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The orthogonal conductivity of a toroidal‘piasmé
. is calculated in the fluid regime. If the damping time
f -' ot :
¢ for toroidally directed angular momentum isVTN, the
orthogonal conductivity is shown to be o, =“x:2/B;)/ph
. for large Tye Here p is the mass density, ¢ the speed
of light andBp the poloidal component of the magnefic
field. For large T,, the flow induced by the orthogonal
' . electric field is almost purely toroidal and of magnitude.
5(Er - E?)/Bp where Eg is the electric field required
for ambipolar diffusion.
.
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I. INTRODUCTION

The orthogonal conductivity of a plasma has not been

a popular topic. for theoretical calculations. 1Indeed, the.

concept requires some explanation. The orthogonal conductiv-

ity -is the conétant of proportionality between -the current

.

3

perpendicular to the magnetic surfaces and‘the electric field

perpendiéular to the surfaces. It has been measured using
probes in the B-3 stellarai:orl and the FM-1 sbherator.z' The
primary importance of the cohcept occurs when a charged
speciés is not Qeli ébnfined in a plasma device. Examples
could be a particles from nuclear feactionS‘or high energy
ions from ion cyclotfon heating or beam injection. To main-
tain ‘charge neuf:aiity the plasma mustAestablish a‘b;ck cur-
rent equél to the electric current of the péorly confined -
species leaving the plasma.

The ideal MHD eéuatibns, which are customarily used .
in plasma physics, give zero orthogonal conductivity. This
comes frbm §-§p=o-?independent'of the electric field-- and

v§p being orthogonal to the -magnetic surféces.3 This so-

called intrinsic ambipolarity persists into the neo-classical

regime for toroidally symmetric systems.4
The basic problem with obtaining a finite orthogonal
conductivity is that the current crossing the magnetic sur-

faces is proportional to. the damping time for toroidally'l

N



directed angular momentum.. In an idealized toroidally g
symmetric system, the symmetry gives an infinite dampingjtimef
However, there'are'a myriad of effects which in practlce L
give a finite damping time for toroidal angular momentum 7
- These include the drag of.the neutrals, the orthogonal‘vls-
cosity, magnetic pumping due to field ripple,(and the convec-
tion of angular momentum by plasma ciffusion. )

The variousleffectsvwhich‘camp“toroidal angular
momentum can be represented by a phenomenological time con—
stant. Mathematlcally this phenomonologlcal theory closely
resembles that w1th damplng by neutrals alone. Consequently,
of the various methods of damplng toroidal anqular momentum
we will retaln only the neutral drag term. At the approprlate
places, the changes that would occur if only tor01dally dlrected“”
momentum were damped and not all components of momentum as-w1th
neutral drag will be éointed out. . «

In addition to the non-ideal effects which can destroy
toroidal angular momentum, there exists one~very important non-
1dea1 effect which conserves toroidal angular momentum, the
parallel viscosity. In many plasma experlments, the parallel
viscosity establishes flow equilibrium w1th1n a magnetic sur-
face on a much'shorter time scale than that for damping toroidal
angular momentum. Consequently'the effects of parallel viscos-

ity will be included in the theory.
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Previous theoretical work on the orthogonal conductiv-
ity has conéehtrated on the effect of the neutfai drag, ne-
glecting viscous effects. B. Lehnert in his 1963 review of .
rotating plasma confinement s&stemsé gave the orthogonal .con-
ductivity of a éylinaer} oy = (pcz/Bz)/TNa. The ion-neutral.
collls1on time ‘is TN,
magnetié field strength. S. Yoshikawa’(l965) evaluated. o, .

''p 'is ‘the -plasma mass density, and B-is

*

in a torus and found the cyllndrlcal result must be multlplled
by a Pfirsch- Schluter factor (1 + 2q ) w1th q the tokamak
safety factor.6 4 |

Our results agree with Yoshikawa in the regime of
negligible parallel viscosity. In thé‘regime4dominated By
parallel viscositylwe‘find 01'= (Acz/sz)/tN with Bp being
the poloidal‘magnéticvfield étréhgth. Fot tokémaks, this is
a substantial enhahcemeﬁt oter both theAtylindrical'and;the

Yoshikawa result.

II. MODEL -

We use the usual Knorr model7 of a toroidal piasma

for the magnetic field .

.

