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Abstract

In this report, we proposed, examined and implemented approaches for performing efficient uncer-
tainty quantification (UQ) in climate land models. Specifically, we applied Bayesian compressive
sensing framework to a polynomial chaos spectral expansions, enhanced it with an iterative algo-
rithm of basis reduction, and investigated the results on test models as well as on the community
land model (CLM). Furthermore, we discussed construction of efficient quadrature rules for for-
ward propagation of uncertainties from high-dimensional, constrained input space to output quan-
tities of interest. The work lays grounds for efficient forward UQ for high-dimensional, strongly
non-linear and computationally costly climate models. Moreover, to investigate parameter infer-
ence approaches, we have applied two variants of the Markov chain Monte Carlo (MCMC) method
to a soil moisture dynamics submodel of the CLM. The evaluation of these algorithms gave us a
good foundation for further building out the Bayesian calibration framework towards the goal of
robust component-wise calibration.
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Chapter 1

Polynomial Surrogate Construction and
Dimensionality Reduction

We propose and implement a methodology for surrogate model construction that approximates the
input-output relationship in a computationally intensive forward model. The surrogate model will
provide an inexpensive alternative to the complex model in both forward uncertainty quantification
studies and in inverse problems where many forward model runs are required to infer reliable
estimates of input parameters. The methodology is then illustrated for test problems. It has also
been applied to global sensitivity studies in the Community Land Model (CLM).

1.1 Polynomial Surrogate Construction

The key to performing both forward and inverse UQ on computationally costly models is the
construction of a surrogatemodel that mimicks the input-output relationship. The surrogate can be
evaluated quickly, thus allowing both efficient global sensitivity analysis strategies and parameter
calibration studies without having to run the complex forward model itself impractically many
times.

1.1.1 Polynomial Chaos

Polynomial Chaos (PC) spectral expansions are employed to represent the dependence of a Quan-
tity of Interest (QoI) y on an input parameter vector λ [8, 29], and to serve as a surrogate to a
computationally intensive forward model. In particular, it allows the input parameters to follow
arbitrary distributions. Indeed, we can view each of the input parameters as random variables,
and consequently, the output QoI is a random variable as well. This output random variable is
expanded in terms of an orthogonal set of polynomials of a standard random variable with respect
to the density of the latter. Here, we employ Legendre-Uniform (LU) PC expansions for simplic-
ity, as well as for an interpretation of the expansion simply as a response surface or a polynomial
fit. The Legendre polynomial with a multi-index p = (p1, p2, . . . , pd) is a multivariate polynomial
function of d variables (η1, η2, . . . , ηd) = η defined by

Ψp(η) = ψp1(η1)ψp2(η2) · · ·ψpd
(ηd), (1.1)
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whereψpi(η) is the standard one-dimensional Legendre polynomial of degree pi, for i = 1, 2, . . . , d.
The sum of all degrees p1 + p2 + · · · + pd is called the order of the multidimensional Legendre
polynomial (1.1).

Furthermore, the QoI y is represented with a polynomial expansion

y ≈ yc(η) ≡
K∑

k=0

ckΨk(η), (1.2)

where the scalar subscript k typically corresponds to the graded lexicographic ordering of the
multiindices p [5]. The expansion (1.2) retains only polynomials of order up to l, i.e. p1 + p2 +
· · · + pd ≤ l, leading to a total of K + 1 = (d + l)!/(d!l!) number of terms in the truncated
series (1.2). More generally, for a set of multi-indices S, one can write

y ≈ yc(η) ≡
∑

p∈S

cpΨp(η) =
K∑

k=0

ckΨk(η), (1.3)

where the single index k corresponds to some ordering of the multi-indices and K + 1 = |S|.

Typically, the input parameter vector λ and the random variable vector η ∼ Uniform[−1, 1] are
related via the cumulative distribution function (CDF) Fλi(·) of each input parameter, assuming
they are independent,

ηi = 2Fλi(λi) − 1, for i = 1, 2, . . . , d. (1.4)

For example, when λi are assumed uniform on their respective intervals [ai, bi], one obtains

ηi =
2

bi − ai

(
λi −

ai + bi

2

)
. (1.5)

Given simple maps (1.4) or (1.5), and without loss of generality, one can identify λ with η. In the
case of dependent input parameters, or in presence of additional constraints on input parameters,
one can generalize the CDF transformation (1.4) and utilize the Rosenblatt transformation [21] to
obtain a set of independent uniform random variables as an input.

The problem of building the response surface that represents the input-output relationship now
reads as follows: given training model runs D = {(η i, yi)}N

i=1, build a polynomial representa-
tion (1.3), i.e. find PC mode vector c.

1.1.2 Bayesian Compressive Sensing

Bayesian methods are well suited to deal with incomplete, sparse information [23]. Typically, the
outcome of a Bayesian approach consists of a posterior probability distribution, describing our
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knowledge of the quantities under study. Bayes formula in the context of inferring a PC expansion
for the quantities of interest, based on available data D, can be written as

q(c) ∝ LD(c)p(c) (1.6)
Here the likelihood LD(c) is a measure of a goodness-of-fit of the polynomial representation to the
data. We will assume a gaussian noise model with standard deviation σ to write

LD(c) = (2πσ2)−N/2 exp

(
−

N∑

i=1

(yi − yc(ηi))
2

2σ2

)
(1.7)

The prior distribution p(c) incorporates any prior information on the object of inference, i.e. the
PC mode vector c. The posterior distribution q(c) is the main outcome of the inference process,
and it corresponds to the current knowledge about the inferred values of c given the data set D.

While in principle, the Bayesian procedure outlined above could be used to determine the full
vector of coefficients c of all basis functions, this is in practice not always feasible. If the QoI y
depends on many parameters, then its PC expansion (1.3) will be very high dimensional, and if the
forward model is computationally expensive to evaluate, then the number of samples required to
determine all terms in this expansion would be prohibitively expensive. Instead, quite often one is
given a fixed number of samples at random locations in the parameter space, and the task becomes
to determine the best possible PC representation given the available data. To this goal, we rely
on Bayesian Compressive Sensing (BCS) to determine a sparse set of basis functions that is best
supported by the data, as outlined below.

The key in inferring a sparse set of PC modes is the usage of sparsity priors that “encourage”
the modes to have nearly vanishing values, unless there is strong support in the data for those PC
modes. This leads to a sparse set of basis functions. A common sparsity prior is the Laplace prior
of a form

p(c) = (λ/2)K+1 exp

(

−λ
K∑

k=0

|ck|
)

. (1.8)

In this case the maximum a posteriori (MAP) estimate of the object of inference c, i.e. the vector
c that maximizes the posterior q(c), coincides with the solution of the optimization problem

arg max
c

(log LD(c) − λ||c||1) (1.9)

Clearly, the prior distribution corresponds to the l1 regularization term. The optimization prob-
lem (1.9) corresponds to the classical compressive sensing algorithm that is extensively used in the
signal processing community [4]. The positive parameter λ controls the relative importance of the
penalty with respect to the goodness-of-fit. It is typically fixed at a user-defined value. In a hier-
archical Bayesian setting, however, it can be endowed with a prior distribution and marginalized
over in the posterior distribution.

However, the Laplace prior distribution (1.8) does not allow the computation of the posterior dis-
tribution in a closed form. Instead, in this work [14], a gaussian prior distribution of the form

p(c) ∝
K∏

k=0

exp

(
− c2

k

2s2
k

)
(1.10)
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is used. Together with the likelihood (1.7), this choice of prior leads to a gaussian posterior distri-
bution with mean and variance, respectively,

µ = ΣΨT y and Σ = (ΨTΨ + S)−1, (1.11)

where Ψ is a N × (K + 1) matrix with entries Ψik = Ψk(ηi) and S = diag(σ2/s2
0, . . . , σ

2/s2
K).

The likelihood variance σ2 and the prior variances (s2
0, . . . , s

2
K) together form a vector of hyperpa-

rameters. Out of convenience, we will use a formal notation s2 for the vector of prior variances. In
principle, one can construct a hierarchical Bayesian formulation with appropriate conjugate priors
for σ2 and s2 to obtain a closed form for the posterior distribution of c. Here, however, a less
complicated approach will be taken. Namely, the hyperparameters will be fixed at the values that
maximize the evidence or the integrated likelihood

E(σ2, s2) =

∫

RK+1

LD(c; σ2)p(c; s2)dc ∝ σ−1|C|− 1
2 exp

(
− 1

2σ2
yT C−1y

)
, (1.12)

where C = I + ΨS−1ΨT .

The maximization procedure for E(σ2, s2) essentially links Bayesian regression with the Rele-
vance Vector Machine (RVM) technique. An iterative procedure for maximizing E(σ2, s2) [14]
leads to very small values for s2

k for some k’s, indicating that the evidence is maximized when the
prior for the corresponding coefficients becomes a delta function around 0, i.e. the corresponding
coefficients should be set to 0. The corresponding basis polynomials Ψk(·) are then dropped from
the basis set. Therefore, the procedure automatically detects and retains the most important or rele-
vant basis terms. While the BCS tolerance parameter allows detecting small s2

k values, in practice,
an additional down-selection is needed by retaining the first Kb terms from the list of basis terms
selected by BCS. This allows direct control on the number of basis terms retained, in case one
needs to avoid overfitting or needs to have a bound on the basis set to meet computational budget
constraints.

1.1.3 Iterative procedure with BCS

With a total order truncation and in the presence of a large number of dimensions, one can not
afford to build an initial PC basis of order greater than two. Here we propose an iterative procedure
that allows increasing the order for the relevant basis terms while maintaining the dimensionality
reduction. Namely, given a multi-index set S corresponding to the current basis, we add a basis
term only if it is admissible, i.e. if by subtracting an order from each non-zero dimension one never
obtains a multi-index outside the set S. In other words,

p = (p1, . . . , pd) is added to S, if p − ei ∈ S, for all i = 1, . . . , d, (1.13)

where ei = (0, . . . , 1, . . . , 0) with 1 in the i-th position. The full algorithm then reads as follows:

• Step 0. Let S̃ be a set of multi-indices with a total order ≤ l0, where l0 is the initial PC order,
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• Step 1. Run the BCS algorithm to reduce the current basis set S̃ → S. If needed, retain only
first Kb terms,

• Step 2. Enrich the current basis by all admissible basis terms and call the new basis multi-
index set S̃ . Repeat from Step 1 until the maximal order l is reached.

