

WANL-TME-1189 June 15, 1965

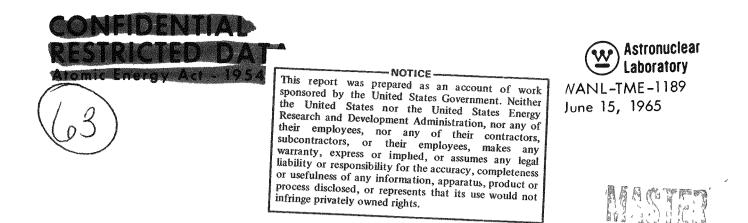
SNP0.0

Westinghouse Astronuclear Laboratory

BETA-BACKSCATTER THICKNESS MEASUREMENTS OF DEPOSITED NIOBIUM CARBIDE ON FLAT GRAPHITE SURFACES

(Title Unclassified)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BETA-BACKSCATTER THICKNESS MEASUREMENTS OF DEPOSITED NIOBIUM CARBIDE ON FLAT GRAPHITE SURFACES

PREPARED BY:

J.R. Steele

Quality Engineering

R. A. Neal, Manager Quality Engineering

APPROVED BY:

A. R. Steele, Fellow Engineer

en er

M. /J. Regenda, Manager WANL Quality Control

Atomic Energy Act - 1954

Classification cancelled (of charges to)
by authority of
IN FORMATION CATEGORY
<u>Contidential Cestricted Data</u> <u>Maryon</u> in 6/15/65 Authorized Classifier Date
Group - Excluded from automatic downgrading and declassification.
SPECIAL PEREVIEW Reviewer Class Date FINIL DETERIMINATION Class: U

DISTRIBUTION OF THIS DOCUMENT UNLIMITED

TABLE OF CONTENTS

¥. *.

		Page
Sum	nary	v
I.	Introduction	. 1
11.	 Equipment Description A. Operating Principle. B. Radioisotope Probe System. I. Beta Source. 2. Detector. 3. Aperature Plates. C. Basic Electronic Unit. 	. 2 . 2
111.	 Equipment Calibration A. General B. Standards. C. Determination of Optimum Test Parameters D. Meter Zero Positioning. E. Calibration Curve Adjustment. F. Calibration Curves. 1. Aperature 0.250 D-O. 2. Aperature 0.062 D-O. 3. Aperature 0.093 D-O. 	4 4 . 7 . 7
Ⅳ.	Coating Thickness Determination A. Range of NbC Thickness	16
٧.	Conclusions	. 17
Арр	 endix A (Supplement to Section II) A. Purpose. B. Pre-Amplification. C. Electronic Digital Counter. D. Voltage Regulation 	Al

i

	ED DATA Act - 1954	100 °	Astronuclear Laboratory
J		<i>but</i>	Page
		4 ⁰ h	
Appendi	x B (Supplement to Section III)		
A.	Calibration Standards		B1
Β.	Aperature Size		
с.	Calibration Curves		
Appendi	x C (Supplement to Section IV)		
Α.	Technique		C1
Β.	Procedure		Cl
с.	Results		C3
Appendi	x D (Supplement to Section V)		
	clusions	,	D1

ii

**

à · · · ·

\$ A

Astronuclear Laboratory

~

4

× *

ILLUSTRATIONS

Figure

Page

^ *

* 1 4

1	Irregular Coating Thickness on ATJ Graphite
2	Uniform Coating on LTC Graphite
3	Aperature Design
4	Graph of Measurable Combinations
5	Alignment Chart
6	Calibration Curves, Techniques 126–1 and –2
7	Calibration Curves, Techniques 127-1 and -2
8	Calibration Curves, Log Scale
9	Calibration Curves, Technique 122–1
10	Calibration Curves, Techniques 128-1, -2, -3, and -4
11	Calibration Curves, Techniques 126-3, -4, -5, and -6
12	Calibration Curves, Techniques 126-3, -4, -5, and -6 (Log Scale) 32
13	Calibration Curves, Technique 126–6
14	Calibration Curves, Technique 126–6 (log x log)
15	Calibration Curves, Technique 126-7
16	Calibration Curves, Technique 130–1
17	Calibration Curves, Technique 130–1 (log x log)
18	Coating Distribution Chart
19	Calibration Curve, Modified Technique 130-1
20	Nb/NbC Correlation Curve
21	Metallography Lab vs. Micro-Derm Coating Correlation 41
B1	Calibration Curve, Technique 524–1
B2	Calibration Curve, Technique 520-1
C1	Correlation Chart
	Correlation Chart

iii

ч 🆗

新神 1

×.

₹_₩

☞ 六樂

講議。。

Table		Page
1	Beta-Backscatter Calibration Standards	5
2	Optimum M-D Operating Parameters	6
3	Technique Data	9
4	Calibration Standards, Techniques 126–1 and –2	10
5	Calibration Standards, Techniques 127–1 and –2	11
6	Calibration Standards, Techniques 122–1, 128–1, –2, –3, and –4	12
7	Calibration Standards, Techniques 126–3, –4, –5, –6, and –7	14
8	Calibration Standards, Techniques 130–1 and 201–1	15
9	NbC Coating Numerical Correlation	18, 19
B 1	Calibration Standards (NbC Coated)	B3
B2	Direct Reading Chart, Technique 524–1	B4
B3	Direct Reading Chart, Technique 520–1	B5
C1	Technique Data	C2
C2	Test Data Numerical Correlation	C4, C5

SUMMARY

A low cost, portable beta-backscattering thickness gage ("Micro-Derm") was purchased from Unit Process Assemblies, Inc., to investigate thickness measurements of flat niobium-carbide coatings over a graphite substrate. Original coating thickness considerations included a range of 1-5 mils. Subsequent considerations have included relatively thin coatings up to 0.0005 inch for both fueled and non-fueled element exterior surfaces. Preliminary performance data is described in the thickness range of 1 to 5 mil niobium carbide. Within the scope of this work, these data indicate that Micro-Derm beta-backscattering measurements can be achieved within ten percent of the results obtained by metallographic direct measurements.

Subsequent to the initial investigation of the Micro-Derm as an inspection tool for measuring niobium-carbide coating thickness, the basic electronic unit was modified by the addition of a preamplifier, a voltage regulator, and an electronic counter. These additions to the original equipment strengthened the output of the detector system and provided for a digital read-out of beta-backscatter count. The purpose for these modifications was to increase the reliability of the coating thickness determinations.

I. INTRODUCTION

At the start of this investigation, beta-backscattering equipment was available for measuring the niobium-carbide thickness in the channels of support blocks and elements. No facilities were available for accurately and nondestructively measuring the exterior flat surface coating thickness. In lieu of a non-destructive test, qualifying specimens representative of each furnace run were sectioned, and the coating thickness measured in filar units at 200X magnification. The acceptance standards for exterior flat surfaces on support blocks included 1.5 mils minimum at the nozzle end, graduating to 2 mils minimum at the element-junction end, with a maximum thickness of 5 mils anywhere.

*

The coating interface of niobium carbide to ATJ graphite is normally irregular, as shown in the sketch in Figure 1. This irregularity causes difficulty in making precise optical measurements. It is assumed that beta-back-reflection will tend to average the diffusion of niobium carbide into the graphite. It has been observed that the coating interface with LTV grade graphite is considerably more regular, as shown in the photomicrograph, Figure 2.

This investigation describes the Micro-Derm equipment, calibration procedures, and compares Micro-Derm thickness results with those produced by optical means.

II. EQUIPMENT DESCRIPTION

A. Operating Principle

The Micro-Derm thickness gage employs the principle of beta-radiation back-scattering as a means of determining various thicknesses. This gage consists of a probe system connected to an electronic system for interpretation and presentation of data.

B. Radioisotope Probe System

The probe system is basically a metal stand with an integral beta-ray source and beta-ray detector. The top of the stand is milled flat to

1

n. N

e i

hold the specimens during thickness measurements. Below and supporting the specimens are located the various size aperature plates, which confine the beta-ray impingement. Directly below the aperature opening is the Strontium-90 isotope sealed in the end of a metal tube. The source to specimen distance is variable in 1/32 inch increments. Surrounding the tube source is the back-reflection detector.

1. Beta Source

The Strontium-90 source is rated as having an activity of 1.0 microcuries. No beta absorption curves have been made with this isotope to determine the energy spectrum of the source.

2. Detector

The detector is a Geiger-Muller Tube which has a 0.0003-inch mica window. In operation, the gas contained in the tube ionizes when bombarded with beta particles. During ionization, an electrical charge is produced in proportion to the amount of radiation.

3. Aperature Plates

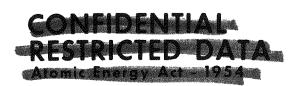
The aperature plates supplied with the instrument include:

Circular Aperature (Diameter, Inch)		Dome Height (Inches)
0.250	×	0.0
0.156	×	0.1 2 5
0.125	×	0.09375
0.093	×	0.0
0.062	×	0.0
0.047	×	0.0

Slit Aperature

Length	Width	Dome Height
. 156"	.045"	. 1625"
. 125"	. 030"	. 125"
. 125"	. 030"	0.0

Special aperature plates may be purchased to suit the size of the specimen. Typical aperature designs are shown in Figure 3.


C. Basic Electronic Unit

The Micro-Derm basic electronic unit counts the backscattered radiation received as electrical impulses from the Geiger-Muller Tube and displays them as a direct reading on the scale of a precision meter. The scale used during the early part of this program is linear (0-100 units). It is intended to be used for calibration; however, it was used for this as well as reading coating thickness of unknowns.

The M-D unit contains a precision timer (0.001 minute accuracy) that may be pre-set to read minutes and one-hundredths of minutes.

A normal-reverse switch is installed to permit reading of coatings which are either higher or lower in atomic number than the base material.

A rate switch is mounted for convenience to speed or slow up the recording of electrical impulses from the Geiger-Muller Tube. Six settings are available. The Number 1 setting is for fast recording. Number 2 will read half as fast as Number 1. Each setting will read exactly one-half as fast as the next lowest setting.

III. EQUIPMENT CALIBRATION

A. General

The beta-backscattering principle permits the measurement of thin layers of one substance on another base material, providing that there is significant difference in atomic number or density between the two materials (regardless of whether they are metallic or non-metallic, magnetic or non-magnetic). Referring to the graph in Figure 4, niobium and graphite have atomic numbers of 6 and 41, respectively. With the wide spread in atomic numbers, it is considered practical to use betabackscattering methods for thickness determinations.

B. Standards

Niobium foil was obtained from Kawecki Chemical Company. To supplement the range of standards used in this investigation, a number of niobium-carbide coated graphite specimens were re-checked by optical methods and used throughout this investigation. The range of standards is shown in Table 1.

C. Determination of Optimum Test Parameters

The determination of optimum source distance, aperature size, rate switch position, and radiation count time are set forth in the Micro-Derm Operating Instructions. These parameters were investigated for the three aperature sizes: 0.062", 0.093", and 0.250". These comparative data are shown in Table 2.

The criteria for selecting optimum operating conditions are the lowest values in columns 11 and 12 of Table 2 for any given aperature size. The optimum time (T_0) shown in column 11 can be calculated using the formula:

$$T_o = \frac{KB^2}{2^{R-1} \times N}$$

where: K = a constant depending on statistical accuracy desired (K = 5000) $B = figure of merit: B = \frac{100}{100 - Div. Reading}$ R = rate switch position N = 200 (20 + 1000 - check point dial reading)20

WANL-TME-1189

TABLE 1

Mat Base	erial Coating	Niobium Thickness (Inches)	NbC (1) Nb x 1.235 (Inches)	NbC (2) Coating (Inches)	NbC (3) (Modified) (Inches)
Graphite	Niobium Foil	.00075	. 000925		. 00133
Graphite	Niobium Foi!	.0013	.00161	ann ann ann ann ann ann	. 00201
Graphite	Niobium Foil	.0022	.00272	anan daga kaka daga teka daga	.00312
Graphite	Niobium Foil	.0032	. 00395		. 00435
Graphite	Niobium Foil	.0041	. 00507		. 00548
Graphite	Niobium Foil	.0052	.00642	gan ani ilan kan kan man	. 00683
Graphite	Niobium Foil	.0064	. 0079	an an an an an an	. 0083
Graphite	Niobium Foil	.0072	. 0089	unge samt data samt kalle silver	
Graphite	NbC	ang ang ang kata taka taka	~ ~ ~ ~ ~	.0004	
Graphite	NbC		an an an an an an	.0005	
Graphite	NbC			.00055	
Graphite	NbC			.0007	
Graphite	NbC			.00124	
Graphite	NbC	an an at an an		.002	. 0024

BETA-BACKSCATTER CALIBRATION STANDARDS

(1) Compound Thickness Niobium Thickness

 $\frac{\text{Metal Density}}{\text{Compound Density}} \times \frac{\text{Molecular Compound, Wt.}}{\text{Molecular Wt., Metal}} = \frac{8.5}{7.8} \times \frac{104.9}{92.9} = 1.235$

(2) Metallurgical Lab Thickness

(3) Refer to Figure 20

5

	000000000	1.000000
	Sec. 18.	1
1000	. distances	Construction of
2000	ALCONG NO.	1000
Sec. 25	- 66 - 584	17 55336
1000		15 S.
100	A State	
Cilles.	19 A	- Mind Marian
- ###	150000	Surges
	Storesty.	1007
1000	and the second s	
3332	100000	No.
100	28 229	Courses the
332	100	
1000		1000000
1000	10000	10000000
200		a state of the second
	265365	S 1338
2000	Contractor in	10. NO.
1000	1000000	States
20034	5.00	10000000
	1000000	秋秋秋
	Contraction of the local division of the loc	
100	301 000	Conversion .
	Station -	1222
	approximation and the	Sectores.
	1 60000	and the second
2.3.	1	grade and
		South Cores
100 E		All contracted
		12000000
		1000
6.2611	Section 1	10000
and and		1998
	al Based	-
S. 3	- Brites	COLUMN TWO
1000	100.0000	
	States and	· • • • • • • • • • • • • • • • • • • •
1000	100000	ASSA
1000		1
122	Sector Sector	
302	Constant of the	
189	Ser. Str.	1
	and the second	

