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ABSTRACT

An analysis of the fuel element corrosion test (test A-2) of the NRX-A
component test program has been made. Calculated results are presented which show
the temperature distribution in the fuel elements and the flow rate, temperature, anc
pressure distribution of the hydarogen in the coolant channels, Tor stancarc test conditions.
A comparison is made between calculated and measured results to partially verify the
analytical approach used in the thermal design of the NRX-A reactors. A comparison
of the fuel element thermal and flow characteristics in the corrosion test and the NRX-A2
is presented. Modifications to the test hardware, insfrumentation, and operating

conditions are recommended to better verify the heat transfer analysis of the fuel

element corrosion test.
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SUMMARY

The detailed temperature distributions which have been calculated for the
standard corrosion test conditions are presented. |f the proper heat loss from the element
is assumed, good agreement between calculated and measured values are obtained.

Within the limitations imposed by assuming a heat loss, the corrosion test data confirm
the analytical methods within the test range investigated.

The major difference between the conditions of the corrosion test and of the
nominal NRX-A conditions is the axial shape of the heat generation curve. The corrosion
test has its peak generation at the hot end while the NRX-A will have peak generation at
mid span. The total generation in the two systems are similar, as are the flow conditions
of the hydrogen coolant. The shape of the heat generation in the corrosion test causes the

maximum material temperature to be higher than nominal NRX-A material temperature.
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NOMENCLATURE
h = heat transfer coefficient, BTU/hr ft °F
D = diameter of flow channel, in.
k = thermal conductivity, BTU/hr ft °F
(NRe) = Reynolds' Number
(NPr) = Prandlt Number
T = Temperature, °R
X = length from inlet, in.
Y = kinetic viscosity
Subscripts
b = bulk
f = film (avg. of wall and bulk properties)
W, s = wall

X = local
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1.0 INTRODUCTION

The component test program for NRX-A reactors is described in Reference
(7). This program includes a fuel element component flow test (test A-2), in which fuel
elements are heated to a high temperature. The test is conducted to simulate core
conditions expected in the NRX-A core. In this test, a voltage is applied across the
length of the element and electrical power appears as heat in the element. Hydrogen
flows through the coolant channels of the element and is heated to a high temperature.

The major objective of the test is to measure the quality of fuel elements
by investigating the resistance to hydrogen corrosion offered by fuel element coatings
and the overall ability of elements to withstand high temperature. A secondary objective
of the test is to confirm the analytical methods used in the thermal design of NRX-A
reactors.

The tests performed to date have been confined largely to test rig debugging
and quality control testing. The test operating conditions and test instrumentation have
been aimed at fulfilling this function rather than providing a wide range of test variables
with complete instrumentation as required for confirmation of analytical methods.

A thermal and fluid flow analysis of the fuel element quality control tests
has been performed to define temperature distribution throughout the element and the
hydrogen temperature, pressure, and mass flow distribution within the element. A
comparison of this analysis to values measured in the quality control tests gives a pre-
liminary check on the method of analysis. This report presents the results of the fuel

element component test analysis.
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2.0 APPARATUS AND INSTRUMENTATION

The test apparatus consists of a water cooled furnace in which the fuel
element is held between graphite chucks. A helium atmosphere is provided in the furnace
at a pressure higher than the hydrogen inlet pressure. The graphite chucks provide
electrical contact to the fuel element and are a seal to prevent mixing of the hydrogen
coolant and the helium atmosphere.

A complete and detailed description of the apparatus and its operation has
been reported in Reference (2). Figures 1 and 2 are reproduced from Reference (2) and
show a photograph of the installed opparatus and a cross section of the water cooled
furnace.

The instruments which measure the parameters used in the heat transfer
analysis are the optical pyrometers, gas flow rate measuring devices, the pressure gauges,
and the volt and ampere meters from which the test power is determined. Figure 3 is a
schematic diagram of the apparatus and the installed instrumentation.,

The micro-optical pyrometers are used to measure the external surface
temperature of the fuel element at the 3.5 in., 15.5 in., 38 in., and 48.5 in. stations,
measuring from the inlet of the element. These pyrometers have been calibrated in place
so that the reported temperatures include a correction for absorptivity of the view path.
The instruments are reportedly capable of sensing + 10° temperature variation in the range
of 3500 °R to 5000 °R and +30 °R at 2500 °R. The pyrometers are not capable of sensing

temperatures below 1660 °R.

wrgy Act - 1954 i
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The hydrogen flow rate is measured upstream of the element with a calibrated

Daniels' orifice. The pressure drop across the orifice is measured with a pressure transducer
which has sensitivity to detect a 1% change in flow. The hydrogen temperature at the
orifice is also measured.

