

INTERIM REPORT ON FISSION PRODUCT DIFFUSION CODE (FIPDIF)

(Title Unclassified)

ALS LA

Astronuclear Laboratory Westinghouse Electric Corporation

1 1382

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

			Page					
1.0	Introd	luction	1					
2.0	2.0 Program Description							
	2.1	General	2					
	2.2	Calculations Performed by FIPDIF	3					
	2.3	Input Required by FIPDIF	5					
	2.4	Output Obtained from FIPDIF	8					
APP	ENDIX I		9					
APP	ENDIX II		21					
APP	ENDIX III		25					

- i -

I. INTRODUCTION

Basic to any study required to define the hazards involved in the use of a NERVA engine for space flight applications is a thorough understanding of the diffusion of radioactive fission products generated in the fuel during engine operation, so that a realistic prediction can be made of the source strength of radioactive debris that could be deposited on the earth's surface creating a serious biological hazard. The loss of fission products from the core must be predicted for any combination of the following conditions:

- a. Normal startup operation shutdown
- b. Accidental loss of coolant
- c. Nuclear excursion

An experimental fission product diffusion program was initiated at WANL several years ago to measure the diffusion rates of representative fission products as a function of time, temperature, environment, and fuel characteristics.

The results ⁽¹⁾ of the experimental program to date have shown that the 273 isotopes comprising the fission product inventory can be reduced to 20 isotopes for the purpose of defining the diffusion rates of all the important isotopes. These twenty isotopes are further reduced by assigning them to one of seven groups (see Appendix I) for which experimental diffusion rates have been measured.

In order to predict the magnitude of the fission product inventory of an operated NERVA engine under all conditions of interest, a comprehensive computer program is being developed. This program includes the effects of diffusion of the various fission products. This report describes the work performed to date in developing the computer program known as FIPDIF. In addition, three appendices are included to describe the supporting work used in developing this code.

2.0 PROGRAM DESCRIPTION

2.1 GENERAL

FIPDIF is a program, written in Fortran II, for calculation of the fission product release and the fission product inventory remaining in a multi-section NERVA reactor core. In its present form it can be used to simulate a reactor startup - run - shutdown profile consisting of as many as forty time intervals. These time intervals may be of any desired length. During each time interval, a power level and temperature is specified for each core section. As many as ten core sections may be used. At the conclusion of any or all of the specified time intervals, the following data may be printed out.

- a. Remaining fission product inventory in each core section and/or total core inventory of each isotope.
- b. Curies of each isotope which have diffused from each section and/or total curies of each isotope which have diffused from the core.

とういうで、なない 夢いやい や

•2 •. .

2.2 CALCULATIONS PERFORMED BY FIPDIF

The two basic equations solved by FIPDIF are:

$$\frac{d}{dt} N(NS, NCH, NI) = P(NS, NTC) \times \gamma(NCH, NI)$$

$$-R(NS, NCH, NI) \times N(NS, NCH, NI)$$

$$+ \sum_{NJ=2}^{NJ=2} BR(NCH, NI, NJ) \times \lambda(NCH, NJ) \times N(NS, NCH, NJ) \dots 2.2.1$$

where:

- N(NS, NCH, NI) = number of atoms of isotope NI, of decay chain NCH, in core section NS.
- P(NS, NTC) = power (fission/second) in core section NS during time interval NTC. $\gamma(NCH_{\ell}NI) = fission yield of isotope NI.$ $R(NS_{\ell}NCH_{\ell}NI) = \lambda(NCH, NI) + D(NS, NCH, NI)$

where:

λ(NCH, NI) = decay constant (sec⁻¹) of isotope NI
 D(NS, NCH, NI) = rate constant for diffusion of the isotope from the core section.*
 BR(NCH, NI, NJ) = branching ratio for production of isotope NI by decay of isotope NJ in decay chain NCH.

- 3 -

.

^{*} This term is a function of the temperature of the core section (see Appendix I) and is determined experimentally.

$$\frac{d}{dt} L(NS, NCH, NI) = D(NS, NCH, NI) \times N(NS, NCH, NI)... 2.2.2$$

where:

L(NS, NCH, NI) = number of atoms of the isotope which have diffused from the core section.

Equation 2.2.1 is changed, for ease of programming, to:

$$\frac{d}{dt} N(NS, NCH, NI) = \sum_{NJ=1}^{NI-1} BR(NCH, NI, NJ) \times \lambda (NCH, NJ) \times N(NS, NCH, NJ)$$
.... 2.2.3

where:

 λ (NCH, 1) = $\mathcal{O}\phi$ (an affective value of the product of the fission cross section of U²³⁵ and the neutron flux.)*

 $BR(NCH, NI, 1) = \gamma(NCH, NI) \times G(NCH, NI)^{**}$

This equation is solved for N(NS, NCH, NI) in terms of its initial concentration and the initial concentrations of the isotopes which precede it in the decay chain. The isotope number densities which are calculated to be present in any given core section at the end of a time interval, during which the temperature and power level are constant in the section, are used as initial conditions for calculations made during the succeeding time interval. Appropriate values of R are calculated for each isotope corresponding to the temperature in the core section and the appropriate diffusion category for the isotope.

Solution of the second equation, for loss of the isotope from the core section by diffusion, is also obtained in terms of the concentrations of the isotopes at the beginning of the time interval. In the case of a series of time intervals during which different temperatures and power levels exist in a given core section, the losses during the individual time intervals are summed to obtain total losses to the time of interest.

^{**} G(NCH, NI) is used to account for the faster diffusion of the fraction of some elements which recoil into the pyrocoat (see Appendix I).

^{*} This is calculated from the input power level and weight of U^{235} in each core section.

3 4. , ¹ -

2.3 INPUT REQUIRED BY FIPDIF

The first data card* contains three indicators, each of which is written at the end of a four-column field. The meaning of these indicators is explained in Appendix II.

The second card contains five numbers, each of which is written at the end of a four-column field. NTOUT, the number of times output is desired, must be less than or equal to NTCALC, the number of time intervals to be used in representing a profile. The remaining three numbers listed on card 2 are adequately explained in Appendix II.

Card group number three consists of one card for each of the diffusion categories. Each card contains:

- a. Infinite-temperature diffusion constant
- b. Activation energy divided by the universal gas constant
- c. Yield multiplier

These three numbers are written with decimal points (E format), in fields of ten columns.

It should be noted that, in order to simulate the diffusion characteristics of some rapdily-diffusing elements, it is necessary to represent them as two separate elements which have different diffusion parameters. (The possible causes for this phenomena are discussed in Appendix I). In cases where this condition exists, two diffusion categories must be provided for these elements and appropriate yield multipliers** must be assigned to each group (see Appendix I).

Card group number four consists of a list of the number of isotopes in the decay chains for which calculations are to be performed. The number of isotopes in a chain is computed by adding one to the number of radioactive isotopes in the chain. (The one is added because U²³⁵ is regarded as the first isotope of each chain, decaying with a decay

^{**} When establishing decay chains which involve these elements, two isotopes must be listed to represent any isotope of an element which diffuses in this manner. The appropriate yield multiplier must then be applied as a multiplier for branching ratios of parents of these isotopes.

^{*} A listing of data cards and formats used is given in Appendix II.

constant $(\oint \phi)$ to form other members of the chain). As an example, if the first decay chain is $A \rightarrow B \rightarrow C$ where C is stable, the number to be written in the fourth column of the first card is (3). Twenty numbers are punched on each card, corresponding to twenty decay chains. Each number is punched at the end of a four-column field. Enough cards are included to supply data on the decay chains of interest (no more than four cards will be used as calculations may be performed for a maximum of eighty decay chains).

Card group number five consists of indicators, one for each decay chain, that determine which of two options will be used in performing the diffusion calculations. The first option, which is called by placing a (1) in the appropriate column is slightly faster than the second option but is only useful for simple chains (such as the 144 chain). The second option is applicable for any chain. Unless computer time is at a great premium, it is recommended that this option, which is called by placing a (2) in the appropriate column, be used for all chains. Card group number five will consist of as many cards and numbers as does card group number four. Again, the numbers are punched, twenty to a card, at the ends of fields which are four columns wide.

Card group number six consists of one card sub-group for each nuclide considered. Each sub-group will consist of one card containing data pertaining to the isotope such as its decay constant, and one card which provides, for each parent of the isotope, the identification number* (in the chain) and the branching ratio for production of the isotope by decay of the parent (if the isotope has no parents, the second card is not included). The arrangement of data on these cards is discussed in Appendix II.

Card group number seven contains a list of the times at which output is desired. Eight numbers, with decimal points, are entered per card. These numbers are listed in fields ten columns wide. A maximum of forty output times may be requested and each must correspond to one of the calculation times listed in card group number eight.

Card group number eight consists of a list of times at the end of time intervals during which temperature and power level (fissions/second) are to be specified in each core section. The numbers are arranged in the same format as those in card group number seven. There must be as many or more of these times as are listed in card group number seven.

- 6 -

^{*} Although U²³⁵ is not listed specifically as a parent of each isotope, it is regarded as such and the first isotope of each decay chain such as LA-144, is assigned the number (2).

Card group number nine consists of a series of card sub-groups. There is one subgroup, listing power and temperature as a function of time, for each core section. Each sub-group contains as many pairs of numbers as there are times listed in card group number eight. Each pair of numbers consists of a section power level (fissions/second) and a temperature (^OK) corresponding to the core section during the time interval. These data pairs are listed sequentially, four to a card. Each power level and temperature is punched with an E10.0 format in fields of ten column width.

Card group number ten contains a list of pairs of data, one for each core section. The first piece of data in a pair is the volume of the section (cm^3) . The second is the weight of U^{235} in the section (grams). These data pairs are entered four to a card. The volumes and weights are punched with an E10.0 format.

Card group number eleven is not included unless there are initial concentrations of fission products at the start of a problem*. In the event that it is desired to input initial concentration of fission products, the following cards must be prepared for each core section:

> For each chain, a group of cards (one or two) must be prepared which list the number of curies of each member of the chain (beginning with the second member) which are present in the section. These numbers are punched, eight to a card, with an E 10.0 format.

Card group number twelve consists of one card which may be used to describe the computer run.

^{*} If an initial fission product concentration does exist, due to an earlier reactor run, it is simpler to include a simulation of the former run and the ensuing shutdown period together with the reactor run to be simulated.

¢.

1

7

ŝ,

2.4 OUTPUT OBTAINED FROM FIPDIF

There are four options which may be used to obtain output from FIPDIF*. The type of output desired is indicated by placing a number (1, 2, 3, or 4) in the twelfth column of the first card. Selection of option (1) will cause the fission product inventories to be printed as a function of core section as well as totals for the core. It option (2) is selected, only the total core inventories are printed. Selection of option (3) causes the curies of each isotope which have diffused from each section of the core to be printed, plus the total number of curies of each isotope which have diffused from the core. In addition, the data requested in option (1) is printed. If option (4) is selected, the total number of curies which remain in the core (as per option (2)) and the total number which diffused are printed.

