197 3/23/70

1283 RFP-1449 March 11, 1970

A FORTRAN IV PROGRAM FOR REDUCTION OF SPECTROPHOTOMETRIC REACTION KINETICS DATA

George J. Werkema

THE DOW CHEMICAL COMPANY ROCKY FLATS DIVISION P. O. BOX 888 GOLDEN, COLORADO 80401

U.S. ATOMIC ENERGY COMMISSION CONTRACT AT(29-1)-1106

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE-

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Atomic Energy Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

> Printed in the United States of America Available from Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U. S. Department of Commerce Springfield, Virginia 22151 Price: Printed Copy \$3.00: Microfiche \$0.65

RFP-1449 UC-4 CHEMISTRY TID-4500 54th Ed.

A FORTRAN IV PROGRAM FOR REDUCTION OF SPECTROPHOTOMETRIC REACTION KINETICS DATA

George J. Werkema

LEGAL NOTICE This report was prepared as an account of Government sponsored work. Notiber the United States, nor the commission, nor any person setting on behalf of the Cammission; A. Makes any warranty or representation, expressed or implicit, with respect to the accuracy, completences, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclowed in this report, and infringe privately owned rights; or B. Assumes any limbilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclowed in this report. As used in the above, "person exiting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, itop process fuel contractor prepares, diassingtre, or privinges scream it, any information purpose of such contractor repares, diassingtre, or privinges scream it, any informative purpose of such contractor, to the extent that with the Commission, or his employment with such contractor.

> THE DOW CHEMICAL COMPANY ROCKY FLATS DIVISION P. O. BOX 888 GOLDEN, COLORADO 80401

Prepared under Contract AT(29-1)-1106 for the Albuquerque Operations Office U. S. Atomic Energy Commission

ü

CONTENTS

																												•				
										•																						
Abstract	<u>،</u>		.'				•									•					÷	•	 							 		
Introductio	on							•					÷	•	•	•			•	•	•	•				•	•	•	•	 •		
Mathemati	cal	Μ	et	ho	ds	:	•	•			•	•		•	•	•	• •	•	•	•	•	•	 •		•	•	•	•	•	 •	·	
Daduat	~ ~	- 4	c				. :.	 - 1	п	1-																						

1

					-		-		-		-	 -		-		-			-	-	-		
Mathematical Methods :		•••		•		••••		•	•		•		• :•	•		•					• ·		
Reduction of Observation	nal Da	ta							•				•	•		• •							
Derivation of Integrated	Laws			•					•					• ••	•		•	•			• •		
FORTRAN Notation				•		•••		•	•		•			•		•							
Output								•	•				: .					•	•				
Input				•					•		•			•				•					
Output		•••		•					•	•				•		•		•	•	•			
Program Listing			• •	•							•				•	•							

A FORTRAN IV PROGRAM FOR REDUCTION OF SPECTROPHOTOMETRIC REACTION KINETICS DATA

George J. Werkema

Abstract. This program is a modification of one written earlier¹ for a small computer. The present version is written in E-level FORTRAN IV for the IBM 360-40G computer. The program reduces spectrophotometric absorbancy data to molar concentrations of reactants and products and, at the user's option, computes the rate constant time products $(k_1 t, k_2 t, and k_3 t)$ using the integrated forms of first-, second-, and third-order rate laws.

INTRODUCTION

The reduction of spectrophotometric reaction kinetics data to molar concentrations of reactants and products is a tedious process. The ERLF program¹ and the present modification, ERLF-2, were written to perform the appropriate reduction and to test the reaction rate dependency. ERLF-2 is written in E-level FORTRAN IV for the IBM 360-40G computer.

The experiment for which ERLF-2 was written consists of observing the absorbance of visible or ultraviolet light at some discrete wavelength by one of the reaction constituents at several times during the course of a chemical reaction. Provision has been made in the program to correct for a minor interference from a chemical species whose concentration-rate-of-change is the negative of that for the species whose absorbance predominates at the observed wavelength. The mathematical derivation of the algorithm for these calculations is presented in the first paragraph of the next section.

