P

)
(31)

where [UH3]0 is the initial molar concentration of UH3 in the reactor bed, P is local pressure and
P0 is given by Eq. 10.

Modeling the release of H2 from the bed requires an equation describing momentum transport.
The porous bed provides a substantial restriction to gas flow. Many different forms of equations
have been developed for describing flow through porous media [40, 41]. In our case, the flow is
laminar with a Reynolds number of about 0.02, hence the flowing gas inertia is neglected. Given
the large size of the porous UH3 bed compared to the pore size, we neglect the domain boundary
effects. Under these assumptions, Darcy’s law appropriately simulates the flow of the H2 gas in
the UH3 bed [42]. Darcy’s equation is given by:

∂(ρφ)

∂t
−∇ ·

(
κρ

µ
∇P
)
=

3
2

RUH3MH2 (32)

where ρ and µ are the H2 gas density and dynamic viscosity, respectively, P is the gas pressure,
and φ and κ are the bed porosity and permeability, respectively (see Section 6.2). The gas density
ρgas is related to its pressure by the ideal gas law:

ρ =
PMH2

R T
(33)
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where R = 8.314 J.mol−1.K−1 is the ideal gas constant. The source term 3
2RUH3 on the right-hand

side of the equation accounts for the production of H2 gas phase within the UH3 bed.

When a constant temperature at the bed lateral surface, heat transfer occurs by both convection
and conduction. Within the porous medium, the gas and solid phases are assumed to have the
same temperature at any given point and time. The following heat conduction-convection equation
describes the heat transfer:

(ρcp)bed
∂T
∂t

+(ρcp)gasV ·∇T = ∇ · (kbed∇T )−RUH3∆HUH3 (34)

where T is the temperature, V is the gas velocity vector, kbed =0.01 W.cm−1.K−1 is the effective
thermal conductivity and ∆HUH3 = 128 kJ.mol−1 (endothermic) [38, 43, 44] is the enthalpy of
decomposition of UH3. Note that the second term on the left-hand side describing convection
uses the density and specific heat of the gas because it is the phase that is in motion. The thermal
inertia term (first term on left-hand side) and the conduction term (first term on right-hand side)
use the properties of the solid phase because they are much larger than the corresponding gas phase
values [10]. The source term accounts for heat absorbed by the UH3 bed in order to produce the
H2 gas which transport occurs by convection and diffusion, as described by [45]:

∂(cφ)

∂t
+∇ · (cV ) = ∇ · (D∗∇c)+

3
2

RUH3 (35)

where c is the molar concentration of H2, D∗ is the effective diffusivity of H2. Note that the convec-
tion term is in conservative form i.e., the divergence operator acts on the product of concentration
and velocity, which is necessary due to the variability of the total gas density.

6.2 Bed Hydraulic Properties

The effective diffusivity of H2 accounts for the solid particles existing in the gas stream, it is given
by [46, 47]:

D∗ =
DH2

θ
(36)

where θ is the bed tortuosity calculated by the following correlation [35]:

θ =
1.25
φ1.1 (37)

Contraction is known to occur upon the UH3 decomposition since the powder particle shrink due
to the difference in density between UH3 and U. Thus the porosity varies within the bed as the
reaction progresses. Its local value is calculated by:

φ = 1− ([UH3]0− [U])MUH3

ρUH3

− [U]MU

ρU
(38)
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The local bed permeability is calculated using the Young formula [10, 48]:

κ =
φd2

p

θ2

(
1
32

+
5
12

Kn
)
, (39)

where dp is the characteristic pore size estimated as a function of the particle radius R and porosity
φ using geometric considerations on the pore-particle structure as [46]:

dp = R

{[
3(1−φ)

8π

]−1/3

−2

}
(40)

The Knudsen number Kn = λ/dp is the ratio between the gas mean free path, λ, and the character-
istic pore size. The mean free path is given by:

λ =
R T

π
√

2NAPd2
H2

(41)

where NA = 6.023×1023mol−1 is Avogadro’s number and dH2 = 6.2×10−9 cm is the H2 molecule
diameter.

6.3 Initial and Boundary Conditions

The bed is axisymmetric therefore at r = 0 we have:

∂T
∂r

=
∂P
∂r

=
∂c
∂r

=
∂ur

∂r
=

∂uz

∂r
= 0 (42)

The other boundaries are rigid walls except a 1 mm opening at r = 0 to extract the H2 gas (see Fig-
ure 6) where we impose a low pressure Poutlet = Pinit = 10−5[Torr]. As mentioned in the beginning
of this section, we consider two scenarios of the bed decomposition. When the temperature is held
constant throughout the bed, Eq. 34 is not solved. In the other case, the bed is heated at its lateral
wall where a temperature Twall is imposed. In the situation where a thermal barrier forms on this
wall, we assume a convection boundary condition such that the convection coefficient h is given
by:

h =
kH2

g
(43)

where kH2 is the H2 thermal conductivity and g is the barrier thickness assumed to be uniform
along the bed and which can be computed as a function of the mean bed porosity as:

g = Rbed

(
1−

√
φ0

φ̄

)
(44)

where Rbed is the bed radius, φ0 is the initial bed porosity given in Eq. 28 and φ̄ is the mean porosity
in the bed.
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The bed is initially contains pure UH3 powder at low pressure therefore at t = 0 we have:

[U ] = 0
T = Tinit

Pinit = 10−5 [Torr]

cinit =
Pinit

R Tinit
(45)

Remark Note that we do not explicitly model the free gas flow in this barrier, we assume that
the hydraulic effect of this barrier is taken into account by the increase in the porosity reflected in
Eq. 38.
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7 Results

Eqs. 30, 32, 34 and 35 were simulated in Comsol 4.3 [33]. When the temperature is assumed to be
uniformed through the bed, Eq. 34 is excluded from the model. For such cases, the computed H2
flow rates at the bed outlet are plotted in Figure 7. The time corresponding to a sudden drop and/or
a discontinuity in the flow rate signifies the time required to decompose the whole bed. This time is
substantially high for moderate temperatures (∼ 3 hours). This is mainly attributed to the hydraulic
resistance of the bed and the local pressure buildup that slows down the kinetics. Figure 7 also
shows the effect of the particle shrinkage which results in local porosity and permeability increase
within the bed. The increase in the average porosity is plotted in Figure 10 (top) for different
temperatures. A maximum porosity of about 0.74 is reached at the end of the decomposition. The
overal bed hydraulic resistance is decreased leading to an increase in the H2 extraction rate and
a three-fold decrease in the decomposition time. Therefore, such morphological changes in the
bed are important and should be accounted when modeling reactive flows with species change in
porous beds.
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Figure 7. Plots showing the H2 flow rate as a function of time
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Figure 8 shows snapshots of the H2 gas velocity and pressure and the reaction rate for a uniform bed
temperature T = 800K at t = 60s. At this time, approximately one half of the bed is reacted where
the upper part is fully transformed into a porous phase U. Despite the increasing permeability in
this phase induced by the particle shrinkage, the pressure increases in this upstream UH3 phase
causing a significant decrease in the reaction kinetics according to Eq. 31.

Figure 8. Plots showing: (left) the H2 gas velocity in cm.s−1,
(middle) the H2 gas pressure in Torr, and (right) the reaction kinet-
ics RUH3 in s−1. Results are generated for a uniform bed tempera-
ture T = 800K at t = 60s where the bed porosity and permeability
are assumed to vary locally with the bed phase.

When the bed is heated by imposing a temperature at its vertical wall, the decomposition time is
higher than in the case of a constant temperature bed since the heat must conduct into the bed as
shown in Figure 9. In this case, we study the formation of a thermal barrier at the bed wall during
the decomposition due to the particle shrinkage. The change in average porosity in this case is
plotted in Figure 10 (bottom). The thermal barrier impedes the heat transport to the UH3 particles
and substantially increases the decomposition time especially at high temperatures.
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8 Conclusion

In this paper, we developed an empirical model and a physics based model of the uranium hydride
decomposition kinetics. The empirical model is based on measured kinetics values found in the
literature. This model was used to predict the decomposition time of a lumped mass of uranium
hydride together with its associated uncertainty resulting from the scattering in the experimental
data. Measured decomposition times were found to fall in the range of the predicted uncertainty.

Given that different physical phenomena can influence the decomposition kinetics, we developed
a physics based model to evaluate the kinetics by simulating the hydrogen release from a uranium
hydride particle while accounting for the uncertainty in the hydrogen diffusivity and solubility in
uranium. This model predicted kinetics comparable with measured values in the literature while
the quantified uncertainty covered the scattering found in the experiments at low and moderate
temperatures which are the operating temperatures often used in practice. This model alleviates
the cost and complications of experimental studies and it can be further detailed to study the effects
of particle size and shape, gas contaminants, etc., on the decomposition kinetics.

We finally developed a continuum multiphysics model of the uranium hydride decomposition. The
model explicitly considers the reaction rate computed in the physics-based particle model, heat
transport, and mass transport within a cylindrical bed. We considered two cases of the decompo-
sition. First we assumed that the heat is supplied by uniformly imposing a uniform temperature
throughout the bed. In this case, we showed that it is crucial to account for the change in the
local bed porosity which results from the species change upon decomposition. These morpholog-
ical changes lead to a ten-fold increase in the bed permeability. Secondly, we considered the case
where the bed is heated at its lateral wall surface. In this case, we showed that a significant delay
in the bed decomposition would result if a thermal barrier forms at the wall. In both cases, the
decomposition times are relatively high for lower and moderate temperatures mainly due to the
hydraulic resistance of the porous uranium phase and due to the pressure buildup in the unreacted
regions. It is clear from these results that alterations on the bed geometry and properties should be
employed to decrease the decomposition time. For example, channels can be drawn inside the bed
to decrease the overall bed resistance thereby accelerating the hydrogen extraction. The continuum
model developed in this paper could be easily and quickly used to test such modifications.

Although the present physics based particle and continuum model development and findings ap-
pear promising, additional research is needed to further strengthen the underlying methodology, to
extend its scope, and address remaining unknowns. For example, uncertainties in the particle size
and shape should be accounted for in the particle model along with the effects of contaminants on
the resulting decomposition kinetics.
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