DETERMINATION OF MEASUREMENT-TIME AND RATE-SWITCH POSITION																	
1		2	ος c	4	5	6 S	7	Opt	imum T Dete	'ime (T _c erminat) and ion	8			witch I termina		J
Combin	nation	Source Type	urce Numb	Aperature W × L × H Dia. × H 0 Set = 980	D _{sw}	Source Pos 20 - H + D _{sw}	Tube Position	8 Di∨. Rdg.	9 Chkpt Dial Rdg.	10 Rate Pos. Used	11 T _o Min.	12 B	13 Zero Set Dial Rdg.	14 Elapsed	15 Actual Chosen	16 F = (15) (14)	- Switch Position
Calib 062 [0-0	Sr ⁹⁰	880	.062 D <i>-</i> O	2	22	3	48	640	2	1.35 1.168		730	1.91	1.168	.612	
Calib 062 [-0	Sr ⁹⁰	880	.062 D <i>-</i> O	3	23	3	54	457	2	1.30 1.092		660	1.38	1.092	.793	
Calib 062 [0-0	Sr ⁹⁰	880	.062 D <i>-</i> O	4	24	3	61	418	2	1.63 1.52	2.57 2.56	540	1.17	1.52	1.30	
Calib 062 [00	5r ⁹⁰	880	.062 D <i>-</i> O	1	21	3	51	875	1	2.42	2.04					
				0 Set - 981										and an			
Calib 093 [0-0	Sr ⁹⁰	880	.093 D-O	2	22	3	32	339	2	.54	1.46	863	. 25	1.0	4.0	
Calib 093 [0-0	Sr ⁹⁰	880	.093 D-O	3	23	3	38.5	179	2	. 57	1.65	810	. 34	1.0	2.94	
Calib 093 [0-0	Sr ⁹⁰	880	.093 D <i>-</i> O	4	24	3	46.5	179	2	.70	1.87					
Calib 093	0-0	Sr ⁹⁰	880	.093 D <i>-</i> O	1	21	3	35.0	850	2	1.30	1.54					
				0 Set - 981													
Calib . 250	D-0	Sr ⁹⁰	880	. 250 D-O	2	22	3	23.5	688	3	.73	1.31					T
Calib . 250	<u>D-0</u>	Sr ⁹⁰	880	. 250 D-O	3	23	3	22.0	508	3	. 44	1.28	918	. 08	1.0	12.5	Ι
Calib . 250	D-0	Sr ⁹⁰	880	. 250 D-O	4	24	3	23.0	370	3	. 44	1.30	910	. 095	1.0	10.5	T
Calib . 250	D-O	Sr ⁹⁰	880	. 250 D <i>-</i> O	5	25	3	25.0	374	3	. 49	1.34	1			İ	
M. D. Seri	9019 <u>0000000000000000000000000000000000</u>		A.c.		L	B	<u> 3</u>						L	e	<u></u>	1-25-	

Astronuclear Laboratory

-

. きの

Ż · 考察

12.4 w. 2

御御

. er p

The figure of merit (B) and optimum time (T_o) may be taken from the alignment chart shown in Figure 5. These optimum conditions do not necessarily represent the actual test parameters that will be used, but serve as a basic guide. In these determinations, the dial position was adjusted to read exactly 100 on the linear scale, using the thickest niobium foil. This adjustment is noted in column 9 as the check point dial reading. The base material, graphite, is then read and noted in column 8.

The rate position switch is for convenience and is actually an electronic control which simply permits the meter needle to move upward half as fast (for a given setup) when switched to the next higher position.

D. Meter Zero Positioning

In all the data presented, the linear dial was adjusted to read zero for the time cycle, using bare graphite over the aperature. Should current fluctuations cause a drift in the zero point after the completion of a coating reading, the reverse-normal switch can be flipped to the reverse position momentarily; and the zero reading is thrown up scale for reference. If the up scale 0 reading does not correspond to the original up scale 0 reading, this amount of deviation may be subtracted (deviation is positive), or added (deviation is negative) to the meter reading. The 0 set dial will correct for drift in the up scale 0 reading without repeating the beta-scan cycle.

E. Calibration Curve Adjustment

Normally, the Micro-Derm has good reproducibility. However, to avoid making new calibration curves due to voltage fluctuations and resulting meter drift, it was found that all points could be brought back on the original curves by simply adjusting the check point dial.

F. Calibration Curves

Calibration curves were plotted for the three flat aperatures in an effort to determine the effect of time on reproducibility and the range of coating thickness that will appear in a linear curve.

1. Aperature 0.250 D-O

Initially, two curves were plotted from data (Table 4) exposing the calibration standards to 0.5 minute and 1.0 minute beta scan. The techniques may be noted in Table 3 as Techniques 126-1 and 126-2 (1.0 minute). No effort was made to bring the two curves (Figure 6) together. It may be noted that the linear portions of the curves are from: 0.4-1.2 mils, 1.24-3.5 mils (extrapolated), and 3.5-5.0 mils. Each point on the curve was plotted from an average of 10 consecutive readings on each standard used. Little difference is noted in the general shape of these two curves.

To obtain a better comparison of the effect of scan time on the linearity of the curve, the two curves at 0.5 minute and 1.0 minute were brought together. To do this, Techniques 127-1 and -2 (Table 3) were used to produce the data in Table 5. These data were then plotted in Figure 7. Very little difference exists in these two curves.

The above four sets of data are plotted on log-log paper (Figure 8).

2. Aperature 0.062 D-O

This is the smallest diameter aperature initially received with the Micro-Derm. From the optimum parameters in Table 2, it was expected that a time cycle greater than one minute would be needed for any degree of accuracy. The first calibration curve (Figure 9) was made, using 1.8 minutes in Technique 122-1 (Table 3). The various points (Table 6) deviated from the curve to a greater degree than when using the 0.250 aperature.

To find the full effect of time on the calibration curves, the scan period was varied from 1.0-2.0 minutes, as shown in Techniques 128-1, -2, -3, and -4 (Figure 3). The calibration data is shown in Table 6. The representative curves are shown in Figure 10. It was not concluded if increased time improved the accuracy since single readings were made in Techniques 128-3 and -4. It is to be noted that the Micro-Derm settings were identical for Techniques 128-3 and -4 except for the rate switch and time.

Atomic Energy Act 1954

1 1	2	3	4	5	6	7	8	9	10		12
Technique	Date	Source	Source	Aperature	Source	Dsw	Tube	Chkpt	O-Set	Rate	TO
Number		Type	Number	Dia. x H	Position	500	Pos.	Dial	Dial	Pos.	Min.
126-1	1-26-65	Sr ⁹⁰	880	0.250 D-O	24	4	3	739	955	3	0.50
126-2	1-26-65	Sr90	880	0.250 D-O	24	4	3	739	930	3	1.00
127-1	1-27-65	Sr90	880	0.250 D-O	24	4	3	674	926	2	0.50
127-2	1-27-65	Sr90	880	0.250 D-O	24	4	3	649	926	3	1.00
122-1	1-22-65	Sr90	880	0.062 D-O	22	2	3	310	638		1.80
128-1	1-28-65	Sr90	880	0.062 D-O	23	3	3	960	853	2	1.00
128-2	1-28-65	Sr90	880	0.062 D-O	23	3	3	728	797	2	1.50
128-3	1-28-65	Sr90	880	0.062 D-O	22	2	3	601	818		1.00
128-4	1-28-65	Sr90	880	0.062 D-O	22	2	3	601	818	2	2.00
126-3	1-26-65	Sr90	880	0.093 D-O	22	2	3	848	914	2	0.75
126-4	1-26-65	Sr90	880	0.093 D-O	22	2	3	440	893	2	1.00
126-5	1-26-65	Sr90	880	0.093 D-O	22	2	3	740	918	3	1.25
126-6	1-26-65	Sr90	880	0.093 D-O	22	2	3	939	920	3	1.25
126-7	1-26-65	Sr90	880	0.093 D-O	22	2	3	656	890	2	1.00
130-1	1-30-65	Sr90	880	0.093 D-O	22	2	3	647	902	2	1.00
201-1	2-1-65	Sr90	880	0.093 D-O	22	2	3	647	904	2	1.00

TABLE 3 MICRO-DERM OPERATION TECHNIQUES

\$

Astronuclear Laboratory

3. pr

1

1

1

WANL-TME-1189

-

%

ting V

TABLE 4 CALIBRATION STANDARDS

WANL-TME-1189

STAN	DARD BASE	MATERIAL	PO3	PO3	PO3	PO3	Foil	ATJ	Foil	PO3	Foil	Foil	Foil	Foil	Foil
stan	DARD THIC	KNESS (NbC)	.0004	.0005	.00055	.0007	. 00093	.00124	.00161	.002	.00272	. 00395	.00507	.00542	.0079
	↓ ₽														
Date	Technique	M-D Reading							1						
1-26	126-1	1	19.0			23.5	28.0	33.0		38.0	43.5	48.5	50.5		}
	(.5 Min.)	2	31 10			23.75	11 H	32.5			43.0	47.5	50.0		
		3	ни пи			23.0	27.75	33.0		37.5	43.5	48.5	11 11		
	0.25	4 5				24.0	28.0				42.0 43.0	48.0			
	0.25 Aperature	5				FR 82				37.0	43.0	11 11			
1	Aperdiore	7	<u>и</u> и			11-11	27.5	11 11		37.5	ни	вп	44 44		
		8				пи	28.0			38.0	42.5	0.0	£1 11		
		9	19.5			23.75	27.5	32.5		37.5	43.0	49.0	50.5		
		10	19.0			11-11	28.0	33.0		38.0	42.5	48.0	11.14		
		Average	19 05			23.775	27.85	32.9	1	37.65	42.9	48.15	50.15		
		$\frac{A_{\vee g}}{4}$	4.70			5.94	6.975	8. 23		9.42	10.72	12.03	12.52		
1-25	126-2	1	38.0			49.5	57.0	68.0	1	75.5	83.0	95.0	98.5		
	(1.0 Min.)	2	39.5			11 11	13 41	67.0		76.0	83.5	94.5	98.0		
		3	11-11			49.0	11 13	67.5		н н	11 11	95.0	99.0		
	0.05	4	ин ин				57.25	67.0		77.0	84.5	94.0	98.0		
	0 25	5				48.5	57.0	68.0		76.0	84.0	95.0			
	Aperature	6 -	38.5			49.5 49.25	58.0 56.5	67.0 67.5		u u		95.5			
		8	39.0			49.0	58.0	68.0		11 11	11 11	90.0 11 II	11 11		
		9				49.75	1. 11				п н	94.5			
		10	38.5			48.5	11-11	u n		ни	83.5	95.0	0.0		
	1	Average	38.95			49.1	57.4	67.6	1	76.05	83.8	94.9	98.15		
		$\frac{A \lor g}{4}$	9 73			12.25	14.34	16.85		19.0	20.95	23.7	24.5		

4

19 19

Astronuclear Laboratory

. - 18

STAN	DARD BASE	MATERIAL	PO3	PO3	PO3	PO3	Foil	ATJ	Foil	PO3	Foil	Foil	Foil	Foil	Foil
STAN	IDARD THICK	(NESS (NbC)	. 0004	.0005	.00055	. 0007	. 00093	.00124	.00161	.002	.00272	.00395	.00507	.00642	. 0079
Date	Technique	M-D Reading													
1-27	127-1 (. 5 Min.) 0. 25	1 2 3 4	34.0 34.0 33.0	37.5 "" 36.5		43.0 "" 42.5	51.0 50.5	61.0 60.5 59.5		67.0 67.0 67.5	75.5 74.5 75.0	83.0 84.0 86.0 85.0	88.0 "" 87.5		
	Aperature	Average	33.7	37.1		42.8	50.7	60.3		67.2	75.0	84.5	87.83	·····	
1 -27	12 ⁻ -2 (1.0 Min.) 0.25 Aperature	Avg 4 1 2 3 Average <u>Avg</u> 4	8. 42 33. 0 33. 5 33. 0 33. 3 8. 33	9.275 37.0 """ 37.0 9.25		10.7 42.0 43.5 42.5 42.7 10.65	12.7 50.0 """ 50.0 12.5	15.1 59.0 "" 59.0 14.75		16.75 66.0 67.5 68.0 67.2 16.8	18.7 75.0 74.0 74.8 18.7	21.1 85.0 84.0 "" 84.4 21.1	21.95 87.0 87.5 88.0 87.5 21.83		

TABLE 5 CALIBRATION STANDARDS

3

5.

2

WANL-TME-1189

ligo,

]

10000		
	00000000000	AREA
- 3336	AND D	
1000	AM	1 3333
1000		
1000		A 1039
533	8 (M) 8	
-	19996	6.028
-	COMP.	1000
1000		A
1000	3633	200
	and the second second	A 600
200	SISTER O	
	20925	
10.00	307	0300000
1000	and	C (23)
100	6	19192
	000000000	10000
2.68	2000	100000000000000000000000000000000000000
1000	ALC: N	10000
26,28		6.200A
1 236	a 2000 a	100
-	. 1998: 8	COLUMN TWO IS NOT
	1000	1 20 30
183		
	STREET, ST	605200090
2008	1 2 2 2 2 2	
1000		
4855	10000000	COLUMN ST
196		188 s
1000		60052853
1000	1920	1000
1866	9982	SUSSAU
	(HEREIGHTERE)	1000
602		51-350
- 668		
200	STORES OF	
1993	60-178S	47090000
333	THE REAL	
	ALC: NO	- ···
	1000000	

10

蓉

												1			
Date		M-D Reading								1	_	1	Ĩ		
1-22	1	1	23.5	28.0	27.5		43.5	56.0	65.5	64.0	81.0	94.0			
	(1.8 Min.)	2	22.0		28.0	33.0	43.0	31 13 31 11	64.5	58.0	79.C	6 16		İ	
	0(2	3	24.5	26.0	29.5		1	11 11	63.4	67.5	81.0	1 11 11			
	.062	4	23.0	28.5	30.0	34.0	42.0	56.0	64.0	66.8	79.0 80.0	94.0	↓		ļ
	Aperature	Average	23.2		20.75	34.0	42.0	50.0	04.3	00.0	60.0	74.0	i		<u> </u>
		$\frac{Avg}{4}$	5.8	6.93	7.18	8.5	10.7	14.C	10.1	16.7	20.0	23.5			
1-28	128-1]	27.5	30.5		34.75	43.5	52.0	† 	63.0	71.5	87.0	91.0		1
	(1.0 Min.)	2	27.5	и и		35.0	42.0	54.5		63.5	71.0	85.0	90.0		
		3	27.5	11 II		11 11	43.0	54.0		62.5	72.0	87.0	89.5		
	.062	4					42.0	53.0		j 64.0		85.0	91.0		
	Aperature	A∨erag e	27.5	30.5		34.9	42.6	53.5		63.3	71.5	85.0	90.5		1
		$\frac{Avg}{4}$	6,88	7.63		8.72	10.65	13.33		15.8	17.85	21.5	22.6		
1-28	128-2	1	30.5	34.0	<u>†</u>	40.0	44.5	57.5	1	54.5	71.0	84	1 90.0		1
	(1.5 Min.)	2	29.5	35.0		39.0	46.0	57.0		64.0	72.	85	89.0		
		3	31.0	33.5		38.0	16 11			64.0	73.	84.5	89.5		
	.062	4	31.0	34.5			48.0	56.0				84			1
	Aperature	5						56.5							
		Average	30.6	34.2		39.0	46.2	56.75		64.0	72.	84	89.5		
		$\frac{Avg}{4}$	7.67	8.55		9.75	11.5	14.2		16.0	18.	21	22.4		
1 -28	128-3 (1.0 Min.)	1	29.5	31.5	†	38.5	45.0	56.0	1	66.0	72.0	84.5	88.0	an an an an an an an an an an an an an a	1
	.0o2 Aper.	reading 4	7.48	7,88	+	9.62	11.25	14.0	+	16.5	18.0	21.1	22.0		1
1-28	128-4	1	30.0	32.0	1	39.0	46.5	55.0		63.5	72.0	85.0	89.5		1
	(2.0 Min.)	2								L	72.0	85.5	89.0		
	.062 Aper.	reading 4	7.5	8.0		9.75	11.6	13.75		15.9	18.0	21.2	22.4		1

TABLE 6 CALIBRATION STANDARDS

Foil

.00093

ATJ

.00124

Foil

PO3

.00161 | .002

Foil

PO3

.0004

STANDARD BASE MATERIAL

STANDARD THICKNESS (NbC)

PO3

.0005

PO3

.00055

PO3

.0007

WANL-TME-1189

.