The resulting representation reads as follows:

ŷ(η) =
∑

p∈S

cpΨp(η), (1.14)

where the PC modes cp are described by a multivariate gaussian posterior of a dimensionality that
is equal to the cardinality of S.

1.1.4 Error measure

We will consider two error measures, the goodness-of-fit of the resulting representation at the
N = Nt training points or at randomly chosen, Nv validation points. In particular, we will rely on
a relative L2 error. More precisely, the validation error will be

Ev(c) =

√∑Nv

i=1 (y(ηi) − yc(ηi))
2

∑Nv

i=1 y(ηi)2
, (1.15)

where the posterior mean PC mode vector is taken c = {cp∈S} with some ordering of the multi-
indices p ∈ S. The error at the training points Et(c) is defined similarly. Note that our construction
leads to an uncertain response surface, since the polynomial representation coefficients c are asso-
ciated with a posterior probability distribution.

1.2 Test Results

1.2.1 Test 1: Analytically tractable case

Below we describe a very simple test case, where the reduced basis can be seen a priori based on
the forward function. Namely, consider a 3-dimensional function

f(x, y, z) = x2 + xy2 + z3 (1.16)

where the input vector is denoted by η = (x, y, z) for clarity of presentation. The function (1.16)
can be represented exactly in Legendre polynomial basis with 6 terms only. Namely,

f(x, y, z) =
1

3
ψ0 +

1

3
ψ1(x) +

2

3
ψ2(x) +

3

5
ψ1(z) +

2

5
ψ3(z) +

2

3
ψ1(x)ψ2(y), (1.17)
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where ψi(·) is the univariate Legendre polynomial of order i, or, in terms of a ‘dummy’ variable t,

ψ0 = 1, ψ1(t) = t, ψ2(t) =
1

2
(3t2 − 1), ψ3(t) =

1

2
(5t3 − 3t). (1.18)

We run the BCS algorithm with an initial order l0 = 3 and without any additional iterations. The
3-rd order, 3-dimensional polynomial basis corresponds to 20 basis terms. The algorithm correctly
detects the only relevant terms. Namely, it detects and retains the same 6 basis terms that appear
in the exact expansion (1.17).

1.2.2 Test 2: Number of training runs necessary for reliable results

Consider a test function

y = exp

(
d∑

i=1

aiηi

)

, (1.19)

where positive constants ai are picked to correspond to the ‘importance’ of the i-th dimension. In
other words, it is expected that the larger the value of ai the more relevant basis terms along the
i-th dimension are.

The sparseness of available data is an essential issue and in principle challenges the BCS proce-
dure. The following experiment will help determine how many samples are required to reliably
detect a lower dimensional structure in a high-dimensional data set. Let us take first d imp dimen-
sions to be more important by an order of magnitude than the remaining d − d imp dimensions.
Namely, we take

ai =

{
1 if 1 ≤ i ≤ dimp,

0.1 if dimp < i ≤ d,
(1.20)

and run the BCS procedure with l0 = 1, i.e. first order polynomial basis and a very generous
tolerance. The goal of this simple test is to check whether the BCS algorithm picks the already-
known important dimensions before the rest of the dimensions. For additional robustness, we
generate 10 different sample sets each with Nt points, and declare success only if all 10 replica
tests have detected the first dimp important dimensions correctly.

Table 1.1. Number of training runs needed to reliably detect a
lower-dimensional structure.

dimp d Nt

1 any 20
2 any 50
5 any 130
10 any 980
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In Table 1.1, we report the estimated number of training samples that are necessary for a reliable
detection (i.e. no failures in 10 replica runs) of the important dimensions for different values of
the number of important dimensions dimp. The total number of dimensions d, as it turns out, is not
important. Clearly, the number of training runs necessary to detect low-dimensional structures in
the forward model depends on the dimensionality of these low-dimensional structures only, and is
independent of the total number of dimensions.

1.2.3 Test 3: Convergence for various model sparsities

Consider now a somewhat more realistic example, where the dimensional importances ai in (1.19)
change in a more gradual manner. Let us take

ai =

(
i

d

)M

. (1.21)
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Figure 1.1. (a) Dimensional importances chosen for three test
problems with varying degree of model sparsity. (b) The relative
L2 errors as functions of the basis cardinality for all three test prob-
lems computed at the training points and at the validation points.
At every iteration, the basis is enriched by adding all the admissi-
ble basis terms of one order higher, up to fourth order. Note the
logarithmic scale on both axes.

We fix the total dimensionality for this experiment at d = 50 and vary M . In particular, we picked
three different values for M = 5, 15, 35, as illustrated in Figure 1.1(a). Clearly, for larger M , more
relative importance is given to a fewer number of dimensions, i.e. the effective lower-dimensional
space is smaller. Let us introduce a model sparsity measure as the number of dimensions that
contribute to ∼ 90% of the total sum of ai’s. It can be checked that the M = 5, 15, 35 cases
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correspond to sparsities of 16, 8 and 4, respectively. For example, for M = 35,
∑

i>d−4(i/d)M

∑d
i=1(i/d)M

≈ 0.9. (1.22)

As Figure 1.1(b) illustrates, a model with better sparsity (i.e., with a smaller number of important
dimensions) is represented better with the same number of training runs. The relative L2 error on a
validation set is a stricter test for the PC representation and it often indicates overfitting. That is, the
relative error on the training points tends to decrease when more basis terms (degrees of freedom)
are included, while the validation error Ev(c) could be increasing when more than necessary terms
are used to represent the current set of data.

1.2.4 Test 4: Dimensionality sorting study

Let us focus on the M = 15 case and illustrate further how the BCS algorithm detects the im-
portant dimensions. The dialed-in dimensional importances 1.21 are randomly shuffled for the
purpose of illustration. The BCS algorithm is run only up to first order, with a very generous
tolerance. Therefore, eventually, all the dimensions are picked as relevant. However, the RVM
optimization procedure clearly shows the order of importance of the dimensions: the faster the
iterative procedure for s2

k converges, the more important the k-th basis term is. Figure 1.2 shows
the values of dimensional importances, as well as the order by which the algorithm picks them.
With a stricter threshold, the BCS algorithm would stop earlier according to the red line shown
in the figure. This proof-of-concept demonstrates that the BCS algorithm detects the dimensional
importances in the expected sequence.

1.2.5 Test 5: Study of the dependence on the total dimensionality

The following test case is meant to study the dependence of the accuracy of the final representation
on the dimensionality d of the input space. In particular, we used the test function (1.19) with
dimensional importances dialed-in according to 1.21 with M = 10 and varying d. Once again this
demonstrates that while 1000 training points is sufficient to represent a 10-dimensional problem
with a reasonable low-dimensional structure well, it is somewhat satisfactory for a 30-dimensional
problem, and fails to a certain degree, i.e. overfits, when trying to build a representation for a
50-dimensional problem.
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Figure 1.2. Results of a first order BCS procedure with a 50-
dimensional test function and Nt = 1000 training samples. The
dimensional importances are shown with blue dots, while the se-
quence in which the procedure picks the important dimensions is
highlighted by the red lines joining the dots, starting from the top.
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Figure 1.3. Relative L2 errors as functions of the basis cardi-
nality for a test problem computed at the training points and at
the validation points. At every iteration, the basis is enriched by
adding all the admissible basis terms of one order higher, up to
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Chapter 2

Efficient Sampling in Irregular Domains

2.1 Grids in Regular Domains

Multi-dimensional numerical quadrature is often built up from one-dimensional quadrature rules.
A direct application of iterated integration leads to a multi-dimensional tensor-product grid. More
sophisticated combinations of the univariate grids can lead to sparse grids which improve the effi-
ciency of the multivariate quadrature for a given accuracy. This section will begin with a discussion
of one-dimensional grids and conclude with a discussion on the Smolyak construction of grids tai-
lored for projecting onto a prescribed basis.

2.1.1 One-dimensional Gauss-Patterson grids

The multi-dimensional rectangular grid sparse quadrature is based on a series of one-dimensional
Gauss-Patterson [18] quadrature rules. These formulae are nested, and it was shown that addi-
tion of n + 1 points to an n-point formulae yeilds an accuracy of degree approximately 3n. The
methodology for computing the recursively nested Gauss formulae is described below.

Let an n-point quadrature formula be augmented with p additional points, and let Gn+p by the
polynomial whose roots are the n + p abscissae of the new quadrature rule. A general polynomial
of degree n + 2p − 1 can be expressed as

Fn+2p−1(x) = Qn+p−1(x) + Gn+p(x)
p−1∑

k=0

ckPk(x) (2.1)

where Qn+p−1 is a general polynomial of degree n + p − 1 and Pk is the Legendre polynomial of
order k. Since Qn+p−1 can always be integrated exactly by a n + p-point quadrature, if

∫
Gn+p(x)Pk(x)dx = 0, k = 0, 1, . . . , p − 1 (2.2)

then all polynomial of degrees n + 2p− 1 can be integrated exactly by the n + p-point quadrature.
We start deriving the n + p formulae by first expanding Gn+p as

Gn+p(x) =
n+p∑

k=0

ckPk(x) (2.3)
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This expression is subsituted into eq. 2.2 leading to

n+p∑

i=0

ci

∫
Pi(x)Pk(x)dx, k = 0, 1, . . . , p − 1 (2.4)

This implies, due to orthogonality of Legendre polynomials that ck = 0 for k = 0, 1, . . . , p − 1.
Thus Gn+p can be rewritten as

Gn+p(x) =
[n/2]+1∑

k=1

ckP2k−2+p+q(x) (2.5)

where q = n − 2[n/2]. Since the original abscissae of the n-point formula, xj , j = 1, 2, . . . , n are
also the roots of Gn+p, a linear system can be assembled to compute the first [n/2] ck coefficients
while the last coefficient c[n/2]+1 can be arbitrarily set to 1.

