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Two New Proofs of the Test Particle Superposition

Principle of Plasma Kinetic Theory

John A. Krommes¥*

Plasma Physics Laboratory, Princeton University

Princeton, New Jersey 08540

ABSTRACT

The test particle superposition principle

of plasma kinetic theory is discussed in rela-

tion to the recent theory of two-time fluctua-

tions in plasma given by Williams and Oberman.

Both a new deductive and a new inductive proof

of the principle are presented; the deductive

approach appears here for the first time in

the literature. The fundamental observation is

that two-time expectations of one-body opera-

tors are determined completely in terms of the

(§,v) phase space density autocorrelation,

which to lowest order in the discreteness param-

eter obeys the linearized Vlasov equation

"with singular initial condition. For the de-

ductive proof,

this equation is solved formally

using time-ordered operators, and the solution

then rearranged into the superposition prin-

‘ciple. The inductive proof is simpler than

Rostoker's, although similar in some ways; it

differs in that first order equations for pair

correlation functions need not be invoked. It

is pointed out that the superposition principle

is also applicable to the short-time theory of

neutral fluids.
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, ’ I. INTRODUCTION

The principle.of superposition of dressed test particlesl
has been of great conceptual importance and practical utility in
the kinetic theory of plasma physics, as it provides an gIgorithm
for the computation of certain one- or two-time expectatiohs
which is both mathematically simple and physically revealihg.

The principle was first established rigorously by Rostoker,l

3

alllivugh examples ot the principlc had been given previously.z’

In words, the theorem states that to first order in the discrete-~

ness parameter (plasma parameter) epEl/nADd, (with n the density,

AD the Debye length, and 4 the numher of dimencions), the plasma

may be treated as a collection of uncorrelated quasiparticles--

noninteracting point particles combined ("dressed") with the
lowest order Vlasov response to them. The purpose of this report
is to show that the superposition principle is related simply to
the kinetic theory of two-time fluctua?ions proposed recently by
Williams and Obermén.4 In doing so, we shall provide two new,
compact, and lucid proofs of the principle. Our first proof is
deductive in nature, thus differing in philosophy from Réétoker's
original inductive proof. A deductive proof is of considerable
interest, as it emphasizes that the superposition principle fol-

lows naturally and readily from the general principles of plasma

kinetic theory. Inxcontrast to this, the original proof.of the
principle was motivated only by particular examples which wére
sometimes mathematiéélly complex and opaque. For completeﬁéss,
we shall also givevé new inductive proof which simplifieS'éOnsider-

ably Rostoker's oriéinal one. We shall deal immediately with the
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most general'two—time version of the principle; the one-time re-
sﬁlt follows as a special case.

In discussing two-time fluctuations, a consistent convention
for time arguments is essential. The one we have-adopted aiffers
from Rostoker's, and considerable confusion may result unless the

following is understood clearly. There are essentially three

times in the problem: the preparation time of the system, de-

noted by t_; the initial measurement time to; and the final mea-
surement time t. This is to be compared to Rostoker's notation,

which is obtained from ours by the mapping

t+t', t -t, t =t ~>t=0.
o o p

Our notation is particularly convenient and emphatic for a dis-
cussion of two-time fluctuations. In two-time theory, almost all
dynamical operators act at time t; our notation avoids a clut-
tered proliferation of primes or subscripts. In actual computa-
tions one deals mostly with one-sided functions (denoted by
subscript "+") with tit07 this time sequence is easier to remember
than t'>t. 1Initial conditions on two-time functions will be im-
posed at to. It is vital to nofe that to dbes not generally co-
incide with tp; in fact, usually to>>tp so that initial transients

have died away. In particular, in thermal equilibrium situations

- we have tp=—w, so that the initial conditions on the two-time

quantities are the asymptotic long-time solutions of the appro-
priate one-time equations. For notational clarity, we do not

write explicitly the dependence of all quantities on tp. A
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further differeﬁcelwith Rostoker's notation is that the order of
writing time arguments is reversed here: in our work later times
appear to thellefé‘of earlier times, while in Rostoker's the re-
verse is true (e.q. F+(X,t;Xo,to) rather than T_(X,t;X',t") ).
Define the phase point X=(x,v,s), with x the positioh, v the
velocity, and s the species label of a particle. Most work in
plasma kinetic theory, including Rostoker's proof of the super-
position principlez has dealt with certain clemental two-Llime
probability functions: the test particle functionAQ(X,t;Xo(to),
the probability that a (test) particle of species S, is at
(go,yo,to) and that that same particle is at (§,y,t) (clearly 2
vanishes unless s:so); the field particle function F(X,t;XO,tO),