Foil

Foil

.00642 .0079

Fcir

Foil

.00272 .00395 .00507

۴ ج

*

The same typical curves were produced with the 0.062" diameter aperature as with the 0.250" diameter aperature.

3. Aperature 0.093 D-O

With this medium-size aperature, three curves were drawn to show any effect of variation in time. The techniques are shown in Table 3 as 126-3, -4, and -5. The Micro-Derm readings are shown in Table 7 for the time intervals of 0.75, 1.0, and 1.25 minutes. The three curves are shown in Figure 11. The one-minute curve represented as Technique 126-4 appears the most accurate. It can be noted in Figure 11 that the values are in inches that each Micro-Derm scale division represents for the given linear portion of the curve. There is some advantage in increasing the slope of the curve since the error from each Micro-Derm scale division becomes less. These same data are plotted on log-log scale in Figure 12.

Since Technique 126-5 appeared to extend the low range curve from 1.24 mils to 1.42 mils following a linear curve, it was decided to repeat this and increase the slope of the curve at the same time, using Technique 126-6 (Table 3). Single readings (Table 7) were used to plot the curve (Figure 13). The upper limit of the low-range linear curve was apparently extended to 1.46 mils, where it intersects the projection from the middle-range linear curve. The data from Technique 126-6 are also plotted on log-log scales (Figure 14), which correspond closely to Technique 126-3.

Technique 126-7 (Table 3) was designed to increase the slope of the curves and to bring the low and medium-range curves together (as shown in Curve 126-4, Figure 12). This curve, however, shown in Figure 15, is similar to Figure 13 without a distinct intersection point.

Technique 130-1 is similar to Technique 126-7 and is used for computing actual niobium-coating thickness in the following section. The data for this technique (130-1) is shown in Table 8. Representative calibration curves are shown in Figures 16 and 17.

20000000000	A00086		
	AT SERVICE AND		
	1 233240		
	1 40000 C		
200006			
Children .	100000		
COLUMN TO A	1.000		
A 833	10.2053252		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Contract (1)		
100000	CONTRACTOR OF A		
A	and extended as		
	Aug. 198		
- AST - 556	100000		
10000	Art Line Line		
4565555553	12723		
100000000000000000000000000000000000000	1997 - 28		
	X		
AND VALUE	A 100 10		
100000000	1000000000		
_ 65386355			
6.000 B (0.000 B)	and the second s		
100000	1000		
1000	- 26日本 8		
- 600 million	940.00.2		
10000000000	10000		
COLUMN STATE	Statistics.		
and a second second	100000055		
10000000	1000000-3		
A 1000	and the second second		
1.1070-00	1000008		
- 6.000	10000000		
2005000 00	10000000		
	2000001		
100000000	1000000		
100050000000000000000000000000000000000	COLUMN TWO IS NOT		
	10000-000		
100000000000000000000000000000000000000	- Siz - 82		
Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.			
	K SHORE THE A		
web no la	and the second se		
1 436 355 12	8 12005397 - La		
2000.0000.000	1000000000		
And the owned	5 SY 1, 353		
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contraction of the		
- accesse - 3	SUSTABLE IN		
100000000			
	NS 41 1 99 0		
1	9. see .	CONSTRUCTION OF	10.00
老師和 200			
A			
Н	B		
d	12		
Ø	Þ		
þ	D		
þ	35		
Q			
Q))) p==		
D'A			
D			
DA			
D R			
PA			
	P		
	D		
DAT			
Ú VO			
Ý ĽVO			
	RESTRICTED		

\$

¥

w.

4

*

 $\tau_{\rm b}$

`si 8.0

\$\$ \$

WANL-TME-1189 PO3 PO3 PO3 PO3 ATJ Foil PO3 Foil Foil Foil Foil Foil STANDARD BASE MATERIAL .0005 .00055 .0007 .00124 .00161 .002 00272 00395 00507 00642 .0079 STANDARD THICKNESS (NbC) 0004 .00093 CONVERTED THICKNESS(NbC) Date Technique | M-D Readings 32.0 1-26 126-3 40.5 50 58.5 67.0 74.0 85.0 89.0 34 41.5 11 11 (.75 Min.) 2 49 58.0 66.0 84.5 88.0 3 33.5 43.5 н н 59.5 н н 85.5 90.0 66.0 34 11 11 .093 4 41.0 50 59.0 66.0 86.0 90.0 0 n 11 11 5 32.5 41.0 67.5 89.5 Aperature 49.5 58.5 33.2 41.4 49.7 48.7 74.0 85.2 89.3 Average 36.5 Avg 8.3 10.35 12.42 14.7 16.6 18.5 21.3 22.3 4 27.0 1-26 126-4 1 29.5 34.0 41.0 48.0 53.5 61.0 71.0 74.0 49.0 (1.0 Min.) 2 27.5 35.0 39.5 55.0 61.5 71.5 73.0 26.5 .093 3 33.5 48.0 54.5 60.5 71.5 73.5 40.5 27.0 29.5 34.2 40.3 48.3 54.3 61.0 71.3 73.5 Aperature Average Avg 6.75 7.38 8.54 12.1 13.52 15.23 17.8 18.37 10.08 4 1-26 23.5 54.5 62.0 126-5 1 26.0 30.0 35.0 41.0 49.0 65.0 11 11 н н 11 11 (1.25Min.) 2 23.0 26.0 29.5 35.5 54.0 66.0 11 H 0 0 н н 3 24.0 .093 27.0 30.0 35.0 53.5 65.0 23.5 29.8 26.3 35.2 41.0 49.0 54.0 62.0 65.3 Aperature Average Avg 5.88 6.57 7.44 8.78 10.25 12.22 13.5 15.5 16.3 4 34.0 77 1 42.0 49.0 57.5 69.5 88.0 92.0 1-26 126-6 37.0 (1,25Min.) reading/4 8.5 9.25 10.5 12.23 14.25 17.35 19.25 22.0 23.0 .093 Aper. 1-26 126-7 32.5 35.0 49.25 73.5 86.0 90.0 41.5 57.5 67.5 (1.0 Min.) 10.4 16.85 18.35 21.45 .093 Aper. reading /4 8.13 9.0 12.3 14.35 22.5

TABLE 7 CALIBRATION STANDARDS Foil

子、劉

Ę

\$

IŞ

Astronuclear Laboratory

NE ST

參家

÷

ESTRICIED DAT

5

4.

r~

tak.

2

\$

					С	ALIBRAT	'ION STA	NDARDS	•						
STAN	DARD BASE	MATERIAL	PO3	PO3	PO3	PO3	Foil	ATJ	Foil	PO3	Foil	Foil	Foil	Foil	Foil
STAN		(NESS (NbC)	.0004	. 0005	.00055	.0007	.00093	.00124	.00161	.002	. 00 27 2	. 00395	. 00507	. 00642	. 0079
CON	VERTED THIC	KNESS (NbC)					.00133	.00164	. 00201	. 0024	. 00312	. 00435	.00548	.00683	. 0083
Date	Technique	M-D Reading													
1-30	130-1	1 2 3 4	32.5 31 31 31.5	35 " 35.5	35.5 35 36 36	39.5 39.0 40.0 "	47.5 46.5 47 47 47	58.0 56 56 58 57	62.0 61 62.5 61	65 65 65.5 64	71.5 73.5 73 72.5 70.3	83.5 83 84.5 82	86 86 85.5 87	90 90 90 91	90
		Average Avg 4	31.5 7.87	35.1 8.775	35.6 8.9	39.6 9.9	4/	14.25	61.8 15.45	54.8 16.2	17.54	83.3 20.8	86.2 21.5	90.3 22.6	
2-1	201-1	1 2 3 4	32.0 34.0 32.5 33.0 32.8	35 36.5 37 37.5 36.8	37.5 36.5 37.0 38.0 37.2	41.5 43.0 42.0 42.2	49.5 50.0 50.0 49.5 49.75	60.5 61.0 60.5 65.5 60.75	66.0 66.5 63.0 67.5 65.3	68.0 68.5 68 74.0 68.0	72.5 73.0 75.0 74.0 73.8	86.0 86.0 80.0	90.0 88 89 89	93 94 94.5 93 93.7	
		Average Avg 4	8.22	9.12	9.32	42. 2 10. 55	12.45	15.2	16.3	17.0	18.4	21.5	22.2	23.42	
2-2	202-1	1 2 3	31	34.5	35.7	39.5	47 48	57	63 62	66	-2 -1 -2	83	88	91	
		Average	31	34.5	35.7	39.5	47.5	57	52.5	65	71.7	83	88	91	
		$\frac{A \lor g}{4}$	7.75	8.63	8.83	9.875	11.87	14.25	15.6	16.5	17.93	20.72	22	22.72	
2-3	202-1	1 2 3	31	34.5	36	39.5	49 47 48	57.5 57 58.0	62 63 62	55					
		Average	31	34.5	36	39.5	48	57.5	62.3	66					1
		$\frac{Avg}{4}$	7.75	8.63	9.0	9.875	12.0	14.35	15.58	16.5					

TABLE 8 CALIBRATION STANDARDS WANL-TME-1189

_

A¥r ↓

¢.

(際

7 C

λų.

Astronuclear Laboratory

ŝ,

Since there were no major advantages in the use of one aperature size over another, except time, it was decided to read actual coating thicknesses using the medium-size (0.093 diameter) aperature described in Technique 130-1.

IV. COATING THICKNESS DETERMINATION

A. Range of NbC Thickness

A number of support blocks were selected from the Materials Department, Building 9, which had previously been sectioned and the coating thickness determined in the Metallography Lab. The method used is to section and polish the surface transverse to the coated surface and measure the thickness at 200X magnification in filar units. The filar units are multiplied by a factor (0.00177) to give thickness in mils. Blocks with a coating thickness range of 1.9-4.6 mils were selected for reading with the Micro-Derm.

B. Procedure


Using Technique 130-1 and the resulting curve previously described, 49 determinations were made on the Micro-Derm. Their distribution is shown in Figure 18, comparing Metallography Lab results with the Micro-Derm. As can be noted, nearly all points over the full range were to the left of the ideal correlation curve. By drawing a line through the average distribution, it was noted that the Micro-Derm was reading 0.0004" low over the full range.

C. Results

A new calibration curve was prepared (Figure 19) using values for calibration standards that were increased by 0.0004 (NbC) and a factor for Nb.

Relating the new calibration standard values (Table 8) of NbC with the thickness of the niobium foil, a correlation chart was prepared (Figure 20.) It is noted that the NbC/Nb ratio is not a uniform factor of 1.235, but graduates from 1.65 for 1 mil NbC to 1.285 for 7 mils Nb foil. This

probably results from the difference in density of NbC with the increase in thickness. This may also be attributable to a transition of niobium carbide to pure niobium as the thickness increases.

The original Micro-Derm readings for the block coating were plotted on the curve shown in Figure 19. These data were then recorded on a new correlation chart (Figure 21). Nearly 100% of these points fell within 10% of the ideal correlation between the Metallography Lab and the Micro-Derm. A numerical presentation of the coating thickness comparison is shown in Table 9.

V. CONCLUSIONS*

From the above investigation in the use of a commercial beta-backscattering thickness gage, it can be concluded that:

- A. Niobium carbide coating over graphite in a range of 1.9-4.5 mils can be read on the Micro-Derm within 10% of the results reported by metallography.
- B. Within the scope of this investigation, there are three linear segments within the typical calibration curve. These may be due to:
 - 1. Low activity of the beta source.
 - 2. Density variations as the NbC thickness increases.
 - 3. Possible transition of NbC to Nb as the thickness increases (should be confirmed by micro-probe or x-ray diffraction.
- C. Since there appears to be no correction needed in the low range (0.4-1.24 mils) portion of the calibration curves presented, it is believed that the Micro-Derm gage is satisfactory for testing exterior surfaces of fueled and non-fueled elements where the upper limit is 0.5 mil thickness.
- D. It is acknowledged that the Micro-Derm with its low activity source and Geiger-Muller Tube detector lacks the speed of the more elaborate solidstate detectors with electronic counters and digital converters.

^{*}Supplementary conclusions may be found in Appendix D covering results following equipment modifications.

SEP	10 C 1880	
1000	California	1
Scote.	10001005	
6.00	200.000	1
Sec. 1		
1000		
1000	- 19 ali	
200	1000	6
1000		
1933	STATES OF	
100	1000000	- 1
1000		
1000	1.000	
1000		
20.95	STATES.	
1000	Collected and	1
189		- 1
	A 201803	1
16.95	COMPANY.	
Static	1000033355	
100	45705006	
	Sister V	
COR	83333 9	
	1000000	1
10000	100000	
1000	Contraction of the	
1000	10000	
22222	1000	
1920		-
	1000	1
5553	COLUMN 1	
Contraction of the local division of the loc		
1		- 1
363	- 3000	
10000	10000	
1000	10000	1
and the	an 1000	
100000	100000	

M

S/N

(Ht)

1010

678

896

1003

19855

740

Run Number

142

Std 17

Std 20

Std 16

Std 18

B 237

B 237

Std 0032

					24	4.25	4.25		4.26	+.01
					25	4.51	4.52		4.20	32
18					2	4.42	4.42		4.05	37
ω					3	4.44	4.46		4.05	39
					4	4.16	4.13		4.05	08
	19918	B 237	J7	4	6	3.54	3.54		3.83	+. 29
					7	2.65	2.67		2.88	+. 23
\$ \$4 <i>7</i> .					8	2.44	2.40		2.70	26
\$ ×.					21	4.25	3.72		3.83	+.11
۵ ۵					22	4.14	4.03		4.26	+. 23
 					2	3.72	3.72		3.80	+.08
2 -					3	4.46	4.07		4.05	02
					4	4.33	4.39		4.02	-, 37
	19876	B 237	J5	4	6	4.12		1	4.02	08
					7	3.29	3.54		3.80	+. 26
*					24	4.12			4.26	+.14
40 -41					25	3.96	4.28		4.34	+.06
k					26	4.16			4.08	08
					2	3.54	3.96		4.02	+.06
>					3	3.84	3.89		3.98	+.11
					4	3.57	3.54		3.98	+.41
۰.	L				38	1.95		1	2.32	+. 27

QCO1 35

Fig. No.