[n/2]∑

k=1

ckP2k−2+p+q(xj) = −Pn+p(xj), j = 1, 2, . . . , [n/2] (2.6)

Once the coefficients ck are computed, the quadrature points are the roots of Gn+p given by ex-
pression (2.5).

The weights of the associated with the new n + p-point rule can be computed as [17]

wj ∝
∫

Lj(x)dx, j = 0, 1, . . . , n + p (2.7)

where Lj is Lagrange interpolating polynomial of order n + p − 1, Lj(x) =
n+p∏
i=1
i#=j

x−xi
xj−xi

.

The procedure above can be applied recursivelly, starting, for example, with an n-point Gauss-
Legendre rule and adding p = n + 1 abscissae at every iteration. If n → 2n + 1, then the resulting
quadrature rule is of approximately 3n/2 degree. The table below shows the abscissa and weights
for Gauss-Patterson rules obtained starting from a 3-point Gauss-Legendre rule. Since the points
are symmetric with respect to 0, only the positive abscissae and weights are shown. Please note
that, for each recursion, the quadrature weights are computed for all abscissae.

Gauss-Legendre 3-point rule
x : 0 0.77460
w : 0.88889 0.55556

+4 points ⇒ Gauss-Patterson 7-point rule
x : 0 0.43424 0.77460 0.96049
w : 0.45092 0.40140 0.26849 0.10466

+8 points ⇒ Gauss-Patterson 15-point rule
x : 0 0.22339 0.43424 0.62110 0.77460 0.88846 0.96049 0.99383
w : 0.22551 0.21916 0.20063 0.17151 0.13442 0.092927 0.051603 0.017002
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2.1.2 Multivariate Quadrature and the Smolyak Construction

One approach to multivariate quadrature is to use one-dimensional rules iteratively over the dimen-
sions of the domain. This is equivalent to selecting a multivariate grid which is a tensor product
of one-dimensional rules. If n points are used in each of d dimensions, then the integrand needs
to be evaluated at nd points. This is often many more than is needed for a given accuracy when
the dimensionality d is high. Indeed, Smolyak introduced sparse grids which are based on a sparse
tensor-product construction.

Sparse Grids

Let {(Gn, Wn)}n∈I be a sequence of one-dimensional grids (indexed by I) where grid Gk contains
k points, with quadrature weigts Wk = (w1

k, w
2
k, . . . , w

k
k). Let αk be the accuracy of (Gk, Wk), that

is, quadrature on (Gk, Wk) has no error for polynomials of order αk (or less).

A full-tensor product grid T =
⊗d

i=1(Gki , Wki) =
(
GT , W T

)
has precision α = (αk1 , . . . ,αkd

),
meaning that quadrature on T for each [xa1

1 xa2
2 · · ·xad

d ] with all αki ≤ ai has no error. In order
for T to have accuracy αn, then each ki must be at least n. In particular, a multivariate grid with
accuracy αn will have at least nd points. For example, a full-tensor grid in 10 dimensions with
accuracy 5 will require at least 310 = 59, 049 points!

Smolyak demonstrated the construction of quadrature grids with much fewer points than full-
tensor grids, each with the same accuracy. Consider two full-tensor grids A =

(
GA, W A

)
and

B =
(
GB, W B

)
, with precision α and β respectively. Let γ = min(α, β) (the component-wise

minimum), and let C = (GC , WC) =
⊗d

i=1(Gci, Wci) be the full-tensor grid with precision γ.
Then A, B, C can be combined into a quadrature rule S =

(
GS, W S

)
with

GS = GA ∪ GB ∪ GC , (2.8)

and the weights W S on these points such that

QS = QA + QB − QC (2.9)

and precision set

σ = α ∪ β = {(p1, . . . , pd) : each pi ≤ αi or each pi ≤ βi}. (2.10)

If the Gn are nested (e.g. Gauss-Patterson or Clenshaw-Curtis) then GS will have fewer points than
the full-tensor product of precision max(α, β).

This construction can be generalized to a sequence of full-tensor grids {Aj}. In particular, a sparse
grid of accuracy α is the minimal union of tensor grids of accuracy at least α.
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Polynomial Projection

A sparse tensor-product construction for nonintrusive spectral projection follows similarly. Each
integral in the spectral projection

f =
∑

α

fα ϕα fα = 〈f ϕα〉 (2.11)

In order for the projection to be exact when f is a polynomial of (multi-index) order α, the quadra-
ture must be exact on all polynomials of order up to 2α. In particular, if it is known a priori that
f can be represented on a prescribed basis in multi-indices {αi : i = 1 . . . N} then the projection
can be computed efficiently on a (sparse) grid which is exact on indices

σ =
⋃

i

αi (2.12)

using the notation in (2.10).

2.2 Grids in Irregular Domains

One of the primary assumptions in the above constructions of multivariate quadrature grids is
that the domain of the integrand is regular, that is, it can be written as a tensor product of (one-
dimensional) intervals. In some cases, such as the land model, the domain is known to be irregular.
One approach we have investigated is mapping the irregular domain to a regular domain via a
Rosenblatt transformation. Another approach is to employ efficient quadrature in the irregular
domain directly.

The idea is to find a quadrature rule (G, W ) with grid G = (x1, . . . , xN} (each xi ∈ Rd) and
weights W = (w1, . . . , wN) which is exact on the span of some basis {ϕj : j = 1, . . . , P} on the
domain Ω,

N∑

i=1

ϕ1(xi) wi = 〈ϕ1〉

N∑

i=1

ϕ2(xi) wi = 〈ϕ2〉

... (2.13)
N∑

i=1

ϕP (xi) wi = 〈ϕP 〉

such that xi ∈ Ω.

The exactness constraint provides a system of P equations and N(d + 1) unknowns. Informally,
the quadrature (G, W ) is said to be efficient if P ≈ N(d + 1). Any additional constraints, such
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as requiring the weights wi be positive, may lead to grids G which are less efficient (contain more
points).

While Sparse quadratures are easy to construct, they are generally contain more grid points than
efficient quadratures. For instance, the popular Clenshaw-Curtis sparse quadrature has P = N for
every d. However, the general conditions under which an efficient quadrature exists is not known.
Furthermore, when the dimensionality d is large, the nonlinear system (2.13) is difficult to solve.

2.2.1 Efficient Quadratures in Smolyak Construction

When the domain of the integrand is irregular, but can be written as the tensor-product of a regular
slice and a sequence of irregular slices

Ω = ΩR ⊗ ΩI1 ⊗ · · ·⊗ ΩIK (2.14)

then a quadrature can be constructed for the full domain Ω via a sparse tensor-product of efficient
grids on each slice.

Figure 2.1. Sparse quadrature on a triangular prism T ⊗ I using
efficient quadratures in the triangle slice T and Gauss-Patterson
quadrature in the interval I .
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Chapter 3

Models Calibration Using Multichain
Differential Evolution Monte Carlo
Methods

3.1 Introduction

The aim of this chapter is to investigate multichain sampling methods as a means of fitting models
to data, to estimate the models’ parameters. Multichain methods for inverse problems, of which
parameter estimation is a classical example, are a relatively new development. These methods
allow the estimation of model parameters as distributions, which, in turn, allows the calculation
of the parameters’ uncertainties e.g., in the form of a mean value and a standard deviation. The
multichain nature of the technique allows a conceptually simple path to parallelization, allowing
their use with computationally expensive models (in relation to single-chain methods) e.g., coupled
sets of submodels currently implemented in the Community Land Model version 4 (CLM4) [6].
However, multichain methods have not been tested with the kind of nonlinear models that are
usually incorporated into Earth System Models, nor have their performance been compared with
more established methods. Doing so forms the main thrust of this chapter. A secondary objective
is to develop methods for model selection, e.g., given two competing models which are fit to the
same data, which should one choose for further use (i.e., which one fits the data best)?

Calibration, or the fitting of models to data / observations / measurements to estimate model pa-
rameters, is part of any scientific activity. Typically, one estimates a single numerical value (also
known as a point estimate) for the model parameters, usually by minimizing an L2 norm of the
discrepancy between model predictions (for a proposed set of model parameter values) and ob-
servations. However, within the context of uncertainty quantification, point estimates are rather
irrelevant – the estimates usually do not provide any quantification of the uncertainty (e.g., in the
form of “error bars”) directly and consequently, are useless in a study of the parametric uncer-
tainty of the model. Simply putting bounds on the variation of a model’s parameters does not help;
the independent treatment of parametric uncertainties lead to parameter combinations which are
aphysical and for which the model may not be defined. Thus a probabilistic treatment of the model
parameters, where parameters estimates are defined as probability density distributions (rather than
point values) is desired. A distribution also allows “error bars” to be calculated easily; further, a
joint distribution of parameters specifies the combinations of parameter values which are physi-
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cally meaningful.

A Bayesian formulation of an inverse problem [15] is a common approach when model parameters
are desired as distributions. A Bayesian inverse formulation combines a likelihood function (the
probability L(yobs|Θ) of observing the data yobs, given a certain value of model parameters, Θ)
with prior beliefs regarding the value of the parameters, π(Θ), to obtain a posterior distribution of
the model parameters, conditioned on the data

P (Θ|yobs) ∝ L(yobs|Θ)π(Θ) (3.1)

The posterior distribution P (Θ|yobs) is constructed by drawing samples from it. Since P (Θ|yobs)
is usually an arbitrary distribution (as opposed to a well-known one like a Gaussian), specialized
samplers are required. Markov chain Monte Carlo (MCMC) methods [9] are typically used for
this purpose. Since each sample requires a model evaluation (which can be rather expensive in
case of physics models), efficiency of sampling becomes a foremost concern. Adaptive MCMC
methods, e.g., the Delayed Rejection Adaptive Metropolis (DRAM, [12]), are being increasingly
used in parameter estimation, especially when the model is moderately intensive computationally
(e.g., 1D and small 2D partial differential equations (PDEs) [16, 19]). However, DRAM draws
its samples sequentially i.e., it is a single-chain algorithm, and the question arises whether the
computational expense can be divided among multiple chains, which can subsequently be put
on separate processors. Note that there is no restriction on the use of a parallelized model with
DRAM; our focus, instead, is on partitioning the samples among processors.

