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Abstract 

 

This report describes a simple model for ideal gas flow from a vessel through a bed of 

porous material into another vessel.  It assumes constant temperature and uniform 

porosity.  Transport is treated as a combination of viscous and molecular flow, with 

no inertial contribution (low Reynolds number).  This model can be used to fit data to 

obtain permeability values, determine flow rates, understand the relative contributions 

of viscous and molecular flow, and verify volume calibrations.  It draws upon the 

Dusty Gas Model and other detailed studies of gas flow through porous media. 
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Figure 1.  Steady state concentration profiles for several values of 
1BRTc

DK
.  Its value is 1 for the 

middle curve, and varies by factors of 10 on either side.  The pressure drop is tenfold across the 

compact. ........................................................................................................................................ 16 
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NOMENCLATURE 
 

Roman Symbols    
K

iD    effective Knudsen diffusion coefficient for species i [cm
2
/s]  

P    total gas pressure [MPa] 

R    universal gas constant 
J

8.314
mol K

 
 
 

  

T    temperature [K]  

B    effective permeability of a porous medium [cm
2
]  

0K    molecular flow coefficient [cm]  

M    gas molecular mass [g/mol]  

c    gas phase molar concentration 
3

mol

cm

 
 
 

  

t    time [s]  

n    molar flow rate [mmol/s]  

z    axial coordinate [cm]  

cL    axial length of the compact [cm]  

1P    compact upstream face pressure [MPa]  

2P    compact downstream face pressure [MPa]  

 21
2

1
= PPPAVG     average compact face pressure [MPa]  

 21= PPPBED     pressure loss across the compact [MPa]  

vP    vessel pressure [MPa]  

vS    surface area per unit compact volume [1/cm]  

eqr    average equivalent capillary radius [cm]  

q    tortuosity factor [dimensionless]  

v  mean speed of gas molecules [cm/s]  

d  molecular diameter [cm] 

   

Greek Symbols    
    porous media void fraction (porosity) [dimensionless]  
    gas viscosity [MPa-s]  

   

Vectors   

N    total superficial molar flow rate 
2

mol

cm s
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1.  DERIVATION OF FLOW MODEL 
 

1.1. Introduction 
 

This paper considers non-reacting gas flow in a powder compact (or similar porous 

medium) at constant temperature. Our main interest is in metal hydride-based hydrogen storage 

materials. For example, palladium can reversibly absorb and desorb hydrogen at moderate 

temperatures and pressures.  Its properties are strongly dependent on the hydrogen isotope used, 

so it can be used to separate and otherwise manipulate the isotopes.  In work reported elsewhere, 

palladium powder compacts are used to extract pure hydrogen isotopes from a mixture. In that 

case, isotope exchange reactions must be considered in parallel with gas phase transport.
1
  Prior 

to these studies, it is informative to perform experiments with a non-reacting gas, so fluid flow 

can be examined separately from isotope exchange. 

 

The goal of this report is to present a simple mathematical model for the flow properties 

as a function of the geometry of the compact and of the properties of the nonreacting gas.  Fitting 

to experimental data allows empirical determination of the viscous flow (permeability) and 

molecular flow (Knudsen diffusion) coefficients, and evaluation of whether the model’s 

assumptions apply.  The parameters can be used to make inferences about the structure of the 

pores.
2,3 

 

The use of parallel or superimposed viscous and molecular flows follows from the Dusty 

Gas Model.
4
 This approach can accurately describe gas transport over a wide range of 

conditions.
13

  The model is controversial in some aspects, but not at the level of detail considered 

here.
5,6

 With gas near room temperature and pressure flowing through m -scale particles, the 

Knudsen number (ratio of mean free path to pore diameter) is 0.01  and therefore proper 

treatment of free molecular flow is needed for suitable accuracy. 

 

Flow measurements are conveniently performed in two distinct experiments. The first 

measures pressure loss across the compact at a constant flow rate. The second uses pressure 

depletion from a known volume. We formulate versions of the model for each case. 

