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Two New Proofs of the Test Particle Superposition 

Principle of Plasma Kinetic Theory 

John A. ~rom.es* 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

ABSTRACT 

The test particle superposition principle 

of plasma kinetic theory is discussed in rela- 

tion to the recent theory of two-time fluctua- 

tions in plasma given by Williams and Oberman. 

Both a new deductive and a new inductive proof 

df the principle are presented; the deductive 

approach appears here for the first time in 

the literature. The fundamental observation is 

that two-time expectations of one-body opera- . 
tors are determined comple.tely in terms of the 

(x,v) phase space density autocorrelation, - .., 
which to lowest order in .the discreteness param- 

eter obeys the linearized Vlasov equation 

.with singular initial condition. For the de- 

ductive proof, this equation is solved formally 

using time-ordered operators, and' the solution 

then rearranged into the superposition prin- 

ciple. The inductive proof is simpler than 

Rostoker's, although similar in some ways; it 

differs in that first order equations for pair 

correlation functions need not be invoked. It 

is pointed out that the superposition principle 

is also applicable to the short-time theory of 

neutral fluids. 
NOTICE 
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I. INTRODUCTION 

The pri.nciple of superposition of dressed test particles 1 

has been of great conceptual importance and practical utility in 

the kinetic theory'of plasma physics, as it provides an algorithm 

for the computation of certain one- or two-time expectations 

which is both mathematically simple and physically revealing. 

The principle was first established rigorously by Rostoker, 1 

2 , 3  dLL11uuy.h examples of- the principle had been given previously. 

In words, the theorem states that to first order in thc discrete- -- 
ness parameter (plasma parameter) E El/nX (with n the density, 

P U 

A D  the Debye lenqth, and d t h e  number of dimcncion3) , the plas111d 

may be treated as a collection of uncorrelated quasiparticles-- 

noninteracting point particles combined ("dressed") with the 

lowest order Vlasov response t-o them. The purpose of this report 

is to show that the superposition principle is related simply to 

the kinetic theory of two-time fluct~~ations proposed recently by 

Williams and 0bermanb4 In doing so, we shall provide two new, 

compact, and lucid proofs of the principle. Our first proof is 
s .  . . 

deductive in nature, thus differing in philosophy from Rostoker ' s - .-.A- 

original inductive proof. A deductive proof is of considerable --. -. 

interest, as it emphasizes that the superposition principle fol- 

lows naturally and readily from the general principles of plasma 

kinetic theory. 1n" contrast. to this, the original proof oE the 

principle was motivated only by particular examples which were 
. . , . , . 

sometimes mathematically complex and opaque. For completeness, 

we shall also give a new inductive proof which simplifies ,c'onsider- 

ably Rostoker's original one. We s h a l l  deal immediately with the 



most general two-time version of the principle; the one-time re- 
* 

b sult follows as a special case. 

In discussing two-time fluctuations, a consistent convention 

for time arguments is essential. The one we have-adopted uiffers 

from Rostoker's, and considerable confusion may result unless the 

following is understood clearly. There are essentially three 

times in the problem: the preparation time of the system, de- 

noted by t the initial measurement time t and the final mea- 
P I  0 

surement time t.   his is to be compared to Rostoker's notation, 

which is obtained from ours by the mapping 

Our notation is particularly convenient and emphatic for a dis- 

cussion of two-time fluctuations. In two-time theory, almost all 

dynamical operators act at time t; our notation avoids a clut- 

tered proliferation of primes or subscripts. In actual computa- 

tions one deals mostly with one-sided functions (denoted by 

subscript "+")  with t>to; - this time sequence is easier to remember 

than tl>t. - Initial conditions on two-time functions will be im- 

posed at to. It is vital to note that to does not generally co- 

incide with t in fact, usually to>>t so that initial transients 
P '  P 

have died away. In particular, in thermal equilibrium situations 

we have t so that the initial conditions on the two-time 
P 

quantities are the asymptotic long-time solutions of the appro- 

priate one-time equations. For notational clarity, we do not 

write explicitly the dependence of all quantities on t . A 
P 



f u r t h e r  d i f f e r e n c e  w i t h  R o s t o k e r ' s  n o t a t i o n  i s  t h a t  t h e  o r d e r  o f  

w r i t i n g  t i m e  a r g u m e n t s  i s  r e v e r s e d  h e r e :  i n  o u r  work l a t e r  t i m e s  

a p p e a r  t o  t h e  l e f t  o f  e a r l i e r  t i m e s ,  w h i l e  i n  R o s t o k e r ' s  t h e  re- 

v e r s e  i s  t r u e  ( e . g .  r+ ( X ,  t ; X o , t o )  r a t h e r  t h a n  T+  ( X , t ; X 1 ,  t ' )  ) .  . . 