6

21

20

21

20

20

21

2

3

6

7

8

4 5

4

4

4

4

Type

J4

J4

J4

J4

J8

J4

Metallographic

Original Recheck

4.43

4.38

3.90

3.96

4.32

3.58

3.58

2.76

2.44

2.97

3.86

2.87

3.01

3.20

4.39

4.48

3.86

3.98

4.33

4.51

3.54

	TABLE 9*	
MICRO-DERM,	NbC BETA-BACKSCATTER THICKNESS DETERMINATION	

2.95

2.80

3.13

-

2.88

3.13

3.13

4.05

4.12

4.14

3.94

3.98

3.65

3.65

Micro-Derm

Single Average

Deviation

Mils Percent

+. 19

+.36

+. 14

455 VII- 010 VII-

+.01

+.12

-.07

-. 38

-. 26

+.24

-.02

-. 34

+.07

+.07

*Page 1 of 2 pages

WANL-TME-1189

Technique

130-1

Micro-Derm

Curve

130-1

Ap. Size .093 D-0

Astronuclear Laboratory

\$24

15

ti a 4

1000	100000000000000000000000000000000000000	1000
	11 34	
1000	. Statement	C. Second
Spins	10000000000	Conservation of the
86	122 238	A-18985
1000	100-000	
200 B	200	
	- 10 M	100002
		1000
2018	SECOND.	1.00
	100000	COMPARIN
	10000	Same a
(泉台)	Z	2. ASSA 128
1993	6 8 8 M	18. J.S.
		RANGE STREET
	1003004	COLUMN TWO IS
1.26		- anticorration
	(
	8	1000
	2000	Time.
100000	02233883	R Q
1000		100
ASSIST.	SPACE NAMES	C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
		10 10
S 2 3	0053	C. della
Sates	Contraction of the	BREAM PROVIDE
100		
		reconstruction (
2002		1000
		and in a second second
	1000	A
1000	C genetate	3
		ST. States
	Advance (SSR	1000
338 B	9001	COLUMN TWO IS NOT
1000	A state	1000
881	1000	
1000		
	1000	
50 AL	mercenter 2	6
	- 100 March 1	
	A 100	
	60	

19

6

r

								9 (Page 2)	an an an an an an an an an an an an an a	an data dari magang mayan data data data data data data data da	والمحاولات المتشارك فالمتشارك فالمستحد والمحاود والمحاول والمتكا	ME-1189	
S/N		-	QCC		Metallog		Micro			iation		icro-Derm	
(Ht)	Run Number	Туре Ј9	Fig.		Original	Recheck	Single	Average 3.90	Mils 38	Percent	Technique 130-1	Curve 130-1	Ap. Size .093 D-0
10	B 237	JA	4	7 8	4.28 3.77			3.58	38 19		130-1	130-1	.075 0-0
				2	4.67	4.48		4.01	47				
				3	4.33	4.03		3.80	30				
	Porous Coating			4	4.21			4.01	20				
	on Block			5	4.74	4.54		4.24	30				
′ 40	B 237	J8	4	20	4.39			4.24	15				
				21	4.48			4.35	13				
				2	3.86			3.90	+.04				
				3	3.98	2.10	2 12	4.01	+. 13				
12	A55	79 J	4	6	3.11	3.19 3.16	3.13 3.00		06 16				
						3.06	3.00		16]]
						2.85	2.84		01				
						2.82	2.80		02				
						2.69	2.70		+.01				
						2.58	2.48		-, 10				
						2.51	2.66		+. 15				
						2.44	2.56		+. 12				
						2.37	2.38		+.01				
						2.28	2.18		10				
						2.23 2.20	2.12		11 15				
						2.20	1.93		16				
						1.98	2.05		+.07				
						1.93	1.88		-, 05				
				8	1.66	1.91	1.83		08				
495				43		1.95							
				44									
1212				43	(angle)	2.00	[[
				44									
				46	(angle)	2.10							
1482				41									
			1	42		2.30	2.58		+.28				

Astronuclear

۰.

f

Astronuclear Laboratory WANL-TME-1189

- E. To make the Micro-Derm more versatile, an inexpensive slotted aperature and hole-locating fixture may be purchased to read the flat surfaces between the channels.
- F. The Micro-Derm is suitable for measuring very thin coatings (less than 0.5 mils) since the following isotope sources are available:

Carbon-14	1. 155 Mev.
Premethium-147	0.22 Mev.
Thallium-204	0.76 Mev.
Radium-D	1.17 Mev.
Strontium-90	2.18 Mev.

- G. The Micro-Derm may be equipped with output for connection to any standard external scaler to possibly improve the readout.
- H. The repeatability of duplicating calibration readings over the wide range of standards is excellent where one Micro-Derm meter scale division represents approximately 0.0001 inches.
- 1. Little training is needed for technicians or inspectors to operate the Micro-Derm. Care is to be exercised in mishandling the Strontium-90 source tube, the Geiger-Muller Tube window, and coated parts.
- J. Further work is justified in obtaining statistical data in the use of 0.062" and 0.093" aperatures for NbC coatings.
- K. There is a need for obtaining full-range calibration standards of NbC over graphite.

20

i Pr

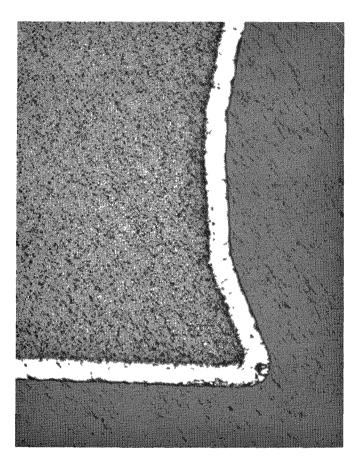
1

愿

K v



FIGURE 1


đ

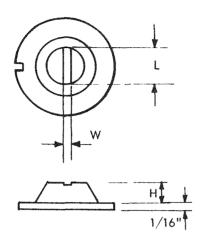
æ

*

COATED LTV GRAPHITE

7200

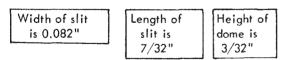
100X



STANDARD DOME-APERTURE PLATES

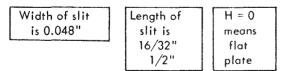
MD-AP

Slit-Aperture Type

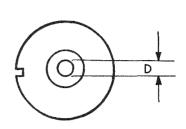


Designation

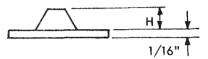
- W = Width of slit in thousandths of an inch.
- L = Length of slit * (or diameter of dome) in 32nds of an inch.
- H = Height of top of dome above level of top of flat aperture plate, in 32nds of an inch.


Example No. 1:

.062 × 7 × 3


Example No. 2: A flat aperture plate

.048 × 16 × 0



*The effective length of slit is slightly smaller than the dome diameter, due to the wall thickness of the dome side-walls.

Circular-Aperture Type

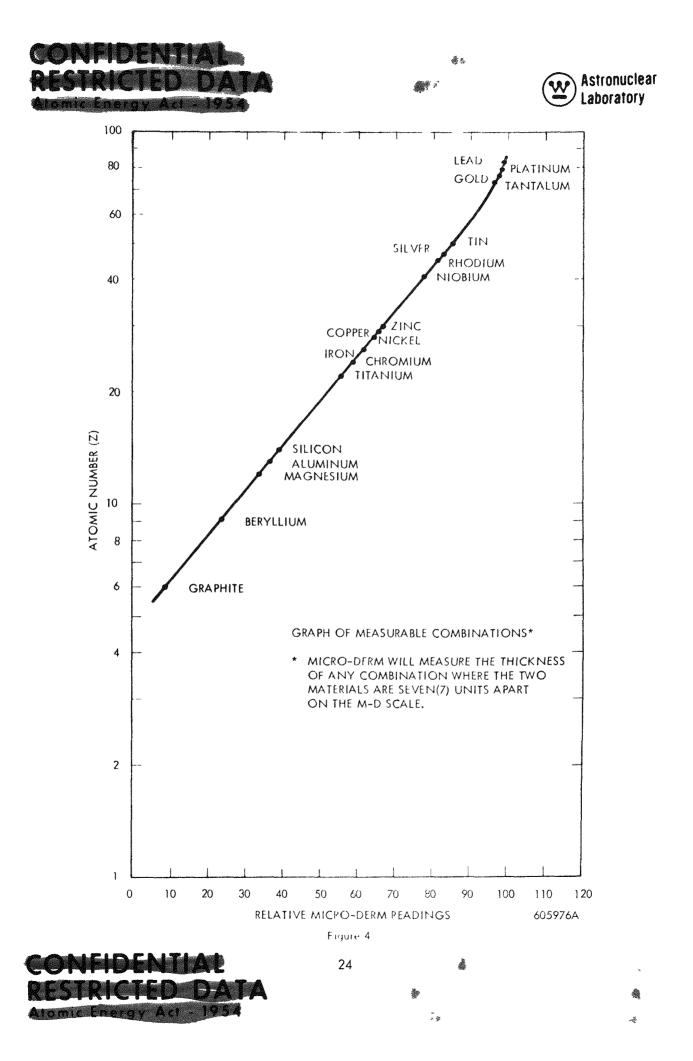
Designation

D = Diameter of circular aperture opening, in thousandths of an inch.

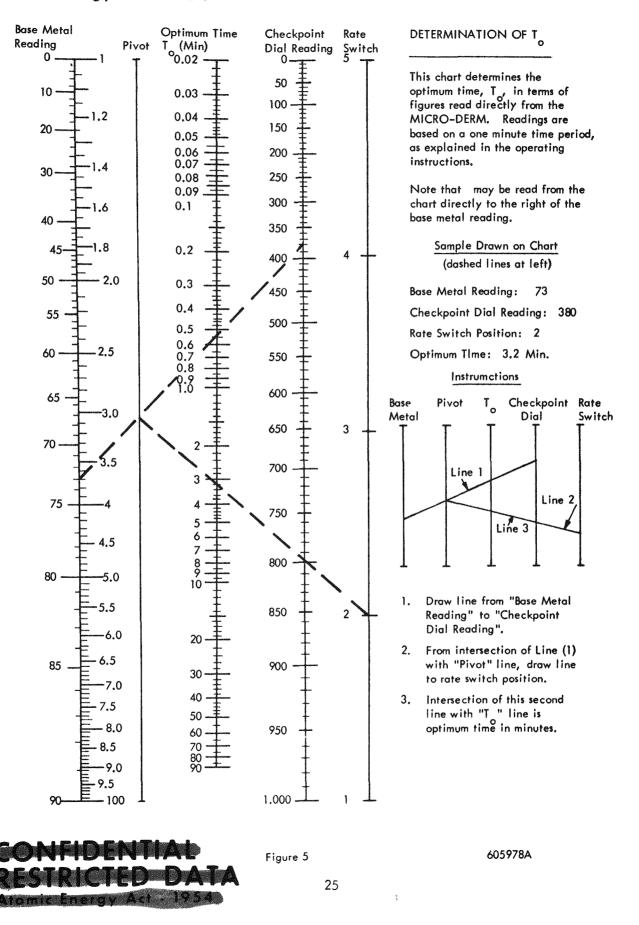
H = Height of top of dome above level of top of flat aperture plate, in 32nds of an inch.

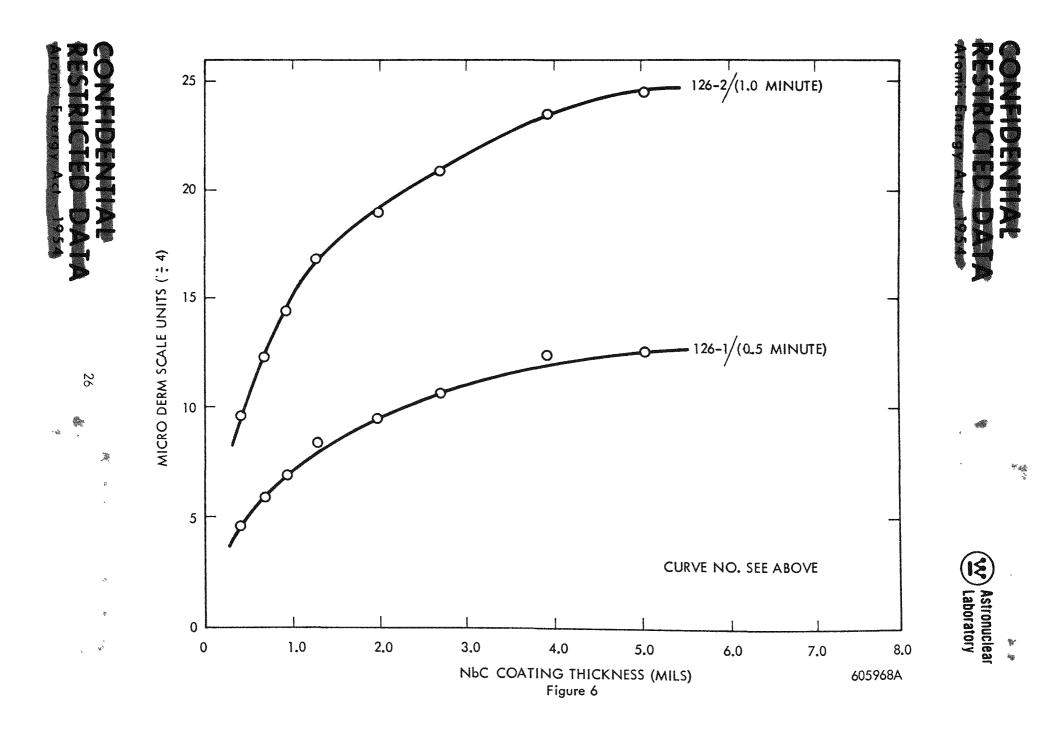
Example No. 1:

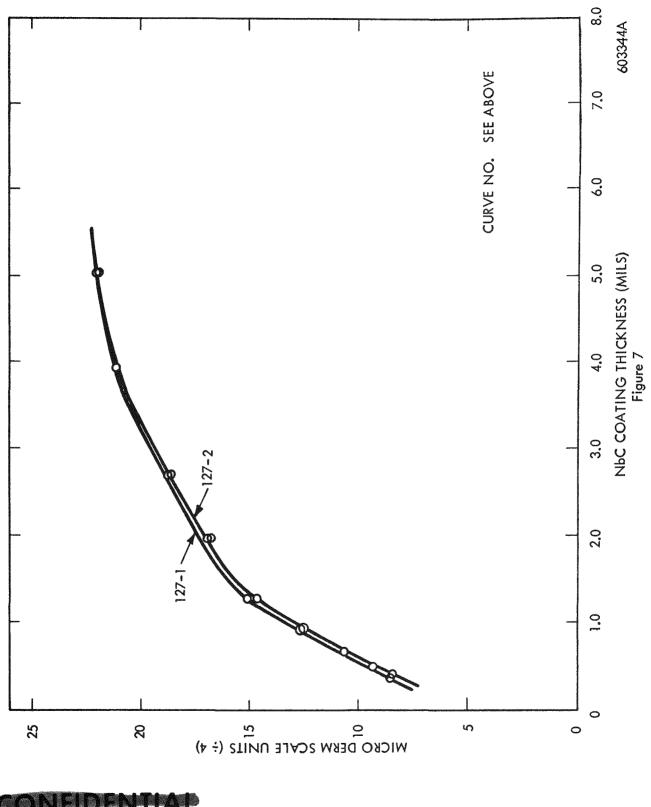
156 D × 3

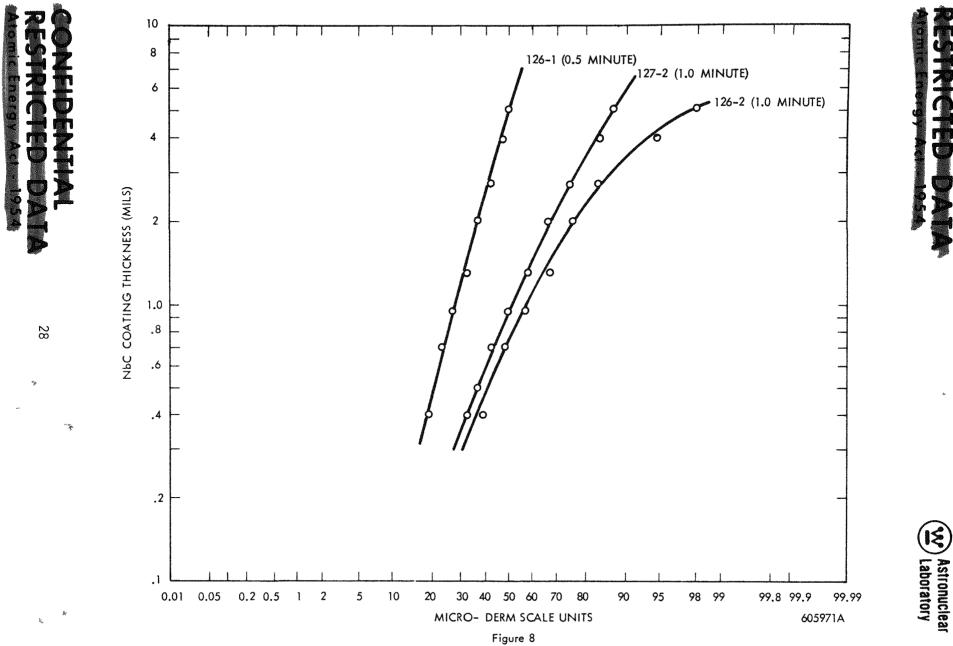

Example No. 2: A flat aperture plate

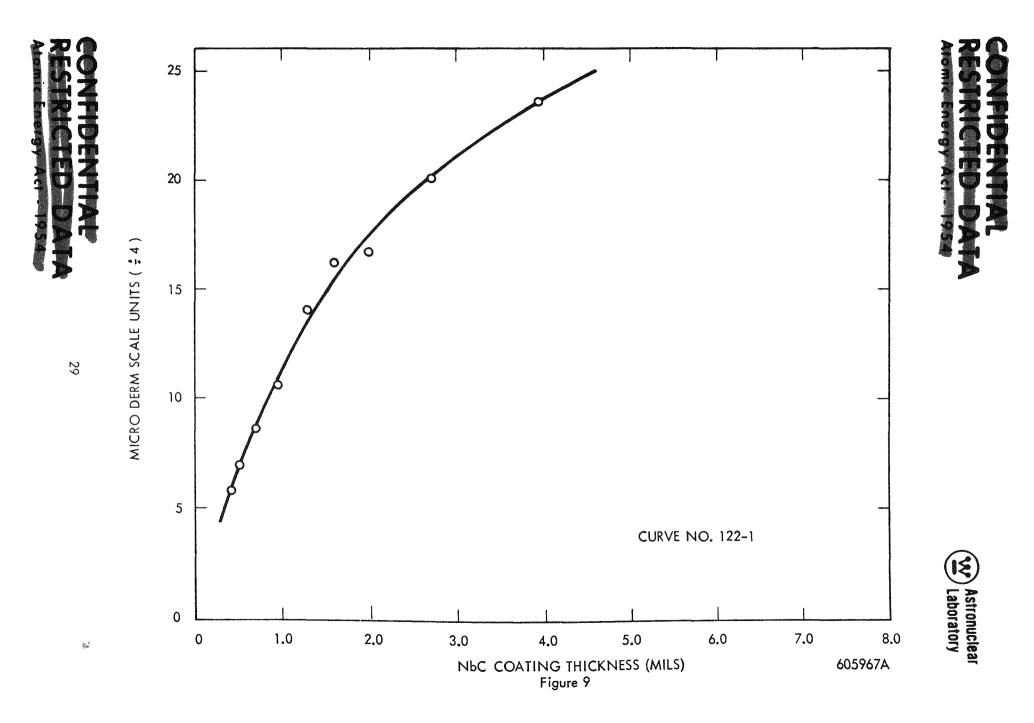
.250 D × 0

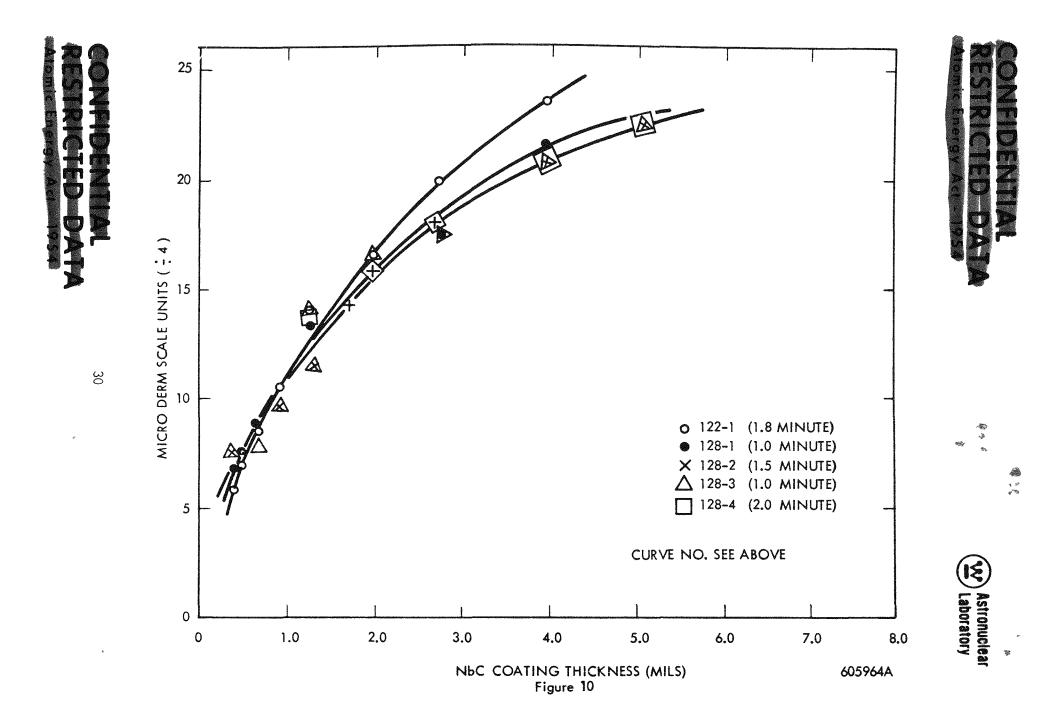

FIGURE 3

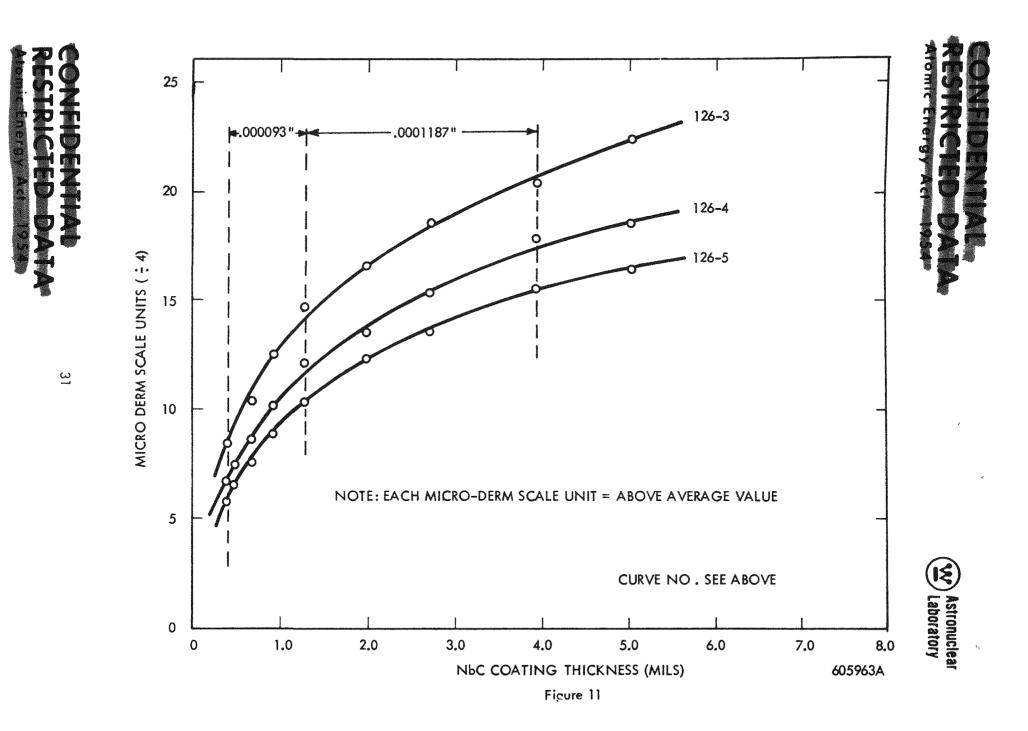

605979A

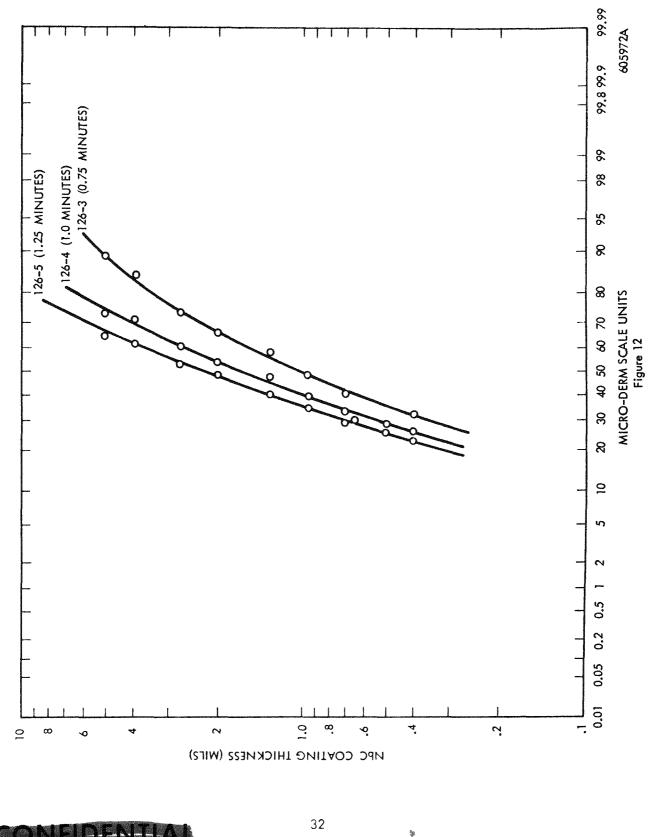






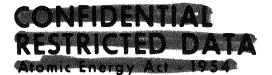