the probability that a (test) particle of species Sq is at

(go,yo,to) and that some different (field) particle of species s
is at (x,v,t); and certain higher order functions. Generaily

speaking, it is cﬁmbersome to work directly with these functions,
as they enter the fluctuation theories in only certain well-
defined combinatidns,5 their parts of dominant order in Ep cancel,
and one must include complicated higher order terms in the theory

to obtain nontrivial results. For example, if we define a one-

body operator A by the additive phase dependence

N
) S
AKX, E)E Y DL a lx;x. (),
. §i=1 S(‘ *; (0) )

with N the total number of particles. of species s and X, (t) the

exact phase trajectory of particle i, and also define the fluc-

2,4

tuation §A=A-<A>, then it is easy to show that the two-time
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expectation of the fluctuations of two such operators A,B becomes6

<6A(X,t)6B(Xo,to)> = E:snsi:sonsoulh¥dYoa(X;Y)b(xo;Yo)

X [nsQ(Y,t;Yo,to) + F(Y,t;Yo,to)

- £y, e)E(Y .t )], (2)

where the. important combination
I' =nQl + F - ff o . (3)

has appeared. If one writes separate evolution equations for Q,
F, and £, ahd only later combines fheir solutions according to
(3), one must treat the dynamics of F to first order in ep since
F has a dominantly uncprrelated zeroth order part which cancels

in the combination (3):

]

F(Y,t;Yo,to) f(Y,t)f(Yo,to) + F(Y't;YO'to);

]

F O(gp).

This was Rostoker's original procedure.2 However, the coﬁbina—
tion T is already O(ep). A lowest order nontrivial result for
(2) can therefore be obtained by treating the dynamics of T to
zeroth order in ep; thi%ﬁigé of ' enters only through the initigl
conditions P(to;tokyéibfé ). *This is a substantial computational -

. ///;4/ . .
savings. Furthérmore, to work with the elemental functions them-

selves ragpé; than with the releggnt combinations of them is to

, Yoy : C L
obscure the appropriate ggBerglizatlons ot the kinetic theory to
Ve
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higher order, or more importantly the appropriate renormalization

of the lowest order theory. This latter remark is of congider-

. 4,
able importance since it has been found that renormalized theo-

v

i

ries are vital ih the correct treatment of certain situations such
as the anomalous transport due to fluctuations lopng-lived on the

Vlasov scale.7’8

To begin a general study16§{such renormalized
theories, it is véry important to couch tfie lowest order theory
as symmetrically and compactly as possible.

44779 pave proposed kinetic

Recently, a number of authors
theories which overcome the objections raised in the preceding
paragraph by dealing directly with the fundamental quantify r

and its generalizations. (I can be defined alternatively to (3)

as

F(X,t;X .t)) = <GN(X,t)6N(xO,tO)>, (4)

~ ~

where 8N is the fluctuation in the Klimontovich microdensity N:

N
N , S
H(X,t) = 3 X=X, (8) ], . (5)
s i=1

with <N> = f(X,t) the one body distribution.) In particular,

Williams and Oberman? showed that rzT (%)

(r)

is the first member of a

set of two-time quantities {T (xl,X~,...Xr;t;Xo,tb)|r = 1;2,...}

2
which collectively obeys the linearized BBGKY cumulant hierarchy

(in the t variables)uwith certain partially §ingular initial con-

ditions successively smaller in ep: T(r)(to;to) = O(e;). A

detailed account of this kinetic théory has been given elséwhere.7'8

’
-t
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However, to discuss the relation of this theory to the test parti-
cle superposition principle, we need here only the lowest order
result (denoted by subscript "o"), which is already well-known to

10,

workers in the field of classical fluids Fo satisfies the

linearized Vlasov equation with singular initial condition

Fo(XltO;XO'tO) E(X,XOrto)

-1 :
n G(X-Xo)f(xo,to) + go(X,Xo,to). (6)