D e f i n e  t h e  ph'ase p o i n t  XZ(x,v,s . . ) ,  w i t h  5 t h e  p o s i t i o n ,  y t h e  - 
v e l o c i t y ,  a n d  s t h e  s p e c i e s  l a b e l  o f  a  p a r t i c l e .  Most work i n  

p l a s m a  k i n e t i c  t h e o r y ,  i n c l u d i n g  R o s t o k e r ' s  p r o o f  o f  t h e  s u p e r -  

p o s i t i o n  p r i n c i p l e ' ,  has dpa  J t w i t h  c e r t a i n  c l c m c n t a l  two- L i i ~ ~ t !  

p r o b a b i l i t y  f u n c t i o n s :  t h e  t e s t  p a r t i c l e  f u n c t i o n  R ( X , t ; X u , t o ) ,  

t h e  p r o b a b i l i t y  t ha t .  a ( t e s t )  p a r t i c l e  o f  s p e c i e s  s i s  a t  
0 

( x  , v  , t ) and  t h a t  t h a t  s a m e  p a r t i c l e  i s  a t  ( x , v ,  t )  ( c l e a r l y  R 
-0 -0 0 - - .  -Y 

v a n i s h e s  u n l e s s  s=so);  t h e  f i e l d  p a r t i c l e  f u n c t i o n  F ( X , t ; X o , t o ) ,  

t h e  p r o b a b i l i t y  t h a t  a  ( t e s t )  p a r t i c l e  o f  s p e c i e s  so i s  a t  

t ) and  t h a k  some d i f f e r e n t  ( f i e l d )  p a r t i c l e  o f  s p e c i e s  s (xo'vo' 0 

i s  a t  ( x , y , t )  ; a n d  c e r t a i n  h i g h e r  o r d e r  f u n c t i o n s .  ~ e n e r a i l ~  

s p e a k i n g ,  it i s  cumbersome t o  work d i r e c t l y  w i t h  t h e s e  f u n c t i o n s ,  

as t h e y  e n t e r  t h e  f l u c t u a t i o n  t h e o r i e s  i n  o n l y  c e r t a i n  well- 

d e f i n e d  combina t io ' n s ,  t h e i r  p a r t s  o f  dominant  o r d e r  i n  E c a n c e l ,  
P  

a n d  o n e  mus t  i n c l u d e  c o m p l i c a t e d  h i g h e r  o r d e r  t e r m s  i n  the t h e o r y  

t o  o b t a i n  n o n t r i v i a l  r e s u l t s .  F o r  example ,  i f  w e  d e f i n e  a , ' o n e -  

body o p e r a t o r  A by t h e  a d d i t i v e  p h a s e  .dependence -- -- . 

. . . . 
w i t h  Ns t h e  t o t a l  number of p a r t i c l e s  of s p e c i e s  s and  X .  ( t )  t h e  

A .  

. . 1 

e x a c t  p h a s e  t r e e c t o r y  of p a r t i c l e  i ,  a n d  a l so  d e f i n e  t h e  f l u c -  
- .  

t u a t i o n  GA-A-.<A>, t h e n  it i-s e a s y  t o .  show 2 ' 4  t h a t  t h e  two-t,i,me 



expectation of the fluctuations of two such operators A,B becomes 6 

where the. important combination 

has appeared. If ,one writes separate evolution equations for R, 

F, and f, and only later combines their solutions according to 

(3), one must treat the dynamics of F to first order in E since 
I? 

F has a dominantly uncorrelated zeroth order part which cancels 

in the combination (3) : 

This was Rostoker Is original procedure. * However, the combina- 

tion r is already O(E ) .  A lowest order nontrivial result for 
P 

(2) can therefore be obtained'by treating the dynamics of r to 
,./ zeroth order in E the,~i,z,e' of I' enters only through the initial 

P' ,? - 
,,p' 4 ,  

conditions T(to:t ) (  ) i. This is a substantial computational 
27 P 

savings. Furtt.er~ore-, to work with the elemental functions them- 

// /'' selves ra9er than with the rele5ant combinations of them is to 
/ 

obscure the agpropaiate generaIizations of the kinetic theory to 
J 

h4 
/" 

,,</ 
/' 



-6- 

higher order, or more importantly the appropriate renormalization 

. A  of the lowest order theory. This latter remark is of conqlder- 
k' 

able importance si'nce it has been found that renormaliz?d theo- 
. . 

ries are vital in the correct treatment 

as the anomalous transport due to 

Vlasov scale. " * T O  begin a 

theories, it is very 

as symmetrically and compactly as p~ssible. 