If option (1) or (2) is specified, calculations of the quartities of the isotopes which diffuse will not be performed^{**}. Options (3) or (4) involve the use of a scratch tape and greatly increase the computer time required. They should not be requested unless the additional data provided is reeded.

^{**} Calculated core inventories will however, appropriately reflect the diffusion.

^{*} See Appendix II.

APPENDIX I

1.0 EXPERIMENTAL DETERMINATION OF DIFFUSION RATES

Experiments have shown that the diffusion of fission products within NERVA fuel will occur at temperatures above 1500°C, with the diffusion rate increasing sharply at temperatures above 2300°C.¹ The fuel temperatures expected in the NERVA reactor at normal operating power will exceed 1500°C in the lower end of the core and will reach approximately 2200°C at the exit end of the core.² At these temperatures, the diffusion of fission products affords a mechanism whereby the fission products can be released from the core, thus reducing the fission product inventory. Analytical studies have shown that considerably higher temperatures will be reached from decay heat after shutdown with loss of coolant. Under these conditions, a substantial loss of fission products could occur. In order to calculate these losses, the fission product diffusion rates must be experimentally measured.

The diffusion of elements through a composite medium is an involved physicochemical process, the rate of which cannot be predicted from a theoretical basis. Only by experimental means may diffusion rates be evaluated. Therefore, in order to determine the extent to which isotopes diffuse from a NERVA core, it is necessary to determine the diffusion rate of each of 273 isotopes comprising the fission product inventory. This appears a formidable task, however, two facts reduce the complexity of the problem considerably:

- 1. The diffusion rates of all isotopes of an element may be considered to be equal, and
- 2. After 2 to 30 minutes power operation, 92% of the total activity in the fuel at shutdown is due to 20 elements comprising 142 isotopes. Each of these elements contributes 0.7% or more to the total activity.

A listing of these elements and their relative per cent activity are given in Table I, for a 10 minute power operation. Although the relative percentages of individual isotopes vary with decay time, it had been shown by analysis using an existing fission product inventory code, FPIP, that the sum total of activity from these 20 elements comprises 92% of the total activity for infinite decay times.

Thus the problem of experimentally evaluating fission product diffusion reduces to measuring diffusion rates of 20 elements. At present, the diffusion rates of eleven of the elements have been measured. Isotopes used to study these elements are: Sr⁸⁹, Y⁹¹, Zr⁹⁵, Mo⁹⁹, Ru¹⁰³, Te¹²⁹, I¹³¹, Cs¹³⁷, Ba¹⁴⁰, La¹⁴⁰, and Ce¹⁴¹⁻¹⁴⁴. It is planned

- 9 -

that eventually all 20 elements will be examined.

1.1 EXPERIMENTAL PROCEDURE

In the experimental program the diffusion rates, of the elements mentioned above, are measured as a function of time and temperature. Fuel samples 0.25" in diameter and 0.25" long with a 0.097" diameter hole along the axis are cut from NERVA B-4 fuel elements. These samples are irradiated at temperatures less than 900° C to a total of $\sim 10^{17}$ nvt. Following irradiation, the samples are subjected to thermal anneal experiments to measure the fractional release of fission products as a function of time. The irradiated samples are heated in a vacuum of 10^{-4} torr at temperatures ranging from 1500° C to 2700° C for time intervals up to 30 minutes. A description of the experiments and apparatus used for the post-irradiation tests is given in Reference 1.

Following the post-irradiation heating, the specimens are dissolved and analyzed radiochemically to determine the fractional release of the various fission products.

1.2 ANALYSIS OF DIFFUSION RATE DATA

In this study, it was found that the fractional release of all nuclides could be described empirically by two simple equations. The first equation is:

where:

1 - f =fraction retained

 f_{a} = fraction of diffusing species initially present = 1

D = apparent diffusion constant

Equation 1.2.1 adequately described the release rate of the elements Ce, Y, I, Te, and Cs. The apparent diffusion constant, D, obtained in this manner has the dimension of reciprocal time units and is thus a rate constant.

- 10 -

WANL-TME-958

The second equation is:

where:

(1 - f) =fraction of nuclide retained

The values of D_2 and (1 - G) are evaluated graphically from the experimentally obtained curves of log (1 - f) vs. time. D_1 and D_2 are apparent diffusion constants. D_1 and G are calculated by substitution in the above equation.

Equation 1.2.2 was found to apply to elements which had relatively fast diffusion rates, and whose release fraction as a function of time was characterized by an initial burst of activity. The initial burst has been attributed to nuclides deposited in the fuel beads by a recoil process during irradiation at a temperature below the threshold for diffusional release. During a post-irradiation thermal anneal at a temperature above the diffusion threshold, the fission product release can be thought of as originating from two sources: fission products from the UC₂ beads and fission products deposited outside the beads. The relative proportion of the release from these two sources is a function of the thermal anneal temperature. Samples which are irradiated at a temperature above the diffusion threshold temperature should release from the pyro-graphite coating on the bead that fraction of the nuclides deposited there by recoil as they are deposited. What one would anticipate during normal reactor operation is that a fraction of the nuclides which can escape the fuel beads by recoil will be released by the fuel at a rate D_1 and the remaining fission nuclide which remain in the UC₂ bead will escape the fuel at a rate D2. The diffusion rates D_1 and D_2 can be determined from thermal anneal measurements on cold irradiated fuel. A value of the fraction of nuclides which escape the UC $_2$ bead by recoil may be calculated by consideration of the recoil path length of fission products in $UC_{2^{\prime\prime}}$ and the diameter of the UC_2 fuel beads.

The fraction G of the inventory of a fission nuclide which escapes from a spherical fuel particle by recoil during fission is related to the recoil path length, Ra, and the radius of the sphere by the equation 1.4.6:

$$G = \frac{3}{16} \frac{(R-r)^4}{RaR^3} + \frac{1}{2} \frac{(R-r)^3}{R^3} - \frac{3}{8} \frac{(R^2 - Ra^2)}{(RaR^3)} (R-r)^2$$

which is derived in Section 1.4.

The recoil path length of a fission product in UC₂ is 11.2 microns as shown in Section 1.5. Using this recoil range of 11.2 microns and a nominal bead radius of 118

microns, the fraction of fission nuclides which will escape the UC₂ sphere is 0.138. Since the UC₂ beads in the fuel used in this study are comprised of a range of sizes from 32.5 to 85 microns in radius, an average recoil release over the range of radii must be calculated. This calculation outlined in Section 1.6 gives an average value of release by recoil of 0.145. The fraction of fission products released from NERVA fuel according to equation 2 is now given as:

$$(1 - f) = .145 e^{-D_1 t} + .855 e^{-D_2 t}$$
.....1.2.3

This recoil deposition applies to all fission product nuclides; however, for those nuclides whose diffusion rates are slow, the burst effect was not observed. This lack of an initial burst effect is probably due to the slow diffusion rate of these nuclides in the graphite matrix surrounding the fuel beads.

The rate constant, D, was found to increase with temperature according to the Arhennius equation:

$$D = Do e^{-E/RT}$$

where:

E = the activation energy in K-cals

R = the gas constant

T = the temperature in degrees Kelvin

This relationship held over the range 1500 to 2200° C. Values of D obtained from samples which had been heated at 2200° C for 20 minutes or longer or at 2300° C did not adhere to the Arhennius equation. Subsequent photomicrographs of these samples showed degradation of the pyrocoat and dispersion of the UC₂ bead into the graphite lattice. This dispersion of UC₂ resulting in small crystallities permits more rapid diffusion of fission products and corresponding increases in the rate constants. Such alteration of the character of the fuel limits the applicability of the diffusion constants to reactor conditions where temperatures of 2200° C are not maintained for more than 15 minutes.

1.3 CLASSIFICATION OF NUCLIDES

Table 1 gives the relative contribution of various fission products to the radioactivity of fuel ten minutes after thermal fission of U²³⁵. The elements have been arranged into groups given in Table 2 according to their experimentally determined diffusion rates.

At present, diffusion rate data is available for only 11 of the 20 elements. The remaining elements have been placed in the various categories according to diffusion data obtained by Bryant⁴. It should be noted that the fuel used by B yant for diffusion studies consisted of 10 micron diameter uncoated UC₂ crystallates dispersed homogeneously throughout a graphite lattice. These smaller uncoated particles would give greater nuclide release fractions than the corresponding release fractions from beaded fuel, however, Bryant's original element classification has been retained for those elements which were not analyzed for in this present study. These elements will be re-classified as diffusion data from beaded fuel becomes available.

For each diffusion group, values of Do and E/R are given. Those elements which require two exponential terms (equation 1.2.2) to describe their diffusional behavior have been separated into two classifications encompassing diffusion groups 1 through 4 (see Table II). Elements with the suffix O refer to that fraction of the nuclide atoms that constitute the burst release. Accordingly, these gloups have been assigned .145 contribution factors as previously described. Elements which have been classified according to their diffusion rates from beaded fuel a elemented by asterisks. The elements without asterisks have been classified according to B yart is data. Those elements included in group seven have zero values of Do and E/R since these elements were not released from NERVA fuel under the range of time and temperature conditions to which the fuel samples were subjected and which are expected auring normal operation.

- 13 -

74.4.

Xe

Rb

-B

NbV

Sh

Sn

×

Kr

TABLE I

Per cent contribution of fission elements to total activity after ten minutes NERVA operation:

Element	%	Element	%	
Rb	10.01	La	3.77	
Nb	7.94	1	3.40	
Sr√	7.90	Sb	3.32	
Y	7.89	Ce	3.21	
Zr 🗸	6.70	Mov	3.10	
Cs	6.57	Te V	2.61	
Kr	6.57	Se	2.19	
Ba	5.10	Sn	1.25	
Br	5.14	As	0.72	
Xe	4.81	Hg Ru	0.70	

1971 A. C. Martin and Martin and Martin and a

Ser.

and the second second

WREC Rb Br Sb

A

GER ND La SAG CL.

- 14 -

TABLE II

_

Classification of Elements for FIPDIF in Type II Fuel

Diffusion Group	f	Do	E/R	Element							
1	0.855	3.977 × 10 ²	3.32×10^4	Sr*	Sn	Sb	Br				
2	0.145	8.70	1.55 × 10 ⁴	Sr*-0	Sn≖0						
3	0.855	1.80 × 10 ⁻³	6.00 × 10 ³	Ba*							
4	0.145	9.17 × 10 ⁻³	2.50 × 10 ³	Ba.*−0							
5	T	1.215	3.22×10^4	Ce*	Y*	La*	Kr	Xe			
6	1	5.383 × 10 ¹⁰	8.72 × 10 ⁴	! *	Cs*	Te*	Se	Rb	As		
7	1	0	0	Mo*	Zr*	Ru*	Nb				
* Nuclides analyzed for were: Sr ⁸⁹ , Ba ¹⁴⁰ , Ce ¹⁴⁴ , Y ⁹¹ , La ¹⁴⁰ , I ¹³¹ , Te ¹²⁹ , Cs ¹³⁷ , Mo ⁹⁹ , Zr ⁹⁵ , Ru ¹⁰³											

- 15 -

_

1.4 SPHERICAL MODEL FOR CALCULATION OF ESCAPE OF FISSION FRAGMENTS

Consider a fission fragment of recoil path length, Ra, originating at Point A a distance τ from the surface of a spherical fuel bead of radius, R. If a line equal to Ra is drawn from Point A to the surface, the angle subtended between Ra and a radius through Point A is θ .