Multichain methods: Multichain methods for solving Bayesian inverse problems are a class of
global, stochastic optimization methods. In this study, we will restrict ourselves to the DrEAM
algorithm (“Differential Evolution Adaptive Metropolis”, [28]), which is a generalization of DE-
MC (“Differential Evolution Markov Chain”, [24]). Both DE-MC and DrEAM are related to a
class of Population Monte Carlo methods (see the literature review in [24]), which have been
successfully used in hydrology research [25–27]. In DrEAM, one simultaneously releases Markov
chains from an over-dispersed set of points in the parameter space. These chains march in a manner
similar to traditional MCMC methods; the difference lies in the manner in which the proposals are
created. In order to construct a proposal for a chain, the remaining chains (or a subset thereof) are
gathered into pairs (without replacement) and the difference vector between the states in each chain
pair calculated. These difference vectors are combined (in different manners, giving rise to variants
of the DE-MC and DrEAM algorithms) and scaled to calculate a proposal. The combination of
states from various chains provides the correct orientation of the proposal distribution; the DrEAM
algorithm determines the correct scaling. The proposal is accepted/rejected using an acceptance
probability, derived in much the same manner as conventional MCMC methods.

The generation of proposals by combining the current states of multiple, concurrent chains is quite
different from DRAM, which generates them from a multivariate Gaussian distribution. DRAM
keeps a running history of the sample chain, and the proposal distribution’s covariance matrix is
periodically updated using it. Thus the history of the chain is used to orient the proposal distri-
bution; its scaling follows arguments which are very similar to DrEAM. The use of a multivariate
Gaussian proposal makes DRAM very efficient when constructing posteriors which are similar
to Gaussians; however, in case of fat-tailed or multimodal distributions, mixing can be a prob-
lem. In principle, this shortcoming coming can be addressed by DrEAM, but this pre-supposes
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an adequacy of concurrent chains from which an efficient posterior can be fashioned. Generally,
in DrEAM [28], the practice has been to have as many chains as the number of parameters being
estimated.

This brief discussion of DrEAM and DRAM lead to two hypotheses

1. For inverse problems where few (e.g., less than five) parameters are to be estimated i.e., low-
dimensional inverse problems, DRAM may be more efficient than DrEAM. This is because
it is unlikely that an efficient proposal distribution can be fashioned from a combination of 2
or 3 pairs of concurrent chains. This problem can be ameliorated by having many DrEAM
chains, even for low-dimensional problems, but this comes at the cost of computational
efficiency vis-à-vis a single-chained DRAM approach.

2. As the dimensionality of the inverse problem increases, DrEAM may become more compet-
itive, especially for fat-tailed posterior distributions.

Verifying these hypotheses forms the bulk of the study.

Model selection: Selecting between competing models fitted to the same data is a straightforward
task when parameters are estimated as point values; the L2 norm of the discrepancy between data
and model prediction forms a convenient metric. The problem is more involved when parameters
are evaluated as distributions. In [10, 11], Gneiting et al. derive metrics, predicated on posterior
predictive tests, that can be used to rank fitted models conditioned on their ability to reproduce
observations. Basically, the model is evaluated using parameter samples from the posterior dis-
tributions to create an ensemble of model predictions corresponding to measurements (i.e., we
conduct a posterior predictive test). One of the metrics that can be simply calculated is the mean
absolute error (MAE) between the predictions and the data. For the cumulative rank probability
score (CRPS), one calculates the difference between the CDFs (cumulative distribution function)
of the model predictions and the measurement (denoted as a step function). The interval score (IS),
obtained using the interquartile range (IQR), forms yet another metric to gauge the (predictive) skill
of the posterior predictive test.

Note that all three metrics select between models based on the predictive skill of the fitted mod-
els. They do not distinguish between the complexity of the model and cannot detect over-fitting.
The conventional statistical tactic of proposing nested models of increasing complexity and using
information theoretic criteria e.g., Akaike Information Criterion is rarely of much use in scientific
settings since few physically-based models are nested; rather, competing models reflect hypothe-
ses regarding the underlying physical processes governing the observations. In such a setting,
predictive ability is often a sound basis for model selection.

We structure the study as follows. We will investigate DrEAM and DRAM first within the context
of a linear problem which has an analytical solution. This will allow us to gauge the difference
between the two “numerical’ solutions of the inverse problems (as obtained from DRAM and
DrEAM) as well as their difference from the true solution. We will then proceed to a test with
a nonlinear model of soil hydrology, to estimate the distribution of clay, as a function of depth,
using simple (2 or 3-parameter) models of the clay profile. This will be followed by a test where a
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higher-dimensional model (a 10-parameter Markov random field) is used for the clay profile. We
expect that DRAM will outperform DrEAM in the low-dimensional problem, but a 10D problem
may be large enough for DRAM and DrEAM to be comparable.

The chapter is structured as follows. In Sec. 3.2 we derive the Bayesian inverse problem and
specify the error models. In Sec. 3.3 we describe the forward problems. In Sec. 3.4, and its
subsections, we describe the modeling required to reduce the dimensionality of the inverse problem
and the method used to generate the synthetic data on which the two methods were tested. We also
demonstrate the use of MAE, CRPS and IS to select between models. In Sec. 3.5, we draw our
conclusions.

3.2 Formulating the inverse problem

Let M(Θ) be a model, with the parameters Θ which have to be estimated from a set of data yobs.
Both yobs and Θ are vectors, and yobs can be time-dependent. The model may not reproduce the
data exactly (there are errors arising from measurements and the model’s shortcomings) and we
model the errors as i.i.d. Gaussians.

yobs = M(Θ) + ε, ε ∼ N (0, σ) (3.2)
Under these conditions, the probability L(yobs|Θ) of observing the data yobs, given a given value
of model parameters, Θ) is given by

L(yobs|Θ) ∝
N∏

i=1

exp

(
−(yi − M(Θ))2

σ2

)
, (3.3)

where {yi} = yobs are the elements in the data vector, which is of size N . σ is assumed known.

The prior beliefs regarding Θ are modeled simply. We assume that the values of each component
of Θ are independent and are modeled as Gaussians with large standard deviations i.e., these are
vague priors, which allow the data to determine the parameter values. Thus

π(Θ) =
m∏

j=1

πj(θj), (3.4)

where m is the size of the Θ = {θj} vector (i.e., the number of parameters to be estimated), and
πj are Gaussians. The exact specification of the priors πj and σ are problem dependent and will be
mention for each of the tests in Sec. 3.4. Substituting Eq. 3.3 and Eq. 3.4 into Eq. 3.1 completes
the inverse problem formulation.

3.3 Description of the forward problems

We consider two forward problems, a linear one to check the accuracy of DRAM versus DrEAM
and a nonlinear one to compare their efficiency. These are described below.
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3.3.1 Linear forward problem

We consider a unit domain [0, 1] discretized with a uniform grid with 10 grid cells. A field x is
described at the cell-centers. x varies smoothly in space and is a sample drawn from a multivariate
(10-dimensional) Gaussian N (0,Γ), with a stationary covariance matrix Γ, given by the correla-
tion function C(∆ij) = exp(−∆2

ij/λ
2). The correlation length λ = 0.3 and ∆ij is the distance

between grid cells i and j. The model predictions y are given by y = Ktx, where Kt is a matrix.
The elements of Kt were chosen randomly.

3.3.2 Soil moisture dynamics

The soil moisture dynamics model, also referred to as the Zeng & Decker (ZD) model, is described
in [30]. Its incorporation into the CLM4 is described in Chapter 7, Section 4 of [6]. CLM4
uses a highly stretched, 10-block grid to model subsurface hydrological dynamics. This (almost
exponentially) stretched grid, which reaches 3.44 m below the land surface, and the position of a
saturated zone (in case of a shallow water table) leads to numerical instabilities when Richard’s
equation is solved using conventional PDE discretization and time-integration techniques; the ZD
model is a reformulation, with a particular time-implicit formulation that preserves stability. The
equation is written as

∂φ

∂t
=

∂

∂z

[
k
∂(ψ − ψE)

∂z

]
− Q, (3.5)

where φ (mm3 of water per mm3 of soil) is the soil moisture fraction, ψ is the soil matric potential
[mm] and ψE is the equilibrium soil matric potential. Both ψ and ψE are complicated algebraic
functions of φ. The hydraulic conductivity k is dependent on (via nonlinear algebraic relationships)
on the soil moisture fraction, and the volumetric content (volume fractions) of clay, sand and
organic matter in the soil. The relationships are documented in [6]. Q captures the external flux of
moisture into the soil. This consists of precipitation, seepage of surface water and loss of moisture
from the subsurface via evapotranspiration. In our problem, we will ignore the seepage of surface
water. Precipitation will follow observed data. Loss of soil moisture via evapotranspiration is
modeled according to the models in Chapter 8, Section 1 (stomatal resistance) in [6].

The model was specialized to our site (Diablo plateau, east of El Paso, Texas). The only vegetation
considered in evapotranspiration was C4 grass (typical for Diablo plateau). The water table was
assumed to be deeper than 3.44 meter (i.e., the soil was assumed to be partially saturated). The grid
spacing, the true sand and clay profiles and precipitation (gathered weekly, over a 20 week period)
were taken from [31] for the “dry-location” test case. The evapotranspiration profile (variation
with depth) is taken from [7].
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3.4 Tests

In this section, we first test the accuracy of the DrEAM and DRAM solution in a problem with an
analytical solution (Sec. 3.4.1). We follow this up with a test using the nonlinear ZD model using
two simple clay profile models in Sec. 3.4.2. In the same section, we demonstrate the use model
selection scores (CRPS, MAE and IS) to select between the two clay profile models. We finally
compare DrEAM versus DRAM with a 10-dimensional inverse problem in Sec. 3.4.3. The Mat-
lab code for DRAM was obtained from http://www.helsinki.fi/∼mjlaine/mcmc/. The Matlab code
for DrEAM was obtained from http://jasper.eng.uci.edu/software.html. The samples were checked
for convergence (independence of the Markov chain) via the mcgibbsit package (http://cran.r-
project.org/web/packages/mcgibbsit/) which is based on the theory in Chapter 7 of [9]. For multi-
chain DrEAM, the Gelman-Rubin statistic (Chapter 8 in [9]) was also used to monitor convergence.