Hydrogen pressure at the furnace discharge is measured with a bourdon tube
pressure gauge of 5 psi sensitivity. Pressure drop is measured with a AP transducer.

The test power is measured across the power supply and across the furnace
with an ampere meter and voltage meters. The sensitivity of these are sufficient to detect
+ 3% change in power.

A great many additional measurements (Reference (2)) are made in order

to control the test, protect equipment, and assure safe operation.

e
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3.0 ANALYTICAL PROCEDURE

The analysis of the test cases was done in two parts. The first part included
the section of the element between the chucks but not within the chucks. The second
part was an onalysis of the element within the hot end chuck.

The solution for the temperature distribution between the chucks was
obtained using the TOSS(B)-MCAP(4) digital computer codes. As stated in Reference (5),
TOSS is a program for finding the transient or steady state temperature distribution of a
one, two, or three dimensional irregular body. It considers the heat transfer mechanisms
of conduction between internal nodes, conduction between internal and surface nodes,
radiation between surface points, and radiation, free convection and forced convection
between surface and boundary points. MCAP is a steady state, hydraulic and convective
heat transfer program which is used in determining the flow distribution through a multi-
channeled flow system with heat addition. It is used to determine the fluid pressure and
temperature distribution and coolant channel wall temperature in a heat generating solid
which is cooled by a gas flowing in parallel channels.

The codes were set up to describe the geometry and physical properties of
the fuel efement and the hydrogen. The heat transfer correlation recommended in
Reference (6) was used in MCAP., The input to the codes included the hydrogen flow
rate (0.0443 Ib/sec), inlet temperature (530 OR), exit pressure (560 psig), power generation
shape (discussed later), and a power generation level which was adjusted to give the desired
surface temperature at the 48.5 in. length. The heat flux from the external surface of the
element was adjusted to simulate heat loss by radiation to the shields and convection to

the helium atmosphere.
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The fluid conditions and wall temperature of each coolant channel was
calculated at 2 in. intervals along the element in the MCAP program. The channel wall
temperatures and the heat fluxes were calculated in the TOSS program at 5 axial
stations along the element. A convergence between TOSS and MCAP was obtained when
the heat fluxes and wall temperatures from both programs was the same at the five stations.

The program output gave the temperature at the nodal points of the TOSS
model, Figure 4, at each of the 5 axial positions, thus defining the temperature distribution
throughout the element. Other output included the overall coolant pressure drop and the
distribution of pressure and temperature in the coolant channels.

The analysis of the part of the fuel element contained in the hot end chuck
was done in the TOSS program only. An estimate of the fluid conditions were obtained
from the analysis of the rest of the fuel element. Changes in temperature of the coolant
due to inter-change of heat among channels was neglected. An analysis of the calcu-
lated results indicated that the effects of the inter-change of heat among channels was

small. The TOSS model used for this analysis is given in Figure 5.
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4.0 DISCUSSION

4.1 Test Description

The quality control tests of fuel elements is carried out by the Fluid Flow
Laboratory at WANL. The tests have consisted of setting a hydrogen flow rate through
the element of 500 SCFM with a controlled back pressure of 560 psig. The test power
is increased in steps until the predetermined fuel element surface temperature is
obtained at the pyromete; sight port located 48.5 in. from the cold end. This temperature
is maintained, by adjusting power, for the duration of the test, usually 5 minutes. The
power is then reduced to zero in steps and the test terminated.

Standard tests have been defined which consist of setting given temperatures
at the 48.5 in. sight port with the 500 SCFM hydrogen flow rate and 560 psig back pressure.
The standard test temperatures have been 4600 R (test 1A), 4460 °R (test 1B) and 4320 °R
(test 1C). Analyses have been conducted for each of these set temperatures.