 

 

1.2. Mass and Momentum Conservation 
 

The Dusty Gas Model, developed during the 1960s, is described in a series of 

papers.
7,8,9,10,11

 Mason and Malinauskus's monograph gives a thorough description of the model.
4
 

Jackson also reviews the model and demonstrates its application to porous catalysts.
12

  The 

model combines viscous bulk flow, free-molecular flow, and molecular diffusion. It has been 

shown to accurately predict species transport for regimes ranging from Knudsen streaming to 

viscous flow.
13

 

 

The species flux relations incorporate momentum conservation and transport. The bulk 

fluid velocity is related to the total pressure gradient by approximating the porous medium as a 

network of capillary tubes.
8
 This treatment leads to the use of Darcy's law. The inertial terms of 

the Navier-Stokes equations are neglected, and the Dusty Gas Model is therefore limited to small 
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Reynolds and Mach numbers. While limiting, this assumption is key to the development of the 

model because it allows the viscous and diffusive fluxes to be combined.
4
 

 

1.2.1. Molar conservation 
 

For a pure, non-reacting gas in a porous medium with a temporally and spatially invariant 

void fraction (porosity)  , concentration c (mmol gas/cm
3
 pore volume) and the total molar flux 

N (mmol/s-cm
2
 bed cross-sectional area), the overall species balance is 

 

 = 0
c

t






N  (1) 

 

for a control volume much larger than the medium's average pore size.
14

  The porosity factor 

converts between variables describing the pore space (such as concentration) and those 

describing the entire compact (such as molar flux). 

 

Porosity variation is a foreseeable complication.  Its magnitude can depend on the 

packing technique, the results of which can be affected by particle shape, and particle-particle 

and particle-wall friction.  Mason and Malinauskas provide a detailed discussion of the 

assumption of uniform porosity and its limitations.
4
  Contrast variations observed in radiography 

can diagnose nonuniformity, and some flow tests discussed below may help identify it. 

 

1.2.2. Viscous Flow 
 

Gas flow through a porous medium is well described by Darcy's law, provided the flow is 

laminar within the pores, and the pore diameter is large relative to the molecular mean free path.
4
 

 

 .= Pc
B




vN  (2) 

 

where Nv is the molar flux due to viscous flow (mmol/cm
2
-s), P is the pressure (MPa),  is the 

viscosity (MPa-s), and B is the permeability (cm
2
).  If there were only a single, straight pore of 

circular cross section, Darcy’s law is essentially a restatement of Poiseuille’s law for laminar 

incompressible flow through a pipe, which relates a pressure drop to a volumetric flow rate.  

Rearranging Darcy’s law gives 

 

 









c

A

BA
P c

c

vN
=  (3) 

 

where Ac (cm
2
) is the cross-sectional area of the pipe, the factor in parentheses is a volumetric 

flow rate, and the denominator of the prefactor has units of cm
4
.  Analogy with Poiseuille’s law 

gives Bpore = Ac/8. 

 

Because a cross section of the compact contains an array of pores through an occluded 

area, we must include the porosity factor in B.  Also, the irregular nature of the solid phase 
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creates a tortuous path that the fluid must follow as it traverses the compact, so the average fluid 

path length Leff exceeds the superficial compact length Lc. The porous medium can thus be 

modeled as a bundle of crooked capillary tubes.  In this case, the effective permeability is related 

to the permeability of a single pore by,  

 

 ,= poreB
q

B


 (4) 

 

 where the tortuosity factor  
2

= eff cq L L .  (The tortuosity captures one factor of the length ratio 

because the flux is reduced when averaged over the many pore orientations, and another from the 

additional path length in the pressure gradient.)  In a real porous medium, pores are irregular, 

interconnected, and typically have radii on the order of the length of the passage. Mason and 

Malinauskas describe details of the capillary model and its limitations.
4
 

 

While the details of pore geometry are difficult to quantify, it is often straightforward to measure 

the internal surface area of the pores per gram of powder, or per cm
3
 of the compact Sv.  For an 

array of uniform, straight cylindrical pores of radius r, the surface area per unit pore volume is 

rLArLS cccv 22=  .  This can be rearranged to define an equivalent capillary radius req for 

the porous medium. 