When the particle originates within recoil distance of the surface, the probability of release of the particle from the sphere is:

$$P = \int_{0}^{9} 2\pi \sin \theta \, d \, \theta / 4\pi \dots 1.4.1$$

Integrating equation 1.4.1 and rearranging we get:

$$\mathsf{P} = \frac{1 - \operatorname{Cos} \theta}{2}$$

The volume of the spherical shell containing fission fragments within recoil distance of the surface is:

$$dv = 4\pi (R-r)^2 d (R-r) \dots 1.4.2$$

a relationship between the angle θ and (R-r) is given by:

- Cos
$$\theta = \frac{Ra^2 + (R-r)^2 - R^2}{2(R-r) Ra}$$

thus

Combining equations 1.4.2 and 1.4.3 we get:

$$Pdv = \frac{\pi}{Ra} \left[(R-r)^{3} + 2 Ra(R-r)^{2} - (R^{2} - Ra) (R - r) \right] d(R - r)$$

Integrating equation 1.4.4 between the limits (R - Ra) to R gives:

$$\frac{\pi}{Ra} \left[\frac{(R-r)^4}{4} + \frac{2}{3} Ra(R-r)^3 - \frac{1}{2} (R^2 - Ra^2) (R - Ra)^2 \right]_{.1.4.5}$$

- 16 -

÷

4.5-

4

The fractional release G is now obtained by dividing equation 1.4.5 by an expression for the volume of a sphere which gives:

$$G = \frac{3}{16} \frac{(R-r)^4}{RaR^3} + \frac{1}{2} \frac{(R-r)^3}{R^3} - \frac{3}{8} \frac{R^2 - Ra^2}{RaR^3} (R-r)^2 \dots \dots 1.4.6$$

1.5 CALCULATION OF THE RANGE OF A FISSION FRAGMENT IN UC2

During the fission process, the kinetic energy imparted to a fission fragment is 167 mev.

If two particles result, the kinetic energy apportioned between them is given by:

where M_1 -mass of 1st fragment

V₁=velocity of 1st fragment

M₂=mass of second fragment

 V_2 = velocity of second fragment

for $Sr^{89} M_1 = 89$

$$M_2 = 235 - 89 = 146$$

from conservation of momentum

Expressing E in ergs and masses in gms a value of V_1 may be obtained by substitution into equation 1.5.1.

$$V_1 = 1.50 \times 10^9 \text{ cm/sec}$$

The corresponding energy of an alpha particle traveling at this velocity from the expression for kinetic energy, $E = \frac{1}{Z} MV^2$, is 4.691 Mev.

The range in air of a 4.691 Mev alpha particle is 3.90 mg/cm^2 .

- 17 -

The range of this α particle in uranium and in graphite may be determined by the empirical expression^(A):

$$\frac{R Z}{Ra} = 0.90 + 0.0275 Z + (0.06 - 0.0086 Z) \text{ Log E/M} \dots 1.5.3$$

where:

The range of an alpha particle in uranium and in graphite were found to be 13.14 and 3.90 mg/cm² respectively.

(4). The range of an alpha particle in UC $_2$ may be calculated by the Bragg relation-ship

where:

$$R_{UC_2}^{=}$$
 range in UC₂
 $R_U^{=}$ range in uranium
 $R_C^{=}$ range in carbon
 $W_1^{=}$ weight fraction uranium
 $W_2^{=}$ weight fraction carbon

The range of 4.69 Mev alpha particle in UC₂ is thus 10.78 mg/cm².

- 18 -

Dividing by the density of UC_2 and converting centimeters to microns the range is:

The range of a fission fragment, $R_{f'}$ may now be determined by the relationship⁽⁵⁾:

where:

- A = mass number of fission fragment
- \mathbf{Z} = atomic number of fission fragment
- e = charge on the electron
- π = Plank's constant/ 2π
- v = velocity of fragment

 R_{α} = range of alpha particle with velocity, v

Substituting the appropriate values for Sr^{89} in equation 1.5.5, the range in UC₂ or the recoil path length is found to be: 11.24 μ .

1.6 PROBABILITY OF ESCAPE OF A FISSION FRAGMENT FROM A SPHERICAL FUEL BEAD

The probability of escape of a fission fragment from a spherical fuel bead is given by equation 10, Section 1.4, which may be represented as:

 $G = \frac{R}{\int f(R - r) d(R - r)} \frac{R - Ra}{\frac{4}{3 \pi R^3}}$

where R is the radius of the fuel bead and Ra is the fission fragment recoil distance. Any random fuel batch contains fuel beads with radii that vary from 32.5 to 85 microns. Since the recoil distance of fission fragments is 11.2 microns, a substantial loss of fission fragments would occur from the smaller diameter beads while the loss from the largest diameter beads becomes negligible. Calculation of the release of fission fragments from the mean bead diameter would be in error, since the contribution from the smaller diameter beads is proportionally greater than the retention of the larger diameter beads. What is needed then is a calculation of the recoil release from beads of various radii within the range 32.5 to 85

microns and corresponding weighting factors for each of these radii to account for their relative abundance in a fuel sample.

Quality control analysis of UC₂ fuel beads shows a typical distribution to be $^{(6)}$:

Radius w/o (microns) 2′ 32.5 - 35 35 - 5048 96 50 - 82.5 48 2 82.5 - 85

These results are typical of a Gaussian distribution; consequently, a Gaussian distribution was chosen to determine weighting factors to apply to the various radii.

The probability, P, of having beads of radius m is given by:

where M is the mean bead radius.

Using equation 1.6.2 weighting factors were determined for 14 bead radii equally spaced about the mean bead diameter. The total recoil fractional release was now determined by taking the sum of the products of the recoil fractional release calculated for each radii according to equation 1.6.2 and the corresponding weighting factor.

١

hence:

$$G_{\text{(total)}} = \sum_{R=32.5}^{R=85} \left\{ \begin{array}{c} R \\ R - Ra \end{array}^{R} \frac{f(R-r)d(R-r)}{4/3 \pi R^{3}} \end{array} \right\} \left\{ \frac{1}{(2 \pi M)\frac{1}{2}} \right\} e^{-\frac{-(M-R)^{2}}{2M}}$$

G = .145

- 20 -

ACONTRODENTIMAL

Í.,

APPENDIX II

FIPDIF INPUT

Card	Column	Data							
I	1- 4	INDT = 1:	Read nuclear data from cards.	14					
		INDT = 2:	Read nuclear data from tape (Library tape has not yet been constructed).						
	5- 8	INIC = 1:	Initial fission product concentrations are zero.						
		INIC = 2:	Initial fission product concentrations are to be read from cards.						
	9-12	INDOUT = 1:	Fission product inventories are to be printed out by section. Totals for the core are also printed out.						
		INDOUT = 2:	Total core inventory is printed.						
		INDOUT = 3:	Core inventories plus curies of isotopes which have diffused are printed. Total inventories and curies diffused are also printed.						
		INDOUT = 4:	Total inventories and curies diffused are printed.						
2	1- 4	NTOUT:	Number of times output is desired. < 40	14					
	5- 8	NOSEC:	Number of core sections. \leq 10	14					
	9-12	NOGRP.	Number of diffusion categories. < 20	14					
	13-16	NOCHAN:	Number of decay chains. < 80	14					
	17-20	NTCALC:	Number of time intervals during which different power levels and temperature exist, ≤ 40	n es 14					

- 21 -

WANL-TME-958

Card	Column		Data	Format
	50-52	IDI (1, 2)·	Diffusion group for isotope (1,2).	13
	53-55	NPAR:	Number of direct parents of isotope (1, 2)。Do not include U ²³⁵ as a parent.	13
6-11	1- 9	NAME (1, 3)	Name of third isotope of first decay chain。	A6, A3
		Etc.		
6-11-A	1- 5		Identification number of first parent of isotope (1, 3).	15
	6-15		Branching ratio for decay of first parent in formation of isotope (1, 3).	E10.0
	16-20		Identification number of second parent (1, 3)。*	15
	21-25		Etc.	
7-1	1 – 10	TOUT (1)	First time (other than zero time) at which output is desired。(See page 6)	E10.0
	11-20	TOUT (2)	Second time at which output is desired.	
		Etc.		
8-1	1-10	TCALC (1 [°]	End of first time interval during which power and temperature are to be specified。	E10.0
	11-20	TCALC (2):	End of second time interval during which power and temperature are to be specified.	E 10.0
		Etc.		

*Note: Isotopes in a chain should be assigned identification numbers, within the chain, such that no isotope has a parent with a higher identification number.

- 23 -

1

ţ.

<u>,</u>

Card	Column		Data	Format				
9-I-A	1-10	P (1, 1):	Power in first core section during first time interval.	E10.0				
	11-20	TEMP (1, 1):	Temperature (^O K) in first core section during first time interval.	E10.0				
	21-30	P (1,2):	Power in first core section during second time step。	E10.0				
		Etc.						
9-1-B	1-10	P (1, 5):	Power in first core section during fifth time interval.	E10.0				
		Etc.						
9-11-A 1-10		P(2, 1):	Power in second core section during first time interval.	E 10.0				
		Etc.						
10-1	1-10	VSEC (1):	Volume of first core section (cm ³)	E10.0				
	11-20	WTU25 (1):	Weight of U ²³⁵ in first core section (grams)	E10.0				
	21-30	VSEC (2):	Volume of second core section (cm ³)	E10.0				
		Etc.						
	OMIT CAR	D GROUP ELEVEN	IF INIC = 1					
11			See page 7 .					