During each test, the following measurements are recorded. Typical data

for test runs is indicated:

(1) Element surface temperature at 48.5 in. from cold end 4460 °R
Element surface temperature at 38 in. from cold end 3800 °R
Element surface temperature at 15.5 in. from cold end 2850 °R
Element surface temperoture at 3.5 in. from cold end > 1600 °R

(2) Inlet hydrogen pressure 660 psig

{3) Exit hydrogen pressure 560 psig

(4 Voltage 200

COMNRDEMLLAd -
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(5) Current 400 amps.
(6) Helium flow rate 35 SCFM
(7) Hydrogen flow rate 500 SCFM
(8) Hydrogen inlet temperature Ambient
(9) Start up time 45 secs.
(10) Time at steady state 5 min.
(11) Cool down time 45 sec.

The test procedure is described in greater detail in Reference (2).
4.2 Test Analysis

The solution for the temperature distribution of the test cases was obtained
using the TOSS-MCAP digital computer codes described in Section 3.0. An important
input to the programs to be determined is the shape of the heat generation curve.

With electrical heat generation, the shape of the power generation curve
is a function of the variation in electrical resistance along the fuel element. The shape
of the power generation curve is not a controllable part of the test and in this respect the
test does not simulate reactor power. The local electrical resistance is a strong function
of temperature, as shown in Figure 6 from Reference (7). The calculation for material
temperature is a trial and error solution in which the material temperature and the heat
generation shape are mutually dependent. Figure 7 shows a normalized power generation
curve that has been obtained in the solution of one of the test cases.

An unknown factor in the analysis is the heat loss from the element surface
by radiation and by convection to the helium atmosphere. At the test conditions, part of

RE
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the total heat generated is lost to the surroundings and the calculated values depend on
what heat loss is used, Figure 8. Four different heat losses were considered during the
analysis = zero heat loss, radiation with a 0.7 form factor, radiation with a 1.0 form
factor, and radiation plus a convective heat loss. In the lost case the radiation was

for a black body (the fuel element) radiating to a perfect sink at the radiation shield
temperature and the convection was equivalent to the measured helium flow being in
thermal equilibrium with the fuel element surface at every axial position. The heat
loss and the distribution of the heat loss along the element were thus specified. Calcu-
lated values depend on both the total heat loss and on the distribution of the loss along
the element. The heat loss obtained by this assumption is shown in Figure 9 as a
function of length, along with the integrated value. It has been found that the surface
temperatures calculated using this latter assumption for heat loss gave the best possible
fit of the measured data for every power input and at both lengths where good measured
temperatures are available. The present calculations are, however, limited by this

assumption. Experimental data is needed to confirm the heat loss calculations.
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5.0 RESULTS

5.1 Calculated Results

Using the calculated heat generation shape and the heat loss as discussed,
the temperature distribution within the element upstream of the chuck was calculated for
the standard test conditions. These results are shown in Figures 10, 11 and 12. Also
showr are the calculated temperatures for the end face of the element. The maximum
vorigtion in temperature at all points along the element is given in Figure 13 for the
three test conditions.

Figures 14, 15 and 16 show the calculatred surface temperature, maximum
material temperature, and average hydrogen temperature clong the element. Table |
shows the hydrogen exit temperature distribution and the flow distribution among the
coolant chennels for a standard test condition, test 1B.

5.2 Comparison to Measured Results

A comparison is made in Figure 17 of the calculated electrical power and
the measured power at points along the element. Note that the analysis at 15.5 in. length
does not fit the data. One explanation for the poor fit becomes apparent from the pyro-
meter calibration curve in Figure 13. Datc in the range mecsured at the 15.5 in. length
depends on extrapolating tweo curves whose slopes are changing rapidly. A new calibration
in this temperature range is planned.

The data-fit at the two other test lengths, 38 and 48.5 inches, is excellent
and seems tc confirm the present assumptions for heat loss. {The data at 15.5 in. cannot be

made to fit with any heat loss greater than zero).
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The cc'c. lated surface temperature for a given power inpur depends on

the value used for the hear trarsfer coefficient of the coolart in the channels and on

the heat lost from the suifice. Sirce the cai:ulated surface temperature fits the
measured data it is implied that the hydrogen hect transfer coefficients achieved in

the fest are the same as those used in the analysis if the assumed heat loss is correct.

