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Abstract

This report presents a system dynamics based model of the supply-demand interactions between the US
light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year
2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied
upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to
generate one possible realization of the future. While these scenarios can be illustrative of dominant trends
and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant
impact on results, especially when output metrics are associated with projections far into the future. This
type of uncertainty can be addressed by using a parametric study to examine a range of values for the input
variables, offering a richer source of data to an analyst.

The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that
influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of
petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between
13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-
fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles
(BEVs).

We find that many factors contribute to the adoption rates of EVs. These include the pace of technological
development for the electric powertrain, battery performance, as well as the efficiency improvements in
conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The
consumer effective payback period, in particular, can significantly increase the market penetration rates if
extended towards the vehicle lifetime.

Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas
(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressive
GHG emission reduction targets, even as the current electricity source mix shifts away from coal and towards
natural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicle
efficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.
These findings seem robust even if global oil prices rise to two to three times current projections. Thus,
investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towards
meeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.
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Chapter 1

Introduction

The objective of this project was to parameterically assess the value and viability of electric light-duty vehicles
(LDVs) in the United States. Specifically, the project was interested in understanding the set of market,
technology, policy, and economic charasterictics that could drive adoption of electric vehicles and/or lead
to notable reductions in fleet greenhouse gas emissions and fuel consumption. To address these questions,
this project developed a system dynamics based model of the interactions between the US LDV fleet, its
fuels, and the corresponding raw energy sources through the year 2050. The differentiating feature of the
model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where
one discrete set of values is assigned to the input variables and used to generate one possible realization of
the future [2, 13, 20, 24]. In these studies, there is often a reference case, as well as perhaps optimistic and
pessimistic perturbation scenarios relative to the reference case. While these scenarios can be illustrative of
dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have
a significant impact on results, especially when output metrics are associated with projections far into the
future. For instance, two similar models at Argonne National Laboratories arrived at significantly different
predictions of LDV oil consumption in 2050 due to the fact that one was calibrated to reference input values
published in 2007 and another was calibrated to 2008 data [24]. This type of uncertainty can be addressed by
using a parametric study to examine a range of values for the input variables, offering a richer source of data
to an analyst. It also enables a sensitivity analysis, which can reveal the underlying sources of uncertainty
in a model, as well as identify key drivers of output metrics. Additionally, the n-dimensional shape of the
trade space can be characterized to locate points of interest, such as iso-performance contours that trace the
multiple sets of parameter values that can be used to achieve performance goals. The analysis approach,
results, and an earlier version of the model were published in Barter et al. [3].

This report is divided into five chapters, following this introduction. Next is a detailed decription of
the parametric model, its methodology, assumptions, and data sources. Chapter 3 presents the numerical
results, focusing first on a global sensitivity analysis of the model to give greater insight into its behavior and
the key drivers of uncertainty. This chapter also includes a discussion of one- and two-parameter variation
studies used to understand the trade space for the impact of the US LDV fleet characteristics and associated
policies on GHG emissions and petroleum consumption. This is followed by a short chapter of concluding
comments following the analysis.

In addition to the primary project objective, a related effort was also executed under the auspices of this
LDRD. This task was an assessment of fuel economy for construction vehicles, which was published as Peters
and Manley [23]. Chapter 5 provides a brief summary of this work.
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Chapter 2

Model description

This chapter presents a detailed description of the modeling approach, key assumptions, model equations,
and data sources.

Our model is implemented using a system dynamics approach to construct a set of interacting algebraic
and differential equations using Python and the Numpy library (early versions of the model, including that
used in Barter et al. [3], were constructed using Powersim Studio, a visual programming environment for
system dynamics). Solutions are generated using a third-order Runge-Kutta algorithm with fixed step size.
A high-level diagram of the model components is shown in Figure 2.1. The model is broken down into four
modules: an energy supply sub-model, a fuel production sub-model, an electricity grid sub-model, and a
vehicle sub-model. The sub-models exchange price and demand points for energy supply stock and fuels.

- -
� �
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Figure 2.1. High-level diagram of the model components.

The model is initialized with a distribution of existing vehicles representative of the current fleet and then
calculates annual vehicle sales and scrapping to determine the evolution of the fleet composition. The sales
rate of each vehicle is determined using a choice algorithm that considers vehicle purchase cost, fuel costs,
and penalty factors (e.g. range penalties). The cost of fuels and vehicles depends, in part, on the demand
and prior sales so that there are both positive and negative feedback effects on the vehicle sales rate. The
model tracks vehicles and fuel use in the 48 states of the continental United States, as well as the District
of Columbia. Fuel demand is negotiated with supply using raw energy supply curves at a global, national,
or state scale, depending on the energy stock.

2.1 Vehicle modeling

2.1.1 Vehicle segmentation

The model starts in 2010 with 232 million light-duty vehicles in service in the United States. The initial
vehicle fleet is segmented by age, geographic region, vehicle size, vehicle powertrain, population density,
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driving intensity, and owner housing type,

V = Varsnpdh .

The subscripts, which will be used throughout the model description, denote segmentation by a age, r region,
s vehicle size, n powertrain, p population density, d driving intensity, and h housing type.

Overall sales and scrap rates are kept at a constant percent of fleet size, with sales at 6.7% and scrap
rate at 5.8%. The sales rate used is the average sales rate for the period 2000-2009 [6]. The overall number
of vehicles increases at 0.9% per year, the average rate of projected population growth from 2010 through
2050, and thus assumes no change in the number of vehicles per capita [4]. While the overall rate of vehicle
scrapping is fixed, the scrap rate of vehicles increases as the vehicles age, using rates derived from survival
data [35]. Because only new car sales and final disposal of the vehicles are considered, used vehicle sales are
not tracked. The evolution of each vehicle segment is therefore given by,

dVa=0,rsnpdh

dt
= σrsnpdhS

∑
an

Varsnpdh

dVarsnpdh
dt

= −ωsaWVarsnpdh

where S is the overall sales rate, W is the overall scrap rate, ω is the scrap fraction taken from survival data,
and σ is the consumer sales fraction by powertrain for each vehicle segment such that,∑

n

σrsnpdh = 1 .

The components of each vehicle segment are,

• Age

– 0-46 years

• Geographic region

– 48 states in the continental United States

– District of Columbia

• Vehicle size

– Compact

– Midsize

– Small SUV

– Large SUV

– Light pickup

• Vehicle powertrain

– Gasoline-fueled Spark Ignition (SI) vehicle

– Diesel-fueled Compression Ignition (CI) vehicle

– E85 Flex-Fuel vehicle (FFV)

– SI Hybrid electric vehicle (HEV)

– CI HEV

– E85 HEV

– SI Plugin Hybrid Electric Vehicle (PHEV) with 10 mile all-electric range (SIPHEV10)
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– CI PHEV 10

– E85 PHEV 10

– SI PHEV 40

– CI PHEV 40

– E85 PHEV 40

– Battery-electric vehicle (BEV) with 150 mile all-electric range (BEV150)

– Compressed natural gas (CNG) vehicle

– CNG-Gasoline bi-fuel vehicle (CNGBI)

– Hydrogen fuel cell vehicle

• Population density

– Urban

– Suburban

– Rural

• Driver intensity

– Light

– Medium

– Heavy

• Owner housing type

– Single family house with natural gas

– Single family house without natural gas

– Other

The number of initial vehicles segmented by vehicle size and state is taken from vehicle registration
data [33]. The age distribution is incorporated from the US Department of Transportation [35] based on
survival data and is listed in Table 2.2. These initial vehicles are primarily SI powertrains, but E85, CI,
and SIHYBRID powertrain vehicles exist as well. The numbers of the alternative vehicles in the initial
fleet is based on sales data and state based reporting of hybrid sales [6]. The fleet is further segmented by
population density and home housing type, based on census data [4], shown in Table 2.3. Finally, the vehicle
fleet is segmented by binning driving intensity which relates to an average daily trip distance expressed by
a gamma distribution. The bins and gamma distribution parameters for the driving intensity segmentation
are shown in Table 2.5. Through the National Highway Travel Survey data set, population density is also
related to vehicle size and driver intensity [34], shown in Table 2.4. For reference, the gamma distribution
has a cumulative distribution function of the form,

F (x; k, θ) =
γ(x, kθ )

Γ(k)
,

where γ(·) is the lower, incomplete gamma function, Γ(·) is the gamma function, k is the shape parameter,
and θ is the scale parameter [14].