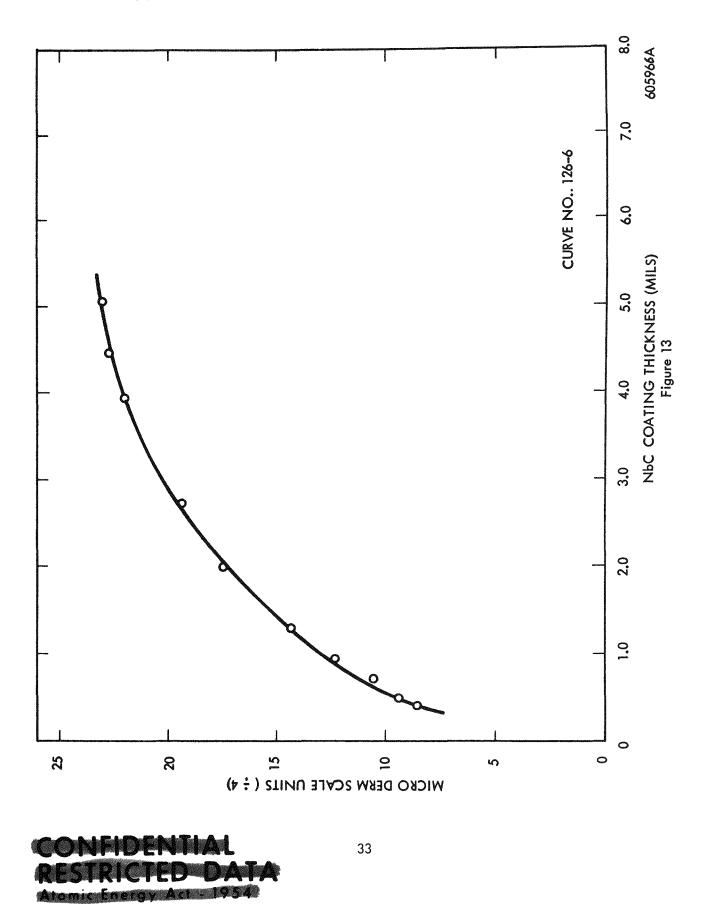


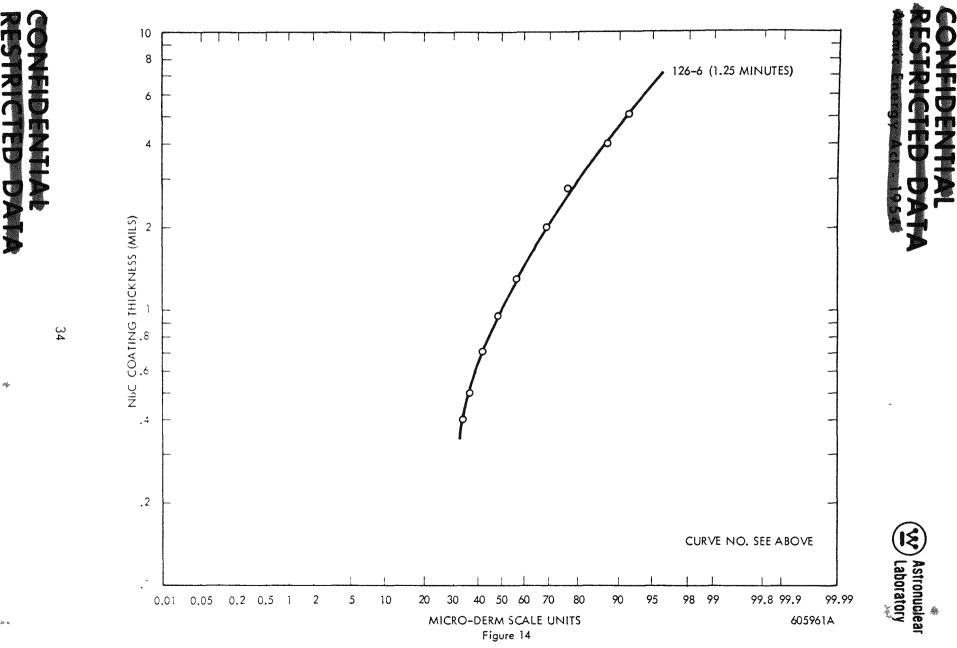
8

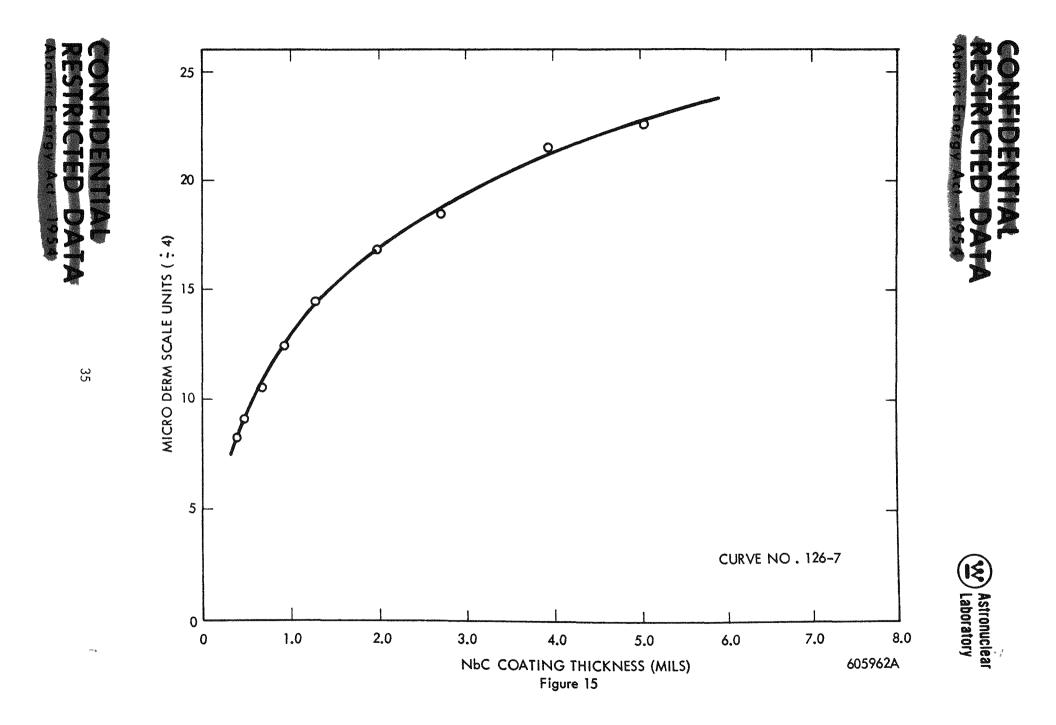
Atomic Energy Act - 195

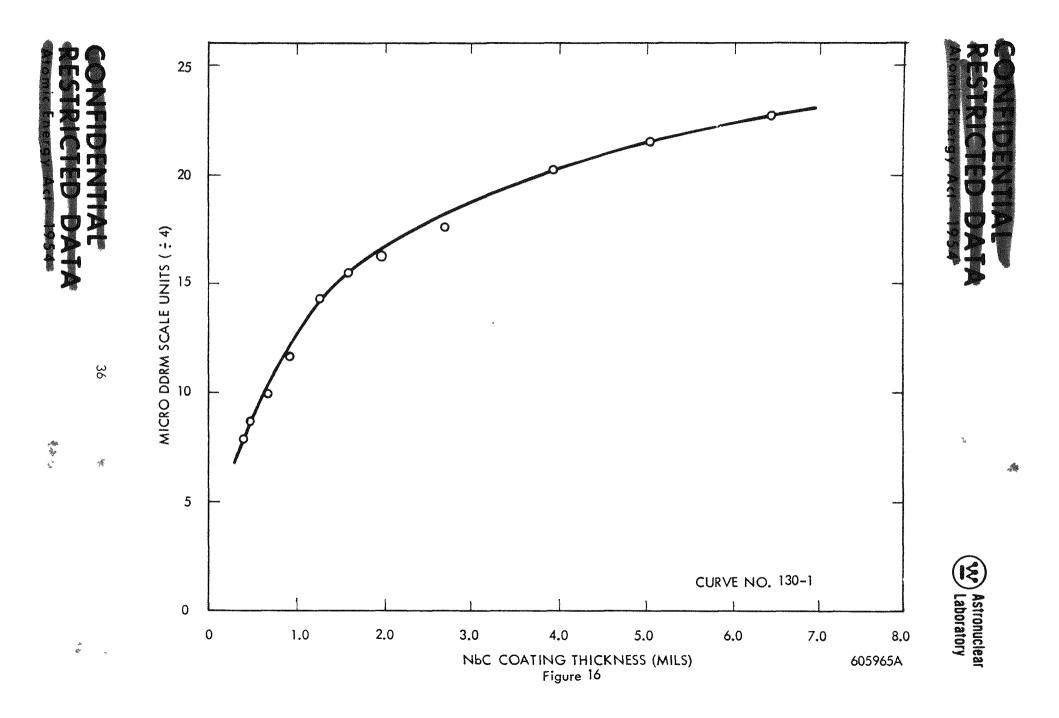

¥

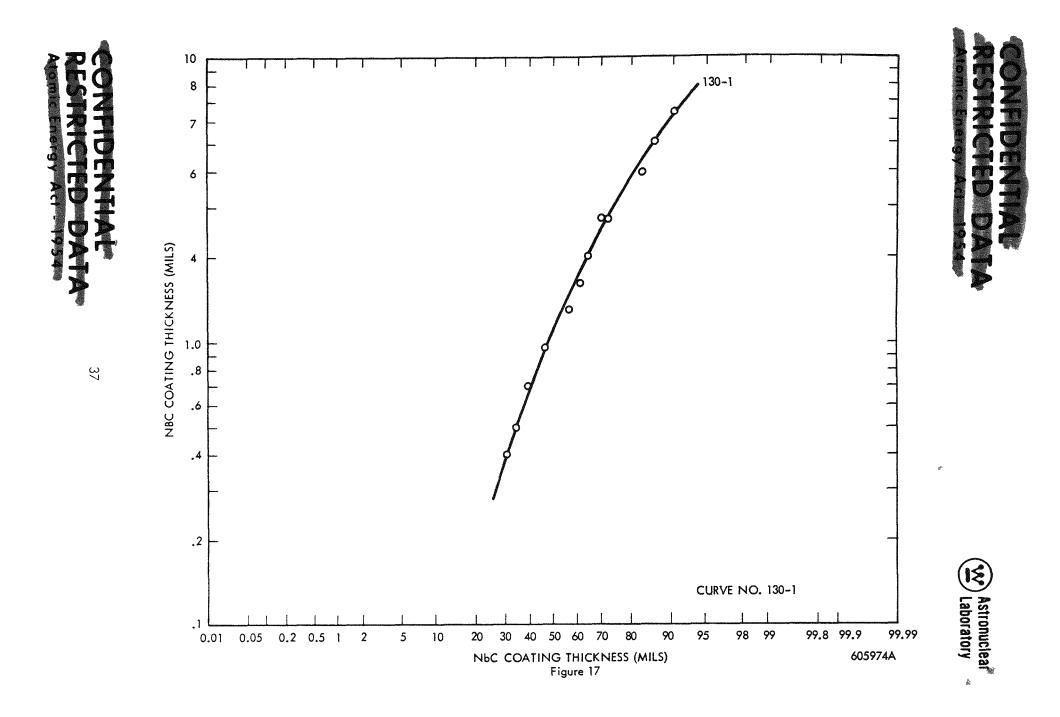
瀮

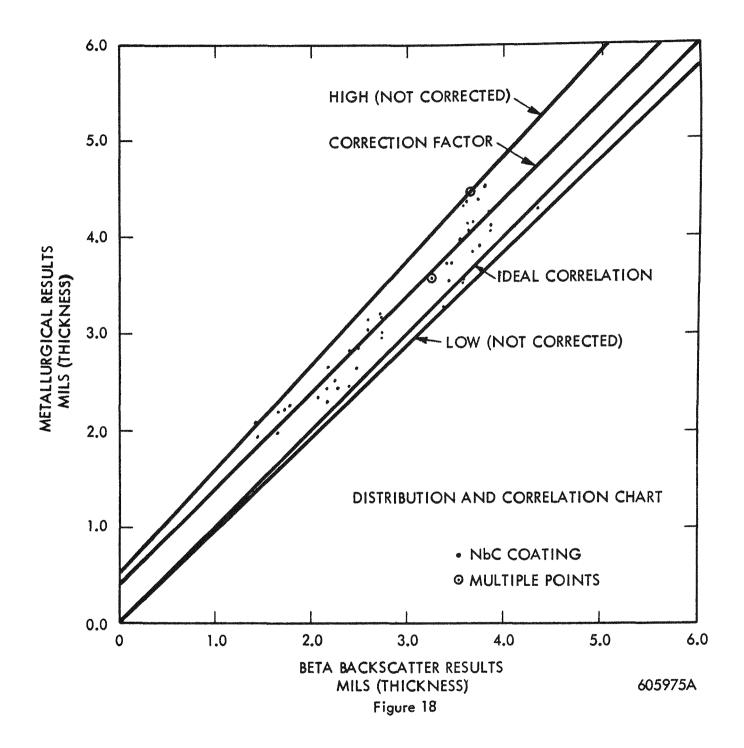

Astronuclear Laboratory

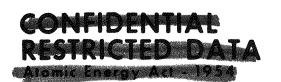

ų.