It is of inierest, nevertheless, to show the hect transfer coefficient which is necessary

to cause the ~alculated surface temperature to match the measured power for each
individuc! tes' run, with the heut loss specified as discussed  Table |l gives this com-
parisop ¢t the 38 in. c~d 48.5 in s*arions for the test data As indicated, the comparison
to the analysis is quite good.

Table Il gi es the heat tror:fe: coefficients calculoted by the empirical
heat transfer co-relatio~ used ir *his aralysis along with the average of those used to
fit the measu-ed datc. Seve-al cther coirelatio~s are also thown. It is noted that there
is not a significant varicticn among the various correlations (neglecting one) when
evaiuated at the test conditions.

Estimates of the remperature distribution obrained in fuel elements during
corrosion tests have been made by pest-mortem matericl analysis as reported in Reference
(8). This method consists of comparing {at high magnification) the interaction of the fuel
beads with the NbC line- in coriosion tests to the interactior obtained in control speci-
mens for which the operaring temperature was known. The accuracy of the measurement
was thought to be nor better than ~ 90 °R. Figure 19 shows a comparison of the tempera-

ture distribution measured by material analysis to the calculated distribution at points

REST TA -10-
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along the element. In this figure, only the shapes of the gradients should be compared

since the temperature levels are not the same for the two methods. Fair agreement is
obtained

Figure 20 shows a comparison, for various operating conditions, of the two
methods of obtaining the temperature variation. In this curve, the comparison is made at
the hot end. For the material analysis, the uncertainty of the data is indicated. Since
this method depends upon the interaction of the NbC with the uranium fuel, the tempera-
ture measured applies to the interface of the NbC with the fuel. The comparable calcu-
lated temperature is the wall temperature of the coolant channel. The calculated vari-
ation is shown for both the maximum web temperature and the wall temperature of the
center coolant channel. In addition, the internal web temperature was measured for one
operating condition by sighting an optical pyrometer to the bottom of a hole drilled
into the center of the fuel element. This data point is also shown on the curve, Note
that the measured internal temperature causes the point to fall close to the calculated
curve.

Another result of the analysis is a comparison of the measured to calculated
pressure drop. Table IV is a tabulation of the measured pressure drop for a group of test
runs. Unfortunately, the channel diameters were not known for the fuel elements in this
test. However, a group of fuel elements manufactured by the identical process and at
about the same time were found to have equivalent channel diameters varying from
0.093 in. to 0.098 in. and averaging approximately 0.0955 in. Figure 21 shows the calcu-

lated pressure drop for elements with .095 in and .0965 in. equivalent diameter for the

&, :&“
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test runs at various fest sy face tempesotures. The effect of surface roughness has been

factored into *the co'culation. The average of the measured values is shown and the scale
of the data scatter is indicated. If the actual diameters of the test elements were nenr
.0955 in , ther the comperisor is g ite good.

5.3 Compar-ison to NRX~-A Corditions

The mojo diffesence between the electricol tests and the NRX-A hot
conditiors is the shape of the hecr generation curve Figure 22 gives o comparison of
the NRX=-A heat genergtior rates to those obtaired in the electrical test. It is noted
that for the same tota! pcwar the peak hect generation is higher in the efectrical test
thzn in the NRX-A, rho.gh the pedk is displaced Figure 22 clso shows the peak heat
gene-ation of the cuclity ~cnr ¢l resr ar 4600 °R surface temperature exceeds the peak
generation antizipeted in the NRX-A reocror.

Fige e« 23 and 24 show matericl ard fluid temperatures o'ong the element
for the NRX-A a* nomi~ | corditions and for the quality contirol test at the same outlet
temperature, Note that the maximum material temperature in this test i< 620 °R higher
than rhe nomiral mateiial temperatuie in the NRX-A  This diffe-ence is due in part to
the shape of the heat generation curve and also to the heat loss from the element
surface,

The velozity and pressure distributions achieved in the quality control
test are quite simila- to those of the NRX-A recctor as shown in Figure 25. It is noted
that the 500 SCFM flow :ate of the guality control tests is .0443 Ib/sec per element

compared to the nominal NRX-A tlows of 0 0413 Ib/sec per element

-12-
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6.0 RECOMMENDATIONS

1. A wider range of test parameters is required to confirm the heat transfer

coefficient. Specifically the foliowing test conditions are recommended:

{a) Coolart Flow Rate 100 to 800 SCFM

{b) Coolan- exit temperature 1000 °R to 4700 °R

(¢} Discharge Pressure 2 ATM to facility limit
{d) Surface temperature (hot end) 1000 °R to 5000 °R

2. Mocre complete instrumentation is required to better understand the test
and to impiove heaf trarster verifications. Specifically the following additional measure-
ments are recommended.