 

 
v

eq
S

r
2

=  (5) 

 

By the Poiseuille flow analogy, 
8

=

2

eq

pore

r
B . Equation (4) then becomes 

 

 .
8

=

2

eqr

q
B


 (6) 

 

Using the definition of equivalent capillary radius, eqr  can be eliminated in favor of   and vS , 

giving  

 

 .
2

1
=

2

2

vSq
B


 (7) 

 

From his experiments on sintered frits, Meyer
2
 found (but stated differently) that q  was 

correlated with   by  

 

 
1.1

1.25
=


q  (8) 
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Meyer estimates the accuracy of q  to be 30%  of the predicted value.  Perfect agreement is not 

anticipated because morphological differences between sintered frits and unconsolidated sample 

powders may change the relationship between q  and  .  Substitution of Eq. (8) into Eq. (7) 

gives Meyer's correlation for effective permeability,  

 

 
2

4.1

0.4=
vS

B


 (9) 

 

The permeability correlation was developed by studying flow in sintered stainless steel frits with 

0.67<<0.18   and 132 cm 101.4<<102  vS . However, this correlation is commonly 

extrapolated to typical Pd compact parameters, 0.75  and 14 cm 103 vS . 

 

The system is assumed isothermal, and the gas is assumed ideal, so cRTP = , where R is 

the ideal gas constant (J/mmol K), and T is the temperature (K).  This allows elimination of c in 

favor of P, which is more easily measured. 

 

 P
RT

BP



=vN  (10) 

 

These two assumptions are justified for non-reacting gas flow at near-ambient temperature and 

low to moderate pressure. The compressibility, Z, is a coefficient in the real gas law, =P ZcRT , 

describing deviation from ideality. As examples, at 4 MPa and 295 K, the compressibility of 

helium is 1.02, indicating a 2% deviation from ideal gas behavior.
15

 At 1 MPa and 295 K, the 

compressibility is approximately 1.005.  The isothermal assumption is appropriate when the gas 

is non-reacting and the flow is near steady-state. In many experiments, localized heating or 

cooling from rapid compression or expansion of the gas is not significant. In those cases, the 

temperature within the compact can be assumed to be both invariant in time and spatially 

uniform without introducing a significant error. 

 

 

1.2.3. Free-molecular flow 
 

An additional contribution to the flux is free molecular flow.  This flux is controlled by 

collisions between gas molecules and pore walls.  Because the individual molecules follow paths 

that can be described as random-walks, their net flux is modeled as diffusion along a 

concentration gradient (using Fick’s law). 

 

 cDK=mN  (11) 

 

where Nm is the free-molecular contribution to the flux and KD  is the effective Knudsen 

diffusion coefficient.  Application of the ideal gas law gives 
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 P
RT

D K

=mN  (12) 

 

Free-molecular transport dominates when gas molecule-wall collisions occur much more 

frequently than molecule-molecule collisions.  In other words, it dominates when the mean free 

path  greatly exceeds the pore diameter.
 16

 

 

 
2 8

2
4

RT
r

Mcv RTc M

 



   (13) 

 

where v is the mean speed of the gas molecules (cm/s) and is equal to the square root factor in 

Eq. (13).  

 

For a circular capillary having a constant radius and rL >>  with perfectly diffuse scattering of 

the gas molecules by the tube walls, 
K

poreD  is given by  

 

 

1/2
2 2 8

=
3 3

K

pore

RT
D r v r

M

 
  

 
 (14) 

 

This is the product of a path length comparable to the pore dimensions, and the thermal speed of 

the gas molecules.  Thus the Knudsen diffusion coefficent is pressure-independent.   

 

The effective D
K
, which applies to the entire compact, is related to the pore Knudsen diffusion 

coefficient using a similar model of a bundle of crooked capillaries. 

 

 = .K K

poreD D
q


 (15) 

 

Substitution of Eq. (14) into Eq. (15) gives  

 

 

1/2
2 8

=
3

K

eq

RT
D r

q M





 
 
 

 (16) 

 

where we are using the radius derived from the surface area measurement.  Mason and 

Malinauskus
4
 provide a different parameterization of the Knudsen diffusion coefficient D

K
, as 

 

 ,
8

3

4
=

1/2

0 








M

RT
KD K


 (17) 

 

where 0K  is an empirical parameter.  Fits to flow data are sometimes reported as 0K  instead of 

D
K
, to keep the compact geometry parameters, K0 or req, separate from 

1/2
8RT

M

 
 
 

.    
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1.2.4  Multi-Component Diffusion 
 

The final flux contribution considered by the Dusty Gas Model is multi-component diffusion.  