12 1–80 Description of problem being run。 20A4

- 24 -

APPENDIX III

FORTRAN LISTING OF FIPDIF CODE

The fortran listing of the program consists of a main program and three sub-utines. The main program is used to read input data and perform preliminary calculations. The subroutine MAIN calculates residual inventory and curies of activity diffused. MAIN calls EXINT which performs the multiple integrations required for the inventory and diffusion calculations. The sub-routine FIPOUT prints out the desired information at the times requested.


```
COMMON INDT.INIC.INDOUT.INFOUT.NOSEC.NOGRP.NOCHAN.NTCALC.NTOUT.NT.
    1D0.EQ.F.NISOT.BR.NAME.NAMEND.DECON.YIELD.EBETA.EGAM.IDI .NPAR.
    2TOUT,TCALC,P,TEMP,V,WTU25, C,A,EXIN,E,R,T ,NTO ,VSEC ,BB,CC ,
    3 EXSUB. EXIND. TDCUR . INDDEC
      EQUIVALENCE(BR.E).(C.TDCUR)
     DIMENSION DO(20), EQ(20), F(20), NISOT(80), BR(80, 10, 10), NAME(80, 10),
    1NAMEND(80,10), DECON(80,10), YIELD(80,10), EBETA(80,10), EGAM(80,10),
    2IDI(80,10), IDPAR(10), B(10), TOUT(40), TCALC(40),
    3 P(15,40),TEMP(15,40),VSEC(15),WTU25(15),C(10,80,10),A(10),
    4 UR25N(15).TERM(20).E(80.10.10).R(80.10) .DIFC(20).DESC(20)
    5, BB(12, 12), CC(12, 12), INDDEC(80), TDCUR(10, 80, 10)
 666 REWIND 12
     RIPT 5,1, INDT, INIC, INDOUT
                                                                                        NON-STANDARD
     INFOUT =1
     RIPT 5, 1, NTOUT, NOSEC, NOGRP, NOCHAN, NTCALC
                                                                                        NON-STANDARD
     GO TO (2,3), INDT
   3 CONTINUE
     GO TO 9
   2 DO 7 NG=1,NOGRP
   7 RIPT 5,8,DO(NG),EQ(NG),F(NG)
                                                                                        NON-STANDARD
     RIPT 5.1. (NISOT(NCH).NCH=1.NOCHAN)
                                                                                        NON-STANDARD
     RIPT 5.1. (INDDEC(NCH).NCH=1.NOCHAN)
                                                                                        NON-STANDARD
     DO 4 NCH=1, NOCHAN
     NIS=NISOT(NCH)
     BR(NCH,1,1)=0.
     DO 4 NI=2.NIS
     RIPT 5,6,NAME(NCH,NI),NAMEND(NCH,NI),DECON(NCH,NI),YIELD(NCH,NI),
                                                                                        NON-STAND
    2EBETA(NCH,NI),EGAM(NCH,NI),IDI (NCH,NI),NPAR
                                                                                        NON-STAND
     BR(NCH, 1, NI)=0.
     ID=IDI (NCH,NI)
 • '
     BR(NCH,NI,1)=YIELD(NCH,NI)*F(ID)
     DO 32 NN=2.NIS
  32 BR(NCH, NI, NN)=0.
     NP=NPAR
     IF(NP-1) 60,61,61
 60 GO TO 4
                                                                                        NON-STANDARD
  61 RIPT 5,50, ((IDPAR(N), B(N)), N=1, NP)
     DO 5 N=1.NP
     NN = IDPAR(N)
   5 BR(NCH, NI, NN) = B(N)
   4 CONTINUE
.
   9 RIPT 5.8. (TOUT(NT), NT=1. NTOUT)
                                                                                        NON-STANDARD
                                                                                        NON-STANDARD
     RIPT 5,8, (TCALC(NT), NT=1, NTCALC)
                                           1.126
```

Т

26

and in the state of the

智举

透

		-
(
	COMMON INDT, INIC, INDOUT, INFOUT, NO. HAN, HAN, HAN, HAN, MUT, NT, 9/18/64	Prost /
	DO 10 NS=1,NOSEC	
10	RIPT 5,8,((P(NS,NT),TEMP(NS,NT)',NT=1,NTCALC)	NON-STANDA COM
	RIPT 5,8, ((VSEC(NS), WTU25(NS)), NS=1, NOSEC)	NON-STANDAK)
	GO TO (20.21).INIC	
20	DO 30 NS=1.NOSEC	
	DO 30 NCH=1+NOCHAN	
	DO 30 NI=2.NIS	
30	$C(NS_NCH_NI)=0.$	
• •	GO TO 40	
21	DD 22 NS=1.NOSEC	
	DO 22 NCH=1.NOCHAN	
22	RIPT 5.8. $(CINS.NCH.NI)$. $NI=2.NIS$	NON-STANDARD
	DO 222 NS=1.NOSEC	
	DO 222 NCH=1.NOCHAN	
	NIS=NISOT(NCH)	
	DD 222 NI=2.NIS	
222	C(NS, NCH, NI) = C(NS, NCH, NI) * 3, 7*10, **10/(DECON(NCH, NI)*, 6025)	
50	FORMAT(5(15.E10.0))	
8	FORMAT(8E10.0)	
6	FORMAT(A6.A3.4E10.0.213)	
1	FORMAT(2014)	
40	CALL MAIN	
	GO TO 666	
	END	

-

- 27 -

PAGE 3

STORAGE NOT USED BY PROSRAM

DEC 0CT DEC 0CT 640 01200 8316 20174

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT		DEC	OCT		DEC	OCT		DEC	OCT
А	9514	22452	BB	8686	20756	BR	32561	77461	CC	8542	20536
C	24561	57761	DECON	14811	34733	DO	16551	40247	EBETA	13211	31633
EGAM	12411	30173	EQ	16531	40223	E	32561	77461	EXIND	8397	20315
EXIN	9504	22440	EXSUB	8398	20316	F	16511	40177	IDI	11611	26533
INDDEC	8396	20314	INDOUT	16559	40257	INDT	16561	40261	INFOUT	16558	40256
INIC	16560	40260	NAMEND	15611	36373	NAME	16411	40033	NISOT	16491	40153
NOCHAN	16555	40253	NOGRP	16556	40254	NOSEC	16557	40255	NPAR	10811	25073
NTCALC	16554	40252	NTO	8702	20776	NTOUT	16553	40251	NT	16552	40250
Р	10730	24752	R	9503	22437	TCALC	10770	25022	TDCUR	24561	57761
TEMP	10130	23622	TOUT	10810	25072	T	8703	20777	V	9530	22472
VSEC	8701	20775	WTU25	9529	22471	YIELD	14011	33273			

STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

	DEC OCT	DEC O	СТ	DEC OCT	DEC OCT	r
В	629 01165	DESC 564 01	064 DIFC	584 01110	IDPAR 639 0117	77
TERM	604 01134	UR25N 619 01	153			

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	DCT	C	DEC	OCT		DEC	OCT		DEC	OCT
ID	544	01040	NCH	543	01037	NI	542	01036	NIS	541	01035
NN	540	01034	NP	539	01033	NS	538	01032			

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN L	.0C	EFN	LOC	EF	N	LOC		EFN	LOC
8)1	1 00	8)6	6	01002	8)8	8 (01004	8)11	50	01007

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

COMMON INDY, INIC, INDOUT, INFOUT NUSEC, NOGRP, NOCHAN, NTCALC, NTOUT, NI, 9/18/64

	DEC	001		DEC	OCT		DEC	CCT		DEC	0C I
1)	520	01010	2)	492	00754	3)	50 L	00765	4)	32767	77777
6)	505	00771	A)201	473	00731	6 GO	524	01014	C \ G 2	525	01015
6163	526	01016	C \ G7	527	01017	C \$ 100	528	01020	CILGC	529	01021
CALGI	530	01022	CILG2	531	01023	C 🕽 1 G 3	532	01024	C)1G4	533	01025
: 201	534	01026	C.202	535	01027	C,203	536	01030	C)264	537	01031
-401(C	204	00314	DIFOR	236	00354	D)11G	406	00626	DILH	413	00635
),111	433	00666	C)311	437	00665	D 140B	151	00227	D》40C	189	00275
J)60B	150	00226	D)711	436	00664	E)E	202	00312			

LOCATIONS OF NAMES IN TRANSFER VECTOR

ŗ

	DEC	OCT	(DEC	OCT		DEC	nc t		DEC	0 C T
EXF(2	4	00004	MAIN	5	00005	, FPT)	0	00000	(RTN)	3	00003
(RWT)		00001	(TSH)	2	00002						

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

E < P { 2	MAIN		MAIN (FPT)		RTN)	(RW1)	(RM1)					
		EXTEPNAL	FORMULA	NUMBERS	WITH	CORRESPONDING	; INTI	ERNAL	FORMULA	NUMBE	RS ANI	D OCTAL
EFN	IFN	LGC	CFN	IFN	LOC	EFN	IFN	LOC		EFN	L FN	LOC
666	9	00017	2	3 16	00062	2	18	00063	•	7	19	00066
32	41	00276	60) 44	00313	61	45	00315	i	5	55	00347
4	56	00355	ç) 57	00407	10	68	00450)	20	85	00505
30	88	00536	21	90	00551	22	92	00602	b	222	101	00667
40	102	00725										

SYMBOL TABLE PRECEDES PROGRAM CARD IN BINARY DECK

- 29 -

PAGE 1

SUBROUTINE EXINT(NA)

```
SUBROUTINE EXINT(NA)
   COMMON INDT, INIC, INDOUT, INFOUT, NOSEC, NOGRP, NOCHAN, NTCALC, NTOUT, NT,
  1DD, EQ, F, NISOT, BR, NAME, NAMEND, DECON, YIELD, EBETA, EGAM, IDI , NPAR,
  2TOUT, TCALC, P, TEMP, V, WTU25, C, A, EXIN, E, R, T, NTO, VSEC, BB, CC,
  3 EXSUB, EXIND, TDCUR , INDDEC
    EQUIVALENCE(BR, E), (C, TDCUR)
   DIMENSION DO(20), EQ(20), F(20), NISOT(80), BR(80, 10, 10), NAME(80, 10),
  10),
  21DI (80,10), IDPAR (10), B(10), TOUT (40), TCALC (40),
  3 P(15,40), TEMP(15,40), VSEC(15), WTU25(15), C(10,80,10), A(10),
  4 UR25N(15), TERM(20), E(80, 10, 10), R(80, 10), DIFC(20), DESC(20)
  5, BB(12, 12), CC(12, 12), INDDEC(80), TDCUR(10, 80, 10)
   NAT=NA
   INDD=1
   IF(NAT-L) 2.2.3
 2 EXIN=(EXPF((A(1)-EXSUB)*T)-EXPF(-EXSUB*T))/A(1)
   EXIND={EXPF({A(1)-EXSUB}*T)-EXPF(-EXSUB*T))/(A(1))**2 -(T/A(1))*
  1 EXPF(-EXSUB+T)
   GO TO 4
 3 CC(1,1)=1.0/A(1)
   CC(1,2) = -CC(1,1)
   BB(1,1) = A(1)
   BB(1,2)=0.
   DO 10 N=2,NAT
   NP1=N+1
   NM1=N-1
   SUMC=0.
   DO 11 M=1,N
   BB(N,M) = BB(NM1,M) + A(N)
   CC(N,M) = CC(NM1,M) / BB(N,M)
11 SUMC=SUMC+CC(N<sub>0</sub>M)
   CC(N, NP1) = -SUMC
   BB(N, NP1) = 0.
10 NO=N
31 EXIN=0.
   NP1=N0+1
   DO 12 M=1.NP1
12 EXIN=EXIN+CC(NO,M)*EXPF((BB(NO,M)-EXSUB)*T)
   GO TO (4.4.5.5). INDOUT
 5 EXIND=0.
   DO 6 M=1.NO
 6 EXIND=EXIND+(CC(NO,M)/BB(NO,M))*LEXPF((BB(NO,M)-EXSUB)*T)-EXPF(-
  1EXSUB*T))
                                                  AND AND A STREET
```