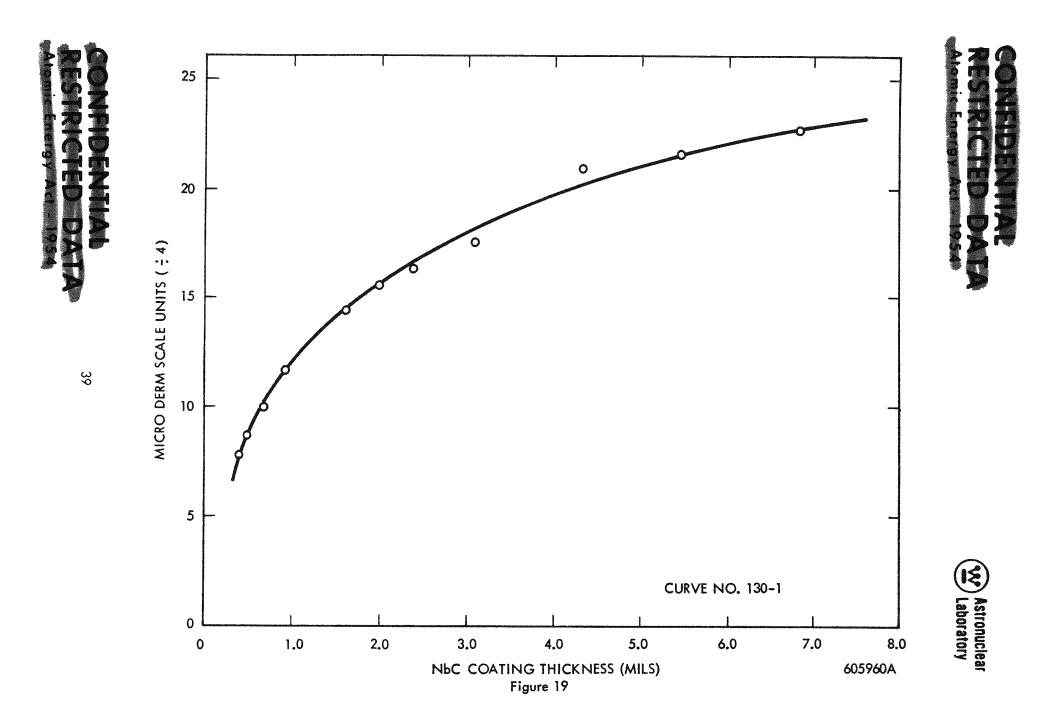

* 1

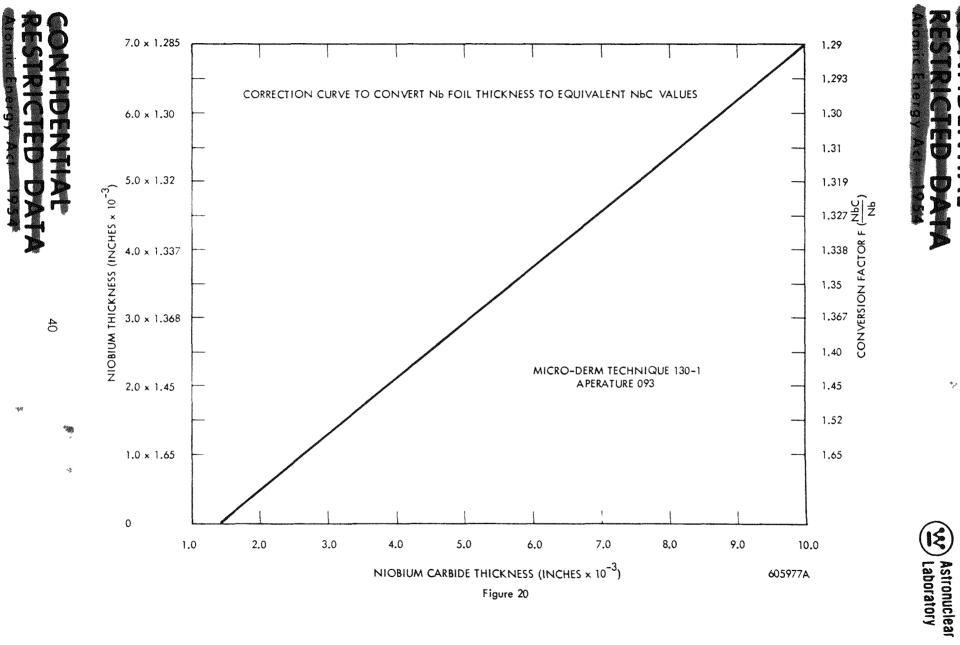




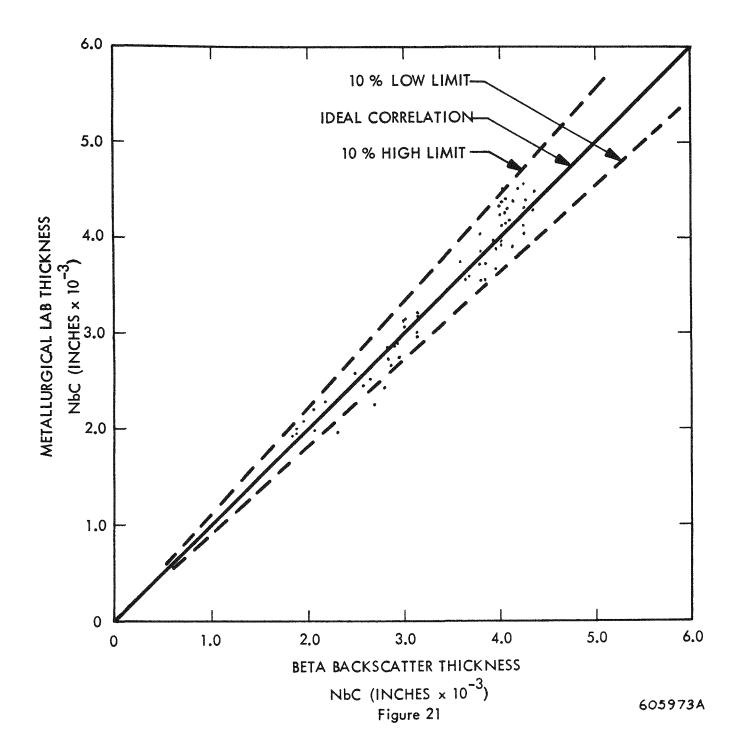





CONFIDENTIAL RESTRICTED DATA


Astronuclear Laboratory

38



17. 18.

Astronuclear Laboratory WANL-TME-1189 Appendix A Supplement to Section II

ŝ

I. EQUIPMENT MODIFICATION

A. Purpose

The Micro-Derm basic electronic unit was modified to include a preamplifier in the detector circuit and outlet jacks for an external electronic counter.

The purpose for these modifications was to increase the reliability of the coating thickness determinations. With the low source strength of the Strontium-90 probe, the beta-backscatter count was slow in producing sufficient signal strength, which resulted in long scanning periods.

B. Pre-Amplification

The addition of a pre-amplifier circuit to strengthen the beta-backscatter count significantly changed the rate of count from the Geiger-Muller Tube and required a recalibration of the equipment. The intent of the addition of a pre-amplifier circuit was to give a greater number of counts per unit time and thus provide the possibility of shorter scan times and greater accuracy.

The relative increase in count with the pre-amplifier is not linear over the full range in coating thickness comparing the count as registered on the Micro-Derm S-1 linear scale. The scale deflection increased by 65% in the 1/2-mil thickness range and increased by 30% in the 4-mil range. With all the equipment variables (machine settings) the same, the addition of the pre-amplifier would permit a beta scan to be made in 25% less time. It was believed, however, that to decrease the time would decrease the total count with a sacrifice in accuracy. The recalibration of the equipment was, therefore, based on the original time of beta scan.

C. Electronic Digital Counter

The Micro-Derm S-1 linear scale which was originally used for indicating the beta-backscatter count during a time interval has 50 divisions, reading

0 to 100. From the original calibration curves for a thickness range between 2-4 mils, a scale division was equivalent to approximately 0.00022 inches of coating thickness. Since each of the 50 scale divisions was equivalent to 2 on the linear scale, a half-division was read by the operator for closer delineation of thickness. A typical 1/2 scale division was equivalent to 0.00011 inch of coating thickness.

The digital counter was added to the system to eliminate inaccuracies in interpreting one-half scale readings and thus give better reproducibility. It was desirable to have a digital counter that was adjustable to give direct coating thickness. Since none were available, a compromise was made; and a Beckman Model 7060U was used. This electronic counter consists of an electronic gate with controlling circuitry, a chain of six decimal-counting units, and three inputtrigger channels. For use with the Micro-Derm, the function switch is placed at the C/B-A operation. A pulse from the input channel opens the gate, and pulses from a second channel are counted until a pulse from the third channel closes the gate.

Unfortunately, the Beckman Counter digital output cannot be regulated through the Micro-Derm controls, with the exception of the timing circuit. The Beckman Counter integrates the pulses from the Geiger-Muller Tube (beta-backscatter) in terms of digital units. These digital units, corresponding to calibration standard thickness, are then used to plot a calibration curve.

D. Voltage Regulation

Due to frequent and severe voltage fluctuations which affected betabackscatter results, a Sola, Type CVS, constant voltage regulator was purchased for use with the Micro-Derm. The voltage regulation was excellent, and little or no drift was noted in the base material zero setting. The Micro-Derm and Beckman Electronic Counter were both tied into this regulator.

4

-

WANL-TME-1189 Appendix B Supplement to Section III

I. EQUIPMENT CALIBRATION

A. Calibration Standards

As noted in Section III, various thickness Nb foil was cemented to graphite and used as calibration standards. To be compatible with Metallography Lab reports on NbC thickness, the Nb foil thickness was multiplied by a factor proportionate to the foil thickness. This conversion was timeconsuming, and it was decided to use only the NbC-coated graphite as calibration standards. Wherever it was possible, the new fine-grain coated graphite base was used for standards since the coating interface is more regular than that with the ATJ grade graphite.

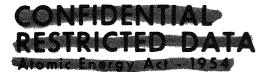
B. Aperature Size

Two new aperatures were purchased specifically to test support block surfaces. To test the coating thickness on end surfaces between the channels, a flat slit aperature with slit dimensions of 0.030" width x 0.125" length was obtained. This provided an effective test area of 0.00375 square inches.

To test the support block coating thickness on the side of the hex near the nozzle end, a raised dome-type aperature was needed. For this purpose, an aperature was purchased with a slit opening of 0.030" width x 0.125" length. The dome height was 0.125". The slit was machined across the top of the dome (saw cut) leaving open ends. It was expected that the same calibration curve could be used as with the flat aperature since the same test area was used. Erratic results were achieved since the open ends of the slit (saw cut) permitted escape of beta-backscatter rays. A larger round dome (0.156" diameter x 0.125" dome height) aperature was substituted.

C. Calibration Curves

Two calibration curves were drawn using standards shown in Table B1. Additional points on the curves were plotted from the Micro-Derm


B 1

£." -瘛

readings of blocks that had been sectioned and reported by the Metallography Lab. The curves are shown in Figures B1 and B2. Direct reading charts were prepared from these curves giving the NbC coating thickness in mils corresponding to the Beckman Electronic Counter readout (see Tables B2 and B3).

B2

;\$\$`

畲

The And

TABLE B1 CALIBRATION STANDARDS

Techniques 524-1 520-1

Standard Identification	Location	Niobium Carbide (Mils) Met. Lab Q.E. Recheck		Micro -Derm Co Technique 520-1 (. 156 D-4)	Number
1. PO-3	ngan nga was data	.0007		193 avg.	305 avg.
2. Foil	tana man akin tan	.00095		218 avg.	319 avg.
3. Ht X-1	No. 1	.00124		242 avg.	339 avg.
4. Foil	dang alika alika sesa	.00161		258 avg.	352 avg.
5. Ht X-2	No. 6	.00163		258 (alternate)	353 avg.
6.					
7. Ht X-1	No. 8	.00221		270 avg.	362 avg.
8. D-11	a	.00265		278 avg.	370.5 avg.
9. D-11	a(small)	.00292		283 avg.	372.5 avg.
10. T-4	b	.00315		287 avg.	375.5 avg.
11. Ht19918	6	. 00354		295 avg.	382.0 avg.
12. Ht19918	21	(.00425)	.00384	299 avg.	385 avg.
13. H 1 34	No. 22	. 00425		305 avg.	391 avg.
14. T-4	с	.00506		314 avg.	398.5 avg.
15. T-1	с	. 00575		318 avg.	405 avg.

BЗ

RESTRICT

Atomic Energy Act - 1954

4 2

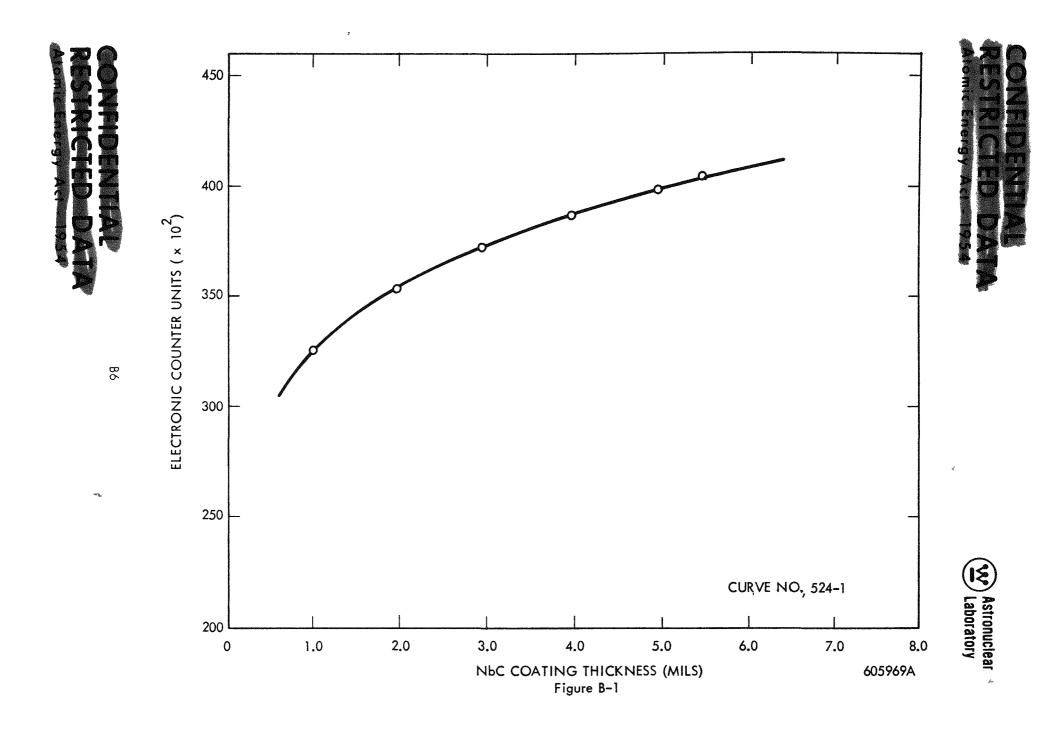
 TABLE B2

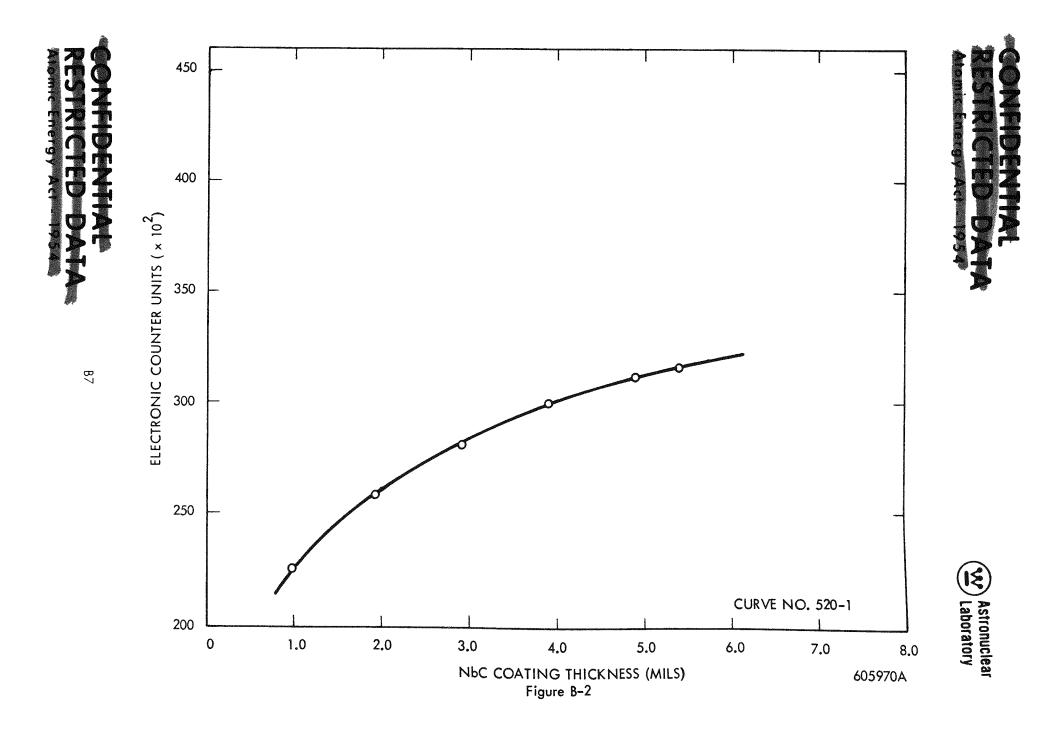
 MICRO-DERM DIRECT READING CHART (BLOCK END FACES)

疁.