We assume that the annual vehicle mileage traveled (VMT) is constant for each segment over the course
of the simulation. The variation of VMT over vehicle size, region, and population density is initialized using
the BESTMILE estimate of the National Highway Travel Survey [34]. These averages are apportioned to
vehicle age, to reflect decreasing annual miles as vehicles age [35], and also to driving intensity using the
gamma distribution bins listed above.
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Table 2.1. Initial vehicles by state and size [33].

State Compact Midsize Small SUV Large SUV Pickup

Alabama 1,144,982 1,009,265 540,162 486,154 1,237,499
Arizona 1,174,697 1,035,458 594,218 561,339 865,059
Arkansas 498,265 439,205 251,981 231,701 576,242
California 10,501,828 9,257,020 3,878,625 4,004,211 4,969,372
Colorado 334,951 295,249 229,392 182,767 253,844
Connecticut 1,047,722 923,533 371,362 367,396 302,744
Delaware 242,450 213,711 44,258 43,837 49,175
District of Columbia 86,182 75,966 15,886 15,629 5,495
Florida 3,974,990 3,503,825 1,899,107 1,961,938 2,023,580
Georgia 2,180,370 1,921,925 1,153,104 1,106,241 1,714,689
Idaho 295,712 260,660 160,550 147,149 412,231
Illinois 3,054,415 2,692,368 1,224,637 1,432,567 1,159,392
Indiana 1,652,893 1,456,972 598,119 805,116 1,033,378
Iowa 917,702 808,924 299,305 401,459 719,390
Kansas 460,698 406,091 268,624 439,695 644,428
Kentucky 1,023,359 902,057 352,317 381,447 783,064
Louisiana 999,522 881,047 477,708 413,788 1,066,072
Maine 282,820 249,296 121,559 122,922 236,524
Maryland 1,373,003 1,210,258 622,329 656,975 534,683
Massachusetts 1,651,104 1,455,395 744,467 735,828 567,152
Michigan 2,296,373 2,024,178 991,681 1,201,188 1,175,330
Minnesota 1,324,834 1,167,798 517,059 649,205 825,675
Mississippi 607,339 535,349 180,820 167,378 471,777
Missouri 1,356,231 1,195,473 555,414 619,499 1,006,428
Montana 193,184 170,286 102,320 93,319 259,884
Nebraska 408,609 360,175 204,387 222,527 385,697
Nevada 370,308 326,414 190,108 157,414 238,339
New Hampshire 337,567 297,554 161,892 157,930 220,562
New Jersey 1,947,011 1,716,227 882,650 901,178 476,719
New Mexico 362,339 319,390 201,958 178,974 432,155
New York 4,594,344 4,049,765 797,072 869,997 527,854
North Carolina 1,816,635 1,601,305 638,365 653,627 1,001,881
North Dakota 182,345 160,731 62,072 71,647 168,866
Ohio 3,320,291 2,926,729 1,212,175 1,511,354 1,584,804
Oklahoma 880,427 776,068 320,501 320,571 828,890
Oregon 748,999 660,218 383,977 394,482 665,324
Pennsylvania 3,068,907 2,705,142 1,215,599 1,258,304 1,174,895
Rhode Island 253,485 223,438 97,813 101,571 86,996
South Carolina 1,043,083 919,444 435,958 419,450 685,266
South Dakota 211,062 186,045 93,929 105,993 218,296
Tennessee 1,504,966 1,326,578 561,946 556,304 1,013,682
Texas 4,630,069 4,081,255 2,401,983 2,131,902 4,192,574
Utah 640,443 564,529 321,365 296,559 495,699
Vermont 153,665 135,451 71,736 66,131 110,339
Virginia 1,966,673 1,733,559 758,336 771,111 876,819
Washington 1,637,225 1,443,161 631,520 657,495 1,002,271
West Virginia 365,120 321,841 166,811 152,733 328,388
Wisconsin 1,334,050 1,175,922 554,820 712,897 821,490
Wyoming 110,300 97,226 91,636 73,019 232,144
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Table 2.2. Vehicle lifetime survival fraction as a function of age and
size [35].

Vehicle age Fraction Surviving to Age
[years] Compact Midsize Small SUV Large SUV Light truck

0 1.00 1.00 1.00 1.00 1.00
1 0.99 0.99 0.99 0.98 0.97
2 0.98 0.98 0.98 0.97 0.96
3 0.97 0.97 0.97 0.96 0.94
4 0.96 0.96 0.96 0.94 0.92
5 0.94 0.94 0.94 0.92 0.89
6 0.92 0.92 0.92 0.89 0.86
7 0.89 0.89 0.89 0.86 0.82
8 0.86 0.86 0.86 0.82 0.78
9 0.83 0.83 0.83 0.78 0.74
10 0.79 0.79 0.79 0.74 0.70
11 0.72 0.72 0.72 0.68 0.65
12 0.61 0.61 0.61 0.61 0.60
13 0.51 0.51 0.51 0.53 0.55
14 0.41 0.41 0.41 0.46 0.50
15 0.33 0.33 0.33 0.39 0.45
16 0.26 0.26 0.26 0.33 0.41
17 0.20 0.20 0.20 0.28 0.36
18 0.16 0.16 0.16 0.24 0.32
19 0.12 0.12 0.12 0.20 0.29
20 0.09 0.09 0.09 0.17 0.25
21 0.07 0.07 0.07 0.15 0.22
22 0.05 0.05 0.05 0.13 0.20
23 0.04 0.04 0.04 0.11 0.17
24 0.03 0.03 0.03 0.09 0.15
25 0.02 0.02 0.02 0.08 0.13
26 0.02 0.02 0.02 0.07 0.12
27 0.01 0.01 0.01 0.06 0.10
28 0.00 0.00 0.00 0.05 0.09
29 0.00 0.00 0.00 0.04 0.08
30 0.00 0.00 0.00 0.04 0.07
31 0.00 0.00 0.00 0.03 0.06
32 0.00 0.00 0.00 0.03 0.05
33 0.00 0.00 0.00 0.02 0.04
34 0.00 0.00 0.00 0.02 0.04
35 0.00 0.00 0.00 0.02 0.03
36 0.00 0.00 0.00 0.01 0.03
37 0.00 0.00 0.00 0.01 0.03
38 0.00 0.00 0.00 0.01 0.02
39 0.00 0.00 0.00 0.00 0.02
40 0.00 0.00 0.00 0.00 0.02
41 0.00 0.00 0.00 0.00 0.01
42 0.00 0.00 0.00 0.00 0.01
43 0.00 0.00 0.00 0.00 0.01
44 0.00 0.00 0.00 0.00 0.00
45 0.00 0.00 0.00 0.00 0.00
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Table 2.3. State population density and housing type fractions (SF is
single family house) [4].