This contribution can be significant for gas mixtures when the pressure is high enough that 

molecule-molecule collisions are much more frequent than molecule-wall collisions.  The 

molecular diffusion flux is included in the Dusty Gas Model by incorporating the Stefan-

Maxwell transport equations, 

 
1

j i i j

i e

ij

n

j
j i

x x

cD
x





  

N N
 (18) 

 

where xi is the mole fraction of species i, xj is the mole fraction of species j, Ni is the superficial 

flux of species i, Nj is the superficial flux of species j, and e

ijD is the effective binary molecular 

diffusion coefficient for species pair ij.  The effective molecular diffusion coefficient is simply 

the normal binary molecular diffusion coefficient for the species pair, ijD , suitably corrected for 

the porosity and tortuosity of the compact.  If one assumes a crooked capillary model, then 

 

 e

ij ijD D
q


ò

. (19) 

 

Including multi-component diffusion significantly increases the model’s mathematical 

complexity.  To find the flux of species i in a mixture of n species, when both free-molecular and 

viscous transport are significant, one must simultaneously solve a system of n flux equations.  

The flux equations, which incorporate viscous, free-molecular, and diffusive transport, are, 

 

 
1

1
j i i ji i

iK e K

i ij
j i

j

n

i

x x xP BP

D D
x P

DRT RT 


  
    


 




N NN
. (20) 

 

where   is the average viscosity of the gas mixture.  The average viscosity of a gas mixture 

containing n species may be estimated by Wilkie’s semi-empirical formula
17

, 

 

 
1

1

n
i i

n
i

j ij

j

x

x














 (21) 

where 

 

2
1/2 1/2 1/4

1
1

1
8

i i j

ij

j j i

M M

M M





     
         

 
   

  

. (22) 

 

Here xi and xj are the mole fraction of species i and j, i and j are the viscosity of species i and j, 

and Mi and Mj are the corresponding molecular weights.   

 



13 

 

1.2.5 Single-Component Momentum Conservation 
 

Incorporating multicomponent transport greatly complicates the Dusty Gas Model.  Fortunately 

however, for our conditions, namely a pure non-reacting gas, ix  and the second term on the left 

hand side are zero.  Therefore Eq. (20) can be reduced to 

 

 
KD

T

BP
P P

RT R
   N , (23) 

 

as we would expect, because it is the sum of the viscous and free-molecular flux contributions 

(10) and (12).  We refer to this as a momentum conservation equation because the gas and the 

particles of the bed exert forces on each other in order to establish this relationship between 

pressure and molar flow rate.  The molar flow rate can be expressed as a product of the gas 

concentration and its bulk flow velocity.  When N and T are uniform in space and time, the 

pressure and velocity are inversely proportional. 

 

1.2.6 Comparison of Viscous and Free-Molecular Flow 
 

Equation (23) shows that in the low-pressure limit, BP/D
K
 << 1, free-molecular flux dominates, 

and that as P increases, viscous flux increases, until it eventually becomes dominant.   

 

Expressions derived above can be used to compare the magnitudes of the two contributions to 

the flux, which both depend on the pressure gradient.  If the free-molecular contribution is 

greater, 

 

 
KD Bc

RT 
 . (24) 

 

By incorporating the crooked capillary expressions, Eqs. (6) and (16), this can be rearranged to 

 

 
32 8

2
3

RT
r

RTc M




 (25) 

 

which is similar to Eq. (13).  The Knudsen diffusion coefficient can also be related to the 

effective permeability through the equivalent capillary radius.  By combining Eqs. (6) and (8),  

 

 .
10

=
8

=

1/2

2.1

1/2




















BqB
req  (26) 

 

and applying the tortuosity correlation, 
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1/2

1.05 1/2 8
= 1.69K RT

D B
M




 
 
 

 (27) 

 

Again, this is limited by the assumptions of the crooked capillary model and the accuracy of the 

tortuosity correlation, but it provides a basic concept for the scaling of these transport 

parameters.  As a footnote, Meyer is careful to refer to eqr  as the average pore radius.  Others 

have called eqr  the hydraulic radius rh, which is incorrect. The quantities differ by a factor of 2, 

with heq rr 2= .
18

 

 

The Knudsen diffusion coefficient can also be compared to the viscosity.  In a hard-sphere 

model, the viscosity takes the form  

 

1/2

2

8
0.0049

M RT

d M




 
  

 
 (28) 