{a) Mcrerial temperatures at selected points in the element.

(b) Coclin: *emperature~-inlet and exhaust of the element.

¢t Environmentol temperatures-shield, helium atmosphere, and chuck.

3. A heot balonce for the entire system.

4, Modify *he test equipment in order to give end conditions comparable

to the reaztor condition.

ICTED DATA -13-
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4460 °R SET TEMPERATURE (TEST 1B)

W

Channel Channel Chganrel Channel
No No. No. No.
10 1,3,8,12,17,1912, 4,7, 13, 16, 18(5, 6,9, 11, 14, 15
H2 Flow
Rate/Channel, |b/sez | .00229 .00235 .00234 .0023
H2 Discharge
Temp. °R 4487 4214 4258 4407
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TABLE 11
MEASURED HEAT TRANSFER
Set Temperature - 4460 °R Set Temperature - 4600 °R
Heat Transfer Coefficient Heat Transfer Coefficient
Btu/hr > R Bru/hr 2 °R
Run No. 48.5 in. 38 in. Run No. 48.5 in. 38 in.
207 2348 2679 212 4281 3260
208 3599 2722 215 3158
209 6078 3593 217 4069
210 3257 2824 218 4728 3484
213 2771 2696 219 3344 2622
214 2530 2428 220 4641 3323
216 4806 221 3071 2826
226 2406 2539 222 3578 2993
229 3746 3253 223 3245
230 3515 2508 224 2526 2315
231 2716 2492 225 3903
232 3627 2687 227 3871 2638
233 3408 3063 228 3749 2577
234 2482 2844 238 3158 2501
235 3686 2885 241 4136 3910
236 5433 3140 242 2724 2670
237 3808 3458
240 3257 2663
243 2498 2200
244 3570 2655
245 2452 2995
Average 3183 2816 Average 3613 3089
Calculated* 3171 2814 Calculated* 3493 2869

* Recommended heat transfer correlation, WANL-TNR-056

-16-
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TABLE 1l

COMPARISON OF SEVERAL HEAT TRANSFER CORRELATIONS EVALUATED AT THE
CONDITIONS OF THE COMPONENT TEST

Distence Avg. of Recommended
From Inlet Component  Ref (6) Ref (9) Ref (9) Ref (9) Ref (10) Ref (10) Ref (11)
in, Test 1B (n (2) (3) (4) (5) (6) (7)
2 1539 1580 1460 731 1383 1543 1822
10 2052 2197 1916 922
30 2598 2862 2346 1092
38 2816 2816 3111 2524 1092
48 3183 3i71 3515 2818 1180 2843 3942 3072

(M (hD/= 025 (N 3 (NG (Tw/ )™ [1 + .3(x/d)-'7}

@ [hD/k)z 028 1N ,b8 Np ) (Tw/ Ty

(3) (hD/k} 0217 (N 8 (N, b4 (Tw/Th) "4
(4 [hD/= 000534 (NRe)b ] NG \b4 (Tw/Th) "%
(5 (hD/k)F; 021 (N % (N 3 (171

() = 0265 (N ) (NPT)SA (Ts/To) ™"

7) (hD/kZF .0208 ¢ R)F 4(1+0.01457 y /1)

a
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TABLE IV ¥
MEASURED PRESSURE DROP
Set Temperature - 4460 °R Set Temperature - 4600 °R
PMec:asured Al:’Measured

Run No. |b/in2 Run No. Ilo/in2

207 84 211 82

208 90 212 97

209 103 215 61

210 87 217 102

213 94 218 105

214 92 219 104

216 120 220 108

226 93 221 98

229 97 222 105

230 91 223 106

231 21 224 92

232 86 225 114

233 100 227 106

234 85 228 104

235 98 238 98

236 96 241 103

237 103 242 100

240 96

243 84

244 90

245 86

Average 93.6 Average 102.8

Calculated 97 Calculated 102

-18-
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