State Population Density Housing Type
Urban Suburban Rural SF w/o NG SF w/ NG Other

Alabama 0.27 0.28 0.45 0.30 0.37 0.32
Arizona 0.64 0.23 0.13 0.29 0.35 0.36
Arkansas 0.22 0.30 0.48 0.30 0.37 0.32
California 0.66 0.27 0.07 0.29 0.35 0.36
Colorado 0.52 0.30 0.18 0.29 0.35 0.36
Connecticut 0.35 0.52 0.12 0.25 0.31 0.44
Delaware 0.13 0.67 0.20 0.30 0.37 0.32
District of Columbia 1.00 0.00 0.00 0.30 0.37 0.32
Florida 0.36 0.54 0.11 0.30 0.37 0.32
Georgia 0.21 0.49 0.29 0.30 0.37 0.32
Idaho 0.31 0.33 0.36 0.29 0.35 0.36
Illinois 0.42 0.46 0.13 0.32 0.39 0.29
Indiana 0.33 0.39 0.28 0.32 0.39 0.29
Iowa 0.27 0.35 0.39 0.32 0.39 0.29
Kansas 0.35 0.36 0.29 0.32 0.39 0.29
Kentucky 0.17 0.39 0.44 0.30 0.37 0.32
Louisiana 0.36 0.36 0.28 0.30 0.37 0.32
Maine 0.09 0.28 0.63 0.25 0.31 0.44
Maryland 0.30 0.57 0.14 0.30 0.37 0.32
Massachusetts 0.40 0.51 0.09 0.25 0.31 0.44
Michigan 0.35 0.37 0.28 0.32 0.39 0.29
Minnesota 0.28 0.40 0.32 0.32 0.39 0.29
Mississippi 0.13 0.35 0.51 0.30 0.37 0.32
Missouri 0.28 0.40 0.32 0.32 0.39 0.29
Montana 0.22 0.30 0.48 0.29 0.35 0.36
Nebraska 0.36 0.32 0.32 0.32 0.39 0.29
Nevada 0.74 0.16 0.09 0.29 0.35 0.36
New Hampshire 0.20 0.35 0.44 0.25 0.31 0.44
New Jersey 0.20 0.74 0.05 0.25 0.31 0.44
New Mexico 0.38 0.36 0.26 0.29 0.35 0.36
New York 0.53 0.33 0.14 0.25 0.31 0.44
North Carolina 0.28 0.31 0.41 0.30 0.37 0.32
North Dakota 0.30 0.24 0.46 0.32 0.39 0.29
Ohio 0.30 0.49 0.21 0.32 0.39 0.29
Oklahoma 0.36 0.29 0.35 0.30 0.37 0.32
Oregon 0.37 0.41 0.22 0.29 0.35 0.36
Pennsylvania 0.23 0.53 0.24 0.25 0.31 0.44
Rhode Island 0.38 0.53 0.09 0.25 0.31 0.44
South Carolina 0.14 0.47 0.39 0.30 0.37 0.32
South Dakota 0.23 0.28 0.48 0.32 0.39 0.29
Tennessee 0.35 0.29 0.36 0.30 0.37 0.32
Texas 0.51 0.29 0.19 0.30 0.37 0.32
Utah 0.41 0.45 0.15 0.29 0.35 0.36
Vermont 0.06 0.28 0.66 0.25 0.31 0.44
Virginia 0.34 0.37 0.29 0.30 0.37 0.32
Washington 0.37 0.44 0.19 0.29 0.35 0.36
West Virginia 0.13 0.34 0.54 0.30 0.37 0.32
Wisconsin 0.30 0.35 0.34 0.32 0.39 0.29
Wyoming 0.20 0.42 0.38 0.29 0.35 0.36
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Table 2.4. Distribution of vehicle size in population density segments
[34].

Vehicle size
Population density Compact Midsize Small SUV Large SUV Light truck

Urban 0.326 0.287 0.137 0.143 0.107
Suburban 0.304 0.268 0.145 0.153 0.129
Rural 0.241 0.213 0.142 0.143 0.262

Table 2.5. Segmentation of driving intensity in each population den-
sity segment and the associated gamma distribution of daily driving
distance [14].

Driving Population density Gamma distribution
intensity Urban Suburban Rural k θ

Light 40% 37% 27% 1.68 14.11
Medium 34% 31% 33% 1.90 23.20
Heavy 26% 31% 40% 1.80 43.05

Table 2.6. Fraction of miles driven on liquid fuel or electricity (fuel use
rates). Note that serial drive train mode is assumed for PHEVs (vehicles
use electricity up to the electric powertrain range limit and then liquid
fuel only).

Driving PHEV10 PHEV40
intensity Liquid Electricity Liquid Electricity

Light 42% 58% 4% 96%
Medium 63% 37% 17% 83%
Heavy 76% 24% 35% 65%

Table 2.7. US light-duty vehicle mass market introduction year for
each powertrain.

Powertrain Year Powertrain Year Powertrain Year
SI 1930 SIPHEV10 2012 BEV150 2011
CI 2008 CIPHEV10 2025 CNG 2013

E85 2001 E85PHEV10 2018 CNGBI 2014
SIHEV 2000 SIPHEV40 2011 H2FC 2020
CIHEV 2020 CIPHEV40 2025

E85HEV 2015 E85PHEV40 2013
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Figure 2.2. Nested consumer choice diagram.

Initial vehicles in the fleet are assigned fuel efficiency based on historical data [37]. Future vehicle
efficiency data for all powertrains and all fuel sources are taken from an ANL-led study for DOE [19]. These
efficiencies also comply with the regulatory targets proposed by the U.S. Environmental Protection Agency
and U.S. Department of Transportation [38]. The same source also provides battery capacity for all of the
hybrid, plug-in hybrid, and battery electric vehicles as a function of time. The amount of electricity versus
liquid fuel used by the PHEVs is determined by the cumulative distribution function value of the electric
range for the segment average daily driving pattern [8]. PHEV vehicles are thus assumed to operate in a
serial drive train mode with daily home recharging, such that only on-board electricity is used when daily
driving is less than the battery range. These electricity use rates are shown in Table 2.6.

2.1.2 Vehicle purchase model

The segment sales fractions in each time-step, σ, are assigned using a nested logit choice model, similar to
Lin and Greene [18] and Struben and Sterman [28]. Aside from the choice of powertrain, we do not assume
the migration of consumers from one segment to another, including vehicle size. The nests are shown in
Figure 2.2 and are evaluated from the bottom-up. The sales fraction for a given segment is given by,

σrsnpdh = κn

2∏
i=0

σirsnpdh;

κn =
k1

1 + 1000 exp [k2(t−m0
n)]

; k1 =

{
1, t ≥ m0

n

0, t < m0
n

; k2 = −0.35/year

where κ is the market availability fraction, the superscript i denotes the nest branch, σi is the sales fraction
of the intermediate nest branches, and m0 is the market introduction year of a given powertrain. The
market availability fraction represents a growth curve tracking the availability of a given powertrain in
vehicle manufacturers’ fleets. The start year parameter for each powertrain (not necessarily the first year of
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market introduction), m0, is given in Table 2.7. The intermediate sales fractions are evaluated as,

σirsnpdh =
UVrsnpdhσ

i−1
rsnpdh∑

n∈i
UVrsnpdhσi−1rsnpdh

; UVrsnpdh = exp

(
−βi

CGrsnpdh
CG0

)
; (2.1)

where UV is the utility, βi is the logit exponent of the nest branch, CG is the total cost, and CG0 is a reference
cost taken as the average of all initial vehicle segment costs. The sales fractions for nest level 0 are evaluated
assuming σi−1 = 1. The logit exponent values vary by level, as depicted in Figure 2.2. The baseline values,
from the lowest to highest nest levels are, β = [15, 12, 9], which are calibrated to give a price elasticity of −9
(a 9% drop in demand for a 1% increase in price) at a market share of 50% in nest level 0[12].