- 30 -

,

Card	Column		Data	Format
3-1	1-10	DO (1):	Diffusion constant for first diffusion group.	E 10.0
	11-20	EQ (1):	Activation energy for first group – divided by the gas constant.	E10.0
	21-30	F (1):	Yield multiplier for first group. (This is used in the event that two categories are required to represent diffusion of one isotope.)	E 10.0
3-11	1-10	DO (2):	Diffusion constant for second diffusion group.	n E10.0
		Etc.		
4-1	1-4	NISOT (1):	Number of isotopes in first chain。 < 10 (See page 5)	I 4
4-11	1- 4	NISOT (21):	Number of isotopes in twenty-first chain. \leq 10 (See page 5)	14
		Etc.		
5-1	1-4	INDDEC (1):	(See page 5)	14
5-11	1-4	INDDEC (21)		i4
		Etc.		
6-1	1- 9	NAME (1, 2):	Name of second isotope of first decay chain. (The first member of each chain is U ²³⁵ .)	A6, A3
	10-19	DECON (1, 2):	Decay constant of this isotope.	E 10.0
	20-29	YIELD (1, 2):	Fission yield.	E 10.0
	30-39	EBETA (1, 2):	One third of end point beta energy (Mev).	E10.0
	40-49	EGAM (1, 2)∘	Decay gamma energy (Mev)。	E10.0

- 22 -

and start and the start of the

9/18/64 PA

SUBROUTINE EXINT(NA)

EXIND=EXIND+CC(NO,NP1)*T*EXPF(-EXSUB*T) 4 RETURN END

•

SUBROUTINE EXINT(NA)

9/18/64

PAGE 3

STORAGE NOT USED BY PROGRAM

DEC	OCT	
390	00606	

DEC OCT 8316 20174

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT		DEC	OC T		DEC	OCT		DEC	OCT
Α	9514	22452	BB	8686	20756	BR	32561	77461	CC	8542	20536
C	24561	57761	DECON	14811	34733	DO	16551	40247	EBETA	13211	31633
EGAM	12411	30173	EQ	16531	40223	E	32561	77461	EXIND	8397	20315
EXIN	9504	22440	EXSUB	8398	20316	F	16511	40177	IDI	11611	26533
1 VDDEC	8396	20314	INDOUT	16559	40257	INDT	16561	40261	INFOUT	16558	40256
INIC	16560	40260	NAMEND	15611	36373	NAME	16411	40033	NISOT	16491	40153
NOCHAN	16555	40253	NOGRP	16556	40254	NOSEC	16557	40255	NPAR	10811	25073
NICALC	16554	40252	NTO	8702	20776	NTOUT	16553	40251	NT	16552	40250
P	10730	24752	R	9503	22437	TCALC	10770	25022	TDCUR	24561	57761
TEMP	10130	23622	TOUT	10810	25072	T	8703	20777	V	9530	22472
VSEC	8701	20775	WTU25	9529	22471	YIELD	14011	33273			

STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

	DEC OCT	D	EC OCT	DEC OCT	D	EC OCT
8	379 00573	DESC	314 00472	DIFC 334 00516	IDPAR	389 00605
TERM	354 00542	UR25N	369 00561			

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMEN

	DEC	OCT	DEC	0 C T	D	EC	OCT		DEC	OCT
INDD	294	00446	NAT 293	00445	NM1 2	292	00444	NO	291	00443
NP1	290	00442	N 289	00441	SUMC	288	00440			

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT		DEC	OCT		DEC	DCT		DEC	DCT
1)	275	00423	2)	264	00410	3)	267	00413	6)	269	00415
A)103	238	00356	A)105	251	00373	CIGI	281	00431	C)G2	282	00432
2)101	283	00433	C)102	284	00434	C)103	285	00435	C)105	286	00436
C)200	287	00437	D)10C	233	00351	D1204	121	00171	D)604	120	00170
01704	119	00167	E)2	71	00107	'	4				

	SUBROU	TINE EXIN	T(NA)				л.	2	9/18/64	PAGE 4
					LOCA	TIONS OF NAMES	IN 1	FRANSFE	R VECTOR	
EXP	DEC 0	0CT 00000		DEC	OCT		DEC	001	DEC	0C T
				ENTRY	POINT	S TO SUBROUTIN	IES NO	OUTP	UT FROM LIBRARY	
EKP										
		EXTERNAL	FORMULA	NUMBERS	WITH	CORRESPONDING	INTE	ERNAL F	ORMULA NUMBERS AND	DOCTAL LOCATI
EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC	EFN IFN	LOC
2	9	00025	3	12	00110	11	23	00201	10 26	00216
31	27	00231	12	30	00244	5	32	00273	6 34	00301

SYMBOL TABLE PRECEDES PROGRAM CARD IN BINARY DECK

36 00352

4


```
SUBROUTINE FIPOUT
  COMMON INDT.INIC.INDOUT.INFOUT,NOSEC,NOGRP.NOCHAN,NTCALC.NTCUT,NT.
  1D0.EQ.F.NISOT.BR.NAME.NAMEND.DECON.YIELD.EBETA.EGAM.IDI .NPAR.
 2TOUT, TCALC, P, TEMP, V, WTU25, C, A, EXIN, E, R, T , NTO , VSEC , BB, CC ,
3 EXSUB, EXIND, TDCUR , INDDEC
  DIMENSION DC(20), EQ(20), F(20), NISCT(80), BR(80, 10, 10), NAME(80, 10),
  INAMEND(80,10), DECON(80,10), YIELD(80, 20), 20, 20, 10), EGAM(80,10),
 2IDI(80,10), IDPAR(10), B(10), TOUT(40), TCALC(40),
  3 P(15,40), TEMP(15,40), VSEC(15), WTU25(15), C(10,80,10), A(10),
 4 UR25N(15), TERM(20), E(80, 10, 10), R(80, 10), DIFC(20), DESC(20)
  5.BB(12,12),CC(12,12),INDDEC(80),TDCUR(10,80,10)
   EQUIVALENCE(BR,E), (C, TDCUR)
   IF(INFOUT-1) 10.10.11
10 RIPT 5.1.DESC
                                                                               NON-STANDARD
1 FORMAT (20A4)
  WOT 6,2,DESC
                                                                               NON-STANDARD
 NON-STANDARD
  WOT 6,3
 3 FORMAT(1H1////,40X,25H INITIAL CONDITIONS
                                                      )
   GO TO (4,5), INIC
                                                                               NON-STANDARD
 4 WOT 6,6
  GO TO 100
 6 FORMAT(1H0/////.35X.55H ALL INITIAL FISSION PRODUCT DENSITIES ARE
 1 ZERD
                )
11 WOT 6,30, TOUT(NTO)
                                                                               NON-STANDARD
10BLEM ,2X,E10.4,7HSECONDS )
   GU TO (5,96,5,96), INDOUT
 5 DO 7 NS=1,NOSEC
                                                                               NON-STANDARD
  WOT 6,8,NS, (TEMP(NS,1))
 8 FORMAT {1H0//,35X, 8H SECTION ,12,3X, 2H (,E9.4,14H DEG. KELVIN )}
                                                                               NON-STANDARD
60 WOT 6,50
50 FORMAT (1H0,10X,8HISDTOPE,8X,6HCURIES)
   DO 7 NCH=1,NOCHAN
   WOT 6.12
                                                                               NON-STANDARD
12 FORMAT(1H0)
  NIS=NISOT(NCH)
   WO1 6.13
                                                                               NON-STANDARD
13 FORMAT (1H)
95 DO 14 NI=2,NIS
   CU=(C(NS,NCH,NI)/(3.7*(10.**10)))*(DECON(NCH,NI)*.6025)
                                                                               NON-STANDARD
14 WOT 6,15, NAME (NCH, NI), NAMEND (NCH, NI), CU
15 FORMAT '1H ,10X,A6,A3,5X,E10.4)
```

- 34 -

	UBROUTE STRUCT	9/18/64	
	TATES CONTRACTOR		—
ŗ,	CONTINUE		
96	hOT 6,33		NON-SIA' UT
33	FORMATILH1///////JZX, 34H TOTAL IN THICKY " ALL SECLIONS }		
	WOT 6,34		NON-STATEDAR,
34	FORMAT(1H ///)		
	nOT 6,50		NON-STATIONS
	DO 77 NCH=1, NOCHAN		
	$\frac{1}{1} \frac{1}{1} \frac{1}$		
	SUM=0.		
70	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$		
10	SUM=SUM+ILINS;NLH;NI/////*/IL/**IU///*UECUNINLH;NI/**OUZD WOT & IS NAME/NCH NII NAMEND/NCH NII SUM		NON-STAR A
11	NOI OFLIPHAMEINCHPHIFHAMENUINCHPHIFFJUM TEINTO-NTOHTI 100, 111, 331		
111	$\frac{1}{100} \frac{100}{100} \frac{100}{101} \frac{101}{101} \frac{100}{100} \frac{100}$		
101	WIT 6.999		NON-STANDARD
000	EDRMAT (1H135X.////////////////////////////////////		
	DO 44 NS=1.NOSEC		
	DO 44 NCH=1.NOCHAN		
	NIS=NISOT(NCH)		
	DD 44 NI=1, NIS		
44	TDCUR(NS, NCH, NI)=0.		
	REWIND 12		
	NTC=0		
	DO 36 NTT=1,NTOUT		
	WOT 6,30,TOUT(NTT)		NON-STAN .
	NTCP1=NTC+1		
	DO 35 NTC=NTCP1, NTCALC		
	DU 37 NS = 1 NOSEC		
	DU 37 NLH=I, NUCHAN		
	READ TARE 12-DOUR		
37	TOCUR(NS.NCH.NI)=TOCUR:NS.NCH.NI)+(OCUR/(3.7*10,**10)) #DECON(NCH.		
	INI)*.6025		
	IF (TCALC(NTC)-TOUT(NTT)) 35,69,69		
69	GO TO (63,63,39,63), INDOUT		
39	DD 93 NS=1,NOSEC		
	WOT 6,8,NS, (TEMPINS, NIT))		NON-STA I
	WDT 6,50		NON-STA:
	DO 93 NCH=1,NOCHAN		
	WOT 6,12		NON+51