Recently, a number of authors 4'7-9 haLe proposed kinetic 

theories which overcome the objections raised in the preceding 

paragraph by dealikg directly with the fundamental quantity r 

and its generalizations. (r can be defined alternatively 'to ( 3 )  

h h 

where 6N is the fluctuation in the ~limontovich microdensi't~ N: 

h 
. . . . 

with <N> = f (X,t) the one body distribution.) In particuihr, 

Williams and 0berrnan4 showed that r:ll -(I) is the first membhr of a 

set of two-time quantities {T(~).(x k. - I?* 2 ' ~  .X r ,t:Xo,tO)lr = 1.2, ... 1 

which collectively obeys the ~lineariked BBGKY cumulaht hie,rarchy 

(in the t variables)-with certain partially singular initial con- 

r . :  ditions successively smaller 'in E : (to;to) = O(E~) . A 
P . . 

detailed account of this kinetic thgbry has been given elsewhere. 7,s 



However, to discuss the relation of this theory to the test parti- 

cle superposition principle, we need here only the lowest order 

result (denoted by subscript "o"), which is already well-known to 

workers in the field of classical fluids1': ro satisfies the 

linearized Vlasov equation with singular initial condition 

Here f is the one body function which solves the nonlinear time- 

dependent Vlasov equation, andego is the irreducible pair correla- 

tion functi,on, or two body cumulant, computed to first order in 

E (that is, to lowest nontrivial order). The lowest order, col- 
P 
lisionlessl1 result for two-time expectations can then be tran- 

A 

scribed directly from (2) as 

I By contrast, the superposition principle computes <6A6B> as 

e 
whcre il and B are certain quasiparticle densities to be defined 



mathematically below, and WEnR 
0 

the collisionless streaming 

solution for the. evolution of a test particle. 

Since both approaches (7) and (8) to two-time fluctuations 

consider only lowest order effects in E it is in one sense "in- 
P' 

tuitively obvious" that their predictions must be identical. How- 

ever, the mathemetical formulations and their physical interpreta- 
\ 

tions are superficially quite distinct. Physically speaking, 

for example,, ( 7 )  with ( 6 )  describes <GA(t.) 4 ~ ( t  ) > as a twq-stcp 
(-J 

measurement process performed on a correlated plasma. The first 
.. . 

measurement is performed at to, when the plasma is "caught" in the 
. . . . 

correlated state 5 ( t  1 .  This measurement effectively disturbs 
U 

the plasma and the disturbance propagates as a Vlasov fluctuation 

to time t, when the second measurement is performed. On the other 

hand, the two-step measurement described by ( 8 )  is performed on a 

system of uncorrelated quasiparticles. The disturbance in the 

quasiparticles induced by the first measurement -- streams (no self- 

consistent response) to time t. That these two processes are 

Lequivalent is not obvious; furthermore, the mathematics of neither 

approach resembles that, of the original procedure2 beginning from 

(2) and separate'evolution equations for R ,  F, and f. ~n explicit 

demonstration of the equivalence between the forma1.isms is there- 

fore desirable. Furthermore, the original proof of the super- 

position principle is somewhat unsatisfying, as the result is 

postulated inductively, then verified. Although the indudtion 

hypothesis is well-founded, as the principle has been verified in 
. . .. " 

certain detailed (and mathematically complicated) examples, it is 

nevertheless desirable to give a deductive proof of the principle. 



Such an approach demonstrates much more convincingly the intimate 

relation between the superposition principle and the general 

(lowest order) structure of plasma kinetic theory. 

In the remainder of the work we shall give one deductive and 

one inductive proof of the superposition principle, beginning 

from (7). We will see that our proofs are more compact than was 

Rostoker's original one. In fact, Rostoker had to invoke the . 

second member of the BBGKY hierarchy for go, as well as its moder- 

ately complicated two-time generalization. However, our more ju- 

dicious choice of r as fundamental quantity allows us to deal with 

nothing more complicated than the Vlasov equation. This simpli- 

fication lends strong support to our assertion that I', rather than 

R or F,  is the appropriate kinetic theoretic object with which to 

deal, and agrees with our intuitive notion of the plasma as domin- 

antly Vlasov in character. 