 

where d is the molecular diameter.  This is modified by longer-range interactions in a real gas.
16

  

Because viscosity appears in the denominator, this suggests that viscous flux is reduced and free-

molecular flux increased with increasing temperature, and that both terms decrease when the 

molecular weight is increased (assuming no change in d, as expected upon substitution by a 

different isotope).  
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2.  APPROACH TO SPATIALLY UNIFORM FLUX 
 

 

2.1. Introduction 
 

The substitution of the momentum conservation equation (23) into the mass conservation 

equation (1) leads to a general description of the time and spatial dependence of the properties of 

the compact.  However, it is relatively difficult to solve.  Simpler, closed-form solutions can be 

obtained if we can justify an assumption of spatially uniform flux: 0=
d

d

z

N
.  To determine the 

validity of this assumption, we compare the time for a compact to reach steady-flow conditions 

with the duration of a typical experiment.  If the compact's steady-state relaxation time is much 

shorter than the blowdown time, then the steady-state assumption is justified. 

 

As before, the system is assumed isothermal, the compact is assumed uniform, the fluid 

viscosity is assumed constant, and the fluid is taken to be a pure, ideal gas.  The combined 

governing equations take the following form (using the ideal gas law to eliminate pressure 

instead of concentration): 

 

 .=
2

2

2

22

z

cD

z

c
c

z

cBRT

t

c K








































 (29) 

 

 Equation (29) can be solved to give the fluid's molar concentration within the compact as a 

function of time to determine the time needed to reach a spatially constant molar flux.  Taken 

with the boundary conditions imposed by the geometry of the compact, the equation does not 

have a simple analytic solution and must therefore be solved numerically.  (If the viscous flow 

term is negligible, then this boundary-value problem becomes more tractable, and series 

solutions exist.) 

 

 

2.2. Steady State Concentration Profile 
 

At steady state, Equation (29) reduces to  

 

 .
d

d

d

d

d

d
=0

2

2

2

22

z

c
D

z

c
c

z

cBRT K






















 (30) 

 

and we know that flux is spatially uniform from the mass conservation equation (1).  For a 

compact of length L , with boundary conditions of 1=(0) cc  and 2=)( cLc , Equation (29) can be 

solved exactly. The solution is  
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2

21

2

2

2

1 ))((
2

))((
=)( 
















BRT

D

L

zczLc

BRT

D

L

zczLc

BRT

D
zc

KKK 
 (31) 

 
 

This can also be straightforwardly expressed as a pressure.  Because the molar flow rate is 

constant, as noted in 1.2.5, the gas velocity is inversely proportional to this.  

 

 
 

Figure 1.  Steady state concentration profiles for several values of 
1BRTc

DK
.  Its value is 1 

for the middle curve, and varies by factors of 10 on either side.  The pressure drop is 
tenfold across the compact. 

 

Figure 1 shows that the concentration profile is linear when free-molecular transport dominates.  

When viscous flow dominates, the gas moves more slowly at higher concentration, but 

accelerates as the concentration decreases.  The asymmetry of the profile in the viscous regime 

can be a way to measure nonuniform porosity: if two flow experiments are performed in opposite 

directions, one could expect different results. 
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2.3. Transient Numerical Solution 
 

Equation (29) was solved using a finite difference method implemented in Microsoft 

Excel. The method used central differencing for the space derivatives and backward differencing 

for the time derivative. This is commonly referred to as an explicit, central difference scheme. 

A solution was computed for conditions representative of a blowdown experiment. The 

molar concentrations at the upstream and downstream faces of the compact were fixed at 1c  and 

2c  respectively. The initial concentration within the compact was taken to be 2c , except for a 

sharp ramp to 1c  at one end.  For short times, the equation is rather stiff, so the grid spacing and 

time step were fixed at /100L  and 10
-4

 seconds to ensure numerical stability. KD  was taken as 

either 1 or 0.033, 1c ,  and L as 1, 2c  as 0.1, and 
1BRTc

DK
 as either 1 or 0.033. 

 

It takes a few tenths of a second to transition from the initial condition to a steady state 

concentration profile.  As will be shown, vessel volumes and the compact diameter can be 

chosen to ensure that the experiment lasts significantly longer than this. 
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Figure 2.  Plot of transient solution for several time points.  The upper plot has similar 

contributions from free-molecular and viscous flow, whereas the lower plot has a 30-fold 
lower contribution from free-molecular flow. 