۰, ۱

Date: May 2	25, 1965	Ар	erature – .03	0-4-0	Technique No. 524-1			
D								
Beckman	NbC		Beckman	NbC	Beckman	NЬC		
Counter	(Mils)		Counter	(Mils)	Counter	(Mils)		
323	1.00		367	2.55	389.5	4.15		
327	1.05		368	2.60	390	4.20		
330	1.10		368.5	2.65	391	4.25		
333	1.15		369	2.70	391.5	4.30		
336	1.20		370	2.75	392	4.35		
339	1.25		371	2.80	392.5	4.40		
341.5	1.30		371.5	2.85	393	4.45		
344	1.35		372	2.90	393.5	4.50		
346	1.40		373	2.95	393.75	4.55		
348	1.45		373.5	3.00	394.25	4.60		
349	1.50		374.5	3.05	394.75	4.65		
351	1.55		375	3,10	395	4.70		
352	1.60		375.5	3.15	395.5	4.75		
353	1.65		376.5	3.20	396	4.80		
353.5	1.70		377.5	3.25	396.5	4.85		
354	1.75		378	3.30	397	4.90		
355	1.80		379	3.35	397.5	4.95		
356	1.85		379.5	3.40	398	5.00		
357	1.90		380	3.45	398.5	5.05		
357.5	1.95		381	3.50	399	5.10		
358	2.00		382	3.55	399.5	5.15		
359	2.05		382.5	3.60	400	5.20		
360	2.10		383	3.65	400.5	5.25		
361	2.15		383.5	3.70	401	5.30		
361.5	2.20		384.5	3.75	401.5	5.35		
362.5	2,25		385	3.80	402	5.40		
363	2.30		385.5	3.85	402.5	5.45		
364	2.35		386.5	3.90	403	5.50		
364.5	2.40		387	3.95	403.5	5.55		
365.5	2.45		387.5	4.00	404	5.60		
366.5	2.50		388.5	4.05	404.25	5.65		
1	NCE LIMITS (B	· · ·	389	4.10	404.75	5.70		
	2 Mil Minimu		<mark>On a sea ann an an Ann Ann an mark>]	405	5.75		
ā	- 1-1/2 Mil N	1						
Anywhere -	5 Mil Maximu	m						
CONFI	DENTIA							


TABLE B3


MICRO-DERM DIRECT READING CHART (BLOCK SIDES) WANL-TME-1189

Date: May	24, 1965	Aperature	156 - D-4	Technique No.	Technique No. 520-1			
anti da esta de la constante de la constante de la constante de la constante de la constante de la constante d Desta de la constante de la constante de la constante de la constante de la constante de la constante de la cons	an an an an an an an an an an an an an a	anna ha an da' ann a' ann an Anna an Anna an Anna ann an Anna an Anna an Anna an Anna an Anna an Anna an Anna a Anna an Anna an						
Beckman	NbC	Beckman	NbC	Beckman	NbC			
Counter	(Mils)	Counter	(Mils)	Counter	(Mils			
225	1.00	276	2.55	303.5	4.15			
229	1.05	277	2.60	304	4.20			
233	1.10	277.5	2.65	304.5	4.25			
237	1.15	278.5	2.70	305	4.30			
240	1.20	279.5	2.75	305.5	4.35			
243	1.25	280.5	2.80	306	4.40			
246	1.30	281.5	2.85	306.5	4.45			
249	1.35	282.5	2.90	307	4.50			
251	1.40	283	2.95	307.5	4.55			
253	1.45	284	3.00	308	4.60			
255	1.50	285	3.05	308.5	4.65			
256	1.55	286	3.10	309	4.70			
257	1.60	287	3.15	309.5	4.75			
259	1.65	288	3.20	310	4.80			
260	1.70	289	3.25	310.5	4.85			
261	1.75	289.5	3.30	311	4.90			
262	1.80	290.5	3.35	311.5	4.95			
263	1.85	291.5	3.40	312	5.00			
263.5	1.90	292.5	3.45	312.25	5.05			
264.5	1.95	293	3.50	312.5	5.10			
265.5	2.00	294	3.55	313	5.15			
266.5	2.05	295	3.60	313.5	5.20			
267.5	2.10	296	3.65	314	5.25			
268.5	2.15	296.5	3.70	314.5	5.30			
269	2.20	297.5	3.75	315	5.35			
270	2.25	298	3.80	315.5	5.40			
271	2.30	299	3.85	316	5.45			
272	2.35	299.5	3.90	316.5	5.50			
273	2.40	300.5	3.95	317	5.55			
274	2.45	301	4.00	317.5	5.60			
275	2.43	301.5	4.05	318	5.65			
	ANCE LIMITS (Block)	302.5	4.10	318.5	5.70			
	- 2 Mil Minimum	502.5	7.10	319	5.75			
	d = 1 - 1/2 Mil Minimu							
	– 5 Mil Maximum							
Anywhere	- 2 MALL MACHINA							

**

WANL-TME-1189 Appendix C Supplement to Section IV

ł,

I. COATING THICKNESS DETERMINATION

A. Technique

The techniques used in producing the calibration curves (Figures B1 and B2) are shown in Table C1. With the addition of the electronic counter, the various Micro-Derm basic unit settings are unrelated to the electronic counter readout, with the exception of the time control. The check point dial, zero set dial, rate switch, and the reverse switch are now currently used to provide a zero setting for the base material. The measure switch and the timer are the only controls that are integrated with the Beckman Counter.

B. Procedure

The following procedure is followed in making a thickness determination using the modified Micro-Derm equipment:

- 1. Warm up equipment for 10 minutes.
- 2. Establish zero linear scale reading for graphite base material.
- 3. Place standard on aperature plate.
- 4. Turn display knob on counter to zero.
- 5. Turn Micro-Derm switch to measure.
- 6. Turn display knob on counter to infinity.
- 7. Compare countout with calibration curve or direct reading chart.
- 8. If average readout does not compare with the curve within 0.1-0.2 mils, adjust timer and repeat steps 2. through 8.
- 9. If standards agree, place unknowns over aperature and repeat above procedures using the direct reading charts to report results.

C1

Freedom and a second second second second second second second second second second second second second second	anna an an an an an an an an an an an an	a a fa a	Alegophysion for successive static state and successive states and	TABL	.E C 1	zhannennennennen			WANL-TA	AE-1189	aja ga da manangan katalan kata	
			MICRO	D-DERM CALIE	BRATION TEC	HNIQU	IE					
1 Technique Na	2 Date	3 Source Type	4 ISource No.	5 Aperature Dia. X H	6 Source Pos.	7 D _{sw}	8 Tube Pos	9 Chkpt Dial	10 C -Set Dial	11 Rate Pos.	12 To Min.	0 I Po
												l
520-1	5 -2 0-65		880	.156-D-4	19	3	3	517	929	3	1.0	18
524-1	5 -2 4 <i>-</i> 65	Sr ⁹⁰	880	.030-4-0	23	3	3	517	884	3	1.5	40
		}										┢──
							1					Ť
				.								<u> </u>
												_
	·						+					╀
							<u> </u>					+
							1			<u> </u>		\uparrow
				******			11				1	\mathbf{T}
					· • • · · · · · · · · · · · · · · · · ·		4					<u> </u>
												–
		[+	 	<u> </u>			<u> </u>		
						<u> </u>						┢
						<u> </u>	+		1	+		╈
		<u> </u>			-+	<u> </u>			+	+		+

RESTRICTED DAT

4

عر به م

Astronuclear ··· Laboratory

1. M.

C2

ESTRIC

Nomic Ene

þ

Ħ

豫

WANL-TME-1189 Appendix C

A Quality Engineering Procedure, No. 107A, was prepared to provide support block inspection criteria. This procedure further requires that a block representative of the top and bottom of a coating furnace run be tested. Should either of these two blocks fail to meet the thickness requirements, all blocks in the furnace run are to be beta-backscatter tested.

C. Results

During the period that the modified equipment was being investigated, the reproducibility of the thickness results from day-to-day was excellent. Over a period of one week, the zero point needed only minor adjustment. The standards over a full range of 0.9-6.0 mils did not vary more than 5% as average values.

A number of support blocks rejected for exceeding the low and high thickness limits were beta-backscatter tested. Where direct comparisons could be made with Metallography Lab results, the correlation was good. This numerical correlation is shown in Table C1. A correlation chart (Figure C1) shows the deviation of the Micro-Derm results from the reported Metallography Lab results.

P ESTRICTED D Ä

C4

14 ¢

S/N			QCOI 30		Micro-Derm	Deviation	Micro-D)erm
(Ht)	Run Number	Type	Fig. No.	Original Recheck	Single Average	Mils Percent		rve Ap. Size
1223	в-252	Reg	4 5 6 7 20 21 22 1 22 1 2 3 4 23 24	3.72 3.09 3.03 3.38 3.49 3.38 3.11 2.90 2.83 3.09 1.58 1.73	3.35 3.25 3.09 3.49 3.53 3.26 3.20 3.08 2.90 2.75 1.35 1.35	37 +. 16 +. 06 +. 11 +. 04 12 +. 09 +. 18 +. 07 24 33 38	524-1 524	4-1 . 030-4-
495 A 19876	B -163 B -237	Reg J5	25 26 4 25 4 6 7 8 24 25 26 2 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.35 1.32 1.70 4.12 3.35 3.00 3.72 4.05 4.05 4.05 3.85 3.90	29 30 +. 05 +. 10 19 02 40 23 11 11 +. 01		
19918	B -237	J7	4 38 39 4 6 7 8 21 22 23 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.70 2.10 2.50 3.50 2.52 2.31 4.02 3.96 3.50	+. 16 +. 15 38 04 15 09 +. 30 07 +. 07 +. 53		
			3 4 25 26	4.46 4.07 4.33 4.39 1.56 1.98	4.40 4.35 1.66 1.94	+. 33 04 +. 10 04		

Astronuclear -: Laboratory

100

4%

4

F.O T M n Ô

Q \square

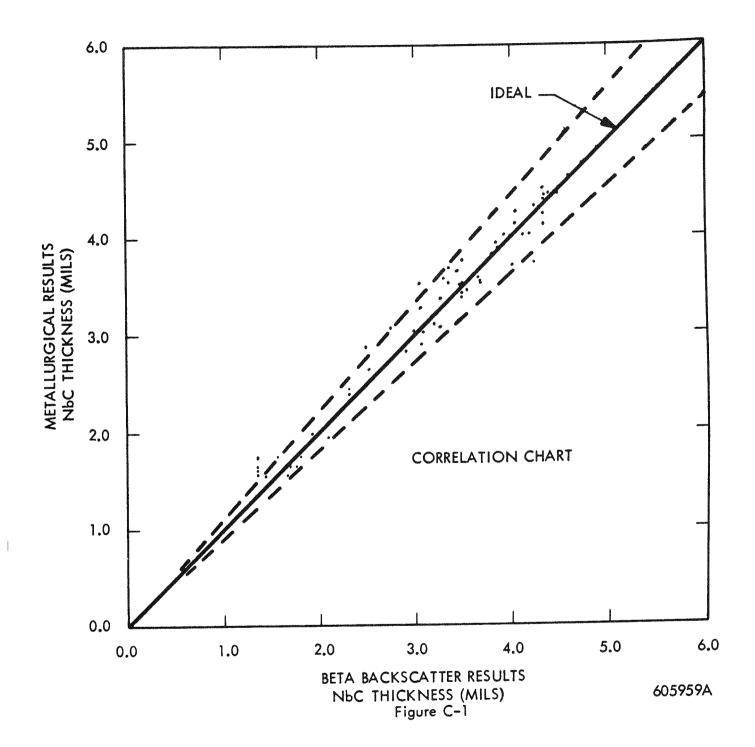
D

WANT THE 1100

Þ	79	()
2	Æ	A
	UD	
æ		A
1.41		
Energy		
		C
Q	<u> </u>	
	Southern and	n
. M		200
	7 1	6
2	S.	anak
1		
	1	1
-2	Ś	M
- 2	M	(Color
(M	and the second	an sido.
ЦЦ.	S.	
	- 100 M	

S/N			QC 01 36				Metallo	graphic	Micro	Micro-Derm		viation	M	icro-Derm	
	Run Number	Туре	Fig.	No.	Original	Recheck	Single	Average	11	Percent	Technique	Curve	Ap. Size		
42	A55	J6	4	6	3, 11	3.28	3.03		25		524-1	524-1	. 030-4-		
				7	2.33	2.62	2.62		0	1					
				8	1.66	2.02	1.77		25						
				1	3.43	3,54	3.45		09						
				2	3.54	3.54	3.50		04						
				3	3.54	3.50	3.50		0						
53	A-60	J4	4	1	1.66			1.54	12						
				2	1.35			1.26	09						
				4	3.54			3.40	+. 16						
419855	B -237	J4	4	6	4.33	4.32		4.25	07						
				7	4.51	3.58		3.65	+.07						
				8	3.54	3.58		3.30	28						
				24	4.25	4.25	-	4.35	+. 10						
				25	4.51	4.52		4.35	17	1					
				2	4.42	4.42		4.35	07						
				3	4.44	4.46		4.40	06						
		_		4	4.16	4.13		4.35	+. 22						
10	B -237	۶۲	4	7	4.28	4.68	-	4.70	+.02						
	-			8	3.77	3.80		3.80	0						
				2	4.67	4.48		4.50	+.02						
				3	4.33	4.03		4.20	+. 17						
				4	4.21	4.37		4.35	02						
29	A-61	J5	4	6	1.77			1.55	22						
				7	3.54			3.05	49						
				8	3.78			3.50	28						
				24	1.77			1.80	+.03						
			l)	25	3.66			3.45	21			1			

TABLE C2 (Page 2 of 2)



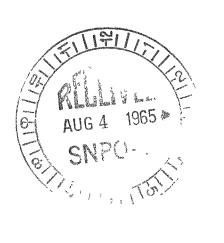
C5

Astronuclear Laboratory RESTRICTED DATA

5.

CONFIDENTIAL RESTRICTED DATA

WANL-TME-1189 Appendix D Supplement to Section V


CONCLUSIONS

The following conclusions may be drawn following the experimental work covered by this report:

- 1. The modified Micro-Derm equipment may be used to determine the NbC coating thickness of the external surfaces of support blocks within the thickness range of 1.5-5.0 mils.
- 2. The Micro-Derm beta-backscatter results will agree with metallurgical optical determinations within 10% of any thickness in the range of 1.5-5.0 mils.
- 3. Further development work should be scheduled in acquiring instrumentation for increasing or decreasing the count on the Beckman Counter for calibration purposes.
- 4. In the event of failure in the Beckman Electronic Counter, the Micro-Derm linear scale may be used in substitution without loss of accuracy in coating thickness determinations.
- 5. Efforts should be continued to develop a beta-backscatter test system utilizing a higher source strength to reduce the testing time.
- 6. The test plan provided by QIP(L) No. 107, Revision 1, will provide a more adequate coverage of acceptance of support blocks than the present plan of testing one block per furnace run by metallographic methods.

D1