3.4.1 A linear inverse problem

We consider the 10-dimension linear problem y = Ktx described in Sec. 3.3.1. We create a
synthetic data vector yobs, yobs

j = yj + ej , ej ∼ N (0, ε2), j = 3, 5, . . . 9, where ε = 0.001 so
that

yobs = Kx + e, (3.6)

where the sensitivity matrix K contains rows 3, 5, . . . 9 of the matrix K. We model the inferred
solution x

′ as a multivariate Gaussian drawn from a Gaussian posterior distribution i.e. x
′ ∼

N (x̂, Γ̂). We assume a prior π(x) ≡ N (xa,Γ). The analytical expressions [20] for {x̂, Γ̂} are

x̂ = xa + ΓKT
(
KΓKT + Sε

)−1
(yobs −Kxa)

Γ̂ = Γ − ΓKT (KΓKT + Sε)
−1KΓ. (3.7)

We set xa = 0 and Sε = ε2I and calculate the particulars of the posterior distribution N (x̂, Γ̂)
exactly.

The same problem is solved using DRAM and DrEAM. In both cases, 5,000,000 samples were
drawn by the two methods. DrEAM was run with 20 chains. We model x

′
= Lz, where L is the

Cholesky decomposition of Γ and z is a 10-dimension vector whose elements are i.i.d standard
normals. Samples (of z) from the posterior distribution are converted into samples of x

′ . In
Fig. 3.1 we plot the true x, the analytical solution x̂ and the median, 25th and 75th percentiles of
the estimate of x̂ calculated using DRAM and DrEAM. We see that the numerical results agree
very closely with each other, as well as with the analytical results. The L2 norm of the difference
between the numerical x̂ and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM). This
conveys the impression that distributions e.g., the covariance matrices may also agree with the
analytical result. In Fig. 3.2 (top row), we plot the DRAM and DrEAM covariance matrices.
We see that they are symmetric but do not agree with each other - the Frobenius norm of the
difference between the DrEAM and DRAM covariance matrices is 0.195. In the bottom row, left,
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Figure 3.1. Comparison of the true x (thick line), x̂ (crosses)
and the inferences calculated using DRAM (in blue) and DrEAM
(in red). We see that the median of the x′ samples are very close
to the analytical result, regardless of whether DRAM or DrEAM
was used. The 25th and 75th percentiles also show very little dif-
ferences. The L2 norm of the difference between the numerical x̂
and the analytical one are 0.275 (DRAM) and 0.2588 (DrEAM).

we plot the analytical results. Comparing with the top row, we see that neither the DRAM nor the
DrEAM solutions are close to the analytical result. The Frobenius norm of the difference between
the empirical covariance matrices and the analytical one are 0.68 (DRAM) and 0.705 (DrEAM).
Thus the two empirical covariance matrices are closer to each other than they are to the analytical
solution. In the bottom right subfigure, we plot the diagonal elements of the analytical, DRAM and
DrEAM covariance matrices. While the DrEAM and DRAM solutions agree (to a degree), they
are quite different from the analytical solution, reinforcing the conclusions obtained by comparing
the covariance matrices.

In Figs. 3.3 and 3.4, we plot the marginals for x3, x5, x7, x9 as obtained from DrEAM and DRAM.
We see that the marginal distributions for DrEAM are sparse and noisy; while the samples may
provide plausible estimates for integrated measures like various quantiles (as seen in Fig. 3.1, the
distributions clearly leave a lot to be desired. In contrast, the DRAM results in Fig. 3.4 show
smooth behaviors as may be expected from a multiGaussian distribution. Further, clearly, the
entire parameter space seems to have been well sampled.

To conclude, both DrEAM and DRAM draw samples which can used to calculate “integrated”
measures like medians, the higher quantiles etc reliably i.e., they provide results that agree with
each other, and to a large degree, with the true solution. However, higher statistical moments
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Figure 3.2. Top row: Empirical covariance matrices generated by
DrEAM (left) and DRAM (right). We see differences between the
two (the Frobenius norm of differences is 0.195). Bottom row: We
plot the analytical covariance matrix Γ̂ on the left. We see signif-
icant differences with the covariance matrix generated by DrEAM
(Frobenius norm of difference is 0.705) and DRAM (Frobenius
norm of 0.68). In the bottom right subfigure, we plot the diag-
onal entries of the three covariance matrices (analytical, DrEAM
and DRAM). The differences between the analytical results and
the numerical one are large.
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or the more extreme quantiles may be suspect since the two methods obtain covariance matrices
which are quite different from the analytical solution. The distributions obtained by DrEAM are
not very realistic, whereas those constructed from DRAM samples “look” real. However, given the
discrepancy in the covariance matrix vis-à-vis analytical results, the distribution is approximate.

3.4.2 Comparison using a low-dimensional inverse problem

In this test, we use DrEAM and DRAM to solve a nonlinear soil moisture problem. We simulated
the time-dependent soil moisture volume fraction over a 20 week period, as described in Sec. 3.3.2.
The moisture values, at the end of every week, in the center of grid-blocks 2, 4, . . . 8 were retained
as “observations”, after adding a measurement noise ∼ N (0, 0.0052).

The aim of the test was to estimate the clay profile. The true clay profile and the soil-moisture
distribution (with depth) are shown in Fig. 3.5. We see that the clay profile shows shows a decreas-
ing trend, till about 1.75 m depth, at which point it becomes a constant. This may be because the
last 1.75 meters are covered by a single grid-block in CLM4. The evolution of the soil moisture
profile over 20 weeks shows a progressive drying out, whereas the lower depths barely change.
The richer dynamics in the upper reaches indicate that the clay profile may be inferred accurately
there, whereas the lack of information/dynamics in the lower grid-blocks (whose centers are shown
in the soil moisture profile as symbols) indicate that the inference may incur large errors there.

We propose a “truncated linear” clay profile model

f(x) =

{
a − bx if x ≥ c
a − bc if x < c

, (3.8)

with the aim of estimating Θ = {a, b, c}. f(x) is the volume fraction of clay, as a function of depth
x. Both b and c are constrained to be positive, and so we infer their log-transformed counterparts
ln(b) and ln(c). The three objects of inference (OOI) are assumed independent with normal priors,
whose specifics are listed in Table 3.1.

The problem is solved using both DrEAM and DRAM, using 40,000 (DRAM) and 60,000 (DrEAM)
samples. Three chains were used for DrEAM. The convergence was monitored using mcgibbsit
for the median of the distribution. In Fig. 3.6, top row, we plot the estimated clay profiles for
DrEAM (left) and DRAM (right). We see that the profiles generated using DrEAM are narrower.
This is reflected also in the posterior predictive test for the soil moisture at the end of Week 18
(Fig. 3.6, bottom row). It is clear from the posterior predictive check that the DrEAM results do
not predict the observations well; the median of the predictions are often quite far away from the
observations. Such a poor estimation, vis-à-vis DRAM is not unexpected; DrEAM with 3 chains
is not very different from a blocked MCMC scheme without proposal adaptation. We next use
the scores discussed in Sec. 3.1 to compare DrEAM versus DRAM with respect to their predictive
skills. These are tabulated in Table 3.2; it is clear that while the DrEAM chains become inde-
pendent quicker (i.e., with about 30% fewer samples), the parameter estimation leaves a lot to be
desired.
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Figure 3.3. Marginals and joint distributions for x3, x5, x7, x9,
obtained via DrEAM. We also plot the PDFs for each variable,
which show a craggy behavior.
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Figure 3.4. Marginals and joint distributions for x3, x5, x7, x9,
obtained via DRAM. We also plot the PDFs for each variable,
which show a smooth, Gaussian behavior, as might be expected
of marginals of a multivariate Gaussian.
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Figure 3.5. Plot of the true clay profile (in green) and the evolu-
tion of the soil moisture profile over 20 weeks. We see a progres-
sive drying-out of the upper reaches of the soil, whereas the lower
depths hardly record any change. The symbols in the soil moisture
profiles indicate grid-block centers.
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Figure 3.6. Top: Estimated clay profiles (medians and quartiles)
obtained using DrEAM (left) and DRAM (right). The quartiles
and medians are calculated from the posterior predictive test for
the clay content in each grid-block independently. Bottom: The
results from the posterior predictive tests for the soil moisture at
the end of Week 18, as obtained from DrEAM (left) and DRAM
(right).
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Table 3.1. Specifics of the normal priors used for the log-
transformed variables for the “truncated linear” and “exponential”
clay profile parameters in Sec. 3.4.2. The third column contains
the mean and standard deviations of the normal distributions and
the last column the extreme values where the priors are truncated.
Length is measured in meters.

Variable Clay profile model (µ, σ) Max/min
a Truncated linear (30, 20) 50/15

ln(b) Truncated linear (ln(7 × 10−3), 3.0) ln(4 × 10−3)/ ln(1.0 × 10−2)
ln(c) Truncated linear (ln(1.5), 0.5) (ln(3.44)/ ln(1.0))

a Exponential (30, 20) 50/15
b Exponential (4, 3) 8/0.5

Table 3.2. Comparison of the predictive skill of DrEAM versus
DRAM. The last column indicates the number of iterations to con-
vergence, per chain, as measured by mcgibbsit. We see that the
predictive skill of the DRAM-fitted model is uniformly better.

Method CRPS MAE IS Iterations per chain
DrEAM 2.212 × 10−3 2.716 × 10−3 0.009959 12770
DRAM 1.869 × 10−3 2.6299 × 10−3 0.010075 18,286

CRPS, MAE and IS which, above, were used to gauge the predictive skills of models fitted with
DrEAM and DRAM, can also be used to discriminate between competing models. We demonstrate
this by proposing an exponential clay profile i.e. g(x) = a exp(−bx) and estimating Θ = {a, b}.
The test described above is repeated with g(x) using DRAM. The priors for {a, b} are in Table 3.1.
Fig. 3.7 shows the inferred clay profile and the results of the posterior predictive test for soil
moisture at the end of Week 18. We see that the fitted clay profile deviates significantly from the
true one; further, comparing with Fig. 3.6, the uncertainty in the inferred profile is larger than that
obtained using the “truncated linear” clay profile. The CRPS, MAE and IS scores of the posterior
predictive tests are, respectively, 1.91 × 10−3, 2.98 × 10−3 and 0.006965. Comparing with the
scores for the “truncated linear” profile in Table 3.2, we see clearly that the predictive skill of the
“exponential” profile is inferior, leading to its rejection.