The program has been written for chemical reactions of the type $A + B \rightleftharpoons C + D$. Species B and D are assumed to have zero absorbance at the observed wavelength. Species A and C have measurable absorbance at the observed wavelength with one species predominating by virtue of the relative magnitude of its molar extinction coefficient. That is, the molar extinction coefficient for species A at the observed wavelength must be much greater than that for species C if the observed data correspond to a decreasing concentration of species A. Conversely, if the absorbancy increases during the course of the reaction, corresponding to an increase in the concentration of species C, then the molar extinction coefficient for species C at the observed wavelength must be much greater than that for species A. In general, these conditions are satisfied by standard spectrophotometric technique.

The program calculates the concentrations of species A, B, and C for each datum and then proceeds to compute the corresponding rate constant time products $(k_1 t, k_2 t,$ and $k_3 t)$ using the integrated forms of first-, second- and third-order rate laws. Division of the time products by the elapsed time at each datum gives a number whose constancy, or lack of, throughout a reaction is an indication of the order of the reaction. Values of this number are also listed for each datum. Derivations of these algorithms are presented in the second paragraph of the next section.

MATHEMATICAL METHODS

We define a general stoichiometry factor, P, such that the stoichiometric equation may be written

$$d[A] = p \cdot d[B]$$
 (1)

This equation states that one gram-molecular-weight of B reacts stoichiometrically with P gram-molecular-weights of A. P need not be integral insofar as this program is concerned.

Reduction of Observational Data

In dilute solution, the absorbance of a species (A) in solution for a given wavelength of light (λ) is equal to the product of its molar extinction coefficient (ϵ_A^{λ}) and its concentration, [A], that is

$$(Absorbance)^{\lambda}_{A} = \epsilon^{\lambda}_{A}[A].$$
 (2)

1

The total observed absorbance (Q^{λ}) of a solution at a given wavelength is equal to the sum of contributions due to all absorbing species and may be expressed as

$$\mathcal{Q}^{\lambda} = \epsilon_{\mathbf{A}}^{\lambda}[\mathbf{A}] + \epsilon_{\mathbf{B}}^{\lambda}[\mathbf{B}] + \epsilon_{\mathbf{C}}^{\lambda}[\mathbf{C}] + \dots \qquad (3)$$

¹G. J. Werkema, "FORTRAN II Program for Reduction of Spectrophotometric Reaction Kinetics Data,"RFP-629, Rocky -Flats Division, The Dow Chemical Company, November 1965.

This program has been written to accommodate two absorbing species, one of which is a reactant, the other a product. In the ensuing discussion it is assumed that A is a reactant, C is a product, the contribution to the absorbance at $\lambda 1$ is due primarily to A and the contribution to the absorbance at $\lambda 2$ is due primarily to C. In addition, it is required that -d[A] = d[C]. The following paragraphs develop the relationships among these elements.

Absorbance at $\lambda 1$: following the decrease of [A], with

$$\epsilon_{\rm A}^{\lambda 1} > \epsilon_{\rm C}^{\lambda 1}.$$

The absorbance at $\lambda 1$ is equal to the sum of absorbances of the individual species present, that is, species A and C. Thus we have

$$Q^{\lambda 1} = \epsilon_{A}^{\lambda 1}[A] + \epsilon_{C}^{\lambda 1}[C], \qquad (4)$$

with the contribution due to A being much larger. The amount of product C, [C], present is equal to the sum of the amount initially present plus that which was produced at the expense of A during the reaction, that is

$$[C] = [C]_0 + \{ [A]_0 - [A] \}.$$
 (5)

Equation (5) is valid only if -d[A] = d[C].