The organization of the paper is as follows. In section I1 

we introduce an appropriate notation, state the superposition 

principle in terms of it, and formulate the mathematical assertion 

which must be proved. Xn section I11 we give for the fi.rst time 

a deductive proof of the principle by using simple facts about 

time-ordered operators to rearrange appropriately the formal so- 

lution of the Vlasov equation. In section IV we p.rove the prin- 

ciple inductively By postulating the result, then showing its 

equivalence to the r formalism (7). In section V.we comment 

briefly on the applicability of the superposition principle to 

the theory of neutral fluids, and discuss and summarize our 

reslll ts. 



11. NOTATION. FORMULATION OF THE PROBLEM 

We begin by introducing a suitable notation. Henceforth, 

we shall omit the "ow superscript as we deal only with lowest 

order phenomena. As did Rostoker, we restrict ourselves to elec- 

trostatic phenomena only; we will discuss electromagnetic exten- 

sions of the theory. in a future paper. The Landau operator L is 

now defined by writing the linearized Vlasov equation as 

. Thus, L consists of a streaming term S and a Vlasov term V :  

and 

- - (x,t) + nc(x,t)v x (B/B), Fext - %ext ... .., - -+ 

Note that L can be in general a function of time, both explicitly 



through Fext(X,t) - and implicitly through the.fun'ctiona1 dependence 

.* on f. 

In terms of the above notation, the quasiparticle density a 
<. 1 

is now defined as 1 

where 

and P obeys the test particle equation: 

(at + iL + ~s')P(Y,~~x') = -qa(y - x')*[alf(xl,t)] - - ... - 

The S 1  term describes the streaming of the test particle repre- 

sented by the 6(Y - X') term; the L term describes the Vlasov re- 
sponse to that test particle. Since y(Y,tlxl) is the fundamental 

quantity which appears in (lo), it is convenient to replace (12) 
. .. . 

with an equation for y. This is readily accomplished. From (12), 

Since S is a differential operator in the ( x , v )  phase space, ... - 



and (13) becomes ' 

The appropriate initial condition is 

for the m~ment, we do not specify P(t ) .  The.motion of the test 
P 

particle ( S t )  and'its shielding cloud ( L )  is particularly evident 

in the form (15a). 

In terms of y, the superposition principle (8) reads 

,o 

fi -' <6A(Xft) 6B(Xo,to) > 

where W (XI t; X"t ) . .obeys the 
0 

Comparing (16) with (7) and noting that A 9-nd B are arbitrary, 

we see that to prove the superposition principle is to prove that 

to lowest order in E 
P 



We shall of course need the initial condition (6) for r .  

This initial condition contains the pair correlation function 

g(X,Xo,to), which obeys the second member of the one-time BBGKY 

hierarchy--truncated, in this lowest order case, by the neglect 

of the three-body cumulant. 'However, g'is needed only in the 

particular combination 5;  furthermore, it is needed only to first 

order in E 
P' 

In these circumstances,.it is no't necessary to 

invoke the cumulant equation for g as did Rostoker; 5 can be de- 

34 
termined directly from the dynamical equation (9) for r .  Thus, 

We use the symmetry 
. 

. a apparent from ( 4 )  , to write (19) as 



e- 

with initial condition 

We will discuss the initial condition on g shorily. 

This concludes the preparatory formulation of the problem. 

We now turn to the proofs. 

: 111. THE DEDUCTIVE PROOF 

. . 

In this section, we give a deductive proof of the supeipo- 

sition principle (18) which begins from the formal solution of 

(9) . In the general case, (9) is complicated because of the arbi- 

trary space-time dependence of Fext 
..d 

and f, and this complication 
,., 

manifests itself immediately when the solution of a particular 

problem is attempted. Nevertheless*, it is possible to make prog- 

ress with the formal solution; in %act, the problem can be re- 

duced essentially to the special case of time-independent Fext 
-.4 

and f by the appropriate use of time,-ordered exponentials.   he 

time-ordering "+" of two operators 3 and B is defined by 
. . 



where H is the Heaviside function; the time-ordered exponential 

is defined in terms of this by 

With these definitions, the solution of 

becomes 

which reduces to the fami-liar result 

for time-independent 3.  We shall shortly make use of the formal 

similarity between (24a) and (24b). Another result of use to us 

is the property 



. . 12 which is easily verified from (22). 