B =By 6 +Bp ¢ . B, B, (r)/R By = 3$.(~;,}./R -_ (1)

where the major radius, R Ro -.r cos 6. We also define

Q(r) = BS/B¢ » the inverse aspect ratio e = r/Ro, and the
safety factor q = €/0. The coordinate system is given in

Fig. 1. The two fluid equations used are essentially linearized,



time independent, Braginskii.eq.uations8 with the addition of - a

neutral drag term for the ions.

<H
e
i

en(E + v x B/&) - enny + ?i - nG/TN | B o (2y
Vp, = -en (E+TxB/c) +em] +E, ', J=en F-D (3
Phe force fi'é-is the parallel viscosity given by Grimm. |

and Johnson’ -- one of.the few expfessions-ﬁor this quantity

which conserves toroidal angular momentum.
t-%V. (bb - % Y F | 4)

. a o T H
with b a unit rector along the magnetic vector:and §,the
identity tensor.

F = gngi [S,yzéxﬂ-é) -”(g-ﬁg)43 - §,$ -3] 3 | (5)
with & = 3/4 for ions and 9/16 -for eleetfons,s _The bulk
viscosity k will not be required since.our solutions will
have 'Viv=o. The time constant T refers tq;the self col-
;ision time of the species in questien.

The solution will be derived by considering effects
in two orders. . In thexlower order all dissipative effects
are neglected. The lower or&er.solution has arbitrary
constants in the expressions for the current anq velocity
in a magnetic surface. The'g'cdﬁponentsﬁofftheifull~fluid
equations give two consistency relations which must be

satisfied by the lower order solution and determine the

' arbitrary constants.
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21 A > A : 21 A > N
: A o (f " A6 = )7 S e v / 6
j[ p (fi + fe)Ade/Zw "(p/TN%'./; b y de/2m ()

”

2m L > S 21 A >+ . | '
/ bef_ d4d6/2m % énn.‘f- bej de/2n.= 0 A7)
o € » » o
The $ components of the full fluid equations give expressions
for fluxes of electrons and ions across.the‘magnetic'surfaces
in terms of the lower order equilibrium. The flux of electrons

crossing a surface n <« u. v is given by

< 1n b2

’ 2T o o
» £ (R/R)" G, dB/2m

2T 4 (8)
(nc/Bp) j: (R/R,) 3 dae/2m

The current crossing a magnetic surface < jr > -

< > = f (R/R)) 3. f'de/zn»

o .
ke (R/& )2 v @8/2: (9)
BPTN Yo © $ ”

We have neglected terms ing§ jr > and <'h£ > which depend

on the parallel viscosity. Toroidal symmetry implies'ion and

* electrons cannot damp their own toroidal angular momentum; so

21 5 A~ 2 o o
f (R/R )% ¢ +F ap/2m =0 (10) .

0o

This will be explicitly demonstrated.forAShe parallel viscosity’
of Grimm and thnson. The exprgﬁsions fot,<.jr»> ahd,< u. >
demonstrate their intimate féldéf@n with toroidal ahgular

momentum conservation.



III. LOWER ORDER -EQUILIBRIUM

The lower order -fluid equations_(without diSsipation)

can be written

>. - > C : ST

Vp = jxB/c , P =p; *p, ‘ (11) -
i - FOR : . .

on Vpi .- E = vxB/e . :(12)

To haveé a steady-state solution,,thg,pressufe and' the electric
potential must be ‘functions of r alone.~ That is, constant on
a magnéticlsurface,f ConserQatibn'of‘piasmafandwcharge7to~thé
lower order fequiresv'

>,

> .
vVej=0, Venv=0 =~ (13)

Since there is no radial component of velocity in the lower
order solution
T

> . .
Venva=ny.v=0 - (14)

The divergence conditions on velocity and‘current affect only

the 6 component due to the symmetry in ¢. They require
Jg = Jp(r) R /R v Vg = Vp(;) RO/R N (15)

with Jp and Vp arbitrary functions of r. The radial components’

of fluid equations -imply



R
. 1 (o) R ) :
j,o = = [J_ = -J, 51 ’ (16)
.¢ o) p..R ) D*Ro, o _ ' |
D .9 _ v Ry " ’ B 17
Vo= o Ve ® " Ve R (17)
with
dp.
_C dp ) vy = _ C _ 1 i (18)
Jp(r) = g~ ar VE(r) = -5 (B ~ gz ar ) .
T ' T
’Thé‘arbitrafy,functionS=Jp(r) and,vp(r) are. constants on a s

magnetic surface and muslL bé ovalnated in terms of,J:D ahd‘VE.
‘with the consistency relations, Eqs. 6 and 7. Once this is
done Egs. 15, 16, and 17 give an exact solution to the lower

order equations which is consistent with the,full fluid equations.
IV. CONSISTENCY RELATIONS