- 35 -

٠,

, ,	SUBROUTINE FIPOUT	3 .	9/18/64	PAGE 3	
,	WOT 6.13 NIS=NISOT(NCH)			NON-STANDARD	
	DO 93 NI=2, NIS				
93	WOT 6,15,NAME(NCH,NI),NAMEND(NCH,NI),TDCUR(NS,NCH,NI)			NON-STANDARD	
63	WOT 6,38			NON-STANDARD	
38	FORMAT(1H1////, 32X, 36H TOTAL DIFFUSION - ALL SECTIONS	>			
	WOT 6,34			NON-STANDARD	
	WOT 6,50			NON-STANDARD	
	DO 22 NCH=1,NOCHAN				
	NIS=NISOT(NCH)				
	DD 22 NI=2,NIS				
	SUM=0.				
	DO 89 NS=1,NOSEC				
89	SUM=SUM+TDCUR (NS, NCH, NI)				
	WOT 6,15,NAME(NCH,NI),NAMEND(NCH,NI),SUM			NON-STANDARD	
22	CONTINUE				
	GO TO 36				
35	CONTINUE				
36	CONTINUE				
100	RETURN				
	END				

- 36 -

<u>, 1</u>

SUBROUTINE FIPOUT

STORAGE NOT USED BY PROGRAM

9/18/64

PAGE 4

DEC OCT 960 01700

DEC 0CT 8316 20174

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT		DEC	OCT		DEC	OCT		DEC	OCT
Α	9514	22452	BB	8686	20756	BR	32561	77461	00	8542	20536
C	24561	57761	DECON	14811	34733	D0	16551	40247	EBETA	13211	31633
EGAM	12411	30173	EQ	16531	40223	Ε	32561	77461	EXIND	8397	20315
EXIN	9504	22440	EXSUB	8398	20316	F	16511	40177	IDI	11611	26533
I NDDEC	8396	20314	INDOUT	16559	40257	INDT	16561	40261	INFOUT	16558	40256
INIC	16560	40260	NAMEND	15611	36373	NAME	16411	40033	NISOT	16491	40153
NOCHAN	16555	40253	NOGRP	16556	40254	NOSEC	16557	40255	NPAR	10811	25073
NTCALC	16554	40252	NTO	8702	20776	NTOUT	16553	40251	NT	16552	40250
Р	10730	24752	R	9503	22437	TCALC	10770	25022	TDCUR	24561	57761
TEMP	10130	23622	TOUT	10810	25072	Т	8703	20777	٧	9530	22472
VSEC	8701	20775	WTU25	9529	22471	YIELD	14011	33273			

STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

	DEC	OCT		DEC	0 C T	DEC OCT D	EC	OCT
В	949	01665	DESC	884	01564	DIFC 904 01610 IDPAR	959	01677
TERM	924	01634	UR25N	939	01653			

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATE

	DEC	OCT	DEC	C OCT		DEC	OCT		DEC	DCT
CU	864	01540	DCUR 80	63 01537	NCH	862	01536	NI	861	01535
NIS	860	01534	N 81	59 01533	NS	858	01532	NTCP1	857	01531
NTC	856	01530	SUM 8	55 01527						

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LOC		EFN	LOC		EFN	LOC		EFN	LOC
811	L	01501	812	2	01477	813	3	01470	816	6	01460
8)8	8	01424	8)C	12	01404	8)D	13	01403	8)F	15	01402
8)U	30	01443	8)11	33	01375	8)12	34	01363	8)16	38	01347
8)1I	50	01412	8) V 7	999	01361						

1.5

1 37 5

4

۲

SUBROUTINE FIPOUT

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

13 1 53

4.1924

	DEC	OCT		DEC	OCT		DEC	OCT		DEC	OCT	
1)	834	01502	2)	715	01313	3)	724	01324	61	728	01330	
4)101	683	01253	A)1G0	696	01270	CIGO	838	01506	C)G1	839	01507	
C) G2	840	01510	C) G3	841	01511	C)G4	842	01512	C)G5	843	01513	
01100	844	01514	C)101	845	01515	C)102	846	01516	C)1 G0	847	01517	
C)200	848	01520	C)202	849	01521	C1204	850	01522	C)206	851	01523	
C)207	852	01524	C)208	853	01525	C)20A	854	01526	D)107	143	00217	
D)10L	316	00474	D)105	393	00611	D)116	546	01042	D)214	494	00756	
0)215	513	01001	D)21A	581	01105	D)21J	670	01236	D)307	142	00216	
D)314	493	00755	D)316	545	01041	D)31A	580	01104	D)406	106	00152	
D)40D	233	00351	D)401	292	00444	D)412	481	00741	D)41C	625	01161	
D)41L	678	01246	D)50D	232	00350	D151C	624	01160	D)707	141	00215	
D)716	544	01040										
					LOCA	TIONS OF NAME	SIN	FRANSF	ER VECTOR			
	DEC	0 CT		DEC	OCT		DEC	OCT		DEC	OCT	
EXP(2	6	00006	(FIL)	5	00005	(RLR)	9	00011	(RTN)	2	00002	
(RWT)	7	00007	(SLI)	1	00001	(SLO)	4	00004	(STH)	3	00003	
(TSB)	8	00010	(TSH)	0	00000							
				ENTRY	POINTS	S TO SUBROUTI	NES NO	ot out	PUT FROM LIBR	ARY		
EXP(2	1	(FIL)	(RLR)		(RTN)	(RWT)	((SLI)	(SLO)	((STH)	
(TSB)	1	(TSH)										
		EXTERNAL	FORMULA	NUMBER	S WITH	CORRESPONDIN	G INTE	ERNAL	FORMULA NUMBE	RS ANI	DOCTAL	LOCATIONS
EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC	EFN
10	21	00035	4	27	00067	11	29	00076	5	32	00114	
60	39	00136	95	44	00171	14	46	00242	. 7	48	00264	
96	49	00276	78	57	00357	77	58	00405	111	61	00445	
101	62	00452	44	67	00513	37	82	00664	69	84	00742	
39	85	00747	93	98	01043	63	100	01106	89	108	01167	
22	111	01214	35	113	01233	36	114	01237	100	115	01247	

PAGE 5

9/18/64 PAGE 6

SYMBOL TABLE PRECEDES PROGRAM CARD IN BINARY DECK

I.

8

E.

and a 5 to stand the

```
SUBROUTINE MAIN
     COMMON INDT. INIC. INDOUT, INFOUT. NOSEC. NOGRP. NOCHAN. NTCALC. NTOUT. NT.
    1D0, EQ, F, NISOT, BR, NAME, NAMEND, DECON, YIELD, EBETA, EGAM, IDI , NPAR,
    2TOUT,TCALC,P,TEMP,V,WTU25, C,A,EXIN,E,R,T ,NTO ,VSEC ,BB,CC ,
    3 EXSUB, EXIND, TDCUR , INDDEC
     DIMENSION DO(20), EQ(20), F(20), NISOT(80), BR(80, 10, 10), NAME(80, 10),
    INAMEND(80,10), DECON(80,10), YIELD(80,10), EBETA(80,10), EGAM(80,10),
    2IDI(80,10), IDPAR(10), B(10), TOUT(40), TCALC(40),
    3 P(15,40),TEMP(15,40),VSEC(15),WTU25(15),C(10,80,10),A(10),
    4 UR25N(15), TERM(20), E(80, 10, 10), R(80, 10), DIFC(20), DESC(20)
    5.BB(12,12),CC(12,12),INDDEC(80),TDCUR(10,80,10)
      EQUIVALENCE(BR,E), (C,TDCUR)
     IF(INFOUT-1) 200,200,201
 200 CALL FIPOUT
     INFOUT=2
 201 DO 1 NS=1,NOSEC
     UR25N(NS)=(WTU25(NS)/235.)*10.**24
     DO 1 NCH=1, NOCHAN
   1 C(NS, NCH, 1) = UR25N(NS)
     DO 6 NCH=1.NOCHAN
     NIS=NISOT(NCH)
     DO 6 NI=1, NIS
     DO 6 NP=2.NIS
   6 E(NCH, NI, NP)=BR(NCH, NI, NP)+DECON(NCH, NP)
     NTC=0
     DO 2 NTO= 1_{p}NTOUT
     NTCP1=NTC+1
     DO 66 NTC=NTCP1,NTCALC
     NTO=NTO
     IF (NTC-1) 1000,1000,1001
LOOO T=TCALC(NTC)
     GO TO 1002
1001 NTCM1=NTC-1
     T=TCALC(NTC)-TCALC(NTCM1)
1002 DO 20 NS=1.NOSEC
     SIGPHI=P(NS,NTC)/(C(NS,1,1)+.6025)
     DO 10 NCH=1,NOCHAN
     DECON(NCH, 1)=SIGPHI
  10 R(NCH, 1) = S[GPH]
     DO 3 NG=1,NOGRP
   3 DIFC(NG)=DO(NG)+EXPF(-EQ(NG)/TEMP(NS,NTC))
     DO 20 NCH=1.NOCHAN
     NIS=NISOT(NCH)
                                   à.,
```


- 41 -

	DO 5 NI=2, NIS
	ID=IDI (NCH,NI)
5	R(NCH,NI)=DECON(NCH,NI)+DIFC(ID)
	E(NCH, 1, 1) = 0.
	DO 111 NI=2,NIS
	ID=IDI(NCH,NI)
111	E(NCH,NI,1)=YIELD(NCH,NI)*F(ID)*DECON(NCH,1)
	DO 20 N=1,NIS
	NI=NIS-N+1
	EXSUB=R(NCH,NI)
	DD=R(NCH,NI)-DECON(NCH,NI)
	NTERM=NI-1
	IF(NTERM) 2001,2001,2006
2001	STERM=0.
	STERMD=0.
	GO TO (20,20,21,21),INDOUT
2006	INDD=INDDEC(NCH)
	STERM=0.
	STERMD=0.
	GO TO (2000,2222), INDD
2222	CONTINUE
	DD 959 J=1,NTERM
	IERM=0.
	IERMD=0.
	IMJ=NI=J
	LMULI=U(NS, NUH, 1MJ)
	$\frac{3}{1} = \frac{1}{1} = \frac{1}$
	12=12
	IE(E(NCH.12.IND1)) 808.808.996
996	INDTRM=1
	A(INDTRM) = R(NCH, L2) - R(NCH, IND1)
	COEF=E(NCH,L2,IND1)
	IF(L2 -NI) 995,818,818
818	CALL EXINT(INDTRM)
	TERM=TERM+COEF*EXIN*CMULT
	TERMD=TERMD+DD*COEF*EXIND*CMULT
	INDTRM=INDTRM-1
_	GO TO 808
995	COEF1=COEF
	L2P1=L2+1

3

ist rately

SUBROUTINE MAIN

PAGE 3

DO 807 L3=L2P1, JP1 L3=L3 COEF = COEF1IF(E(NCH,L3,L2)) 807,807,994 994 INDTRM=INDTRM+1 A(INDTRM) = R(NCH, L3) - R(NCH, L2)COEF=COEF*E(NCH,L3,L2) IF (L3-NI) 993,817,817 817 CALL EXINT(INDTRM) TERMD=TERMD+DD+COEF+EXIND+CMULT TERM=TERM+COEF+EXIN+CMULT INDTRM=INDTRM-1 GO TO 807 993 COEF2=COEF L3P1 = L3 + 1DO 806 L4=L3P1, JP1 COEF = COEF2IF(E(NCH, L4, L3)) 806, 806, 992 992 INDTRM=INDTRM+1 A(INDTRM) = R(NCH, L4) - R(NCH, L3)COEF=COEF*E(NCH,L4,L3) [F(L4-NI) 991,816,816 816 CALL EXINT(INDTRM) TERMD=TERMD+DD+COEF=EXIND=CMULT TERM=TERM+COEF*EXIN*CMULT INDTRM=INDTRM-1 GO TO 806 991 COEF3=COEF L4P1=L4+1DO 805 L5=L4P1, JP1 COEF = COEF3IF(E(NCH, L5, L4)) 805,805,990 990 INDTRM=INDTRM+1 A(INDTRM) = R(NCH, L5) - R(NCH, L4)COEF=COEF*E(NCH,L5,L4) IF(L5-NI) 989,815,815 815 CALL EXINT(INDTRM) TERMD=TERMD+DD+COEF+EXIND+CMULT TERM=TERM+COEF*EXIN*CMULT INDTRM=INDTRM-1 GO TO 805 **989 COEF4=COEF** L5P1=L5+1

I.