We wish the, following proof to be as pedagogical and unclut- 
. . 

tered as possible. Therefore, we shall write all formulas for 

the special case of time-independent backbround, usinsf the simple 

exponential notation (24b). This case is of considerable interest 

in itself; it covers, for example, the important case of two-time 

fluctuations in thermal equilibrium, and more generally any sit- 
1 

uation in which f varies slowly relative to the plasma time scale 

on which f evolves. Nevertheless, the results (23) - (25) assure 

us that the proof of the general case can be recovered immediately 

by replacing all s'imple exponentials by time-ordered ones accord- 

ing to 

We shall acgually provide the proof of (18) by dealing with 

the one-sided function 

and similarly W+. T h i s  is sufficient, as the two-sided functions 

are determined uniquely from the one-sided ones; e.g., . . 



consider, then, the Green's function solution of (9) for T+: 

r + ( ~ , t ; ~ ~ ~ t ~ )  = C ~ , S ~ X ~ U + ( Y , ~ ; X '  ,to)<(xl , ~ ~ , t ~ ) .  (27a) 

where we have introduced the retarded Vlasov propagator 

similarly, we find from (20) 

where for simplicity and clarity only we neglect the initial 

conditions on g--correlations are "driven in" from t = by the . 
P 

test particle motion alone. (This neglect will be rectified in 

the next section.,) Thus, for t > t we insert (28) into (27) to 
0' 

find 

I n s e ~  L i l ~ y  Into (29) the identity 



and n o t i n g  t h a t  s i n c e  S i s  a d i f f e r e n t i a l  o p e r a t o r  
. . 

. .  . 
( 2 9 )  becomes 

~ n s e r t i n g  t h e  i d e n , t i t y  i n  t h e  form 
. . . . . .  

(30)  becomes 

W e  now w r i t e  6 ( ~ '  - X 1 ) 6 ( X '  - Y ) = 6(X" - Y o ) 6 ( X "  - X I ) ' ;  
0 

exp (-is '  t) = e x p [ - i s '  ( t  - t ) ]exp (-ist to) , and i n t e g r a t e  exp (-is '  to) 
0 

by p a r t s ,  u s ing  a l s o  ( 1 4 )  , t o  b r i n g  (31) t o  t h e  form 
. . 



However, using (15) and (17), (32) becomes 

which is precisely the one-sided version of (18). Thus, the 

superposition principle is proved in this special case. By the 

replacement (20) we obtain the proof for arbitrary time depen- 

dence. The initial transients in g could be included in this 

proof with'no complication in principle. This will become clear 

in the next section, where we do discuss the initial conditions 

explicitly. 

IV. A NEW INDUCTIVE PROOF 

In this section we give for completeness a simplified form 

of Rostoker's inductive proof: we postulate (18), then show that 

both sides obey the same equations, with identical boundary con- 

ditions. The proof consists of <two steps. First, we assume 

that the "static" autocorrelation I'(to;t,) E S  (t ) is given cor- 
0 

.d 

rectly by the r.h.s. ? of (18), then verify that r also yields 

correctly the dynamics to+t as described by (9). Second, we 
- 

verify that 5 also solves (20) with the appropriate initial 

condition. 

For part one, we write 

+ [(a t + . ~ L ) ~ ( Y , ~ ~ X ' ) ] W ( X ' , ~ : X ~ , ~ ~ ) ~ ( Y ~ , ~ ~ ~ X " )  I .  



' . 
w e  u s e  (15a)  t o  r e p l a c e  ( a  + i L ) y  by - iS1y ;  then  i n t e g r a t i n g  

. . t 
t h e  second t e r m  i n  (33)  by p a r t s ,  w e  b r i n g  t h e  r . h . s .  of  (33)  

t q  t h e  form 

. . . . 
which van i shes  accb rd ing  f o  (17a), . Thus, 

which i s  t h e  same dynamical equa t ion  (9a )  s a t i s f i e d  by r ;  t h i s  - 
i m p l i e s  r =  r i f  t h e  i n i t i a l  cond i t i ons  on both q u a n t i t i e s  a r e  

i d e n t i c a l .  The re fo re ,  w e  must now prove a s  p a r t  two of t h e  p.roof 

. . 

where i n  w r i t i n g  tlik l a s t  l i n e  of  (34) w e  used (17b) . Upon in-  

s e r t i n g  t h e  d e f i n i t i o n s  ( 6 )  and (11) of  5 and y  and performing 

t h e  i n t e g r a t i o n ,  w e  s e e  t h a t  (34) is. e q u i v a l e n t  t o  t h e  a s s e r t i o n  
. . 