éere f is the one body function which solves the nonlinear time-
depéndent Vlasov equation, and'go is the irreducible pair correla-
tion function, or two body cumulant, computed to firgt order in

ep (that is, to lowest nontrivial order). The lowest order, col-
lisionlessll result for two-time expectations can then be tran-

scribed directly from (2) as

<§A(X,t) (SB(XO,tO) >O

- z:nqu/hfdiod(X;Y)ro(!,t;Yo,to)b(Xo;Yo). (7)
By contrast, the superposition principlel computes <§ASB> as

<6A(X,t)6B(XO,tO)>O g . ‘

= E:n'n"jrdx'dX"é(X;X',t)W(X',t;X",to)B(XO;X",tO), (8)

whcre & and b are certain quasiparticle densities to be defined
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m&thematically be;pw, and WEnQO is the collisionless streaming
solution for the evolution of a test particle.

Since both approaches (7) and (8) to two-time fluctuations
consider only lowest order effects in Ep, it is in one sense "in-
tuitively obvious" that their predictions must be identical. How-
ever, the mathematical formulations and their physical iﬁterpreta— \\\
tions are superficially quite distinct. Physically speaking,

for example,- (7) with (6) describes <§A(t)dRB(t_})> as a two-step
iJ c

measurement process performed on a correlated plasma. The first
measurement is performed at to’ when the plasma is "caught" in the

correlated statevE(tO). This measurement effectively disturbs

the plasma and the;disturbance propagates as a Vlasov fluctuation
to time t, when the second measurement is performed. On the other
hand, the two-step measurement described by (8) is performed on a

system of uncorrelated quasiparticles. The disturbance in the

quasiparticles induced by the first measurement streams (no self-
coﬁsistent response) to time t. That these two processes are
equivalent is not obvious; furthermore, the mathematics of neither
approach resembles that of the original procedure2 beginning from
(2) and separateéevplution equations for §, F, and f. Aﬁ explicit
demonstration of the equivalence between the formalisms is there-
fore desirable. Furthermore, the original proof of the super-
position principle.is somewhat unsatisfying, as the resulfnis
postulated inductively, then verified. Although the induction
hypothesis is wellﬁ£0unded, as the principle has been veri%ied in
certain detailed (;hd mathematically complicated) exampleg; it is

nevertheless desirable to give a deductive proof of the principle.
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Such an approach demonstrates much mofe convincingly the intimate
relation between the superposition principle and the general
(lowest ordér) structure of plasma kinetic theory.

In the.remainder of the work we shall give one deductive and
one inductive proof of the superposition principle, beginning
from (7). We will see that our proofs are more compact than was
Rostoker's original one. In fact, Rostoker had to invoke the
second member of the BBGKY hierarchy for g, as well as its moder—
ately complicated two-time generalization. Howevef, our more ju-
dicious choice of T as fundamental quantity allows us to deal with
nothing more complicated than the Vlasov equation. This simpli-
fication lends strong support to our assertion that T, rather than
Q or F, is the appropfiate kinetic theoretic object with which to
deal, and agfees with our intuitive notion of the plasﬁa as domin-
antly Vlasov in character.

The organization of.the paper is as follows. In section II
we introduce an appropriate notation, state the superposition
principle in terms of it, and formulate the mathematical assértion
which must be proved. 1In section IIT we give for the first time
a deductiveAproof of the principle by using simple facts about
time-ordered operators to rearrange appropriately the formal so-
lution of the Vlasov equation. In section IV we prove the prin-
ciple lnducti?ely by postulating the result, then showing its
equivalence to the T formalism (7). In section V . -we comment
briefly on the applicability of the superposition principle to
the theory of neutral fluids, and discuss and summarize our

results.
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FORMULATION OF THE PROBLEM

Henceforth,

superscript as we deal only with lowest

As did Rostoker, we restrict ourselves to elec-

trostatic phenomena only; we will disciss electromagnetic ‘exten-

sions of the theory in a future paper.

The Landau operator L is

now defined by wriﬁing the linearized Vlasov equation as

(9

+ i) T = 0.

t (9a)
Thus, L consists df a streaming term S and a Vlasov term V:
is = ¥V + Next(x t) - —; + (Ef) - (9b)
iV = (3F) -E, (9¢)
and
= (g9} 2
3 = (m) ov !
Er = T, (na)g, fax’ e (xx A",
- 1/x (3-D)
e(x) = -V {2 In(x)  (2-b),
Foyt = GE ext(x t) + Q, (x t)v x (B/B),
Q. = qB(g,t)/mc.