42

F

9/18/64 PAGE 4

SUBROUTINE MAIN

DO 804 L6=L5P1, JP1 COEF = COEF4IF(E(NCH, L6, L5)) 804, 804, 988 988 INDTRM=INDTRM+1 $A(INDTRM) = R(NCH_{p}L6) - R(NCH_{p}L5)$ $COEF = COEF + E(NCH_{1}L6_{1}L5)$ IF(L6-NI) 987,814,814

- 814 CALL EXINT(INDTRM) TERMD=TERMD+DD+COEF+EXIND+CMULT TERM=TERM+COEF*EXIN*CMULT INDTRM=INDTRM-1 GO TO 804
- **987 COEF5=COEF** L6P1 = L6 + 1DO 803 L7=L6P1, JP1
 - COEF = COEF5IF(E(NCH, L7, L6)) 803, 803, 986
- 986 INDTRM=INDTRM+1 $A(INDTRM) = R(NCH_{1}L7) - R(NCH_{1}L6)$ COEF=COEF*E(NCH, L7, L6) IF(L7-NI) 985.813.813
- 813 CALL EXINT(INDTRM)

L

Т

- \$ TERMD=TERMD+DD*COEF*EXIND*CMULT TERM=TERM+COEF*EXIN*CMULT INDTRM=INDTRM-1
 - GO TO 803
 - 985 COEF6=COEF L7P1=L7+1DO 802 L8=L7P1, JP1 COEF = COEF6
 - IF(E(NCH, L8, L7)) 802, 802, 984 984 INDTRM=INDTRM+1 A(INDTRM) = R(NCH, L8) - R(NCH, L7)
 - COEF=COEF=E(NCH, L8, L7) IF(L8-NI) 983,812,812
 - 812 CALL EXINT(INDTRM) TERMD=TERMD+DD*COEF*EXIND*CMULT
 - TERM=TERM+COEF*EXIN*CMULT INDTRM=INDTRM-1
 - GO TO 802
 - 983 COEF7=COEF L8P1 = L8 + 1
 - DO 801 L9=1, L8P1

PAGE 5

COEF = COEF7IF(E(NCH,L9,L8)) 801,801,982 982 INDTRM=INDTRM+1 A(INDTRM)=R(NCH,L9)-R(NCH,L8) COEF=COEF+E(NCH,L9,L8) IF(L9-NI) 981,811,811 811 CALL EXINT(INDTRM) TERM=TERM+CDEF+EXIN+CMULT TERMD=TERMD+DD+COEF+EXIND+CMULT INDTRM=INDTRM-1 GO TO 801 981 COEF8=COEF L9P1=L9+1 DD 800 L10=L9P1, JP1 COEF =COEF8 IF(E(NCH,L10,L9)) 800,800,980 980 INDTRM=INDTRM+1 A(INDTRM) = R(NCH, L10) - R(NCH, L9)COEF=COEF*E(NCH,L10,L9) IF(L10-NI) 979,810,810 810 CALL EXINT(INDTRM) TERM=TERM+COEF+EXIN+CMULT TERMD=TERMD+DD+COEF+EXIND+CMULT INDTRM=INDTRM-1 GO TO 800 979 WOT 6,960 NON-STANDARD 960, FORMAT (33H ALLOWED CHAIN LENGTH EXCEEDED) 800 CONTINUE INDTRM=INDTRM-1 **801 CONTINUE** INDTRM=INDTRM-1 **802 CONTINUE** INDTRM=INDTRM-1 **803 CONTINUE** INDTRM=INDTRM-1 804 CONTINUE INDTRM=INDTRM-1 **805 CONTINUE** INDTRM=INDTRM-1 **806 CONTINUE** INDTRM=INDTRM-1 807 CONTINUE INDTRM=INDTRM-1

SUBROUTINE MAIN

Τ.

\$

8

808 CONTINUE STERMD=STERMD+TERMD 959 STERM=STERM+TERM GO TO (20,20,21,21), INDOUT 2000 DO 8 J=1.NTERM STEND=0. STJUMP=0. IND1=NI-J IND2=IND1+1COEF1=1.0 COEF = 1.0DO 9 M = 1.JCOEF1=E(NCH, IND2, IND1) CDEF=CDEF*CDEF1 *10.**3 A(M) = R(NCH, IND2) - R(NCH, IND1)IND1=IND1+1 MEX=M 9 IND2=IND2+1 CALL EXINT(J) STLND=(COEF*EXIND/(10_**(3*MEX)))*DD 666 STLINE=(COEF*EXIN) /(10.**(3*MEX)) IF(J-1) 11,11,12 12 IND1=NIS-(N+J-1)COEF=E(NCH,NI,IND1) A(1) = R(NCH, NI) - R(NCH, IND1)CALL EXINT(1) STEND=COEF*EXIN STENDD=COEF*EXIND*DD IF(J-2) 11,11,13 13 JL1 = J - 1IND1 = NIS - (N+J-1)IND2 = NIS - (N+J-1)DO 14 L=1,JL1 IND2=IND2+1COEF1=E(NCH, IND2, IND1) COEF2=E(NCH,NI,IND2) COEF=COEF1*COEF2 A(1)=R(NCH, IND2)-R(NCH, IND1)A(2)=R(NCH,NI)-R(NCH,IND2)CALL EXINT(2) TJUMP=COEF+EXIN TJUMPD=COEF*EXIND*DD STJMPD=STJMPD+TJUMPD

T.

8

Q

SUBROUTINE MAIN

9/18/64

PAGE 8

STORAGE NOT USED BY PROGRAM

		DEC 2355	0CT 04463		DEC 8316	OCT 20174								
		2000	005	6700			500	VAD 7 4 01	56 10	DC 4 D T NC		CTATCH	THTC	
				SIUK	AGE LU	CALLUNS	FUK	VAKIABI	LES API	PEAKING	IN CUMMUN	STATEM	ENIS	
		DEC	OCT		DEC	OCT			DEC	OC T		DEC	OCT	
	А	9514	22452	BB	8686	20756		BR	32561	77461	C C	8542	20536	
	C	24561	57761	DECON	14811	34733		DO	16551	40247	EBETA	13211	31633	
	EGAM	12411	30173	EQ	16531	40223		ŧ	32561	77461	EXIND	8397	20315	
	EXIN	9504	22440	EXSUB	8398	20316		F	16511	40177	IDI	11611	26533	
	I NDDEC	8396	20314	INDOUT	16559	40257		INDT	16561	40261	INFOUT	16558	40256	
	INIC	16560	40260	NAMEND	15611	36373		NAME	16411	40033	NISOT	16491	40153	
	NJCHAN	16555	40253	NOGRP	16556	40254		NOSEC	16557	40255	NPAR	10811	25073	
	NICALC	16554	40252	NTO	8702	20776		NTOUT	16553	40251	NI	16552	40250	
	Р	10730	24752	R	9503	22437		TCALC	10770	25022	TDCUR	24561	57761	
	TEMP	10130	23622	TOUT	10810	25072		Т	8703	20777	V	9530	22472	
	VSEC	8701	20775	WTU25	9529	22471		YIELD	14011	33273				
- 4			ST	DRAGE LOCATI	ONS FO	R VARIA	BLES	APPEAR	ING IN	DIMENS	ION AND EQU	IVALEN	CE STAI	EMENTS
1		DEC	OCT		DEC	OCT			DEC	001		DEC	OCT	
	В	2344	04450	DESC	2279	04347		DIFC	2299	04373	IDPAR	2354	04462	
	TERM	2319	04417	UR25N	2334	04436								
		STO	DRAGE I	LOCATIONS FO	R VARI	ABLES N	OT A	PPEARIN	G IN C		DIMENSION,	OR EQU	IVALENC	E STATEME
		DEC	0 C T		DEC	OCT			DEC	OCT		DEC	OC T	
	CMULT	2259	04323	COEF1	2258	04322		COEF2	2257	04321	COEF 3	2256	04320	
	COEF4	2255	04317	COEF5	2254	04316		COEF6	2253	04315	COEF7	2252	04314	
	COEF8	2251	04313	COEFM	2250	04312		COEF	2249	04311	DCUR	2248	04310	
	DD	2247	04307	ID	2246	04306		IMJ	2245	04305	IND1P1	2244	04304	
	IND1	2243	04303	IND2	2242	04302		INDD	2241	04301	INDSUB	2240	04300	
	INDTRM	2239	04277	JL1	2238	04276		JM3	2237	04275	JP1	2236	04274	
	J	2235	04273	L10	2234	04272		L2P1	2233	04271	L2	2232	04270	
	L3P1	2231	04267	L3	2230	04266		L4P1	2229	04265	L4	2228	04264	
	L5P1	2227	04263	L5	2226	04262		L6P1	2225	04261	L6	2224	04260	
	1.7P1	2223	04257	L7	2222	04256		L8P1	2221	04255	L8	2220	04254	
	L9P1	2219	04253	L9	2218	04252		MEX	2217	04251	M	2216	04250	
	MUP	2215	04247	NCH	2214	04246		NI	2213	04245	NIS	2212	04244	
	N	2211	04243	NS	2210	04242		TCMI	2209	04241	NTCPL	2208	04240	
	NTC	2207	04237	NTERM	2206	04236		SIGPH	A CONTRACTOR	35	SKIPO	2204	04234	

SUBROUTINE MAIN

9/18/64	PAGE 9
<i>)/10/04</i>	1406 /

SKIP	2203 04233	SKPTMD	2202 04232	SKPTRM	2201 04231	SKTMD	2200 04230
STENDD	2199 04227	STEND	2198 04226	STERMD	2197 04225	STERM	2196 04224
STJMPD	2195 04223	STJUMP	2194 04222	STLINE	2193 04221	STLND	2192 04220
TERMD	2191 04217	TJUMPD	2190 04216	TJUMP	2189 04215		

