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A Tensor Transformation' Technique for

by
S. L. Gralnick
Plasma Physics Laboratory

Princeton Univérsity, Princeton, N.J. 08540 \

A step-wise tensor transformation technique is
presented for the transformation of the 'single energy group
transpbrt equation to an arbitrary’ spatial coordinate
system. Both gradient énd divergence forms of the equation.
are given and the same method is applied to the derivation
of the diffusion approximation. We demonstrate that using
an orthogonal represeﬁtation of the propagation vector will
simplify the divergence form of the equation. The
application of this technique is in the representation of
the transport equation in coordinate systems other than the
usual rectangular, cylindrical and spherical ones. Its~use
is demonstrated by transforming the transport equation to a .
toroidal coordinate system consisting of nested circﬁlar
toroids. . |
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I. INTRODUCTION:

The transport equation for a single energy group,

Q - Y + 0¥ =S , (1)
representingithe conservation law of density in phase space,
may be written in terms of the divergence of a 5-dimensional
vector,

)

Drawbaugh, using the metric,

i3 = || a-s%) ’

(1-62)~1

has demonsFrated that this physical law is expressed by tﬁe

tensor equation,

div * M + o¥ =8 , . (2)

where,

M=ay, - 3

and .
M) (4)



In equation 4;.g =_|gij|, is~th§'determina§t of the metric
and the summation of repeated indices 1is assumed.

A copservation‘law, éuch dé equation 2, yields - an
integral form of the transport equation directly, which may
be used for the derivation of conservative finite difference
equations(z) in any system of coordinates. This has
been illustrated by :Drawbaugh in reference 1 by transforming
to cylindrical and spherical coordinate systems. The most

formidable stumbling block is . that of inverting a

transformation of the form,
xt = xt (®LLF) . i=1...5 (5)

:The no£atiqn used here is that the variables, xi représent
the coordinates of the originai 5-dimensional Riemannian
space, (following Drawbaugh we chose x1 = X, x? =y, x3 = z,
(Cartesian spatial coordinates), x4 = w and x§_= § where 4
is the componeﬁt of 2 along the Z direction and w is the
angle between the projectinn of § on the xy plane and the
positive x direction), while Xt are the coordinates to which
we chose to transform fhe 1equation. An alternative
.technique, used by Pomraning & Stevens(s) to transform the
transport equation to a toroidal coordinate system

consisting of  nested concentric circular toroids, is to

apply the chain rule ~ of differentiation. Here, the

- e e
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transformation which mué¥ be inverted is— a mapping of
Euclidean 3—space‘ onto itself which is a more tractable
problem. However, the transformation process is complicated
by the fact that in any non-Cartesian coordinate system the
trajectory of a particle moving in a straight line is not in
general along a geodesic curve of the céordinate surfaces.
Consequently, the4apg1e between the direction of motion and
the coordinate directiong will vary along the trajectory
implying that ¥ will var& as a funetion of the angle
variableé as well Qs the apatial &ariahles. The exception
to this is for the case in which the coordinate system does
yield straight éeodesic curves for particular coordinate
surfaces. .

In this paper we will " resolve thé difficulty

presented by either of the above cited methods by presénting'

a step-wise tensor vformalism for the transformation . of
equation 1 to an arbitrary coordiunate systcem (section TI).
We will then demonstrate the technique by applying it to the
toroidal ggometry treated by Pomraning and Stevens (section
I1I), and also show that the diffusion approximation is
readily obtainable. Finally we will pbuve in accetion IV
that.provided an orthdgohal representation of the vector @
is usea, the angle variable transformation is given by a
group of motions in 3-space and consequently its Jacobian is
equal to one. ' This 1is a desirable although not essential

property.’

2]



II. Tensor Transformation Technique

Consider the transport equation,

R A (6)

1
/ g ax Tt
where ¥, ¢ and S are the angular flux, cross section and

source function, and M' is defined in terms of the

propagation vector " @ by equation 3 in the 5-dimensional

Riemannian space having coordinates xl = X, x2 = vy, x3 = z,
x4 = w and x5 = § for which the choice of metric tensor,
gij’ introduced by Drawbaugh (see section I) is made, The -

physical components of*g in this space are,

o =q{1- {532 }% cos w
(7) -

B {1— {6}2 }% sin w

§ =346 ’

while the five-dimensional vector M? has components,

Mi = {aIBI6IOIO} W(Xi) (8)



‘We will wuse the notation ol to denote the vector portion of
M' and note that,
._a__ (,/ g Ql) =0 ) (9)
i . 2
ax o
The representation of the equation in any other

. . . . . . =i
5-dimensional Riemannian space having coordinates X~ may be

found by the following procedure:

i) Introduce a transformation, Tl’ of the spatial

coordinates xl, x2, x3 but preserve the choice o0of angle

=
variable x4, >, Thus, '
' 1 1

xt = xt (& .73
X2 - X2 (§2...§3)
T, :
1
x3 =53 & Ew
X4___;4
l 5 -5
: - X =X_ . o
ii) Transform the metric tensor.
Since igij is o rank two covariant tensof it
transforms under T1 according to
. e 'k
.. =g A S . (10)
ij . “ek %t 9% . ,

(We are using the bar notation to denote a representation in

the X' coordinate system.)