The generalized vehicle purchase costs, including penalties and subsidies, are amortized over a payback
period and converted to a per mile cost using the annual vehicle miles traveled [15].

CGrsnpdh = A

(
CBsn + CHnh + CVsn + CPrsnpdh − CY 1

rsnpdh

Ma=0,rspd

)
+ CFrsnpdh −

CY 2

rsnpdh

Ma=0,rspd
, (2.2)

where CP is the penalty costs, CB is the battery cost, CH is the charger cost, CV is the vehicle capital cost,
CF is the fuel cost per mile, CY is the value of subsidies, andM is the VMT. The function, A(·), amortizes
the cost to the consumer over a payback period of 3 years (in the baseline case) at a 0% discount rate. CY,1
are national and state subsidies that are realized once, when the customer purchases a vehicle, and CY,2
are recurring subsidies, such as fuel discounts or recurring tax rebates. The list of federal and state-based
subsidies and incentives is lengthy and is compiled by the U.S. Department of Energy [30]. The individual
cost components are discussed in the following paragraphs.

Vehicle purchase costs, CV , are calculated using estimates for advanced technology from Moawad et al.
[19]. The costs include learning over time that captures the decline in manufacturing costs due to process
and technological maturation. The cost for the batteries in electrified vehicles, CB , and the battery capacity
in each vehicle, are also taken from the same source, but are included separately from other purchase costs
so that the effect of targeted research in this area can be explored parametrically.

For vehicles that require home recharging, we include a charger cost with each vehicle,

CHnh = δHnh (1−Q)
t
; δHnh =


$878, PHEV10 in single family house

$2146, PHEV40, BEV in single family house

$0, else

,

where Q is the rate of price decline per year and t is the years since 2010. The charger cost assumes a Level
1 charger for PHEV10s and a Level 2 charger for PHEV40s and BEVs.

Penalty costs, CP , are also included to quantify limitations of alternative powertrains. A range penalty
represents the reduced utility of a vehicle with a short range and is calculated using the value of the time
spent refueling per daily mileage. A station availability penalty captures the lower utility of a vehicle that
has limited public refueling options. The penalties are expressed as,

CPrsnpd = CP
1

snd + CP
2

rnp

CP
1

rsnpd = δP
1

n

Ma=0,rspd

365Rn
; δP

1

n =

{
$532, BEV

$814, else
, Rn =

{
150 mi, BEV

350 mi, else

CP
2

rnph = δP
2

nh exp (−20.15φrnp) ; δP
2

nh =

{
$375, EVs in single family house

$7500, else

where CP 1

is the range penalty, CP 2

is the refueling penalty, R is the vehicle range, and φ is the ratio of
public fueling stations for an alternative powertrain to gasoline fueling stations in a given area. The cost
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constant dollar values of the penalties, δP
1

n and δP
2

n , are taken from Greene [12]. The growth trends of
refueling infrastructure for alternative vehicles is taken from Yeh [41], which assumes new refueling stations
are added as new alternative vehicles are built,

dΦrpf
dt

= α
∑

sdh,n∈f

dVa=0,rsnpdh

dt
; φrnp =

∑
f∈n

Φrpf

Φrp,f=gas
,

where Φ is the number of refueling stations for a given fuel, α is the rate of new stations added per new
vehicle sold, and the f subscript denotes type of fuel. The initial refueling station distribution by region and
fuel type is taken from U.S. Department of Energy [32].

The fuel cost per mile, CF , is simply the product of the fuel price and the fuel consumption per mile of
a vehicle,

CFrsdn =
∑
f

PFrhfρrnpdhf
ηa=0,snf

,

where PF is the price of fuel, ρ is the fuel use rate, and η is the fuel economy.

2.1.3 Total fuel demand and FFVs

As shown in Figure 2.1, the vehicle sub-model outputs the total fuel use demand, DF . This is computed by
an accounting of the total mileage covered by the fleet, the fuel use rates, and the fuel economy,

DFrf =
∑

asnpdh

VarsnpdhMarspdρrnpdhf
ηasnf

.

The fuel use rate for most powertrains is static, with the breakdown between electricity and liquid fuel
for the PHEVs shown in Table 2.6. However, the E85 flex-fuel vehicles can use either the ubiquitous E10
or the more limited E85 gasohol blends. The use rate of E85 versus E10 is dynamic and a function of the
likelihood of visiting a station with an E85 pump and a choice by the consumer based on price per unit
energy density. The choice model is of the same form as Equation 2.1, with an exponent value of βF = 18,

ρrpdh,n∈f=E85 = φrnpνrh; νrh =
UFrh,E85

UFrh,E10 + UFrh,E85

; UFrhf = exp

(
−βF

PFrf
P0

)
,

where ν is the E85 logit choice rate based on price, UF is the logit choice utility, and the reference price, P0

is taken as the average of initial fuel prices.

2.2 Modeling fuel production and distribution

The fuel module calculates the cost and energy source mix of transportation fuels, given fuel demand from
the vehicle model and energy source costs from the energy source sub-model. The module deconstructs
the demand for pump-fuel blends consumers use, such as E10 and E85, into pure fuel demand. The set of
pure fuels considered in the model are motor gasoline, diesel, ethanol, compressed natural gas, hydrogen,
and electricity. The fuel derived demand in each state is matched with the corresponding raw energy
feedstocks using conversion efficiencies specified by Wang [39]. State-by-state pricing variations are enforced
for gasoline, diesel, and natural gas due to the complexities of the supply and refining network for those
fuels. Ethanol may be transported from one state to another to satisfy extreme supply or cost imbalances
due to the uneven distribution of biomass through the continental US. Well-to-pump GHG emissions are
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computed using process estimates from Wang [39]. Pump-to-tailpipe GHG emissions are computed using
the CO2-equivalent content of the fuel and the total fuel demand.

The Renewable Fuel Standard (RFS) [22, 27, 40] is moderately enforced, in that the ethanol fraction by
volume in the gasohol blendstock is assumed to rise to satisfy increased use of ethanol in transportation.
However, this rise is capped at E15 due to skepticism that higher blend levels will be allowed. Furthermore,
the quantity of ethanol produced from corn and other grains, as specified by RFS, is assumed to be satisfied
first before other types feedstocks. Ethanol demand beyond the grain-based RFS limits is assumed to come
from cellulosic sources. We do not currently track advanced, drop-in biofuel replacements for gasoline or
biodiesel.

The ethanol supply state for each region is chosen by a logit choice function of the same form as Equation
2.1, with an exponent value of βR = 18,

τrr′,f=EtOH =
URrr′∑
r′

URrr′
; URrr′ = exp

(
−βR

PFP

rr′,f=EtOH

P0

)
; PF

P

rr′f = PFrf +
Xrr′
ηF

(
PFr,diesel + PCλFdiesel

)
,

where τ is the inter-region ethanol exchange matrix from production state, r, to demand state, r′, PFP

is
the fuel price after state exchange is accounted for, X is the distance between state centroids, ηF is the fuel
economy of the transport mode (taken to be the average of tanker trucks and rail), PC is the carbon price,
and λF is the GHG production rate from fuel use (GHG bookkeeping is described below). As mentioned

above, τrr′ for all other fuels is assumed to be the identity matrix. The total fuel production demand, DFP

,
after accounting for ethanol exchange is,

DF
P

rf =
∑
r′

τrr′fDFr′f

DF
P

r,diesel =
∑
r′

τrr′fDFr′,diesel +
∑
f

Xrr′
ηF

DF
P

rf ,

where the diesel production demand is listed separately due to the additional demand stemming from the
ethanol exchange.