Substituting (5) in (4) gives

$$Q^{\lambda 1} = \epsilon_{\mathbf{A}}^{\lambda 1}[\mathbf{A}] + \epsilon_{\mathbf{C}}^{\lambda 1}[\mathbf{C}]_{0} + \epsilon_{\mathbf{C}}^{\lambda 1}\{[\mathbf{A}]_{0} \cdot [\mathbf{A}]\}.$$
(6)

Now let $\Theta^{\lambda 1} = Q^{\lambda 1} \cdot \epsilon_{C}^{\lambda 1} [C]_{0}.$ (7)

 $\Theta^{\lambda 1}$ is, by this formulation, equal to the observed absorbance at $\lambda 1$ minus the absorbance due to any product C which was present at zero time. Upon substitution of (7), (6) becomes

$$\mathbf{\mathcal{H}}^{\lambda 1} = \epsilon_{\mathbf{A}}^{\lambda 1}[\mathbf{A}] + \epsilon_{\mathbf{C}}^{\lambda 1}[\mathbf{A}]_{0} \cdot \epsilon_{\mathbf{C}}^{\lambda 1}[\mathbf{A}].$$
(8)

Rearranging (8) by solving for [A] gives

$$[\mathbf{A}] = \frac{\mathbf{\mathcal{Q}}^{\mathbf{\lambda}\mathbf{1}} \cdot \boldsymbol{\epsilon}_{\mathbf{C}}^{\mathbf{\lambda}\mathbf{1}} |\mathbf{A}|_{\mathbf{0}}}{\boldsymbol{\epsilon}_{\mathbf{A}}^{\mathbf{\lambda}\mathbf{1}} \cdot \boldsymbol{\epsilon}_{\mathbf{C}}^{\mathbf{\lambda}\mathbf{1}}}$$
(9)

Equation (9) is the programmed formula. The concentration of reactant B, [B], is determined by the stoichiometric relationship of Equation (1). Note that in Equation (7) the correction to be applied must derive from some independent source. Usually, the most convenient way to do this is to extrapolate the absorbance at $\lambda 2$ to zero time, which mainly is due to [C]. The ratio of the extinction coefficients for C at $\lambda 1$ and $\lambda 2$ is the scale factor necessary to compute the correction. That is,

$$\epsilon_{\rm C}^{\lambda 1}[{\rm C}]_{\rm 0} = \frac{{\cal Q}_{\rm initial}^{\lambda 2} + \epsilon_{\rm C}^{\lambda 1}}{\epsilon_{\rm C}^{\lambda 2}}$$
(10)

Absorbance at $\lambda 2$: following the increase of [C], with

$$\epsilon_{\rm C}^{\lambda 2} > \epsilon_{\rm A}^{\lambda 2}$$
 .

The absorbance at $\lambda 2$ is equal to the sum of absorbances of the individual species present, A and C. Using the formulation of Equation (4), we have the following expression:

$$Q^{\lambda 2} = \epsilon_A^{\lambda 2}[A] + \epsilon_C^{\lambda 2}[C]_T, \qquad (11)$$

with the contribution due to C being much larger. $[C]_T$ is the total amount of product C present.

$$[C]_{T} = [C]_{0} + [C], \qquad (12a)$$

where [C] is the amount of product C which has been produced at the expense of A during the studied portion of the reaction, that is,

$$[C] = [A]_0 - [A].$$
(12b)

Let us rewrite (12b) to obtain

$$[A] = [A]_0 - [C] .$$
 (12c)

Upon substituting (12a) and (12c) in (11) we obtain

$$Q^{\lambda 2} = \epsilon_A^{\lambda 2}[A]_0 - \epsilon_A^{\lambda 2}[C] + \epsilon_C^{\lambda 2}[C]_0 + \epsilon_C^{\lambda 2}[C]$$
(13)