. . 

The p h y s i c a l  s i g n i f i c a n c e  of  t h i s  skatement has  been dis.cussed 
. . 

by Rostoker .  1 
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- 
r = r ,  completing our proof, if we verify that the initial condi- 

. , . . 

tion at t = t i s  satisfied. We must then verify 
0 P . 

In the usual application of the superposition principle, 

only correlations driven in by the streaming motion of the test 

particle are considered; initial transients in g are neglected. 

For this case, g(t ) = P(t = 0 and (38) is satisfied. For the 
P P 

case when g(t ) represents "phy~ical~~ correlations, (38) is also 
P 

satisfied. By this, we mean that we treat t as simply some early 
. . P 

time to which g has evolved according to (20) from a still earlier 

physical state of the system (which is usually t = -rn , P(-a) = 0, 
P 

as in the case of thermal equilibrium). Since we have already ver- 

ified (35) for arbitrary times t (39) is a possible initial or 

state. We shall not be concerned with other, unphysical initial 

correlations. We thus conclude that (18) is satisfied, and our 

inductive proof of.the superposition principle is complete. 



V. DISCUSSION AND SUMMARY 

The result (8) is written for an arbitrary number of species 

and is thus slightly more general than that of Rostoker, who con- 

sidered only the case of equal species densities. We repeat for 

' emphasis Rostoker's observation that the principle holds for - ar- 

bitrary space-time dependence of f(X,t) (although this lowest 

order truncation in E need not provide a reasonable or adequate 
P 

representation of the physics, especially if the plasma is far 

from thermal equilibrium). 

Our r approach emphasizes the fundamental Vlasov character 

of the plasma very strongly, as we have dealt here with only the 

lowest order version of the Williams-Oberman two-time fluctuation 

theory. Thus, the fluctuation spectra computed from the Fourier 

analysis of (7) or (8) can be called "collisionless," since col- 

lisional damping of an individual fluctuation is absent. Already 

at this level, the power of the formalism and its advantages over 

t h e  previous Q,F theories is quite apparent. The general theory 7I8 

is also well suited for deriving higher order generalizations of 

the superposition principle. We shall, however, reserve discus- 

sion of these generalizations and the possibility of a renormal- 

ization of the superposition principle to a future paper. 

Of course, the Vlasov equation (9) is correct only for times 

short relative to the collision time. In addition, it is correct 

only for lengths 2-AD. However, several recent theories of short- 

time f l u c t u a t i ~ n s ~ ~ ~  l3 have shown that the Vlasov equation remains 

valid for - all length scales if the bare Coulomb potential is, re- 

placed appropriately by the OrnStein-Zernike direct correlation 



function c. For the special case.of thermal equilibrium plasma, 

the proper substitution is in Fourier space 14 

where k is the wave number, T the temperature, the species labels 

r,s are interpreted as matrix indices, and 

~]d(x-x ) exp[-ik* (x-x lgrs (x-x ,vIvo) /mr (v) Os (vd) , - -0 - - -0 - -0 - - 

with g the usual pair correlation function and Or the Maxwellian 
-d/2 

mr(v) (2nv2 . 
2 2 2 - 

Tr exp(-v /2vTr), vTr = T/mr. With this substitu- 

tion the superposition principle remains valid for the short-time 

theory of neutral.fluids as well as for plasmas if the a'ppropri- 

ate pair correlation function g is given. ,Although the long- 

ranged nature of the Coulomb force makes the short-time plasma 

theory of much more interest than the corresponding theory for 

the neutral fluid, the latter has found some applications--for 

example, in explaining collisionless sound in liquid lead. 15 

Thus, the superposition principle may be of use in contexts other 

than the plasma physical one in which it was first introduced. 



In summary, we have presented two new and straightforward 

proofs of the test particle superposition principle, beginning 

from the lowest order, collisionless equation for the phase space 

autocorrelation r .  That a deductive proof of the superposition' 

principle is possible was demonstrated here for the first time in 

the literature. Both the deductive and the inductive proofs were 

simpler than Rostoker's original one, as we invoked from the out- 

set only Vlasov dynamics; particle discreteness entered only as 

an initial condition. With the appropriate choice of pair cor- 

relation function, the superposition principle is also applicable 

to the short-time theory of neutral fluids. 
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