The fuel production sub-model translates the regional fuel production demand to regional energy source
demand via the relationship,

DEre =
∑
f

ΩFrefDF
P

rf ,

where DE is the energy source demand and ΩFref is a matrix relating quantities of energy source, e, required
to produce one unit of fuel, f . This matrix varies by state for electricity, due to the different grid mixes, and
ethanol, due to the different breakdowns between grain and cellulosic ethanol production to satisfy RFS. For
all other fuels, ΩF does not vary by state. The entries into the matrix are taken from Wang [39].

As alluded to above, the fuel production sub-model also does an accounting of the GHG emissions due
to fuel use and production, G,

Grf = λFf DF
P

rf + λCrfDF
P

rf

where λFf is the CO2-equivalent emissions rate for fuel use and λCrf is the emissions rate for fuel production

processes. As above, λCrf only varies by state for electricity and ethanol production. For vehicles using
electricity, it was assumed that,

λFf=elec = 0 ;

λCr,f=elec =

∑
e λ

E
reYmre∑
e Ymre

,
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where λE is the emissions rate for electricity generation and Ym is the marginal capacity of the grid. The
values of λF , λC , and λE are taken from Wang [39] as well. Note that this is not a life-cycle GHG accounting
as contributions from vehicle manufacturing and energy source production are not included. However, the
values of λCr,f=EtOH are deducted by λFf=EtOH as it is assumed that the CO2-equivalent content in the fuel
is pulled from the atmosphere while the biomass was growing.

Lastly, the fuel production sub-model outputs the price of fuel in each region. This is calculated as,

PFrhf =
∑
e

EhefPEreΩFref + PC
(
λFf + λCrf

)
+ Trf ,

where PE is the energy source price, E is a multiplier that adjusts the source price based on different uses
(e.g. the price of natural gas differs from well-head, to electric power, to industrial uses), PC is a user-
specified price on GHG emissions, and T is the total accumulation of taxes, fees, conversion and distribution
costs, and profit margin. Fuel taxes and fees are taken from the American Petroleum Institute [1], and the
retailer profit margin is taken from Energy Information Administration [10]. State-dependent distribution
and conversion costs were deduced by comparing actual fuel prices against model estimates from the above
equation with all other factors included.

2.3 Electricity grid evolution

The 2012 EPA e-grid database [29] provides a list of all of the electric power generators in the United States
by state, age, and primary fuel type. This list initialized the base capacity in our model, where the primary
fuel type was re-categorized as one of oil, coal, natural gas, biomass, or a generalized zero-carbon class
(including nuclear, hydro-electric, wind, solar, or other renewable sources). All generators were assumed to
have a lifespan, L, of 40 years in the baseline case before they were retired from the mix. Since the decisions
associated with opening new nuclear or renewable power stations can be complex, and often politically
charged, no retirement was assumed for that source type. This assumption could also be interpreted as
retirement of old capacity coinciding with the addition of new capacity for nuclear and renewable power
generation. This evolution can be expressed as,

dYa=L,re
dt

=

{
−Ya=L,re, e ∈ [Oil, Coal, NG]

0, else
,

where Y is the base capacity. The base electric load in each state, Z, was initialized with annual survey
data from the EIA [9], and assumed to increase each time step at the same rate of population growth. This
base load, however, does not include the electricity demand for electric vehicle recharging, which was tracked
separately,

dZr
dt

= (S −W)Zr .

As total demand, including vehicle recharging, increases beyond available capacity, new generators are added,

dYa=0,re

dt
= ψre max

[
0, c

(
DF

P

r,f=elec + Zr −
∑
ae

Yare

)]
,

where ψ is the source type choice for new generators, and the scaling factor, c, ensures that the capacity
added will exceed the deficit with some margin. The source type added to the capacity mix is assumed to
be a decision based solely on price. Unlike the logit choice model mentioned frequently above, in this choice
only one source type is selected per state. This assumption is meant to reflect the large capital expenditure
required to build new capacity, such that the investment is only made in one source type at a time,

ψre = arg min
e

[
(ΩEeePEre + A

(
CCape

)
+ COM + εe

]
∀r ,
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where ΩE is the conversion efficiency matrix for electricity production from a given primary feedstock, CCap
is the capital cost of building new capacity per unit energy, COM is the operations and maintenance cost per
unit energy, and ε is a random number to recognize that new capacity is not always selected according to the
absolute lowest price per unit energy. Amortization of the capital cost is done over the generator lifespan,
L, at discount rate of 7%. Cost data for new capacity was taken from Drennen and Andruski [7].

The base electric capacity mix in each state determined the price of electricity and the carbon intensity
for industrial electricity usage, such as the use of electricity in the refining of gasoline. Electric vehicles,
and their associated GHG emissions, were assumed to be supplied by the marginal capacity available in a
given state. It was assumed that electric power from oil, coal, and natural gas could most easily scale to
meet off-peak charging demand [17]. Thus, the biomass and zero-carbon fueled electricity supplied the base
demand first.

2.4 Modeling energy sources

The US Department of Energy’s Annual Energy Outlook reference case was our source for crude oil, coal, and
natural gas prices [36]. Crude oil and coal were assumed to be global and national commodities, respectively,
with prices unaffected by perturbations in US LDV fuel demand. Natural gas prices, as reported by the
EIA, varied by region, but were similarly assumed to be unaffected by the LDV fleet. Renewable energy
pricing was derived from the ReEDS model [26]. Biomass supply curves were constructed from the US
Billion-Ton Update analysis [31]. The somewhat notional price points for the various feedstocks in the
Billion-Ton data were corrected to more accurately reflect current markets. All of the feedstocks were then
aggregated together to create a single biomass supply curve in each state. Finally, separate grain-based and
cellulosic-based supply curves were also constructed so that the relative ratio of those two types could be
ascertained for a given price point.

23



This page intentionally left blank.



Chapter 3

Numerical analysis

This chapter presents the parametric analysis results obtained using the model. Model parameterization and
output metrics of interest are discussed. Results are shown for both a global sensitivity analysis and more
focused trade space studies, using the metrics of GHG emissions and petroleum consumption.

It is worth noting that this analysis focuses on policies that could influence vehicle buying behavior, but
not driving behavior. Population migration away from suburbs and into urban enclaves or mass-transit im-
provements could decrease VMT, GHG emissions, and petroleum consumption as well, but are not considered
here.

3.1 Model parameterization

Overall, the model parameterization spans variables that could be categorized across multiple conceptual
labels, such as inherent modeling assumptions, economic forecasting, technological development, and future
policy decisions. It is not feasible to independently parameterize every single input variable in the model
both due to variable inter-dependency and also tractability of the sensitivity analysis. Instead of varying
the crude oil price in 2030 and 2031 independently, for instance, all oil prices are scaled by a multiplier
that varies from 1 in 2010 to a user-specified value in 2050. This multiplier approach is similarly applied
to other energy source supply curves, vehicle efficiency data, battery costs, and consumer choice penalties.
Where appropriate, such as the exponent in the logit choice function, individual variables are parameterized
directly. The key parameterization of the electricity grid, aside from the energy feedstock prices, is the
generator lifespan.

Uniform distributions are assumed for all parameters in all studies. For the sensitivity analysis, parameter
minimums, maximums, and baseline values are described in Table 3.1. The carbon price parameter appends
an additional cost to fuels proportional to the emission of GHG and represents a potential carbon tax policy.
For calibration, the maximum carbon price considered, $1,000 per metric ton of CO2 equivalent, corresponds
to an additional price on gasoline of nearly $10 per gallon. Two other parameters, the consumer payback
period and the penalty multiplier, could also be considered variables subject to policy influence. The energy
supply multipliers (for biomass, zero-carbon, coal, natural gas, and oil) address commodity forecasting
uncertainty. A number of parameters included in the sensitivity analysis characterize the uncertainty in
technological development. Technological performance uncertainty is captured by multipliers applied to
ICE powertrain efficiency, electric powertrain efficiency, and home charger costs. Similarly, the variation
in battery cost can be thought of as the technological maturation of battery storage and manufacturing.
The uncertainty associated with infrastructure development is captured by the refueling station growth
rate parameter. Finally, the remaining parameters included in the sensitivity analysis are notable model
assumptions with the potential for influencing output metrics. These include the three logit choice exponents
(for vehicle selection, fuel selection for FFVs, and ethanol exchange), the overall fleet growth rate, and the
overall vehicle sales rate which, together with the fleet growth rate, also determines the overall scrap rate.