Now let

$$-\frac{\Omega}{\Omega}^{\lambda 2} = \Omega^{\lambda 2} \cdot \epsilon_{\rm C}^{\lambda 2} [{\rm C}]_0 \qquad (14)$$

Then

$$\Theta^{\lambda 2} = \epsilon_{A}^{\lambda 2} [A]_{0} + \left(\epsilon_{C}^{\lambda 2} \cdot \epsilon_{A}^{\lambda 2} \right) \cdot [C] .$$
 (15)

Rearranging (15) by solving for [C] gives

$$[C] = \frac{\Theta^{\lambda_2} \cdot \epsilon_A^{\lambda_2}[A]_0}{\epsilon_C^{\lambda_2} \cdot \epsilon_A^{\lambda_2}}$$
(16)

Equation (16) is the programmed formula and is in the same form as Equation (9). Note that all dependence on the variability of [A] has been removed. The quantity $\epsilon_C^{\lambda 2}[C]_0$ is the measured or extrapolated absorbancy due to the species C at zero time, which is, exactly $\mathbf{Q}_{\text{initial}}^{\lambda 2} \epsilon_A^{\lambda 2}[A]_0$, barring other interferences, the program determines whether to usc Equation (9) or Equation (16) by comparing the relative magnitudes of $\epsilon_A^{\lambda n}$ and $\epsilon_C^{\lambda n}$. If $\epsilon_A^{\lambda n} > \epsilon_C^{\lambda n}$, Equation (9) is used; otherwise, the program chooses Equation (16). The condition $\epsilon_A^{\lambda n} = \epsilon_C^{\lambda n}$ is regarded as an error and the job is terminated.

Derivation of Integrated Rate Laws

First-Order Rate Law: The subprogram has been written for the special case in which the reaction rate is firstorder in reactant B, that is

$$\frac{-d[A]}{dt} = k_1 \cdot [B]$$

in which k_1 is the first-order rate constant. The integrated form of this first-order rate equation is:

$$k_1 t = P \cdot ln\left(\frac{[B]_0}{[B]}\right),$$

where $[B] = \text{concentration of component B at any time in moles/liter, } [B]_0 = \text{initial concentration of component B}$ in moles/liter and P = stoichiometry factor.

Second-Order Rate Law: The subprogram has been written for the special case in which the reaction is first-order in each reactant A and B, that is

$$\frac{d[A]}{dt} = k_2 [A] \cdot [B] ,$$

in which k_2 is the second-order rate constant. The integrated form of this second-order rate equation is

$$k_{2}t = \frac{P}{P \cdot [B]_{0} \cdot [A]_{0}} \ln \frac{[A]_{0} \cdot [B]}{[B]_{0} \cdot [A]}$$

where [A] = concentration of component A at any time, in moles/liter, $[A]_0$ = initial concentration of component A, in moles/liter and similarly for [B] and $[B]_0$.

Third-Order Rate Law: The subprogram has been written for the special case in which the reaction rate is second-order in component A and firstorder in component B, that is

$$\frac{-d[A]}{dt} = k_3 [A]^2 \cdot [B] ,$$

in which k_3 is the third-order rate constant. The integrated form of this third-order rate equation is

$$k_{3}t = \frac{P}{P \cdot [B]_{0} - [A]_{0}} \left(\frac{1}{[A]} - \frac{1}{[A]_{0}} \right) + \frac{P}{(P \cdot [B]_{0} - [A]_{0})^{2}} \ln \frac{[B]_{0}[A]_{0}}{[A]_{0}[B]_{0}}$$

With the symbolic significances as before.

The program user may select any or all of the integrated rate law calculation routines. At least one must be specified in order to obtain printed output. The routines are selected by means of three control characters, L1, L2, and L3, whose control functions are tabulated as follows:

If L1: = 0, do not calculate first-order rate constant; go on to test L2;

> 0, compute and output reduced data and first order rate constants, then test L2.