' iii) Transform the covariant components of .
Since the xt spatial coordinates ‘are- Cartesian, the
covariant and contravariant components of & are identical.

We form'ﬁ'i by

Q. = . X . (11)
h R J a)?l

iv) Form the associated contravariant tensor ELJ.
This requires the solution of the equations .

—ij = _ i (12)

where ~6; is a Kronecker delta. The transformation T1 will
affect the spatiél variables only. Consequently even for a
choice of non-orthogonal coordinates the metric tensor will

be partitioned as follows:

X X X
X X X 0 Q

gij = 5 ,
0 0 (1-6°) o




and the inverse will bBe of the form:

0
. Al 0
—ij _ ,
0 o |(1-6%)"1 o
0 0 0 0 C(1-6%)

where A-J'is the inverse of the 3 x 3 matrixtoccupying the

upper- left partition of éij‘

i

*

v) Form the contravariant components of £ in X

The relationship between the contravariant and

covariant|comppnents is 'given by,

vi) Form the physical components of @ along the coordinate

curves. (4)

These components will be given_by,

X, = — 1 (14)



(The notatioﬂ i|i indicates no sum on iI; ‘Theuxi will be
used in conétructing the transformation- of' the . angle
variables necessary to represent £ in the 7t spatial
coordinates. If they do not form an orthogonal triad, it

may, in some cases, be convenient to chose directions which

do not lie along one or more of the coordinate curves so as.

to form an orthogonal representation. (This point will be

discussed further in section 1V).

vii) Introduce the following transfbrmation of the angle

-variables, preserving theAi1 spatial coordinates.

xt = xt
=2 ~2
x° =X
T,z = -
2 2 =% _
- [,
%} = tan™? X
.
=5 _ Tk '

where it is understood that i,j and k are any permutation of

-

the indicies 1,2,3.(i.e. if i=3 and k=1, j=2).

g

ix) Transform the contravariant components of Q.

»

The transformation of a contravariant vector is’

according to,

be [}
I
o]

o%J

=] (15) .
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x) The gradient form of the equation is given by,

=i
Q 2:7'+ o¥ = s .
=i
9x
xi) To form the divergence in xt it ié necessary to know
the  determinant of the metric fensor, E. . This

iJ
determinant, | El, is obtained from the transformation rule

(5)

y

Ial:lgl JIZ ) (16)

where J is the Jacobian of the transformation,
= xt GFES) . (17)

The inner transformation is the inverse of T, and the outer

2
one is T1 consequently,

J = 1 (18)

where Jl is the Jacobian of T1 and J2 is the Jaoobian of T

ze

xii) The conservation law form of the transport equation is

given by,

2 I o (@Fuy rov=s L (19)
{g} ax '
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III. Application of the Tensor Transformation Technique to

A Toroidal Coordinate System

A toroidal coordinate system, frequently used by
plasma physicists concerned with tokamaks, and of possible -
application in the study of neutronic and photonic problems
in future toroidal fusion devices, is formed by rotating a
nest of concentric circles about an axis which does not
intersect the nest (see Fig. 1), Pomraning and Stevens(a)
have derived the transport equation in gradient form and the
diffusion equation, by application of the chain rule. As an
example of the applicatibn of the tensor transform technique
we will derive the gradient form of the transport equation
as well as the divergence form, the 1later form being more
directly applicable to the construction 6f finite difference
equations by the integration technique. We will also derive

the diffusion equation in the same manner. Transformation

T1 is given by,

x1 = ! cos %2

%% = (§1 sin %2 4 R) cos %7
Tt %3 = (X sin %2 4 R) sin %3

x? = x4

x> = 3 ’



where (x1 = x, x2 = vy, x3 =2z, x4 = w, x5 = §) and (il =

= r’
§2 =0, §3 =9, §4 = W, is = §). The transformation of

Drawbaugh's metric is accomplished by evaluation of the

derivatives in equation 10. As an example,

. P & |
5., = &%+ Ep? @&yl
IX™ ax 39X
=2 - - . — .2 =3
= cosz'(xz) +;sin2 (x2) cos2 (x3) + 51n2 (x2) sin® (x7)
= 1 .
I'he metrlu]tensor in the %' coordinates is
1
r2
. 2
(R + r sin®)
%% = |1 (1-§)
(1-62)"1

For any orthogonal coordinate system, as this one is,
it is necessary that each of the off diagonal elements of
the metric tensor be zero. When . this is so, the associated

contravariant tensor élJiis formed by inverting cach element

of gij‘ For example,

=33 2 .
g.