 

Figure 2 shows simulation results for cases where viscous and free-molecular flow make similar 

contributions, and where free-molecular flux is reduced, so viscous flow predominates.  Both the 

viscous and free-molecular cases are close to steady-state concentration profile in less than 0.2 

seconds.  However, when viscous flow is predominant, it takes significantly longer to fully 

establish steady-state conditions.   
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3.  APPLICATION TO EXPERIMENTAL CASES 
 

 

3.1. Steady Flow 
 

Assuming a uniform compact reduces the analysis to one space dimension, and assuming 

steady flow (constant flow rate) eliminates the time dimension from the mass conservation 

equation (1). This gives 

 

 0=
d

d

z

N
 (32) 

 

and from the transport equation (23) 

 

 
z

P

RT

D

z

P

RT

BP K

d

d

d

d
= 


N  (33) 

 

For steady flow tests, Eq. (33) can be evaluated for a compact of length cL  and superficial area 

cA  with face pressures 1P  and 2P .  Eq. (33) can be separated and integrated over the length of 

the compact, giving  

 

    21

2

2

2

1
2

= PP
RTL

D
PP

RTL

B

A

n

c

K

cc





 (34) 

 

where n  is the molar flow rate (mmol/s). 

 

Equation (34) can be rearranged into a form more suitable for analysis if one notes that 

    2121

2

2

2
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This is a very illustrative form for the solution. The first and second terms on the right hand side 

represent the flux contributions from free-molecular and viscous flow respectively. 

Experimentally, steady flow can be achieved or approximated by use of a regulated gas cylinder, 

which applies a constant pressure to one side of a compact, and by venting the other end of the 

compact to the atmosphere. 
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3.2. Blowdown 
 

In a blowdown test, vessels of finite volume are connected to each end of the compact.  One 

vessel is isolated by a valve, and each vessel is loaded to a different initial pressure.  The valve is 

opened, and the pressures are allowed to equilibrate.  The analysis of the previous section still 

applies, but the pressures and flow rate are now time-dependent. 

 

Maintaining constant temperature can be difficult due to adiabatic expansion from one 

vessel and compression in the other.  Monitoring of temperature within each vessel is important.  

If the timescale of the experiment is long enough, the surface-to-volume ratio of the vessels and 

tubing are high enough, or other measures are taken to increase contact of the gas with surfaces 

of relatively uniform temperature, the gas temperature variations can be kept small.  In the 

isothermal case, the analysis is greatly simplified, and Eqs. (1) and (33) can be solved in closed 

form. For the sake of simplicity, this assumption is utilized, and a possible loss of model fidelity 

is accepted. 

 

To analyze the blowdown test, a material balance is performed on the vessel, and an ideal 

gas is assumed.  We call the vessel with higher pressure the “source” and the lower pressure the 

“receiver”.  This gives  
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where Vs is the constant source volume and Ps the time-dependent source pressure.  The mass 

flow rates at the inlet and outlet of the compact are assumed to be equal (no gas is absorbed or 

released in the compact), which implies that 0=
d

d

z

N
.  Consequently, the molar flux, cAn/ , is 

given by Eq. (34), replacing P1 and P2 with Ps and Pr, the receiver pressure. These assumptions 

allow Eqs. (34) and (36) to be combined, giving  
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A mole balance on the whole system before and after the experiment gives 

 

  rseqrrss VVPVPVP   (38) 

 

where Peq is the equilibrium pressure, which can be computed from the initial vessel pressures 

using this equation.  The time dependence of the receiver pressure can be obtained from this 

equation once the time-dependent source pressure is solved.  The compact is initially at 

equilibrium with one of the two vessels, and its void volume is lumped with the volume of that 

vessel.  We take that vessel to be the receiver, and eliminate the receiver pressure to obtain 
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It can be shown that a pressure function of the form 
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solves 
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which matches the form of Eq. (39).  The boundary conditions are   00 PtP  , the initial value 

of Ps, and   eqPtP  .  Substitution allows elimination of a and f, so 
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which satisfies the boundary conditions, and solves 
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By matching coefficients, we then identify 
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This closed form can easily be used in a spreadsheet or other data analysis software.  Several 

especially simple cases can be identified.  If the vessel volumes are equal,  
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If rV , or the compact is vented to the atmosphere or into a vacuum pump at pressure 2P , the 

result is 
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where 
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Some other simplified cases can be obtained if only one transport regime (viscous or free-

molecular flow) prevails throughout the experiment.  For free-molecular transport only, 
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For viscous flow only: 
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Figure 3.  Response of each flow type.  Tenfold initial pressure drop, Vs/Vr = 0.25.  DK was 

set to 1.5 BPeq/ in Eq. 47 to make the curves overlap. 