If L2: = 0, do not calculate second-order rate constants; go on to test L3;

> 0, compute and output reduced data and second-order rate constants, then test L3.

= 0, do not calculate third-order rate constants; go on to termination routine;

If L3:

> 0, compute and output reduced data and third-order rate constants, then go to termination routine.

FORTRAN NOTATION

,

The mathematical symbols used in the previous discussion are represented in the FORTRAN source program by the labels indicated as follows:

Mathematical Symbol	FORTRAN Label	Mathematical Symbol	FORTRAN Label
$[A]_{o}$ $[B]_{o}$ $[C]_{o}$ $[A]$ $[B]$ $[C]$ P $\epsilon_{A}^{\lambda n}$ $\epsilon_{A}^{\lambda n}$	AO BO CO Y(I) BT(I) CT(I) P E3 E4	$ \begin{array}{c} O' \lambda n \\ O' \lambda n \\ t \\ k_1 \\ k_2 \\ k_3 \\ k_1 t \\ k_2 t \\ k_3 t \\ L 1 L 2 L 2 \end{array} $	ABNS(I) BRACK X(I) C1 C2 C3 C1T C2T C3T

INPUT

Card	Column	Format	Label	Description	Card	Column	Format	Label	Description
	5-8	I4	NJOB	Number of experimental data sets to be processed sequentially		21-28	F8.6	BO	Initial concentration of species B
2	5-8	I4	NRUN	Run number, for experi- ment identification		29-36	F8.6	СО	Initial concentration of species C
	9-12	I4	NDP	Number of data points recorded in the experiment		37-44	F8.6	P	Stoichiometry factor (d[A] = Pd[B])
	13-80	<u>17A4</u>	TITLE	Alphanumeric information		45-52	F8.3	E3	Molar extinction coefficient of
3	10	11	Ll	First-order control character		<i>.</i> .	J	• •	species A
	. 11	11	L2	Second-order control character		53-60	F8.3	E4	Molar extinction coefficient of . species C
	12	11	L3	Third-order control character	4	13-20	F8.2	X(I)	Time
	13-20	F8.6	AO	Initial concentration of species A	,	21-28	F8.3	ABNS(I)	Absorbance

5

Figure 1. Data Deck.

Preparc one card 1 for each computer job. One each of cards 2 and 3 are needed for each experimental run. Card 4 is a data point card and one is needed for each absorbance reading. Figure 1 shows a schematic of a deck make-up for a computer job which will process absorbance readings from two experimental runs.

OUTPUT

For each of the integrated reaction rate law calculations that is selected, one table is listed on the printer. The tables are arranged with the following format: line 1 is the "TITLE," reproduced verbatim from the information on data card 2; line 2 is self-explanatory and contains the input constants NRUN, AO, BO, and CO; the column headings for the result table are, left to right, T, X, A, B, C, K*l*, K*l*T. T is time; X is the number of gram-molecular-weights of species B reacted (=[B]₀ - [B]); A, B, and C are the numbers of gram-molecular-weights of species A, B, and C respectively, present in the reaction mixture; K*l*, where l = 1, 2, or 3 depending on the order of the integrated law calculation, is the computed rate constant time product divided by the time datum; K*l*T, with *l* as defined before, is the computed rate constant time product. These results are computed for each absorbance measurement.

SAMPLE INPUT

09420015 7591.0 0.250	
09420014 7115.0 0.253	N
09420013 5874.0 0.271	\searrow
09420012 4562.0 0.292	\searrow
09420011 3231.0 0.319	$\overline{}$
09420010 2777.0 0.330	$\overline{}$
09420009 1810.0 0.360	\sim
09420008 1561.0 0.367	\sim
09420007 1342.0 0.374	$\overline{}$
09420006 731 0 0 405	$\overline{\neg}$
	$\overline{}$
(0797 0000 8,8 U.470	
U742UUC3 .UK1364 .U0793 .0006366.0 22.0 2.2	
U942UU15 NPV-XED3 1M HCLD4 60C	\mathbb{N}
	~
	\sim
09410008 1560.0 0.347	
09410007 1341.0 0.374	~
09410006 731.0 0.404	ノ
09410005 607.0 0.413	2
09410004 380.0 0.428	N
	~
	~`
09410023 .021227 .007930006466.0 22.0 2.2	~
09410015 NPV-XED3 1M HCLC4 SOC	ノ
2	
0 00000000000000000000000000000000000	
* * * * * * * * * * * * * * * * * * *	