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

A LIL

8)U0	EFN 960	LOC 04112		EFN	L0 C			EFN	LOC			EFN	LOC
			LOCA	TIONS	FOR	DTHER	SYMBOLS	NOT	APPEARING	IN	SOURCE	PROGR	AM
	DEC	οςτ		DEC	0 C T			DEC	OCT			DEC	OCT
1)	2123	04113	2)	2094	0405	6	3)	210	5 04071		6)	2110	04076
4)105	1973	03665	A)10E	1986	0370	2	A)1G5	199	9 03717		A)1GF	2018	03742
A)1GG	2037	03765	A) LGH	2056	0401	0	AllgI	207	5 04033		A)20J	1960	03650
C)G1	2127	04117	C G2	2128	0412	0	C) G 3	212	9 04121		C)65	2130	04122
C)G6	2131	04123	C)G7	2132	0412	4	C) G8	213	3 04125		C) G 9	2134	04126
C)GB	2135	04127	C)100	2136	0413	0	C)101	213	7 04131		C)102	2138	04132
0)103	2139	04133	C1104	2140	0413	4	C)105	214	1 04135		C)106	2142	04136
01107	2143	04137	C)108	2144	0414	0	C)109	214	5 04141		C)10A	2146	04142
C)10B	2147	04143	C)10C	2148	0414	4	C)10D	214	9 04145		C)10E	2150	04146
C)1G1	2151	04147	C)1G2	2152	0415	0	C)1G3	215	3 04151		C)1G4	2154	04152
C)1G5	2155	04153	C)1G6	2156	0415	4	C)167	215	7 04155		C)168	2158	04156
C)1G9	2159	04157	C)1GA	2160	0416	0	C)1GB	216	1 04161		C)1GC	2162	04162
C)1GD	2163	04163	C)1GE	2164	0416	4	C)1GF	216	5 04165		C)1GG	2166	04166
C)1GH	2167	04167	C)1GI	2168	0417	0	C)200	216	9 04171		C)201	2170	04172
C)202	2171	04173	C)203	2172	0417	4	C)204	217	3 04175		C)205	2174	04176
C)206	2175	04177	C1207	2176	0420	0	C)208	217	7 04201		C)209	2178	04202
C)20A	2179	04203	C)20B	2180	0420	4	C)20C	218	1 04205		C) 20D	2182	04206
C)20E	2183	04207	C)20F	2184	0421	0	C)20G	218	5 04211		C)20H	2186	04212
C)20I	2187	04213	C120J	2188	0421	4	D)10I	19	5 00303		D)105	381	00575
D)121	1215	02277	D)12P	1408	0260	0	D)133	168	3 03223		D)208	85	00125
D)200	329	00511	D120U	418	00642	2	D)211	50	3 00767		D)215	593	01121
D)219	687	01257	D)222	1222	0230	6	D)227	128	8 02410		D)237	1784	03370
D)300	328	00510	D)311	502	0076	6	D)315	59	2 01120		D)319	686	01256
D1321	1214	02276	D1327	1287	0240	7	D)409	9	6 00140		D)40Q	357	00545
D140T	408	00630	D)41D	779	0141	3	D)41H	86	9 01545		D》41L	959	01677
D)41P	1049	02031	D)429	1301	0242	5	D1428	131	4 02442		D142D	1327	02457
D)42F	1340	02474	D142H	1353	0251	1	D142J	136	6 02526		D)42L	1379	02543
D142Q	1449	02651	D1439	1825	0344	1	D)43A	186	4 03510		D)43G	1946	03632
D1509	95	00137	D)51D	778	0141	21	D)51H	86	8 01544		D)51L	958	01676
01510	1048	02030	01520	1440	29:37:30	No. 22	D1526	1.04	A 03631		DIGOT	407	00627

IDDE

	-										-
				~				•			- -
				G	O Y I						
S	UBROU	TINE MAIN						A TEN	9/18	/64	PAGE 10
01629	1300	02424	D)62B	1313	02441	D)62D	1326	02456	D)62F	1339 02473	
D)62H	1352	02510	D)62J	1365	02525	D)62L	1378	02542	D)639	1824 03440	
D)63A	1863	03507	D)721	1213	02275	D)727	1286	02406	D1729	1299 02423	
D)72B	1312	02440	D)72D	1325	02455	D)72F	1338	02472	D172H	1351 02507	
0)72J	1364	02524	D)72L	1377	02541	D1739	1823	03437	D)73A	1862 03506	
E)12	510	00776	E)14	553	01051	E)16	602	01132	E)18	647 01207	
E)1A	694	01266	E)1C	739	01343	E)1E	786	01422	E)1G	829 01475	
E)1I	876	01554	E)lK	919	01627	E)1M	966	01706	E)10	1009 01761	
E)1Q	1056	02040	E)1U	1129	02151	E\$20	1174	02226	E)24	1264 02360	
					LOCA	TIONS OF NAME	SIN	TRANSFE	R VECTOR		
	DEC	0 C T		DEC	OCT		DEC	OCT		DEC OCT	
EXINT	3	00003	EXP	2	00002	EXP(2	1	00001	FIPOUT	0 00000	
(FIL)	5	00005	(STB)	6	00006	(STH)	4	00004	(WLR)	7 00007	
				ENTRY	POINT	S TO SUBROUTE	NES NO	DT OUTP	UT FROM LIBRA	RY	
EXINT	1	EXP	EXP(2	F	IPOUT	(FIL)	1	STB)	(STH)	(FLR)	
		EXTERNAL	FORMULA N	UMBER	S WITH	CORRESPONDIN	G INT	ERNAL F	ORMULA NUMBER	S AND DCTA	L LOCATION
EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN LOC	C F:
200	8	00027	201	10	00034	1	13	00064	6	18 00141	
1000	25	00226	1001	27	00231	1002	29	00241	10	33 00317	
3	35	00326	5	40	00516	111	44	00552	2001	51 00631	
2006	54	00643	2222	58	00656	996	70	01000	818	74 01016	
995	79	01053	994	85	01134	817	89	01154	993	94 01211	
992	99	01270	816	103	01310	991	108	01345	990	113 01424	
815	117	01444	989	122	01477	988	127	01556	814	131 01576	
987	136	01631	986	141	01710	813	145	01730	985	150 01763	
984	155	02043	812	159	02064	983	164	02115	982	169 02153	
811	173	02173	981	178	02230	980	183	02307	810	187 02327	
979	192	02362	800	193	02370	801	195	02411	802	197 02426	
803	199	02443	804	201	02460	805	203	02475	806	205 02512	
807	207	02527	808	209	02544	959	211	02554	2000	213 02572	
9	226	02707	666	229	02751	12	231	02774	13	238 03043	
14	252	U3164	222	254	03177	223	256	03202	224	257 03207	

- 49 -

OUT A A A Charles Martin

S	UBROUTINE MAIN			9/1	PAGE 11				
228	265 03267	226	270 03317	* ···· 225 ·	276	03361	11	277 0337	1
8	280 03413	21	282 03442	20	287	03511	66	289 0362	3
4000	290 03633	2	291 03640						

SYMBOL TABLE PRECEDES PROGRAM CARD IN BINARY DECK

•

BEGIN LOAD TIME 16.048

ENTR	Y POINTS (FPT)	с то	SUBRO	UTINES I	REQUES (TSHM	TED FROI	M LIBRARY, (RTN)	EXP(2	1	ЕХР	(SLI)		(STHM)		(5	LC
	(TSB)		(RLR)	(STB)	1	(WLR)									
	SUBROUT	INE	ENTRY	POINTS	AND S	TARTING	LOCATIONS	UP	PER PRI	OGRAM	16252	LOWER C	OMMON	20174	+	
		ENTR	Y STAI	RT		ENTRY	START		ENTRY	START		ENTRY	START			
	MAIN-P	0015	2 0014	44	EXINT	01351	01344	FIPOUT	02170	02152	MAIN	04066	04052			
	EXP(2	1054	0 105	35	EXP	10617	10614	ANYER	11364	10713	SBRER	11362				
	OVFLW	1135	5		UNFLW	11360		BRCDE	11342		EPMDE	11333				
	(SVN)	1072	0		(SIX)	10717		(FPT)	10721		ERROR	11050				
	ERTRP	1137	4		ERSIN	11366		(TSHM)	11424	11414	(TSH)	11424				
	(BLOK)	1210	4 114	65	(STHD) 11501		(STHM)	11476		(STH)	11476				
	(WLR)	1220	7 121	56	(STB)	12165		(RLR)	12277	12240	(TSB)	12247				
	(RWT)	1231	7 123	14	(SLO)	12325	12325	(SLI)	12342	12342	(WTC)	12430	12357			
	(WER)	1237	1		(RDC)	12507	12456	(RER)	12465		(RTN)	13354	12523			
	(FIL)	1334	3		(IOH)	13504		(EXB)	14505	14430	(IOB)	14432				
	(TCO)	1522	4 151	15	(TEF)	15223		(RCH)	15222		(ETT)	15221				
	(REW)	1522	0		(WEF)	15217		(BSR)	15216		(WRS)	15215				
	(RDS)	1521	4		(IOS)	15120		STCH)	15236		(TCN)	15235				
ר -	(LCH)	1523	4		(CHR)	15233		(RUN)	15232		(BSF)	15231				
	(SDL)	1523	0		(SDH)	15227		(BTT)	15226		(TRC)	15225				
	(100)	1526	2 152	57	(FT)	15306	15300	(EXEM)	15307		(EXE)	15307				
, ,	(TES)	1623	5 162	35	EXIT	16240	16236							¥	C	
4	EVEC														3	-
,		.0110	N 11M	E 10.02	1										1.10	祷
														۲. The second	-	ť
100	t															*
ž	7														ł	È
	\$ *													- 3 1		

י 51 י

Station Party of the second se

6

And Stranger and Andrews

BIBLIOGRAPHY

- 1. G. T. Rymer, G. L. Grandy, W. A. Henninger, J. A. Roll. "Interim Report on the Release of Fission Products from NERVA Fuel." WANL-TNR-162, July, 1964.
- 2. Reactor Analysis Department, WANL, "Reactor Analysis of NRX-A Thermal and Fluid Flow Analysis, Vol. III." WANL-TNR-128, September, 1963.
- 3. E. Bryant and J. E. Sattizahn. "RIFT Safety Review." Los Alamos Report RFS-135, 1963.
 - G. Friedlander, J. W. Kennedy. "Nuclear and Radiochemistry." John Wiley and Sons, Inc., 1955.
 - American Institute of Physics Handbook, McGraw-Hill Book Company, Inc., 1957.
 - Quality Control Form 30050-B, Westinghouse Astronuclear Data System.

- 52 -