Note that L can be in general

a funetion of time, both explicitly
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through gext(x,t) and implicitly through the functional dependence
on f.

In terms of the above notation, the quasiparticle density & .

is now defined as1

a(X;X',t) = Zri/:iYa(X;Y)Y(Y,th'), (10)
where

Y(Y,t]x") = nte(Y - x') + B(Y,t]|X") (11)

and P obeys the test particle equation:

(3, + il + iS")P(Y,t[X') = -ge(y - x')*[3'E(X',t)].

t

= —ivn"te(Y - x'). (12)

The S' term describes the streaming of the test particle repre-
sented by the §(Y - X') term; the L term describes the Vlasov re-
sponse to that test particle. Since y(Y,t|X') is the fundamental
quantity which appears in (10), it is convenient to replace (12)

with an equation for y. This is readily accomplished. From (12),

(Bt + il + i8')y(Y,t]|X")

(il + i89)n Toqy = x') = ivn To(y = u*

1]

(iS + is")n"Ys(y - x'). (13)

Since S is a differential operator in the (x,v) phase space,

S6(Y - X') = -8'S5(Y - xX") (14)



-12-

and (13) becomes

(3, + il + iS")y(Y,t]X") = 0. . (15a)

t
The appropriate initial condition is

y(Y,tp|X') = n'ld(y - X') + P(Y,tplx'); (15b)

for the moment, we do not specify P(tp). The motion of the test
particle (S') and its shielding c¢loud (L) is particularly evident
in the form (15a).

In terms of vy, the superposition principle (8) reads

7
pa <SA(X,t)8B(X_,t_)>
= Ynn_ /:inYoa(X;Y)b(XO;YO)
% Zn'n"fd)x'dx"Y(Y,tlx')W(X',t;x",to)Y(Yo,tolxn), (16)

where W(X't;X"to)uobeys the streaming\iquation

(s, + iS')W(X',t;X",tO) = 0; (17a)

t

ST o Y = vy -1 . " "
W(X ,to,X ,to) (n') “6(X X")f(X ,tq). (17b)

Comparing (16) with (7) and noting that A and B are arbitrary,
we see that to prove the superposition principle is to prove that

to lowest order inzep
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P(Y,t;Y _,t ) = T (Y, 8;Y ,t))
EE:n'ni/de'dx"Y(Y,tWX')W(X',t;X",tO)y(Yo,to|X"). (18)

vt

We shall of course need the initial condition (6) for T.
This initial condition contains the pair correlation function
g(X,Xo,to), which obeys the second member of the one-time BBGKY
hierarchy--truncated, in this lowest order case, by the neglect
of the three-body cumulant. However, g is needed only in the

particular combination £; furthérmore, it is needed only to first

order in Ep‘ In these circumstances, ‘it is not necessary to
invoke the cumulant equation for g as did Rostoker; & can be de-

termined directly from the dynamical equation (9) for T'. Thus,

£

i = .2 ;
e S Yoty = gg T &Y )|
o t =t

)
+ =— T(Y,t;Y _,t ) . (19)
ato o' o |t -

%

We use the symmetry

F(Yrt7Yorto) = P(Yolto;Ylt) ’

) apparent from (4), to write (19) as

a — 3 - =
- g(Y,YO,tO) = —lLF(Y,t,YO,tO).

ot =
(o} t to

_1LOF(YO;tO;Y,t)|t -t
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or

to + il + 1LO)€(Y,YO,to) = 0. (20a)

with initial condifion
_ -1 - : : '
E(Y,Yo,tp) =n ~&§(Y Yo)f(Yo,tp) + g(Y,Yo,tp). (20b)

We will discuss the initial condition on g shortly.
This concludés the preparatory formulation of the problem.