•••••••••••••••••••••••••••••••••••••••	
666666666666666666666666666666666666666	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
5 Z 3 4 6 6 7 6 6 16 11 12 13 M 18 11 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 23 34 23 39 29 40 41 42 43 44 45 46 47 48 49 50 11 52 53 54 55 56 51 52 55 60 11 52 53 64 65 66 67 66 68 70 71 72 70 70 76 70 70 70 70 70 70 70 70 70 70 70 70 70	1

SAMPLE OUTPUT

NPV-XEO3 1M HCLO4 60C

RUN NO. 941 A0 = 0.021227 B0 = 0.007930 C0 = 0.009646

т	×	· A	8	С	К2	K2T
13.00	0.000020	0.021105	0.007910	0.000768	0.055964	0.727527
52.00	0.000062	0.020853	0.007868	0.001020	0.036346	2.253483
259.00	0.000256	0.019691	0.007674	0.002182	0.037184	9.630732
380.00	0.000340	0.019186	0.007590	0.002687	0.034304	13.035463
607.00	0.000466	0.018428	0.007464	0.003445	0.030294	18.388367
731.00	0.000542	0.017974	0.007388	0.003899	0.029756	21.751816
1341.00	0.000795	0.016459	0.007135	0.005414	0.025267	33.883621
1560.00	0.000854	0.016105	0.007076	0.005768	0.023679	36.939621
1808.00	0.000913	0.015751	0.007017	0.006122	0.022173	40.089523
2776.00	0.001174	0.014186	0.006756	0.007687	0.019920	55.297745
3230.00	0.001266	0.013630	0.006664	0.008243	0.018963	61.251801
4561.00	0.001527	0.012065	0.006403	0.029808	0.017526	79.937775
5872.00	0.001738	0.010802	C.006192	0.011071	0.016604	97.498169
7114.00	0.001914	0.009741	0.006016	0.012132	0.016086	114.434326
7590.00	0.001973	0.009388	0.005957 /	0.012485	0.015891	120.609833

NPV-XE03 1M HC104 60C

RUN NO.	941 AO =	0.021227 B	0 = 0.007930	0.0 = 0.0006	46	
т	X	Α	В	С.	К3	K3T
13.00	0.000020	0.021105	0.007910	0.000768	2.644715	-34.381302
52.00	0.000062	0.020853	0.007868	0.001020	1.727763	107.121353
259.00	0.000256	0.019691	0.007674	0.002182	1.819657	471.291260
380.00	0.000340	0.019186	C.007590	0.002687	1.701234	646.468994
607.00	0.000466	0.018428	0.007464	0.003445	1.534090	931.193115
731.00	0.000542	0.017974	0.007388	0.003899	1.526687	1116.008301
1341.00	0.000795	0.016459	0.007135	0.005414	1.358525	1821.783203
1560.00	0.000854	0.016105	0.007076	0.005768	1.288133	2009.487305
1808.00	0.000913	0.015751	0.007017	0.006122	1.220830	2207.260986
2776.00	0.001174	0.014186	0.006756	0.007687	1.161908	3225.457031
3230.00	0.001266	0.013630	0.006664	0.008243	1.131174	3653.694580
4561.00	0.001527	0.012065	0.006403	0.009808	1.120879	5112.332031
5872.00	0.001738	0.010802	0.006192	0.011071	1.132806	6651.835937
7114.00	0.001914	0.009741	0.006016	0.012132	1.167276	8304.007812
7590.00	0.001973	0.009388	0.005957	0.012485	1.179163	8949.847656
					•	

.