It should be noted that all of the input parameters are assumed to be independent. While this assumption
is plausible near the baseline values, it is likely less valid at some value extremes. For instance, at high values
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Table 3.1. Baseline values and uniform distribution ranges for sensi-
tivity analysis parameters.

Parameter Baseline Min Max

Carbon price [$/MT CO2 equivalent] 0 0 1000
Consumer payback period [years] 3 2 11
Penalty multiplier 1 0 1
Battery cost multiplier 1 0.1 2
Charger cost reduction [per year] 3% 0% 6%
ICE powertrain eff multiplier 1 1 3
Electric powertrain eff multiplier 1 1 3
Electricity generator lifespan [years] 40 10 70
Vehicle choice logit exponent [9,12,15] [2.4,3.2,4] [12,16,20]
Bi-fuel choice logit exponent 18 2 20
Ethanol transport logit exponent 18 2 20
Fleet growth rate 0.9% 0.5% 2.0%
Vehicle sales rate 6.7% 5% 9%
Refueling station growth [per 1k new vehicles] 0.7 0.01 2
Oil price multiplier 1 0.5 3
Coal price multiplier 1 0.5 3
Natural gas price multiplier 1 0.5 3
Biomass price multiplier 1 0.5 3
Renewable energy price multiplier 1 0.25 3

of oil price or carbon price, consumers would probably have longer payback periods than current estimates.
Similarly, battery costs and electric powertrain efficiency are likely coupled, as high efficiency might be
associated with higher battery costs.

3.2 Output metrics of interest

The first metric of interest is LDV fleet fractions of ICEs and EVs, where ICEs are all the internal-combustion
powertrains that do not tap into the electricity grid, and EVs are defined as the sum of PHEVs and BEVs.
In his 2011 State of the Union address, President Barack Obama promulgated a national goal to have one
million EVs on the roads in the US by 2015 [21]. Since 1 million vehicles represent less than 1% of the total
fleet, small changes in parameter values can have a significant impact on meeting this target.

To address the environmental perspective of transportation energy, we examine the relationship between
the LDV fleet and GHG emissions. The model is capable of tracking GHG emissions, specifically the quantity
of carbon dioxide equivalent emissions released into the atmosphere either through direct LDV fleet tailpipe
emissions or indirectly through fuel and electricity production. A number of organizations, states, and
countries have set out ambitious GHG reduction goals for 2050. The State of California and the European
Commission, for instance, have both targeted an 80% reduction in CO2 below 1990 emissions levels by
2050 [11, 25]. A recent study by Grimes-Casey et al. [16] distributed the IPCC-recommended global carbon
reduction targets to individual countries and sectors based on population and economic modeling. They
determined that the average US LDV well-to-wheel GHG emissions must be reduced 88% in 2050 over 2002
levels. Despite these mandates, CO2 emissions have nevertheless increased from 1990 to 2010 [5]. To distance
our GHG analysis from assumptions of fleet growth rate, we consider GHG reductions per mile traveled by
the fleet using a 2010 reference point.

To address the security context of energy use, we examine the total petroleum consumption from the
LDV transportation sector, and its corresponding relationship to imported crude oil. Reducing petroleum
consumption significantly could enhance US energy security by mitigating dependency on foreign sources.
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Similar to the GHG case, we examine petroleum demand per mile traveled by the fleet using a 2010 reference
point.

3.3 Baseline model predictions

Before presenting the parametric analysis studies, it is helpful to understand the baseline model state about
which variations are taken. As stated above and illustrated in Figure 3.1a, the average LDV fleet fuel
economy is projected to improve markedly from 2010 to 2050, with a more than 50% decrease in total fuel
consumption. Concurrently, battery costs are expected to decrease by more than 80%, shown in Figure
3.1b, due to technological maturation. Similar to the sensitivity analysis, these cost and efficiency values
are scaled parametrically through the multiplier approach to explore their dynamics, critical points, and
tradeoffs. The range of values surveyed by the multipliers are the shaded regions in Figures 3.1a–b.

The baseline model outputs are also shown in Figure 3.1. For the baseline model state, fleet breakdown
by vehicle powertrain over time is drawn in Figure 3.1c. In this projection, pure ICE powertrains and
conventional hybrid powertrains are a nearly 60% of the fleet; PHEV10s are more numerous than PHEV40s,
and BEVs are less than 10% of the fleet. This pace of EV growth is slightly below the required pace to meet
Obama’s EV target in 2015, shown in Figure 3.1d. Interestingly, the impact of federal and state subsidies
on EV sales is significant. With subsidies, the baseline model state predicts 2–3 times more EVs than would
otherwise be on the road from 2015-2020.

As a fraction of 2010 quantities, reductions in GHG emissions per fleet mile are shown in Figure 3.1e.
For this quantity, the model projects a baseline reduction of 50% by 2050. The petroleum consumption per
fleet mile shows an even greater baseline reduction, in Figure 3.1f, of nearly 65% by 2050.

3.4 Sensitivity analysis

A sensitivity analysis was performed to verify expected model behavior and to reveal the most significant
drivers of variability in output metrics of interest. To account for complex variable interactions, as well as
large changes to non-normalized input and output variables, a non-parametric, non-linear global sensitivity
analysis was performed. Specifically, a Monte Carlo simulation allowed the uncertain input parameters listed
in Table 3.1 to vary. Spearman rank correlation coefficients were then computed between the output metrics
of interest and the input parameters. The magnitude of the correlation coefficient relates the degree to
which a given input parameter variance is statistically associated with an output variance. A coefficient
value of 1 or −1 represents a perfect positive or negative correlation, respectively. A Monte Carlo simulation
with 1,250 model evaluations and Latin hypercube sampling generated the sensitivity analysis sample data.
A follow-on Monte Carlo simulation with 2,500 model evaluations confirmed convergence of the results.
The sensitivity analysis results are described in Table 3.2 where each value represents the Spearman rank
correlation coefficient of an output metric, listed in columns, with respect to an input parameter, listed by
rows.

The sensitivity analysis for LDV GHG emissions per mile in 2050 shows that the parameters that drive
the composition of the fleet and the GHG intensity of each mile traveled are the most influential. The
parameters that determine the composition of the fleet include the consumer payback period, vehicle sales
rate, and logit choice exponent. Similarly, the price of carbon-intensive fuels influences the composition of
the fleet, hence the significance of the carbon price and oil price multiplier parameters. Finally, both the
ICE and electric powertrain efficiency multipliers have a noteworthy impact. The electric generator lifespan,
which has the highest correlation coefficient for per mile GHG emissions, can be viewed as the parameter
that determines the GHG efficiency of the grid. The sooner coal and oil-based generators are retired and
replaced with natural gas (due to its low price projections), the more EVs will have an impact on GHG
emissions.
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Figure 3.1. Baseline efficiency, battery costs, fleet fractions, GHG
emissions, and petroleum consumption.
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Table 3.2. Spearman rank correlation coefficients for outputs
(columns) with respect to inputs (rows). Output metrics are measured
at simulation end, 2050.