The eéuiiibfium deriveévin Sec.'IiI is symme£ric'
in the ion and electron velocities. '"herefure, the %hfegrals
requiréd by the consisteﬁcy relations, Egs. 6 and 7, have
identical structure. In Appendix A, ﬁsihg this lower order

equilibrium, we will show that _

/2“ ~ © nTr o
b . £d8/2m = - a v (19)
0 | | (1402172 rZ P :

In Appendix: B , is a derivation of

L W2
: l+O2

> ’ 1 1 S,
b v de/2r = —2 177 - [ v.-Vv.]l - (20)
[o aeh? 8 BHi/2 e E T

A
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These expressions are exact except a aboveldiffers'frqm
the vaiues given in Seé. II by terms of order ez,y
| To evalﬁate the consistency relation given by Eq. 6

we define several dimensionleSs parameters.

T. T, T
4. = a i i’'N
. e

(21)
i i i (qRO)Z

This parameter is formed by dividing the qdefficient in the

ion viscosity integral by the coefficient p/'pN from the neutral
drag integral. A similar‘cbefficienﬁ'is'defined for the "
electrons Oy » and o f ai.+ og- The ;athj 60 , of the

ion and electron viscosities is of some importance

(22)

A, . .
'l bll-
/2 >

. : - 1 : ]
The parameter Go is quite small [‘m:(me/mi) ] if Ti ~ Te,/S.

With these definitions, Eg. 6 gives

_ x .
2 1 <140
- q° (a,V_+a U) = Vo=
g (a; b ;ae p) 52 [ (1—52)1/2"VP- Vg ] ' (23)
Assuming € << 1 , but € arbitrary yields
. 2 2.1 R '_‘  a2 2 A
[ I+0" 1 +g7°[ 5+ ai])]vp = Vg - 0° q" a U (24)

ep
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If only toroidally directed momentum were dampeq, the

1 + 0% in Eq.(23) would be 02_ and ‘1 +~q2 ( %—+ a;) in Eq. (24)
2,1 -
would be g~ 5 + ai).

The consistency relation, Eq. (%),;requires a new
dimensionless parameter to compare the electron viscosity and

the,resistivity. This is

S nT_ T T T 2 . . ,
@, =a, —=S L =a, £ () (25)
! < (aR_) ' e o o )
Assuming € << 1 , but @ arbitrary gives
2 1 207 v w4 W2 . 2,1 B
1+0"(1 + 35 q))l Vp =V, + {1 +07[1 + qg"(5 + Qn)]}Qp. (26).

w}gh Vp = JD/eniA To'validly useé the tWo_fiuid equations
an must be must less than one. Consequéntly it will be dropped.
However, the results for an 24 are of éome interest despité
their lack of validity and will be discussed later.

The surface constants Vp and Jplcan be expressed in

terms of VE and J_ using Egq. (24) and (26).

D
2 2
s T ; — S Y vy ] (27)
P 1+92[1+q2(%”+a)]‘ E 1 4+0%2@1+ % q%) P
with VD = JD/en and
1 ‘ o
P o1+e®a+z4q) P
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Neglecting néut;al'mgmeg;umJ&ambing;iafailébuﬁuﬁhgﬁtérgidalu“

A - ] L s 21 '
@ direction would change 1 + a? %g+,a) in Eq. (27) into q (% + a).

V. PERPENDICULAR CURRENT

‘The -consistency relations evaluated in Sec. IV
eliminated all arbitrariness in the lower order equilibrium
solution and the perpendicular current ‘can be evaluated using

Egq. (9). The required integral is performed in Appendix B giving

2

| 12 o _ 1 - 3 27y 1.
1/[ (R/R,)" v, d8/2m =51V (1+ 5 €% v ] (29)

The substitution of Vp from'Eq. (22) gives < jr > in terms of
" VE and WDcnfequivalehtly in terms of E. and'dpi,e/dr.~ The

expression < jr > is of the form

<3 > =0, (E -'E;’) . (30)

with E;) being the electric field required for ambipolar
diftusion. If in the expression for'E;)Awe assume.that @<<1l‘as