3.4.3 Comparison using a high-dimensional inverse problem

Finally, we address the problem of high-dimensional inference. Noticing that the true clay profile
in Fig. 3.5 is rather irregular, we propose a Markov random field (MRF) [16] model for clay
profile. More precisely, we propose h(x) = f(x; a, b, c) + δ, where f(x) is the “truncated linear”
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Figure 3.7. Left: Inferred clay profiles using the “exponential”
clay profile model. The quartiles and medians are calculated from
the posterior predictive test for the clay content in each grid-block
independently. We see that the profile is significantly worse than
the profile inferred in Fig. 3.6. Right: we plot the results of the
posterior predictive test for soil moisture at the end of Week 18.
In comparison to the results from the “truncated linear” profile in
Fig. 3.6, the predictive skill of the exponential model is consider-
ably less.

clay profile in Eq. 3.8 and δ are deviations from it at each grid-block center. We model the discrete
form of δ with a 10-dimensional MRF. An MRF imposes a small degree of smoothness among the
elements δi by imposing a likelihood function

P (δ|α) ∝ αm/2|H|1/2 exp

(
−1

2
δTHδ

)
, (3.9)

where m = 10 in our case, H is the precision matrix (symmetric, and positive semi-definite) and α
is the precision parameter. For any site i on the 1D grid, the full conditional of any δi is determined
by all others by the expression

δi|δ−i ∼ N
(
−

∑
j #=i hijδj

hii
,

1

αhii

)
.

On a uniform 1D grid, the elements of H are given by

hij =






−1 if i and j are indices of adjacent grid-blocks
0 if i and j are indices of non-adjacent grid-blocks
ni if i = j and ni is the number of grid-blocks neighboring i

, (3.10)

In our particular case, we take the “mean” clay profile as f(x; â, b̂, ĉ), where the “hatted” values
indicate the MAP (maximum a posteriori) estimates obtained from the DRAM test in Sec. 3.4.2. α
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Table 3.3. Comparison of the predictive skill of DrEAM ver-
sus DRAM, using the MRF model. The last column indicates the
number of iterations to convergence, per chain, as measured by
mcgibbsit. We see that the predictive skill of the DrEAM-fitted
model is uniformly better, and at a far lower cost.

Method CRPS MAE IS Iterations per chain
DrEAM 3.98 × 10−4 2.8 × 10−4 0.001997 2,098
DRAM 1.41 × 10−3 9.2 × 10−4 0.0074 39,682

is set to 2. The parameters, Θ, to be estimated are the 10 elements of δ. In order to accommodate
a stretched grid, we use a modified H̃ which is constructed as follows.

We commence with an upper triangular forward difference matrix, D where the elements dij are
given by

dij =






−1/li if i = j
1/li if j = i + 1
0 otherwise

where li is the distance between the centers of grid-blocks i and i + 1. D calculates the first-order
forward finite-difference slopes of the field it is applied to. H̃ = DT D and δTHδ is the sum
of square of the slopes calculated at grid-block centers using a forward-difference operator. An
augmented likelihood function La is used in Eq. 3.3, formed by

La(y
obs|Θ) ∝ L(yobs|Θ)P (δ|α)

where P (δ|α) is obtained from Eq. 3.9 and L from Eq. 3.3. The prior π(δ) is modeled as i.i.d.
Gaussian (N (0, 3)) for all 10 elements of δ.

In Fig. 3.8 we plot the inferred clay profiles, using the MRF model, as calculated using DrEAM and
DRAM. The DrEAM runs were computed with 10 chains. We see that the clay profiles computed
using DrEAM are tightly clustered around the true profile, vis-à-vis DRAM. This is reflected in the
posterior predictive test for the soil moisture at the end of Week 18 (bottom row), where the medi-
ans predicted by both DRAM and DrEAM agree with observations, with the DRAM-fitted model
predicting a wider scatter. In Fig. 3.9 and Fig. 3.10 we plot the marginals for δi, i = 3, 5, . . . 9.
We see that DRAM explores the parameter space densely, leading to smoother marginal posterior
distributions; the DrEAM equivalents are quite rough. Yet mcgibbsit and the Gelman-Rubin
statistic indicate that both the chains have converged.

Finally we use CRPS, MAE and IS to compute the accuracy of the posterior predictive tests using
DrEAM and DRAM, and compare the accuracy obtained against the computational cost. These
are summarized in Table 3.3. It is clear that the DrEAM results are about 3 times more accurate
that DRAM and were obtained with 20 times fewer samples (per chain). This is quite a surprise
given the rather unprepossessing marginals constructed using DrEAM samples in Fig. 3.9.
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Figure 3.8. Top row: Estimated clay profiles (medians and quar-
tiles) using the MRF model, as computed using DrEAM (left) and
DRAM (right). The quartiles and medians are calculated from the
posterior predictive test for the clay content in each grid-block in-
dependently. The true profile is also plotted. The DRAM pro-
files are more spread out. Bottom row: The posterior predictive
tests for soil moisture at the end of Week 18, as computed using
DrEAM (left) and DRAM (right). The wider spread of the clay
profiles as computed by DRAM translates into a wider scatter of
predicted soil moisture, as seen in the bottom right figure. The me-
dian soil moisture agrees with the observations, for both DrEAM
and DRAM.

45



30 35 40

0.
00

0.
05

0.
10

0.
15

x3

De
ns

ity

30 35 40

28
30

32
34

36
38

40
42

x3

x5

30 35 40

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x5

De
ns

ity

30 35 40

24
26

28
30

32
34

36
38

x3

x7

28 32 36 40

24
26

28
30

32
34

36
38

x5

x7

25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

x7

De
ns

ity

30 35 40

18
20

22
24

26
28

30
32

x3

x9

28 32 36 40

18
20

22
24

26
28

30
32

x5

x9

24 28 32 36

18
20

22
24

26
28

30
32

x7

x9

20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

x9

De
ns

ity

Figure 3.9. Marginals for δi, i = 3, 5, . . . 9, as computed from
the DrEAM solutions. We see that the distributions are craggy,
and the scatter plots are sparse. However, the 10 chains provide a
far fuller sampling of the space, compared to Fig. 3.3.
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Figure 3.10. Marginals for δi, i = 3, 5, . . . 9, as computed from
the DRAM solutions. We see that the distributions are smooth,
and the scatter plots show dense exploration of the parameter
space. This is in contrast with the sparse exploration in Fig. 3.9
by DrEAM.
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3.5 Conclusions

We have conducted a study of how well (and efficiently) PDE models found in CLM4 could be
calibrated to data. Our focus was on developing model parameter estimates as distributions, so that
the uncertainties in the parameter estimates and model predictions could be rigorously evaluated.
Such distributions can be constructed by posing a Bayesian inverse problem and solving it using
an MCMC method. Due to computational expense of PDE models, our interest was on evaluating
multichain MCMC methods like DrEAM, which can be easily parallelized. We have chosen 3
separate problems, solved them using DrEAM and compared the results with DRAM, a well-
established single-chain MCMC method.

Judging from the three problems, it is clear that the distributions developed by DrEAM are inferior
to DRAM, especially when the problem has few chains (around 5). When more chains are used,
the sampling by DrEAM improves, but does not quite equal DRAM. However, a better sampling
of the parameter space does not seem to result in fitted model with more predictive skill - in
a three-parameter problem, DrEAM was marginally less accurate (and about 30% cheaper, per
chain, computationally). In case of the 10-dimensional MRF model, DrEAM beat DRAM both in
accuracy and computational efficiency, by wide margins.

Our tests with the linear problem, where an analytical expression was available, show that both
DrEAM and DRAM are equally accurate when medians or quartiles are desired. However, the
covariance matrix constructed by the sampling schemes are quite different from the analytical so-
lution, though they are close to each other. Thus, it appears that the higher moments of distribution
generated by both the methods may be approximate. However, given the accuracy of the posterior
predictive tests in the MRF test, the subtle discrepancies may not matter greatly for most predic-
tive purposes. This does not hold true if the aim is to predict rare/extreme occurences e.g., for risk
analysis purposes.

Comparing the craggy PDFs generated by DrEAM with the smoother ones developed by DRAM
for the Markov random field problem (Figs. 3.9 versus 3.10) and the lnear problem (Figs. 3.3
versus 3.4), lead us to believe that the distributions developed by DrEAM may be suspect. Thus
investigating a method for reducing the computational time of the serial DRAM algorithm may
be a worthwhile task. This can be partially accomplished by increasing the efficiency which with
DRAM explores a high dimensional parameter space, perhaps, as performed in [3], by using multi-
ple Metropolis-couled MCMC chains. Alternatively, one may also investigate the use of Ensemble
Kalman Filters (EnKF) to investigate the same inverse problem. EnKF are scalable and while they
make Gaussian assumptions about the posterior distribution, the currently uncertainty about what
the posterior distribution, as developed using different methods, suggest that the approximation
may be defensible.