We now turn to the proofs.
ITII. THE DEDUCTIVE PROOF

In this sectibn, we give a deductive proof of the superpo-

sition principle (18) which begins from the formal solution of

(9). 1In the general case, (9) is complicated because of the arbi-

trary space-time dependence of F and f, and this complication

~ext
manifests itself immediately when the solution of a particular
problem is attempted. Nevertheless; it is possible to make prog-

ress with the formal solution; in fact, the problem can be re-

duced essentially to the special casé of time-independent Fext

and f by the appropriate use of time-ordered exponentials. The

time-ordering "+" of two operators 4 and b is defined by

{a(tl)B(tz)}+ﬁs H(t, - tz)a(tl)ﬁ(tz)

o= AT ) (21
+ H(t2 tl)B(tz)a(tl), (21)

(98]
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where H is the Heaviside function; the time-ordered exponential

is defined in terms of this by

exp+{f§ dt'a(t')} = 3 ni,[fz dt'é(t')]f:

= . t tl tn_l a A a
= {f dtlf dtz...f dtna(tl)a(tz)...a(tn)}. (22)
n=0 o o) o)

With these definitions, the solution of

[3,~8(£)1¥()=0 (t>t)), (23)

becomes

w<t>=exp+{/§ dt'a<t')}w(to) (£>t,), (24a)

(o]

which reduces to the familiar result

w(t)=exp[(t—to)é]w(to) (t>to) ‘ (24Db)

for time-independent 4. We shall shortly make use of the formal
similarity between (24a) and (24b). Another result of use to us

is the property
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t : - t t
I exp+{f dt'[é(t')+B(t')]}=exp+{f dt'é(t')}x expi/ dt‘B(t')},
o : o o

(25)

which is easily Vérified from (22).12

We wish the;following proof to be as pedagogical aqd:unclut—
tered as possibié; .Therefore, we shall write all formulas for
the épecial case gf time-independent background, gsing the simple
exponential notation (zlb).' This case is of considerable interest
in itself; it cové;s, for example, the important case of two-time
fluctuations in thermal equilibrium, and more generally any sit-
uation in which f varies slowly rélative to the plasma time scale

on which f evolves. Nevertheless, the results (23)-(25) assure

us that the proof of the general case can be recovered immediately
by replacing all simple exponentials by time-ordered ones accord-

ing to

exp(ét)+exp+{f§dt'é‘1(t')} (26)

We shall actually provide the proof of (18) by dealing with

the one-sided function

F+(X,t7XO,tO) H(t - to)T(X,t;XO,tO),

and similarly W+. . This is sufficient, as the two-sided functions

are determined uniquely from the one—sided ones; e.dg.,

T(X,t;Xo,tO) f F+(X,t;XO,tO) +'F+(XO,tO;X,t).
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Consider, then, the Green's function solution of (9) for P+:
PY, YLt ) = <Zs,de'U+(Y,t;X' SEIEX Y e ), (27a)

where we have introduced the retarded Vlasov propagator

U+(Y,t;X',to) T H(t - to)exp[—iL(t = to)]G(Y - X"). (27b)

Similarly, we find from (20)

E(X',Y_,t)

1

= exp[-i(L' + Lo)to](n')— §(X' - Y )E(Y), - (28)

\

where for simplicity and clarity only we neglect the initial
conditions on g--correlations are'"driven in" from t_ = -« by the
test particle motion alone. (This neglect will be rectified in
the next section.) Thus, for t > to’ we insert (28) into (27) to

find

YY) = T faxtexpl-ilit - £)18(Y - x)
x exp[-i(L' + Lo)to](n')'la(x' - Y E(Y)

= Zs,fdx'exp(-iLt) (n)7hs (¥ - x")exp(-il_t )8 (X" - Y E(Y) .
(29)

Inserling 1nto (29) the identity -

" exp(-iS't)exp(iS't) = 1
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and noting that since S is a differential operator

: ~/ax'[eXp(—i§'£)A(X')]B(X') =./&X'A(X')[ekp(iS't)B(X')],

(29) becomes

P+(Y,t;Yo,to) i'f:n'jrdx'{exp[*i(L + S')t](n')-IG(Y - X")}

x [exp(-iLhta-iS't)(n')-lﬁ(x' - Y ) E(Y)]. (30)

Inserting the identity in the form

T zs"fdxué(xu - X') =1,
(30) becomes
PL(Y,t5Y_,t)

= Ejn'n"jfdxréx"{expr—i(L + Syel ) Le(y - x)}

x exp(-il_t_=is't) (") ts(x" - x) (n) lex' - v yE(v ).