= (R + r sin0)”
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The components of @ are given by

| )
Q= {6,(1—62)%iCOS(uﬂ(l—62)%.Sin w}
- i

and substituting in equation 11 we find,

<l
I

1 (1—62);5 cos (w-9) 'sin@ + & cose

o/l
I

5 r{(1-8%)% cos (w=¢) cosO® - &sinb}

2l
!

3 = (1—62)!5 (R+r sin@) sin(w-9)

Equation 13 gives the values of {7,

Q" = (1—62);i cos(w-%) sind® + dcosO
9% = %'{(1—62)!5 cos (w-9) cosO.- &sin@}
7’ —'{(1;62)% sin(w-9)} '{R‘}”ngine} ,

[
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and using equation 14 we see that,

_ =1

Xl =Q

Ay =1 52

T3 = (R + ¢ sinO)§3 .

!
The transformation T2 will be,
x! = %!
=2 _ =2
X7 = x
= , X
%4 = tan~1 3
Xz N

=5 - T

Lquation 15 will then give the contravariant

. =1 .
components of § in the x~ coordinates,

51 = ﬁl v
52 - 5—22
53 - 5—23
=4 - =2 3% . =3 »%?
Q = —_—2— + -TB
IxX X
— _ =5 _ =5
R0 = 0?5 s
X X

/
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' Evaluating the derivatives and simplifying,

, ‘ -2 N
; A A_cosB®-A_, sinb
2 R - N o € 0

2 2 R 4+ r sin0)
oA A 0 (
and
=5 ISy . ‘
Q= TAQ (Ar sin® +:Aecose) .

(R + r sin0)

Introducing the notation ¢ = §5 and v = §4 the gradient form

of the equation is now obtained directly as

o2 teay oo te oy
. r 9r r 30 (R + r sin@) 930
* 22 A_cosO-A_ sin® A .
? r o SINO . Ag [ gy |
Ay A (R + r sin 0) r| av
r 0
X o v
(R Tt singy (Ap Sin0 + A5 cos@) gz + o¥ =5 .

o0z

Equation 20 can be compared directly to Pomraning and

Stevens' result by observing in their figure 2 that,

lr = sinbcose

A, = cosb

¢

A. = sinbsin¢ .
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The Jacobian of T, is given by equation 16,

1

Jl = r(R + r sin0) ,

. | . .
and, as will be shown in the next section of this paper, if

,, A, and A, form an orthogonal triad J, = 1, which is the

1’ "2 3 2
case for the‘example being considered. Consequently,

J =r(R + r sinb) .

Substituting in equation 19 gives the divergence form of the

transport equation,

1 9 . 3 ) ‘
=F + =—= ! (R + A Y
r(R + r sin®) or r(R + ? 51nO)Ar$} 30 ( r sin@) 0 }
s el - & r A_(A_ sin® + X_ cos@)
¢ ] 3_ ' Q r . s)
X 2
3 2 A in0) - A (R + r sin@); ¢
+ 55 r —s—5— (lr cosO - o Sin o
AL+ A
r 0]
+o¥ =8 . ’ | e

The diffusion approximation results when one assumes

Fick's law, , e

%vx +oJ=0 |, i (22) -



(W)

e .

"where J is the current and X the total flux, to be valid.(6)

Integration over the angle variables in the transport

equation yields a conservation law for J,

VeJ+o0X=S8 . (23)

- _ 1
d=-3 7
is a gradient. Consequently, J is a covariant vector which

‘may be written in the %t spatial coordinates as

1l o
J, = - =— = .
1 3o 3)—{1
Equation 23 is then,
’ _i' _
N S Vg gJJj) +0,X =8 . (24)

{é}% e

-and substituting for g and summing over j gives,

-1

Hl!—' -

r(R + r sind)

3 I(R + r sin0®) D

°

{ rCR + r sin ) ﬁ —l}
50| *

+ { r ¥ R sino) l} +to,X=5

9 X
20

'YQS)
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which is the desired diffusion equation.