Ultimately, the choice of a calibration method depends upon the model in question and final goal of
calibration. If a single parameter value is desired, deterministic, optimization methods, e.g., those
in PEST [2], are far more efficient that the Bayesian methods described above. However, in keeping
with CSSEF’s focus on uncertainty quantification, point-estimates of parameters are unlikely to
contribute much (except, perhaps, as a starting guess for MCMC chains). In keeping with the
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contents of the Land UQ section (Sec.VI.3.2.2 in [1]), DRAM (or its Metropolis-coupled version),
in conjunction with surrogate models, may be most suitable. Gridded parameter estimation, also
with surrogate model, will require a multi-chain method, e.g., a parallelized implementation of
DrEAM, since some of the parameters may have to be modeled as random fields (thus increasing
the dimensionality of the inverse problem). Finally, parameter estimation using the full CLM4
model will require a parallel implementation of an EnKF (modified for parameter estimation),
which the CSSEF team does not currently have. As a first step, its applicability to the ZD problem,
and the comparison of its posterior distributions to DRAM and DrEAM should be explored.
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Part II

Land UQ
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Chapter 4

Polynomial Surrogate Construction for
Community Land Model

The Community Land Model (CLM) is the terrestrial component of the Community Earth System
Model (CESM), which is used extensively for projections of the future climate system. With
over 100 uncertain input parameters and strong nonlinearities, the CLM presents a number of
challenges for uncertainty quantification (UQ) methods. Besides, as a single run of the CLM
requires significant computational effort, constructing a polynomial surrogate model as a response
surface is a crucial component for performing both forward and inverse UQ.

4.1 Problem Formulation and Challenges

Consider an implementation of the Community Land Model (CLM) with d̃ input parameters,
λ1, . . . ,λd̃, and a single scalar output quantity of interest (QoI) y = f(λ). Note that, due to input
dependencies, the number of physical input parameters d̃ may be different from the true number
of degrees of freedom d, hence the ‘tilde’ notation. The forward function f(·) is a determinis-
tic function that acts as a black box and replicates a single-site CLM simulation. Typically, our
methodology relies on CLM simulations at appropriately chosen input parameter regimes: these
runs are called training samples or training runs.

Our ultimate goal is two-fold:

• (forward) uncertainty quantification and global sensitivity analysis,

• (inverse) parameter inference and calibration.

Below we list major challenges that both forward and inverse uncertainty quantification (UQ)
methods face specific to the CLM:

• Parameter constraints: some parameters need to satisfy constraints imposed by their own
definition or physics.
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• Curse of dimensionality: the number of input parameters is large (about eighty, in the de-
fault study), making both parameterization of input-output relationship and the input space
coverage challenging.

• Computational cost of the forward function: the CLM, even in the single-site mode, is ex-
pensive to run (a 1000-year simulation takes about 10 hours on a single processor), leading
to sparsity of the training data set.

We will focus on the forward UQ and sensitivity analyses, leaving the related inverse problem as
the next logical step, outside the scope of this report.

4.2 Community Land Model Input Parameters

Tables 4.1 and 4.2 present the list of CLM input parameters varied in our study. Besides range
restrictions the input parameters need to satisfy the following constraints, by definition, or in order
to remain consistent with associated physics:

λ18 < λ22,

λ30 + λ31 + λ32 = 1, (4.1)
λ33 + λ34 + λ35 = 1.

Besides the curse of dimensionality, the CLM input parameter set presents an additional challenge
as some input parameters are related by addition constraints. For example, there are parameter
triples (λi,λj ,λk) that lie on a plane λi + λj + λk = 1, in addition to their respective range
constraints such as λi ∈ [ai, bi]. Another constraint that arises in the CLM input is a pair of
parameters that need to have specific order λi < λj due to certain physics restrictions, again, in
addition to the range constraints λi ∈ [ai, bi].

For example, Figure 4.1 illustrates a uniform sample set on a polygons that are obtained due to
constraints λ33 + λ34 + λ35 = 1 and λ18 < λ22, respectively.

4.3 Rosenblatt Transformation

In this section, we introduce a transformation that maps input parameter vector λ with dependent
or constrained components to a vector of i.i.d. uniform variables η. This transformation is called
Rosenblatt transformation [21] and is essentially a generalization of the CDF transformation (1.4)
to multiple dimensions.

To clarify the upcoming notation, let us remove one input parameter from the triple (λ i,λj,λk) for
each constraint of a form λi + λj + λk = 1, since one of the parameters in the triple is completely
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Table 4.1. CLM input parameters: part one

Notation Name Default Min Max Units Description
λ1 displar 0.67 0.1 1 m displacement length: canopy top
λ2 dleaf 0.04 0.01 0.1 m characteristic leaf dimension
λ3 mp 6 3 16 none slope of conductance to photosynthesis
λ4 qe25 0.06 0.04 0.08 umol C/umol phot Quantum efficiency
λ5 rholvis 0.07 0.01 1 none leaf reflectance (vis)
λ6 rholnir 0.35 0.01 1 none leaf reflectance (nir)
λ7 rhosvis 0.16 0.01 1 none stem relectance (vis)
λ8 rhosnir 0.39 0.01 1 none stem reflectance(nir)
λ9 taulvis 0.05 0.01 1 none leaf transmittance (vis)
λ10 taulnir 0.1 0.01 1 none leaf transmittance (nir)
λ11 tausvis 0.001 0.0001 0.01 none stem transmittance (vis)
λ12 tausnir 0.001 0.0001 0.01 none stem transmittance (nir)
λ13 xl 0.01 0.01 1 none leaf/stem orientation index
λ14 roota par 7 1 20 m-1 rooting distribution parameter
λ15 rootb par 2 0.5 10 m-1 rooting distribution parameter
λ16 slatop 0.01 0.08 0.12 m2/gC SLA at top of canopy
λ17 dsladlai 0.0012 0.001 0.007 m2/gC/LAI SLA/dLAI
λ18 leafcn 35 23 70 gC/gN leaf C to N ratio
λ19 flnr 0.05 0.04 0.1 none frac of leaf N in Rubisco
λ20 smpso −66000 −120000 −20000 mm soil water pot. at full opening
λ21 smpsc −255000 −300000 −120000 mm soil water pot. at closure
λ22 lflitcn 70 39 143 gC/gN leaf litter C:N
λ23 frootcn 42 25 85 gC/gN fine root C:N
λ24 livewdcn 50 25 75 gC/gN live wood C:N
λ25 deadwdcn 500 200 1400 gC/gN dead wood C:N
λ26 froot leaf 1 0.3 5 gC/gC new fine root alloc C /leaf C
λ27 stem leaf 1.5 0.6 5.3 gC/gC new stem alloc C per leaf C
λ28 croot stem 0.3 0.1 0.7 gC/gC new croot alloc C per stem C
λ29 flivewd 0.1 0.06 0.28 none fraction of new wood that is live
λ30 lf flab 0.25 0.14 0.54 none leaf litter labile fraction
λ31 lf fcel 0.5 0.37 0.49 none leaf litter cellulose fraction
λ32 lf flig 0.25 0.1 0.38 none leaf litter lignin fraction
λ33 fr flab 0.25 0.18 0.25 none fine root labile fraction
λ34 fr fcel 0.5 0.38 0.5 none fine root cellulose fraction
λ35 fr flig 0.25 0.16 0.36 none fine root lignin fraction
λ36 leaf long 1.5 2 10 yr leaf longevity
λ37 resist 0.12 0 0.5 none fire resistance index
λ38 grperc 0.3 0.2 0.4 none growth respiration factor 1
λ39 grpnow 1 0 1 none growth respiration factor 2
λ40 bdnr 0.25 0 0.8 (1/s) bulk denitrification rate

determined by the other two. With the appropriate shifting of the indices, we will be left with
d = d̃− nt input parameters, where nt is the number of input parameter triples that sum up to one.

Given a vector of random variables λ = (λ1, . . . ,λd) with known joint cumulative distribution
function (CDF) F (λ1, . . . ,λd), one can obtain a set of ηi’s that are independent uniform random
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Table 4.2. CLM input parameters: part two

Notation Name Default Min Max Units Description
λ41 dayscrecover 300 1 90 days days to recover negative cpool
λ42 rc npool 100 0.5 50 none resistance for uptake from plant npool
λ43 br mr 2.53e − 06 4e − 07 1e − 05 gC/gN/s base rate for maintenance respiration
λ44 q10 mr 1.5 1 4.5 none q10 for maintenance respiration
λ45 cn s1 12 8 20 gC/gN carbon:nitrogen for SOM 1
λ46 cn s2 12 8 20 gC/gN carbon:nitrogen for SOM 2
λ47 cn s3 10 6 20 gC/gN carbon:nitrogen for SOM 3
λ48 cn s4 10 6 20 gC/gN carbon:nitrogen for SOM 4
λ49 rf l1s1 0.39 0.35 0.45 none resp. fraction for litter 1 → SOM 1
λ50 rf l2s2 0.55 0.385 0.715 none resp. fraction for litter 2 → SOM 2
λ51 rf l3s3 0.29 0 0.9 none resp. fraction for litter 3 → SOM 3
λ52 rf s1s2 0.28 0.26 0.3 none resp. fraction for SOM 1 → SOM 2
λ53 rf s2s3 0.46 0.032 0.6 none resp. fraction for SOM 2 → SOM 3
λ54 rf s3s4 0.55 0 1 none resp. fraction for SOM 3 → SOM 4
λ55 k l1 1.2 0.9 1.5 1/day decomp rate for litter 1
λ56 k l2 0.0726 0.05 0.1 1/day decomp rate for litter 2
λ57 k l3 0.0141 0.005 0.028 1/day decomp rate for litter 3
λ58 k s1 0.0726 0.038 0.11 1/day decomp rate for SOM 1
λ59 k s2 0.0141 0.005 0.022 1/day decomp rate for SOM 2
λ60 k s3 0.0014 0.0004 0.005 1/day decomp rate for SOM 3
λ61 k s4 0.0001 0 0.0004 1/day decomp rate for SOM 4
λ62 k frag 0.001 0.0002 0.005 1/day fragmentation rate for CWD
λ63 cwd fcel 0.769 0.66 0.81 none fraction of cellulose in CWD
λ64 dnp 0.01 0.001 0.1 none denitrification proportion
λ65 minpsi hr −10 −15 −5 MPa minimum psi for heterotrophic resp
λ66 q10 hr 1.5 1 4.5 none q10 for heterotrophic respiration
λ67 r mort 0.02 0.002 0.2 1/year mortality rate
λ68 sf minn 0.1 0.02 0.4 none solulble fraction of mineral N
λ69 crit dayl 39300 35000 45000 seconds critical daylength for senescence onset
λ70 ndays on 30 5 60 days no. of days to complete leaf onset
λ71 ndays off 15 5 40 days no. of days to complete leaf offset
λ72 fstor2tran 0.5 0.1 1 none fraction of strage to move to transfer
λ73 crit onset fdd 15 5 30 days no. of freezing days to set GDD counter
λ74 crit onset swi 15 5 30 days no. of water stress-free days for leaf onset
λ75 soilpsi on −2 −5 −0.75 MPa critical soil water potential for leaf onset
λ76 crit offset fdd 15 5 30 days no. of freezing days for leaf offset
λ77 crit offset swi 15 5 30 days no. of water stress days for leaf offset
λ78 soilpsi off −2 −5 −0.75 MPa critical soil water potential for leaf offset
λ79 lwtop ann 0.7 0.5 1 1/year live wood turnover proportion
λ80 gddfunc p1 4.8 3 7 none gdd threshold parameter 1
λ81 gddfunc p2 0.13 0.05 0.3 none gdd threshold parameter 2

variables on [−1, 1] for all i = 1, 2, . . . , d, using the scaled conditional cumulative distributions

η1 = R1(λ1)

η2 = R2|1(λ2|λ1)

η3 = R3|2,1(λ3|λ2,λ1) (4.2)
...