“well as €<<1, we find

. dp. = dp .
o _ 1 i _ e
B0 am lg - S 1/ +e) (31)
. o E'qza.~
P N 6 =,‘ e

1+q2(2+ai)

The parameter ¢ measures the fraction of the diamagnetic

current carried by each'species. If the solution is dominated
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by parallel viscbsity (a>>1 or TNQQ),'then § = Go‘defined

'in Eq. (22); The orthogonal conductivity is given by

: 2 o 2
2 + (2 +a
o, = 25 L 1+ % T2 I22a)d (32)

B N . l +06° + €70

for arbitrary © but e<<l. This expression has several inter-

esting limits

o, = 8 L (14 29%)  , a<<1 (33)
1 2 T ,
B N . )
B : 2 : ‘~Tu T. .
oy =3B (146 ) & Lo, 1ccac< 162 (34)
4 2 o’ ', 2 .
: B s | Ro ‘ .
2 o ' :
o, = pdz %L_ ,  a>> 1/5:2 (35)
Bp N

The intermediate regime. o, , 1 <<a<<”1/e2, is independent of

T Viewed as a function of 1/t o, has two regions of

N 14
constant slope separated by a. plateau.

No

If only toroidal momentum damping is included in the
theory, § = a_/(2 +.a;) , and the factor[l + (2 + a) a21/11 +0%+e2q]

in Eq. (32) becomes[ (2 + a) qzl/[l + eza].
VI. PERPENDICULAR ELECTRON FLUX

The flux of eiectrons across the magnetic surfaces
is given by Eq. (8). The integral in this expression can be
evaluated with Egq. (29), for the current and velocity behave

analogously in the lower order é§lilibrium (VE‘goeé'to I -

e
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The expression for Jp in terms of JD is given -in Eq. (28).
With a small amount of algebra, one finds
9

_ _ ne 2, dp S L
< u, > = —;7 (1 + 2g7) ar ' . (36)

the well-known Pfirsch-Schliiter resilt.l?

The electrons diffuse in accordance with the
Pfirsch-Schliiter formula independen; of the eléctric field-
while the ion diffusion is reduced of enhanced in response to
electfic fields. This result, qf course, comes from theAmodel
of the neutral drag actiﬁg ‘only on the ions.

The effect of large an, Eg. (25), will now be con-

sidered. While cbnsidering this effect, we will assume V_ = 0

E

and 60 << l:-to simplify the calculations. One finds if 06<«<1

that

2
2 1+g” (2+a_ )
<u_ >'= - 1€ - U

r B2 1+€Zdﬁ

(37)

i
il

As noted earlier, this equation has no validity in a classical
. :

theory for an ~ 1. Suppose, however, we ignore the limits of

¢lassical theory and consider @ >> 1/82. Then we find diffusion

by a pseudoélassical law

= - nc_ "dp
<u, > 2 ar (38)

o
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This is l/el.'/2 larger than neo-classical diffusion.ll If
the ciassical theory were valid in the long mean free path
limit; it would predict an even larger diffusion coefficient
than the neo-classical theory. For an >3 1/62,‘the classical.
theory also predicts a bootstrap current , j¢ = - c(dp/dr)/Bp.
This result also is l/s:l/2 larger than the neo-classical value.'?

The classical thebry taken into the longrmean free. ~
path regime ie even more at variance with the Pfirsch:SchlﬁLer
theovry than is the neo-classical theory. This comesAfrdm the
classical formula for the parallel viscosity increasing‘without
limit as the mean free path incréases. fhe neo-classical theory
appears to differ from the classiéal primarily in the parallel
viscosity with qn bounded from above by 1/63/2.

The pseudoclassical diffusion coefficient given in
Egq. (38) would be valid if the mean‘free path for electron-
electron collisions were shorte; than the connection length
aR, while the mean free path for electrons losing momenlum to

ions were much longer. Enhancement of collision times by

instabilities could have this effect.
VII. FLOW PATTERN

The flow pattern induced by the electric field across
the magietic surfaces can be determined using Egs. (13), (117),
and (27). The diamagnetic velocity, which appears in Eq. (27),
can be replaced by the electric field requifed for ambipolar

diffusion E;). One finds under the assumption ©<<1, e<<1l, that



v v C N
vV = B - E — + Vé)(l + 3/2 ez)(39)'