IV. On the Evaluation of Jacobians

As we noted earlier, it is necessary to evaluate the

Jacobian of both transformation groups T1 and %V to be able

to transform the determinant of the metric tensor necessary

to forming the divergence in xT. J1 can be evaluated by

using the transformation rule expressed in equation 16,

151="1g]3,2 ,  (26)

and since the determinant | g | which uppeuars on the right
hand side of equation 26 equals 1, Ji is given by the
determinant | g| . Applying Laplace's rule for  the

development of a determinant we see that,



"where | A | is the determinant of

defined in section 2.

the

The Jacobian determinant of

"will be of the form,

3x3 submatrix

the transformation T2

l
1
=i . 1
J = _A}_(_,__ = -

2 3% : . =4 —
X "X X E%; 3%5

: X ox

=5 =5
x ox o ox L |2E 2

90X X

where the vacant locations are

rule again,

:4'

|
|

tA)

xl
. .
><I||><II

S04

' zero. Applying Laplace's i

(27) -



~ functions of X
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For clarity we Wwill consider the specific case

4

- and §5

which X are defined by

Evaluating the derivatives

gives
'8X3
1 B TS
JZ=(T)2+(7)2 ‘2. ox
3 2 1
=1
X

indicated

QU
>
W

Q] @ 9@
%ﬂ > xw
- u

4 wl
xWV|
=

in

(28)

in equation 27

X

N

ox?

QU
>
N .

W] Ww W
ﬁﬂ > x4
= !

-(29)

The evaluatibn of the derivatives in the determinants in

4 )

and X

and the transformation rule for covariant vectors,

i AL .
ax*

only. Using the definition of

.'equatinn 29 requires first replacing the.'xi by A. . which are

(30)
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Substituting in the determinants in equation 29,

”
X by . A,
8A3 3A3’ 3&1 N
1 -5 . . 4 5.
ax axX _ 1  9xd axk ax 9xX
= - = = ,
/G35 811  0x°  ax+
- - 33 911 .
X, 9y 3y axk'
3%} %> ax? " ax®
(31)
(Note that in the final determinant use is made of
5'(4 = Ax4' z2 = x5) and analogously,
pil
I 3N, 3N,
. 94 3. 2 ] ]
3zd  ax> 4 . Wl axt ex
3 1 axd  ox
X V'§,, § T
N TITL axT  ax>
(32)
We now introduce the notation,
oA AL
=4 3
) A . 9x oxX o
. D(j,k) = . (33)
: axk Bkk
8x4 8x5
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In terms of which the Jacobian may be written as,

1

911 922 933

The.)\i are functions of x4 and

Y

(1 -

1

. A3 = X

Consequently the determinants,

and}we'find;

D(1,2) = -

D(1,3) =

D(2,3)

, are readily evaluated

k
X D(3,k)
X :

x5 only,

(xsf)% Cos X

(XS)ZY15 sin x

D(Jj,k)

9(2,1) = X3

D(3,1) = - A

D(3,2) = Al,

all other D(j,k) being equal to zero. A . typical term in Jé

involves the evaluation of

9X

9

X

k.
1

X

)

X

3

N5,k

='D(2,15

+ D(3,1)

4 D(3,2)

. 5
axt  ax? - ax®  ax”
okl 3% %> ox’
ax’ 333 _ x> axt
3%t ax> T 8%>
3x> 8x3 _ x> ,axz
5% 9% axt ax°

LY

%\\




»

" The bracketed terms -

elements of the second column of the Jacobian of T

consequently,

- 23 -

D(1,2)

(r—

[D(l,Z)

This equation may be written as

S o 31
D2 2 2
: X+ (X,) -
3 2 911 922 933
If the geometric coordinates,
coordinate system,
75:*’5,-1-.

in equation 34 are the cofactors of the

il...§3, form an orthogonal

1+ and
-2 =2
o0X 9X
—= ~ D(3,2) —¢
axz ‘ X
-3 Z=3 ]
?)x.2 - D(3,2) dx2
X x|
— -~ =31
+ V]
(35)
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and

193512911 955 933+

Then,

Any rcprcocntation of 2 in tormc of ito componcnto in

three mutually orthogonal directions, not necessarily the

coordinate directions defined by il...is, will introduce a

transformation T, having J_ = 1. To demonstrate this, let

2 2
us consider the transformation T_, written in the form,(7)

2

= = - - "'1 "3
yl = yl (yl, y2; X X )

" (36)

-1 =2 =1 =3
@t 7% % eex7) .