Parameter
GHG/mile
emissions

Petrol/mile
consumption

ICE
fleet
fraction

BEV150
fleet
fraction

Carbon price -0.21 -0.26 -0.26 0.32
Consumer payback period -0.31 -0.45 -0.48 0.49
Penalty mult 0.05 0.06 0.07 -0.17
Battery cost mult 0.13 0.20 0.22 -0.48
Charger cost reduction 0.01 0.02 -0.04 0.04
ICE powertrain eff mult -0.20 -0.02 0.49 -0.47
Electric powertrain eff mult -0.28 -0.11 -0.07 0.14
Electricity generator life 0.48 -0.02 0.08 -0.09
Max vehicle choice logit exp -0.26 -0.36 -0.34 0.14
Bi-fuel choice logit exp -0.03 -0.07 0.09 -0.07
Ethanol transport logit exp 0.00 0.03 0.04 -0.03
Fleet growth rate 0.00 0.00 -0.05 0.05
Vehicle sales rate -0.36 -0.40 -0.41 0.17
Refueling station growth -0.03 -0.04 0.01 -0.05
Oil price mult -0.23 -0.39 -0.21 0.20
Coal price mult -0.01 0.01 0.01 0.01
Natural gas price mult -0.02 0.04 0.03 -0.06
Biomass price mult 0.03 0.05 0.02 -0.05
Zero-carbon price mult 0.02 -0.01 -0.01 0.0

Table 3.2 also lists the sensitivity analysis results for LDV petroleum consumption per fleet mile in
2050. The results are similar to those for LDV GHG emissions. In this case, however, the correlations
for the parameters related to efficiency have decreased dramatically and those related to the composition
of the fleet have increased. This is underscored by the nearly identical correlation coefficients for per mile
petroleum consumption and final ICE fleet fractions in 2050. It is interesting to note that for both of these
outputs, consumer payback period becomes one of the most influential parameters and battery cost begins
to demonstrate significance as well.

Although the sensitivity analysis results for the total EV fleet fraction are identical to the ICE results
(since the two categories are complementary), the BEV fleet fraction in 2050 is extracted and shown in
Table 3.2. In this case, a few additional parameters, in addition to those correlated with ICE fleet fractions,
show signs of notable influence. These include electric powertrain efficiency and consumer penalties. This
larger suite of parameters perhaps reflects that a potential BEV customer must both choose not to purchase
an ICE, and also to single out BEVs from the PHEVs. One conclusion that could be drawn from this
sensitivity analysis is that there are many factors that contribute to the adoption of BEVs, and EVs in
general. Technology improvements or policy initiatives in isolation cannot effect widespread change. Only
through the combination of improvements in multiple technologies with broad policy incentives and direct
subsidies will EVs play a significant role in the LDV fleet.

3.5 Trade space analysis

3.5.1 Electric vehicle adoption targets

More detailed parametric studies, beyond the sensitivity analysis, were conducted to understand the penetra-
tion of electric vehicles into the LDV fleet. Figure 3.2a depicts the impact of two market-based adjustments
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that might be available to policy makers to influence the fleet fraction of EVs in 2050. The consumer
payback period can be influenced by media campaigns, consumer education, and even direct subsidies. In
fact, adjusting consumers’ perceived payback period from 3 to 9 years can increase the EV fleet fraction by
20 percentage points. Carbon price, as a disincentive for fossil fuel consumption, can change the EV fleet
fraction by approximately 15 percentage points for the range of values considered, a slightly less influential
parameter in this respect than the payback period.

It is interesting to compare the competing influences of electric powertrain efficiency and the consumer
payback period upon the adoption rates of EVs, which is displayed in Figure 3.2b. Surprisingly, the contour
lines are almost chiefly aligned with the payback period axis. Even if electric powertrain efficiency is twice
baseline projections, our model predicts that the impact on EV sales rates will be negligible. The difference
in price between traditional vehicles and EVs stems from the batteries themselves, immature manufacturing
processes, and perceived range and infrastructure penalties for BEVs. Improving electric powertrain efficiency
only addresses the BEV range penalty component of the cost differential since we assumed that the total
battery pack capacity remained constant. Furthermore, even if battery costs are decreased significantly, as
shown in Figures 3.2c–d, there is no corresponding leap in the EV fleet fraction. Essentially, there will always
be a price differential between traditional vehicles and EVs. Only if consumers consider the aggregated fuel
costs savings over the lifetime of the vehicle (i.e. increasing the consumer payback period) will EVs become
attractive based on cost. As suggested by Figure 3.2c, the break-even point between up-front capital costs
and fuel cost savings is sensitive to the price of oil and other unknown costs, such as battery costs.

Figure 3.2d also shows the impact of ICE powertrain efficiency on EV fleet fraction. While increased
ICE powertrain efficiency decreases the EV fleet fraction, since EVs become less attractive, the impact is
small. Increasing ICE powertrain efficiency, perhaps contrary to common opinion, is not entirely antithetical
to increased EV adoption as ICE powertrain efficiency gains benefit the PHEVs as well.

At extreme values of the parameter space, the fleet fraction of EVs can reach nearly 80%. While these
tradeoff explorations can guide decision makers to encourage EV sales, one must also question if EV fleet
penetration is a worthy goal in its own right. Perhaps environmental or security objectives should be targeted
directly? To that end, our model can simulate a future with and without EVs by effectively turning them
on or off. This comparison uncovers the benefit of EVs upon other metrics of interest. Figure 3.3 shows the
reduction in GHG emissions and LDV petroleum consumption per mile for this tradeoff versus variations
in ICE powertrain efficiency. The first observation from these plots is that the value of EVs is somewhat
subject to the performance uncertainty of future ICE powertrains. If unanticipated technological leaps are
made in ICE powertrain efficiency, then EVs will indeed have limited utility. If technology improvements
are consistent with baseline projects, then EVs can offer noticeable savings for GHG emissions of up to
10% percentage points and petroleum consumption of nearly 20% percentage points. These conclusions are
dependent on the assumption that the electricity grid is anticipated to become less carbon-intensive in this
same time frame.

3.5.2 Reduction in greenhouse gas emissions per mile

The model baseline already projects a GHG per mile reduction of 50% below 2010 values by 2050, but the
LDV segment must do more if the 80% reduction targets below 1990 levels are to be achieved. If policy makers
relied upon market-based influences only, as shown in Figure 3.4a, then the reduction targets are feasible,
albeit at carbon prices that some might consider extreme. Interestingly, the contours in Figure 3.4a suggest
that consumer payback period has limited leverage over GHG emissions at low carbon prices, but at much
higher carbon prices it becomes quite influential. This suggests that from the baseline starting point, the
most effective market policy is to initiate a carbon tax. From a technology point of view, tradeoffs with both
ICE and electric powertrain efficiencies are shown in Figure 3.4b–d. Of these two, ICE powertrain efficiency
is clearly the bigger driver of GHG reductions. For electric powertrain efficiency to effect noteworthy GHG
reductions, it must realize extreme values and be coupled with significant extensions in consumer payback
period.