P 1 4+0% 1+ q%(1/2 + a)]

with on'calculated with the field E;O (éee Egs. (18) and‘(31)).
The second term in Eq. (39) is the poloidal rotation which
would occur . under ambipolar conditions. In the classical
regime, viscous effects .are ﬂegligiblé on the diamagnetic
current distribution so -this term is not affected by parallel
viscosity.
| The toroidal component of velocity can be accurately

given for e<<1l by

v¢“= v£) +'v$ q cos 6 - (40)
with v¢. = (Vp. .VE)/Q and V¢ = Vp + VE. Eg. (39) can be used

to evaluate»v¢9 anQ‘v$; giving

o _ €% Ve-Vg - L
V¢ = = ) ) K [ (41‘)
l+e”a
A o2rete g, cfa o “ (42
7 E 7. Vg )

For purpo ses of evaluating'vﬁ one can simplify Eg. (39) to

Vy = —————— 4+ v : (43)
?9 1+ 520 . E

Equations (41) through (43) are valid even if the momentum

damping is only in the torocidal direction.
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The toroidal flow, v , is dominated by the cos ©

¢ .o
term for ea<2. For oa>> 1/62, however, the toroidal flow is

’ : . ¢
unidirectional and approximately equal toev¢]'= (c/Bp)(Er—Ero). _
The poloidal flow, Ve, is just the B X ﬁ flow for o<< l/ez.

However, for a>> l/s2 it-drops to the diamégnetic drift velocity
o

Ve and is independent of the applied electric field Er—Eg.

s

VIII. DISCUSSION

The‘toroidal orthogonal conductivity u, relates the average
electric current crossing a magnetic¢ surﬁace < jr > and the
electric field across thé surface Er' The current < jr >
interacts with the poloidal magnetic field to. give a torque

in the toroidal direction. Consequently, to have a finite

P

orthogonal conductivity, there must be a finite damping time

TN for toroidal angular momentum to balance this torque.

Although our calculations are valid for arbitrary,TN

in fluid.regime, the situation of ﬁost practical interest is

the limit of weak damping of,toroidal angular momentum. Under
this condition, the parallel viscosity dominates the flow
pattern induced by the Ex B drift. One finds o, = (bcz/sz)/TN

with p the plasma mass,density.andl.Bp the poloidal magnetic

(@]

field. The induced flow is toroidal with:v, = (c/Bp)(Er - Er

¢

and Ero equal to the electric field required for ambipolar

)

diffusion.
In the fluid theory the important parameter for
determining the importance of the parallel:-viscosity is

Qs =%KTi/mi) TiTN/(qRO)Z. Here“?iAahd m; are the temperature'

mass of the ions, T is the ion-ion collision time and qRo is
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the conhection Iength for the magnetic field. Parallel
viscosity is dominate if “i>>l/é2 and"negligibleeif aik<1. The
reéime of negligible parallel viscosity hae been.studied by
S. Yoshikawa assuming dampinngf momentum by neutrals. The
orthogonal conduct1v1ty in thlS reglme is oL—(pc /B )(l+2q )/TN
with B the magnltude of the magnetlc fleld “and q the well—~~
known tokamak safety factor, q = (rBT)/(ROBp). “In the
Yoshikawa regime the induced poloidal velocity is the Qalue
expected from the B x B drift. There is, however, a'much,
larger toroidal flow than the E x B flew. hThis coﬁes from the
requirement of zero flow divergehce in the surface. One finds
v¢,= 2qvé cos 6 where VE is the maghitude of the E x B. flow and
] is.the.poloidal angular distance. 1In the intermediate regiﬁe
1<<Gi<<l/€2, the‘orthogonai conductivity_is<independent of TN;
The orthogonal conductivity has been measured eh the
B3 steiferatorl and the fM-l spherator{? The B3 operated in the
regime ai<<1. .The neutral density was not well enough known
to test the theory with great accuracy, however, the data were
consistent with the Yoshikawa orthogonai conductivity. The
neutral density was thogght low enough in the B3 to require
Yoshikawa's .Pfirsch-Schliiter factor'(leqz). The FM—l experi_
ments were done with ai>>1/ez. The:resuits for cL’Were qhite
close to those predicted:by the theofy. However, the poloidal
field daminates.the,feroidal fieldyin;FM-l{'so the.,l/B'p:Z scaling
was not properly tested. |
If 1, is large enough compared to the .ion collision

N
time, one would expect’the results for ui551/ez.to hold in the-

o

neo-classical regime. Neo-classically, the toroidal velocity
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tends to relaxes to .v -=-(c/Bp)(Er—Er°) on an ion collision