ηd = Rd|d−1,...,1(λd|λd−1, . . . ,λ1).

Each map R∗(·) is a scaled version of the corresponding CDF F∗(·) to ensure ηi ∈ [−1, 1]. That is,
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Figure 4.1. Input parameter samples for some of the constrained
inputs.

R1(λ1) = 2F1(λ1) − 1 and, similarly, for the rest of the conditional CDFs in (4.2).

This map, denoted by the shorthand notation η = R(λ), is called the Rosenblatt transformation
(RT) [21]. Note that the RT is not unique: by ordering the λi’s in different ways, one can obtain d!
different sets of uniform random variables.

The RT will be employed to map the input parameter samples from the λ-space to the η-space,
or [−1, 1]d. Note that the inverse RT can be used, say, when one needs to obtain CLM inputs
corresponding to quadrature points in [−1, 1]d, or when one needs to obtain uniformly distributed
samples in the constrained, λ-space.

4.4 Polynomial Basis Reduction via Bayesian Compressive Sens-
ing

In order to have proper coverage of the input parameter space that respects the constraints and uses
all available information, the training set of input parameters is taken to be uniformly distributed
on the constrained space. This is consistent with the maximum entropy principle, see [13], for
instance. With Rosenblatt transformation in place, which maps the input parameters λ to a uniform
random vector η, one can build Polynomial Chaos expansion with respect to η, as described in
Section 1.1.1. In other words, the forward function is evaluated at the training input data set to
arrive at input-output pairs (λi, f(λi)) for i = 1, 2, . . . , N . With the RT in mind, we are seeking
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an expansion of the form

f̃c(η) ≈
K∑

k=0

ckΨk(η) (4.3)

to serve as a surrogate. In terms of the CLM input parameters, the surrogate will take the form

fc(λ) ≈
K∑

k=0

ckΨk(R(λ)). (4.4)

Table 4.3. CLM output quantities of interest

Notation Name Units Description
y1 TOTVEGC gC/m2 Total vegetation carbon
y2 TOTSOMC gC/m2 Total soil carbon
y3 GPP gC/m2/s Gross primary production
y4 ERR W/m2 Energy conservation error
y5 TLAI none Total leaf area index
y6 EFLX LH TOT W/m2 Total latent heat flux
y7 FSH W/m2 Sensible heat flux

We applied the iterative BCS algorithm of polynomial basis reduction, described in Section 1.1.3,
to the CLM with 7 output quantities of interest (QoI), shown in Table 4.3. For each QoI, a 10-year
average of a 1000-year CLM simulation is taken.

Let us study the total vegetation carbon (output TOTVEGC) more closely. We rely on N = 987
training simulations sampled uniformly in the constrained parameter space. We run the iterative
BCS algorithm starting with the second order (l0 = 2 and, therefore, 3240 basis terms initially) up
to the fifth order. The first step reveals all the second order terms that are important if one had to
represent the forward function with only second order polynomial expansion. Figure 4.2(a) shows
a matrix of important dimensions and couplings for the resulting reduced second order basis. The
diagonal terms correspond to the sum of the logarithms of the absolute values of the PC modes
corresponding to basis terms ψ1(ηi) = ηi and ψ2(ηi) = (3η2

i − 1)/2, while the off-diagonal terms
are the logarithms of the absolute values of the PC modes for the terms ηiηj. For clarity of pre-
sentation, these joint PC modes are split to entries in the ‘matrix’ in Figure 4.2(a). Furthermore,
the iterative BCS algorithm is carried out up to the 5-th order, leading to a PC representation with
only 226 terms. As a comparison, a second order, 79-dimensional PC basis without reduction has
over 3000 terms. Figure 4.2(b) shows the output values, sorted for more clear visualization, as well
as the PC representation values evaluated at the same training points. Note that, while the over-
all trend is captured, the strongly nonlinear behavior of the output renders the PC representation
imprecise in the regions with low or no vegetation, i.e. where the output y1 ≈ 0. As can be seen
in Figure 4.2(b), about half of the samples lead to zero vegetation, i.e. y1 = 0. In principle, one
should identify the regions in the input parameter space that correspond to low vegetation and split
the input domain accordingly, leading to a mixture PC representation [22]. The study of such clas-
sification approaches in high-dimensional input spaces is outside the scope of the current report
and will be carried out in future.

56



0 10 20 30 40 50 60 70 800

10

20

30

40

50

60

70

80

Input Parameters

In
pu

t P
ar

am
et

er
s

 

 

5

5.5

6

6.5

7

7.5

8

(a) Matrix of relevant input parameter couplings for
output TOTVEGC

0 200 400 600 800 1000
Sample number

0

5000

10000

15000

20000

25000

30000

To
ta

l v
eg

et
at

io
n 

ca
rb

on
, T

O
TV

EG
C

CLM simulation results, sorted
PC model, 5rd order, 226 terms

(b) Training data (ordered) and their PC representation

Figure 4.2. Important parameter couplings and reduced basis
representation for the output TOTVEGC.

Figure 4.4 reports the matrices of relevant input variable couplings for the other six QoIs, while
Table 4.4 shows the first 10 important dimensions for each output by running a single, first order
BCS.

Table 4.4. Ten most important parameters for each output.

rank TOTVEGC TOTSOMC GPP ERR TLAI EFLX LH TOT FSH
1 r mort q10 mr leafcn k s4 froot leaf leafcn rholnir
2 q10 mr leafcn k s4 froot leaf q10 mr q10 mr q10 mr
3 froot leaf froot leaf froot leaf q10 hr q10 hr froot leaf leafcn
4 br mr br mr flnr fflnr leaf long k s4 br mr
5 q10 mr fflnr q10 mr q10 mr k s4 br mr flnr
6 leafcn dnp q10 hr dnp br mr flnr k s4
7 k s4 q10 hr dnp rf s3s4 dnp leaf long taulnir
8 stem leaf leaf long rf s3s4 leaf long stem leaf q10 hr froot leaf
9 flnr k s4 leaf long mp r mort rf s3s4 frootcn
10 dnp frootcn br mr bdnr rf s3s4 stem leaf f frag
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Chapter 5

Parameter Sensitivity Studies

The CLM software framework was installed at SNL to enable proof-of-concept studies for model
calibration and uncertainty quantification. Several prerequisite software libraries were required
prior to building CLM. The HDF5 (version 1.8.5), netcdf (version 3.6.2), NCL (version 6) as well
as Python’s Numeric, Scientific.IO, Numpy, and Scipy modules were installed.

CLM was built using PGI compilers (version 9.0). Most of the high level build tasks are handled
by Python scripts included in the distribution. These scripts incorporate case-specific keywords
and generate directory trees with setup data, and executable files required for each simulation.

Several simulation ensembles were run to determine sensitity of select model observables to rele-
vant model parameters identified in by the BCS analysis described in Section 1.1.2. These model
parameters are shown in Table 4.3. The initial conditions were generated through three model
spinup steps as outlined below:

• Accelerated decomposition (AD) spinup - a 600 year simulation with soil C and N pool
turnover times reduced by a factor of 20 to accelerate equilibration.

• Exit spinup - a one year simulation with normal C and N turnover times.

• Final spinup - a 1000 year simulation to re-equilibrate the model with the correct C and N
turnover time.

Time series for the total vegetation carbon (TOTVEGC), total soil carbon (totsomc) and total leaf
area index (TLAI), corresponding to AD and final spinup runs are shown in Fig. 5.1. The inset
plots zoom in on the last 30 years of the final spinup run. Despite the fact that the model did not
reach a quasi-steady state at the end of the final spinup, the decadal changes are small enough to
enable sensitivity studies using these results are initial conditions.

Starting with the model state at the end of the final spinup run, an ensemble of 49 runs was per-
formed to study the effect of λ26 (“froot leaf”) and λ67 (“r mort”) parameters on the output ob-
servables of interest. The values for the other 79 parameters out of the 81 considered for this study
were set at the nominal values listed in Tables 4.1 and 4.2. The values for λ26 and λ67 were chosen
to span the physical ranges for these parameters, also listed in Tables 4.1-4.2.

Figure 5.2 shows average values for select CLM output observables. The averages are taken over
the last 10 years of 1000 year simulations for various pairs (λ26,λ67). These results show a shart
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drop in vegetation for certain combinations of λ26 and λ67) values. Time series for TOTVEGC
and TOTSOMC are shown in Fig. 5.3. These time series correspond to the runs shown with filled
circles in the same figure.
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Figure 5.1. Time series for select CLM observables during the
solution spinup.
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Figure 5.2. CLM observables corresponding to an ensemble of
simulations spanning a 2D grid of “froot leaf” and “r mort” par-
tameter values. The ouput observables are averages over the last
10 years from 1000 year simulations.

62



Figure 5.3. Time evolution of “totvegc” and “totsomc” for select
runs in the ensemble shown in Fig. 5.2. The parameter values for
the corresponding runs are shown with blue circles in the contour
plots for these observables.
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