30



0 100 200 300 400 500 600 700 800 900 1000
Carbon price [$/MT]

2

3

4

5

6

7

8

9

10

11

C
o
n

s
u

m
e
r 

p
a
y
b

a
c
k
 p

e
ri

o
d

 [
y
rs

]

Baseline
0.50

0.60

0.70

2050 EV Fleet Fraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(a)

5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
2050 Elec powertrain eff [mpkWh]

2

3

4

5

6

7

8

9

10

11

C
o
n

s
u

m
e
r 

p
a
y
b

a
c
k
 p

e
ri

o
d

 [
y
rs

]

Baseline
0.40

0.50

0.60

2050 EV Fleet Fraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(b)

148 197 246 296 345 394 443 492 542
2050 Oil price [$/barrel]

10

50

100

150

200

2
0

5
0

 B
a
tt

e
ry

 c
o
s
t 

[$
/k

W
h

]

Baseline

0
.4

0

0.
50

2050 EV Fleet Fraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(c)

37 45 53 61 69 77 85 93
2050 Combustion powertrain eff [mpgge]

10

50

100

150

200

2
0

5
0

 B
a
tt

e
ry

 c
o
s
t 

[$
/k

W
h

]

Baseline

0
.4

0

2050 EV Fleet Fraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(d)

Figure 3.2. Contours of electric vehicle fleet fractions. Efficiencies
listed are for compact cars. Baseline represents initial values in the
model for the x and y variables.
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Figure 3.3. Overall contribution of electric vehicles to reductions in
GHG and petroleum consumption per fleet mile in 2050, relative to 2010.
Efficiencies listed are for compact cars.

The impacts of ICE powertrain efficiency and battery cost changes are shown in Figure 3.4b. As one
would expect, the contour lines are nearly aligned with the ICE powertrain efficiency axis. This suggests
that meeting the most ambitious GHG reduction targets requires, chiefly, improvement in ICE powertrain
efficiencies and that battery costs have little impact on GHG emissions. Additionally, the 80% reduction
target falls at ICE powertrain efficiencies beyond 95 mpg for compact SI cars, nearly triple the baseline
projection. Thus, meeting the most aggressive targets might be dependent upon realizing technological
leaps or currently unforeseen advances, rather than incremental changes.

The results in Figures 3.2a and 3.4a suggest that policies focused on direct carbon pricing and consumer
payback periods could lead to a fleet comprised of more than 70% EVs, and that this fleet could meet
the most aggressive GHG reduction targets. However, since there is skepticism that the US will adopt a
carbon price directory, the parameter space that leads to increased EV adoption rates was explored in more
depth. We consider a world that is ideal for the purchase of EVs: consumer payback periods are tripled,
batteries are nearly free, consumer range and infrastructure penalties for BEVs are eliminated, and a high
vehicle turnover rate ensures that the oldest, least efficient vehicles are replaced with higher efficiency models
quickly. Furthermore, this ideal environment rapidly retires the coal intensive sources of electricity within
the next 5 years in favor of natural gas. In this setting, depicted in Figure 3.5, ICEs still remain 20% of the
fleet in 2050, and the EVs are dominated by PHEV10s and BEVs since PHEV40s are the most expensive
powertrain. Additionally, of all of the vehicle-miles traveled, nearly 30% of them are still powered by liquid
fuels due to the many PHEV10s. Therefore, the GHG per mile reduction in 2050 is only 65% over 2010
values, still short of the available improvement offered by the range of ICE powertrain efficiencies considered.
Thus, to meet the most aggressive GHG reduction targets, ICE powertrain efficiency improvements beyond
current projections are critical even for a fleet that consists of 80% EVs. Only by recharging the EVs with
carbon free sources, such as wind or nuclear, can the 80% GHG reduction target per mile be achieved using
default projections for ICE powertrain efficiency. In short, many unlikely parameter values must be realized
for EVs to drive compliance with the most aggressive GHG reduction targets.
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Figure 3.4. Contours of LDV GHG reduction per fleet mile in 2050
relative to 2010. Efficiencies listed are for compact cars. Baseline rep-
resents initial values in the model for the x and y variables.
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Figure 3.5. Fleet fractions, energy mileage fractions, and per mile
GHG reductions under ideal conditions for electric vehicle adoption.
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Figure 3.6. Contours of LDV petroleum consumption reduction per
mile in 2050 relative to 2010. Efficiencies listed are for compact cars.
Baseline represents initial values in the model for the x and y variables.

3.5.3 Reduction in petroleum consumption

The model baseline projects a more than 60% reduction in petroleum consumption per mile in 2050 over
2010 levels, due to improved vehicle efficiencies and electrification of the fleet. The parametric variations that
further increase either vehicle efficiency or EV sales will therefore result in even lower petroleum consumption.
For instance, market-based influences such as consumer payback period and market uncertainties, such as
high oil prices, both serve to encourage vehicle electrification and reduce petroleum consumption. As depicted
in Figure 3.6a, at the extreme values of consumer payback period and oil price, petroleum consumption
reduction per mile can reach nearly 90%.

Technological influences upon LDV petroleum consumption are shown in Figure 3.6b. As one would
expect, ICE powertrain efficiency improvements offer significant opportunity for reducing petroleum con-
sumption, but unlike the GHG reduction case, the contour lines are not wholly aligned with the ICE power-
train efficiency-axis. In this case, lower battery costs also augment EV sales rates, especially at lower values
of ICE powertrain efficiency, and therefore reduce average vehicle petroleum consumption. Thus, the US
can meet aggressive petroleum consumption reduction targets without relying chiefly on improvements to
ICE powertrain efficiency. This is underscored in Figure 3.6c where consumer payback period incentives are
combined with battery technology improvements. At low battery costs and long consumer payback periods,

34



2050 average vehicle petroleum consumption is reduced by more than 80% over 2010 values.
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Chapter 4

Conclusions

The parametric analysis capability of the model presented here is new to this application space. This
capability has enabled a comprehensive sensitivity analysis and trade space exploration, with emphasis on
factors that influence the adoption rates of EVs, the reduction of GHG emissions, and the reduction of
petroleum consumption within the US LDV fleet.

Many factors contribute to the adoption rates of EVs. These include the pace of technological development
for the electric powertrain, battery performance, as well as ICE powertrain efficiency. Policy initiatives can
also have a dramatic impact on the degree of EV adoption. The consumer payback period, in particular, can
increase the EV fleet fraction if extended towards the lifetime of the vehicle. Widespread EV adoption can
have noticeable impact on GHG emissions, assuming the electricity grid shifts away from coal, but the level
of reduction is still short of stated targets. Similarly, widespread EV adoption can also reduce petroleum
consumption by the LDV fleet and assist in reducing US reliance on imported crude oil.

The conventional, liquid-fueled internal combustion vehicle will remain the core of the LDV fleet for
many years to come. This conclusion seems robust even if global oil prices rise to two to three times current
projections. Thus, investment in improving the internal combustion engine might be the cheapest, lowest
risk avenue towards meeting ambitious GHG emission and petroleum consumption reduction targets out to
2050. Vehicle efficiency improvements, however, will have to be negotiated with historical consumer and
manufacturer preferences for large, powerful cars with many energy-hungry cabin features.
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Chapter 5

Analysis of fuel consumption trends
in construction projects

To expand upon the light-duty vehicle analysis, we conducted preliminary analysis of fuel consumption
trends by heavy-duty vehicles. Because of the breadth of heavy-duty vehicles and their diverse modes of use,
we first focused on fuel consumption for heavy-duty vehicles and equipment used in construction projects.
Recent estimates of fuel consumption in construction projects are highly variable. Lack of standards for
reporting at both the equipment and project levels make it difficult to quantify the magnitude of fuel
consumption and the associated opportunities for efficiency improvements in construction projects. In this
study, we examined clusters of Environmental Impact Reports for seemingly similar construction projects in
California. We observed that construction projects are not characterized consistently by task or equipment.
We found wide variations in estimates for fuel use in terms of tasks, equipment, and overall projects, which
may be attributed in part to inconsistencies in methodology and parameter ranges. Our analysis suggests
that standardizing fuel consumption reporting and estimation methodologies for construction projects would
enable quantification of opportunities for efficiency improvements at both the equipment and project levels.
With increasing emphasis on reducing fossil fuel consumption, it will be important to quantify opportunities
to increase fuel efficiency, including across the construction sector. Details of the analysis can be found in
Peters and Manley [23].
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