¢
time scale and the induced poloidal velocity goes to zero.13
The relation between < Jp > and the damp;ng'timglfor toroidal
angular momentum is just toroidal torque balance and should
hold in all regimes; | |

An interesting analogy was found between the classical
theory extended to‘meanAffee paths. long compared to the connec-
tion length and the neo-classical theory. Indeed;,thé primary
calculational difference between ﬁhé ciassical and. neo-classical
‘theory,appears to be in the parallel viscosity. The long mean
free path classical theory bfedicts diffusidn according to the
pseudo-~classical law*—4-(B/Bp)2 faster thanfdiffusion in cylinder~-

which is even faster than the neo—claséical results. ¢
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APPENDIX A

In this'aépendixAthe required integrals of the
parallel viscous forée will be evaluated. The parallel
v1scous force was glven in Egs. (4) and (5). PFirst the ex-
pression for F , Ed. (5), will, be evaluated with the velocity

distribution of Egs. (15) and (17). To do this we must evaluate

& - V)@ -.v) and (b' vb)+ 3. Using b = (5 + 00)/(1 + gL/2
~ R ’ v
b ¥ -9 =-.SR“’° v, (2% + B (A1)
CH 1+ 0
Using
de = - r.de + ¢ sin 6 d¢- (A2)
d¢ = (cos 6 r - .sin 8.0) d¢ e - (A3)
2A+;,»;' . 9'. A,' 6 92 ~
(1 +0%)b-vp =-52R8 (5" 0p) + (X222 -2 ) r @y
So that
A > ) v
6 'E
(b » Vb) «v=-22200 20 | (A5)
Ry 1402 |

> > .
Combining terms and remembering V-v = 0, Eg. (14), one finds

F = -2anTr 3220y (02 . (A6)

The viscous force can be written as

- *aa - 1 > -+ J
£ = FV+ (bb- §) + (bb -3 §)VF | : (A7)

Wl
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Using the expressions for d6 and d¢ given above as well as

A A

dr = 8d8 - ¢ cos6 d¢ (A8)

it is straight forward to show

b T 51ne' cose 02 =~
‘(l+€) )V (bb-§- §) = = [ZOd)- (1- O )6]+( < " —r—) r (A9)
This implies )
s 0 2.1 9F sin®
iaiave-rs vo Rl I3 LI S (A10)
(1+07) '
~ 7 0 1 JF ing
¢f = —= [ £ 55+ 2F 2] (All)
146
->

A

The expression for ¢<f can be made simpler using the expres-

sion for F.

"+__ 0 2anTt Ro
heof =~ 5 R T ( - )
1+0 (o]

2

V. (A12
b cos 6 ( )

This last expression clearly obeys the condition that the

parallel viscosity obey toroidal angular momentum conservation

2T 5 ~ : . : -
J/. (R/Ro) ¢- d6/2ﬂ =0 : . S (Al13)
o o :
To evaluate the 1ntegral of b+-f over 6 one needs to
2m
evaluate the integral Jf (RO/R) sinZe de/2mw. .This integral
B o ..'
is 1/2°[ 1 + o(ez)] SO

2T A > : ©  napr.
bef d8/2m = - a ==V : . (A14)
./; (1+62)1/2 ROZ P

~
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APPENDIX B

In this appendix. the required integrals of the velocity

distribution will be evaluated. The velocity distribution

‘ . 2T A >
is given in Egs. (15) and (17). The integral f bev .de)/21r
. o 2 ,
will be evaluated first
bey = —% S0y aee?) - v, B (B1)
=—1 L x® - =1 .
(1+02)1 2O R 'p E R, '
To carry out the'required.integral'we need .
2t R ' :
: ) - 1. <
= d4e/2n1 = —a— : (B2).
[T R = —Fy |
2m ) : |
0 R '
o A ‘ ,
This gives
2 A > 2
: 1 1 1+0
bev d46/217 = —— — [ —== Vv. -V, ] (B4)
./Z (l+62)1/2 0 (1_62)172 P E

The other integral we must evaluate is
2w E
2 . N
-/. (R/Ro) v¢d6/2v. Evaluation of this integral involves the
A . .
integral .

2T
J[ (R/Ro)3 de/2mr = 1 + %”ez (B5)
Jo ' , ‘

Consequently

2m

" NS AP I N
/ R vy ae/em = EN-aeg )] (B6)
] |

K‘I';U

O:
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Fig. 1. The toroidal coordinate system.
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