!
[\S]

=2
Y

§1 and §z are defined by

1Ay
=1 , (i #3#%k=1...3)
A3
32 =X )



>
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and the spatial coordinates §1.,.§ are parameters of the
transformation group, G. Chose the §1 as coordinates of a
2-dimensional subspace of the 5-dimensional space having

. -i . . .
coordinates X ; the metric tensor of this subspace is,

1 - (392
1+ (3H %2
_g ot e 1,3 = 1..5
i3 520,38 | 0,8 = 1...2
- §4H%%
(37)

'Thié subspace has one non-vanishing Riemannian symbol of the

first kind,

1

R =
121
212 (1 + (yl)2]2'
and consequently the condition,
Rapya - Kooy Pas = Bys Bgy) (38)
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is satisfied”indentially &ith Ko = 1, The subspace is said

to have constant Riemannian curvature, For such a space

there exists a set of (n+1) coordinates, (n = dimension of

the space), Zl, satisfying the condition,

i, 2 1 .
2.: Ci (Z ) = K_’ 1 = l".-o' n + ]. ’ (39)
1 o
and in terms of which the metric of the sub-spacé may be
written as,
. i i
Ryg =3¢ 2 22 . (40)
1 dy oy
The relationship between the Z' and 7* is
92 - .1
—2% =<K Az . (41)
Oy“DyB o) an

This system of'equations'is integrable and yields ‘'a family

of solutions

[\
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in which the a; are constants, n(n+1)/2 of which are

iﬁdependent,satisfying~the conditions,

o - | o
h
. {a’, = C. 43
: c; (@3) 5 (43)
e, atal =g . (44
Zegaya (44)
Choosing the z' to be
2t = 1 - (372)2];5 cos (tan” 1 7t
22 = 1 - 32217 sin(tan"! 31
3 =2
Z7 =y .

satisfies equatiogs 41 and the cqnditions expressed by
~gquations 39 and 40, EquatiOn.42 is then the group of
rotations about a point in the 3—dimensi0nal Euclidean space
having coordinates Zi and maps any orthogonal representation
ot § into another. Its Jacobian .is equal to 1 and:it will
not alter the metric properties of'the subspace using the Zi
as coordinates. Conversely a'transformation of Zi giving a
non-orthogonal representation of 1 will not satisfy
equation 39 and thetrefore will not be an allowable choice of
coordinates for the subspace with the metric K&@. In other
words such a transformation would ° alter the metric

properties of the subspace.
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V. Concluding Remarks

This paper has presented a tensor transformation
technique, useful in representing the_tranqurt equation in
an arbitraryi»spatial coordinate system. Both the gradient
and divergengé form of the equation are obtained,.the latter
being particﬁiarlyv suited to ‘the derivation of finite
difference eqﬁations by thec integral method., The .diffusion
equation, appyicable in the short mean free path limit, was
obtained in a*éjmilar manner.,

By recoénizing the tensor character of the equation
and introducing a suitable metric tensor in ‘a five
dimensional Riemannian space, Drawbaugh set‘the'stage for
the use of "the tensor formalism. His work however was
complicated by the need to invert a 5-dimensional matrix.
For arbitrary and unusualAcoordinate systems this is a
non-trivial undertakaing. The current work shnnfd he viewed
as an exténsioh of Drawbaugh's effort. Recognizing that the
transformation of the five coordinates could be constructed
of two transformations, the first operating oun Lhe spatial
coordinates 'éiuue and the second transforming the éngle

variable, we have reduced the problem to a set of tractable’

steps. Further, by first working with the covariant
components of " Q and 1later with the contravariant
components of @, the necessity of forming the inverse

transformation is replaced by the need of finding gtd,

which involves forming the inverse of a 3x3 matrix,
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Aithough the choice of spatial coordinate systems and
variables has inténtionally been left ~ arbitrary a
prescription for the selection of the representation of @,
'i.e. the choice of angular variables, pas been given. - In
particular, if the choice of the Xi is such that they are
" the projections of Q along the diréctions of an orthogonal
triad, then Tz will have a unit value Jacobian. Thus in
dealing with coordinate systems which are spatially
non-orthogonal d' simﬁiified equation may result from
choosing an angular representation'of 2 along directions
other than that of the coordinates.

The particular application of this technique 1is in
the representation of the equation in coordinate systems
~other than the usual rectangular, .cylindrical and spherical
ones, ‘A representation of this form allows one to choose
coordinate surfaces along surfaces of physical interest
.(e.g. a surface of constant properties). = Today's intefest
in the development a fusion reactors based on the tokamak
provides an incentive 'to consider tbroidal coordinate
representations of fhe transport equation for the
investigation of néutronic, photonic and neutral transport
problems, We have illustrated fhe technique by applying it
to the toroidal coordinate system previously treated by

Pomraning and Stevens.
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