 

Figure 3 shows the response to a tenfold pressure drop where the receiver is fourfold larger than 

the source vessel.  The response for purely viscous flow, Eq. 48, which is a rational function of 

exponentials, differs slightly in shape from the response for purely free-molecular transport, Eq. 

46, which is a single exponential.  This difference is not present when the vessel volumes are 

equal, and the deviation is reversed when Vs/Vr is greater than 1.  When the volumes are equal, 

the downstream pressure goes up at the same rate that the upstream pressure goes down, so the 

average pressure in the compact stays constant, and the spatial concentration profile does not 

change in shape.  If the source volume is smaller, the pressure profile decays to a more free-

molecular regime, because the source pressure decreases more quickly than the receiver pressure 

increases.  If the receiver volume is smaller, the profile changes to a more viscous state, because 

the receiver pressure increases more quickly than the source pressure decreases.  The shape 

changes can be subtle, so determining the flow regime from the curve shape can be difficult.  

However, even when the volumes are equal, and the curve shape does not depend on the flow 

regime, that regime can still be identified by performing the experiment at different initial 

pressures, or with gases of differing viscosity (though less easily through isotopic substitution, as 

noted above). 



24 

 

As mentioned earlier, assuming the compact is in steady state during the transient 

blowdown is not strictly correct.  The tubing between the valve and compact will rapidly 

equilibrate with the source vessel, and gas in the compact will pressurize until a linear pressure 

profile is obtained.  Because the volumes involved are much smaller than the vessel volumes and 

the resistance to flow is lower than that of the whole compact, this response is typically much 

faster, and the effect is easily corrected for experimentally by adjusting P0 to the value just after 

this transient, and Vs to include the tubing and about half of the compact void volume (reducing 

Vr accordingly).  The analysis of the spatial concentration profile in the previous chapter can help 

identify or justify a suitable correction. 

 

3.3. Flow rate analysis 
 

Alternativley, the time-dependent flow rate in a blowdown experiment can be found from the 

known time-dependent pressures using Equation (36).  One advantage of this method is that it 

allows one to correct for pressure drops from the frits at either end of the compact, the flow 

parameters of which can be measured in flow tests on an empty column.  A disadvantage is that 

it requires numerical computation of the pressure time derivative.  The pressure derivative can 

computed through a difference between two sequential pressure measurements divided by the 

time interval between them, but this amplifies high-frequency noise in the data.  The noise can be 

mitigated by averaging the differences (or equivalently by using pressure measurements 

separated by larger time intervals), or experimentally by reducing the bandwidth of the pressure 

transducer signal.  These approaches are less effective (or degrade the data) near the beginning of 

the dataset, which may contain valuable information.  However, there can be value in comparing 

results from a flow rate analysis to direct fits of the time-dependent pressure data to an equation 

such as (43).  For example, this can show whether the improved accuracy from a frit correction 

outweighs the lost precision caused by numerical-differentialtion amplified noise when 

determining flow parameters. 

 



25 

 
4.  SUMMARY 

 

This report presents the basic concepts of gas transport in porous media, and applies them in 

simple forms that facilitate rapid analysis of experimental data, as well as critical understanding 

of an experiment.  It identifies several closed-form solutions of the governing equations that are 

easily implemented in spreadsheet or other data analysis software.  This approach can be a 

valuable complement to more complex models, such as finite element analyses of 3D flow 

distributions that account for inlet geometry, pressure drops in tubing, uptake and release by the 

solid phase, temperature variations, nonuniform porosity, gas nonideality, turbulent or 

compressible flow, and other effects.  The insights presented here can also aid experimental 

design to minimize the importance of many of these complications.  We hope that this report will 

serve as a succinct introduction to the technical field for new researchers and engineers, and a 

useful reference for veteran practitioners. 
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