NPV-XED3 1M HCL04 60C

RUN NO. 942 AO = 0.021364 BO = 0.007930 CO = 0.000636

т	X	Δ	B	С	К2	K2T
8.00	0.000012	0.021293	0.007918	0.000707	0.052526	0.420211
53.00	0.000062	0.020990	0.007868	0.001010	0.035497	2.236298
253.00	0.000239	0.019929	0.007691	0.002071	0.035188	8.902465
381.00	0.000357	0.019222	0.007573	0.002778	0.035790	13.635991
609.00	0.000475	0.018515	0.007455	0.003485	0.030582	18.624161
731.00	0.000559	0.018010	0.007371	0.003990	0.030581	22.354950
1342.00	0.000820	0.016444	0.007110	0.005556	0.026021	34.920303
1561.00	0.000879	0.016091	0.007051	0.005909	0.024337	37.989716
1810.00	0.000938	0.015737	0.006992	0.006263	0.022737	41.153641
2777.00	0.001190	0.014222	0.006740	0.007778	0.020131	55.904068
3231.00	0.001283	0.013667	0.006647	0.008333	0.019145	61.857574
4562.00	0.001510	0.012303	0.006420	0.009697	0.017087	77.952606
5874.00	0.001687	0.011242	0.006243	0.010758	0.015695	92.195145
7115.00	0.001838	0.010333	0.006092	0.011667	0.014880	105.870117
7591.00	0.001864	0.010182	0.006066	0.011818	0.014267	108.300003

NPV-XEO3 1M HCLO4 60C

RUN NO.	942 AO =	0.021364 BO	= 0.007930	CO = 0.0006	36	
т	X	Α	B	c	К3	КЗТ
8.00	0.000012	0.021293	0.007918	0.000707	2.465637	19.725098
63.00	0.000062	0.020990	0.007868	0.001010	1.676618	105.626923
253.00	0.000239	0.019929	0.007691	0.002071	1.706031	431.625977
381.00	0.000357	0.019222	0.007573	0.002778	1.767708	673.496826
609.00	0.000475	0.018515	0.007455	0.003485	1.540086	937.912354
731.00	0.000559	0.018010	0.007371	0.003990	1.562575	1142.243164
1342.00	0.000820	0.016444	0.007110	0.005556	1.395551	1872.829102
1561.00	0.000879	0.016091	0.007051	0.005909	1.320648	2061.532715
1810.00	0.000938	0.015737	0.006992	0.006263	1.248824	2260.373291
2777.00	0.001190	0.014222	0.006740	0.007778	1.169263	3247.043945
3231.00	0.001283	0.013667	0.006647	0.008333	1.137143	3674.109863
4562.00	0.001510	0.012303	0.006420	0.009697	1.077662	4916.292969
5874.00	0.001687	0.011242	0.006243	0.010758	1.043238	6127.980469
7115.00	0.001838	0.010333	0.006092	0.011667	1.039681	7397.335937
7591.00	0.001864	0.010182	0.006066	0.011818	1.005696	7634.242187