(31)
We now write §(X¥ - X')8(X' - Y.) = 8(X" - Y )8(X" - X');
exp(-iS't) = exp[aiS'(t - to)]éxp(—iS‘to), and integrate exp(—iS'to)

by parts, using also (14), to bring (31) to the form
F+(Y,t;Yo,to)

= Zn'n"fdx"-dx"{e»xp['—‘i‘(L + S')t] (~n'),—l‘<5 (Y - Xl)}.
x {exp[-1(L, + S") €} (") IS (X" - ¥ )

1

x {expl-iS' (t - €)1 (a") " te(x* - x)£(x") ). T (32)
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However, using (15) and (17),'(32) becomes
F+(Y,t;YO,to)

= Zn'n"de'dX"y(Y,th(')y(Yo,tOIX")W+(X' FEIXT ),

which is precisely the one-sided version of (18). Thus, the
superposition principle is proved in this special case. By the
replacement (20) we obtain the proof for arbitrary time depen-
dence. The initial transients in g could be included in this
proof with no complicatioh in principle. This will become clear
in the next section, where we do discuss the initial conditions

explicitly.
IV. A NEW INDUCTIVE PROOF

In this section we give for completeness a simplified form

of Rostoker's inductive proof: we postulate (18), then show that

both sides obey the same equations, with identical boundary con-
ditions. The proof consists of two steps. First, we assume
that the "static" autocorrelation F(to;to)zg(to) is given cor-
rectly by the r.h.s. T of (18) , then verify that F also yields
correctly the dynamics to+t as described by (9). Second, we
verify that g also solves (20) with the appropriafe initial
condition.

For part one, we write

(o, + iL)T(Y,t;YO,tQ)

t
= En"n’.'fdx'.dx"{y(Y,t]X') [0, W(X';t:X", £ ) 1Y (Y, t |X")

+ (3, + iL)y(Y,tlx')JW(x',t;x",to)y(Yo,tOIX")}. (33)
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We use (1l5a) to réplace (Bt + il)y by -iS'y; then integraﬁing
the second term in (33) by parts, we bring the r.h.s. of (33)

to the form ) ' e
Zn'n"fdx'dx"y(ﬁ{:tlx’)[(at +ASWX' X", ) Ty (YLt X,

which vanishes acéérding to (17a). Thus,

(3, + iL)T = 0,

which is the same dynamical equation (9a) satisfied by T; this
implies I'=T if the initial conditions on both quantities are
identical. Therefore, we must now prove as part two of the proof

~

E(Y,Y_,t)) = E(Y,Y_,t)

= z:n'n"jde'dX"y(Y,tOIX’)W(X’,tO;X",to)y(Yo,to[X")

= Zn"fdx"y(Y:,tOIX"')f(X",to)y'(JYo,toIX") . (34)

.....

where in writing the last line of (34) we used (l7b). Upon in-
serting the definitions (6) and (11) of & and y and performing

the integration, we see that (34) is equivalent to the assertion

g(¥,Y_,t)) = P(Y,t |Y )E(Y_,t ) + £(Y,t )P(Y_,t |Y)

+ Zn"/dX"P(Y,to|X“’)-f(X",tO)P(YO,tO x"™) . (35) s

L

The physical significance of this statement has been discussed

by Rostoker..l
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From (34), we have

(Bt + il + 1LO)£(Y,YO,tO)

- Zri"fdx"{[(ato + ALY (¥, E X TE(X" £ )y (Y, € | X")

+ Y(Y,tO|X")[3tof(x",to)]Y(YO,tO|X")

+ Y(Y.tOIX")f(X",tO)[(atO + AL vyt X" 1T (36)

The term involving (at + il)y may be replaced by -iS"y according
o
to (15a). Then, integrating the first term of (36) by parts and

noting that since 8" is a differential operator,
S"(fy) = £(S8"y) + (S"f)y,

the terms involving S"y cancel leaving us with

Zn"fdx"y(y,tOIX") [ (ato + is")f(x",to) ]Y(Yo,tolx") .
But

(9 + iS")f(X",to) =0

t
o

is just the nonlinear Vlasov equation, which f must solve to this
order. Thus (36) becomes
(8, + il + il )E =0

L
o)

which is the same dynamical equation as (20a). We will then have
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T = r, completing'our proof, if we verify that the initial condi-

tion at tO = tp'is satisfied. We must then verify

: -
E(Y,Y ,t) = n "8(Y -~ YO E(Y ,t) + g(¥,Y ¢t )