9

PROGRAM LISTING

C FR	1 F 060666
0 2.1	DIMENSION $Y(60) \cdot ABNS(60) \cdot BR(60) \cdot X(60) \cdot BT(60) \cdot CT(60) \cdot TITLE(17)$
	INPT = 1
	IIST = 3
	READ (INPT, 2009)NUOB
2009	ENDMAT(42,14)
2009	$\frac{1}{100} = 1 \cdot \frac{1}{100} = $
<i>i</i> , 1	PEAD (INDT, 2010) NOUNANDP, TITLE
2010	EDDMAT/4Y_214,1784)
2010	PEAD(INDT, 2011)(1, 12, 13, AO, BO, CO, P, E3, E4
2011	EODMAT(OV 211, 4E9 (4, 2E9 2))
2011	FURMAT(9X,9J) = 100072100J
<i>.</i> '	A1 = P + D0 + A0
	AZ = AZ/A1
•	AS = AC/RC
	A = 10/100
	$A = E_{2 \pm 10}$
	AC = ESTAC
	A = - E + A = 0
	AO = AO/D
1	A = A 0 P $1 = (E 3 = E 4) 1 4 1 \cdot 8 2 \cdot 2 4 1$
141	$1 \land C = 2$
1-1	CO TO 42
241	$I\Delta M \approx 1$
42	$DO 46 I = 1 \cdot NDP$
72	$READ(INPT, 2012) \times (I) \cdot \Delta BNS(I)$
2012	$FORMAT(12X + FB_2 + FB_3)$
2012	$BRACK = ABNS(I) + CO \neq E4$
-	$GO TO (44.45) \cdot I \Delta M$
44	BR(I) = A9 + (BRACK - A7)*A8
	60 TO 145
45	BR(T) = (BRACK - A6) * A8
145	$Y(T) = A0 - P \times BR(T)$
212	BT(I) = BO - BR(I)
46	$CT(I) = CO + P \approx BR(I)$
10	IF(11)82.48.47
47	WRITE($IIST_{2}2020$)TIT(F
2020	$FORMAT(4H1 - 17\Delta 4)$
2020	$WRTTE(ITST \cdot 2021) NRUN \cdot A0 \cdot B0 \cdot C0$
2021	FORMAT(12HO) RUN NO14.7H AO = .F8.6.7H BO = .F8.6.7H CO = .
	1F8.6)
	$WRITE(LIST \cdot 2022)$
2022	FORMAT(77HO T X A B C
	1 K1 K1T)
	DO 147 I = 1, NDP
	$C1T = P \neq ALOG(BO/BT(I))$
,	$C_1 = C_1 T / X (I)$
147	WRITE(LIST,2023)X(I),BR(I),Y(I),BT(I),CT(I),C1,C1T

PROGRAM LISTING (Continued)

2023	FORMAT(1X, F8.2,6	F12.6)				
48	IF(L2)82,50,49	• *	(
49	WRITE(LIST,2020)	TITLE				
	WRITE(LIST, 2021)	NRUN . AO	•B0•C0			
•	WRITE(LIST + 2024)	- •		•		
2024	FORMAT(77HO T		X	Δ	B	C
	1 K2	K2T)		· ·	5	•
	D0 149 I = 1.00P	11217				
•	$C2T = \Delta 2 \neq \Delta I \cap G(\Delta $	$0 \neq BT(1)$)/(BO*Y(I)))			
	$C_{2} = C_{2}T/X(T)$	0.01.11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · ·	
149	WRITE(LIST.2023)	X(T).BR	(T),Y(T),BT(I) • CT (I) • C2	•C2T	
50	IE(13)82+82+51			17701117702	1021	
51	WRITE(IST - 2020)	TITLE				
	WRITE(IIST, 2021)	NRUN . AO	•B0•C0	,		•
,	WRITE(LIST, 2025)		, ,			
2025	FORMAT(77HO T		x	Δ	B	Ċ
	1 K3	КЗТ)			, -	-
	DO 151 I = $1 \cdot NDP$					
	FIR = ALOG((AO*B)	τ(†))/(BO*Y(I)))			
	C3T = A2/(Y(I))	- A2*A5	- Δ3*FIR		•	
	C3 = C3T / X(T)	, L				
151	WRITE(IST.2023)	X(I).BR	(I).Y(I).BT(I).CT(I).C3	•C3T	
82	CONTINUE		(17,)(17,0)(1,40,(1,40)	,	
02	CALL EXIT		,			
	STOP		,		· .	
	END					