E(, Y t)

-1.
n =6(Y - Yo)f(Yo,tp) + P(Y,tplYo)f(Yo,tp)
+ P(Yo,tp}Y)f(Y,tp)

+ )’_":n"fdx"P(Y,tplx")f(x",tp)P(Yo,tplx"). (39)

In the usual application of the superposition principle,
only correlations griven in by the streaming motion of the test
particle are considered; initial transients in g are neglected.
For this case, g(tp) = P(tp) = 0 and (38) is satisfied. For the
case when g(tp) represents "physical" correlations, (38) is also
satisfied. By th;g, we mean that we treat tp as simply some early
time to which g has evolved according to (20) from a still earlier
physical state of the system (which is usually tp = -o, P(-») =0,
as in the case of thermal equilibrium). Since we have already ver-
ified (35) for arbitrary times o (39) is a possible initial
state. We shall ﬁat be concerned with other, unphysical initial
correlations. Weléhus conclude that (18) is satisfied, and our

inductive proof of -the superposition principle is complete.
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V. DISCUSSION AND SUMMARY

The result (8) is written for an arbitrary number of species
and is thus slightly more general than that of Rostoker, who con-

sidered only the case of equal species densities. We repeat for

" emphasis Rostoker's observation that the principle holds for ar-

bitrary space-time dependence of f(X,t) (although this lowest
order truncation in ap need not provide a reasonable or adequate
representation of the physics, especially if the plasma is fa;
from thermal equilibrium).

Our T approach emphasizes the fundamental Vlasov character
of the plasma very strongly, as we have dealt here with only the
lowest order version of the Williams-Oberman two-time fluctuation
theory. Thus, the fluctuation spectra computed from the Fourier

analysis of (7) or (8) can be called "collisionless," since col-

. lisional damping of an individual fluctuation is absent. Already

at this 1evel; the power of the formalism and its advantages over
the previous Q,F theories is quite apparent. The general theory' '’
is also Qell suited for deriving higher order generalizations of
the superposition principle. We shall, however, reserve discus-
sion of these generalizations and the possibility of a renormal-
ization of the superposition principle to a future paper.

Of course, the Vlasov equation (9) is correct only for times
short relative to the collision time. In addition, it is correct
only for lengths Z~AD. However, several recent theories of short-

time fluctuationslo’13

have shown that the Vlasov equation remains
valid for all length scales if the bare Coulomb potential is re-

placed appropriately by the Ornstein-Zernike direct correlation
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function c¢. For the special case.of thermal equilibrium plasma,

the proper substitution is in Fourier space14

41g_q
___;_E—y-’l‘l.c (k), e
rs
k r
- -1
c(k) = n-g(k)+[1l + n-g(x)] 7,
n._ =n
8 rors

where k is the wave number, T the temperature, the species labels
r,s are interpreted as matrix indices, and

~

grs(k) s./é(§-§o)exp[-i§°(§-§o)]grs(§—§o,y,yo)/¢r(v)¢s(vd),

with g the usual pair correlation function and ¢r the Maxwellian

2 ,-d/2 2 2

6 _(v) = (2nv2) exp(-v2/2vTr), v

= T/m_. With this substitu-
r Tr r :

tion the superposition principle remains valid for the short-time
theory of neutral. fluids as well as for plasmas if the appropri-
ate pair correlation function g is given. Although the long-
ranged nature of the Coulomb force makes the short-time plasma'
theory of much more interest than the corresponding theory for
the neutral fluid, the latter has found some applications--for
example, in explaining collisionless sound in liquid lead.15

Thus, the superposition principle may be of use in contexts other

than the plasma physical one in which it was first introduced.

W
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A
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In summary, we hgve presented two new and straightforward
proofs of the test particle'superposition principle, beéinning
from the lowest order, collisionless equation for the phaseispace
autocorrelation T. That a deductive proof of the superposition
principle is possible was demonstrated here for the first time in
the literature. Both the deductive and the inductive proofs were
simpler than Rostoker's original one, as we invoked from the out-
set only Vlasov dynamics; particle discreteness entered only as
an initial condition. With the appropriate choice of pair cor-
relation function, the superposition principle is also applicable

to the short-time theory of neutral fluids.
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