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Abstract 
 

When developing linear programming models, issues such as budget limitations, 
customer requirements, or licensing may preclude the use of commercial linear 
programming solvers. In such cases, one option is to use an open-source linear 
programming solver. A survey of linear programming tools was conducted to identify 
potential open-source solvers. From this survey, four open-source solvers were tested 
using a collection of linear programming test problems and the results were compared 
to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers 
considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear 
Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear 
Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, 
this study demonstrates the power of commercial linear programming software. CLP 
was found to be the top performing open-source solver considered in terms of 
capability and speed.  GLPK also performed well but cannot match the speed of CLP 
or CPLEX. lp_solve and MINOS were considerably slower and encountered issues 
when solving several test problems. 
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1.  INTRODUCTION 
 
This report documents a study that was conducted as part of the Contingency Contractor 
Optimization (CCO) project to determine if there are viable open-source linear programming 
(LP) solvers that could be used in place of commercial LP solvers. One requirement of the CCO 
project is that all software and algorithms developed or used by the final engineering prototype 
should be freely distributable within the Department of Defense (DoD). Since the core model 
developed for this project was an LP, it was necessary to create or identify a low-cost or no-cost 
solver. Production licenses for standard commercial LP solvers such as CPLEX [1] have annual 
costs of tens of thousands of dollars, which precluded their use for the CCO project. In order to 
fulfill the freely distributable requirement, a survey and assessment of alternative LP solvers was 
conducted. While this study was motivated by the CCO project, the findings are general and 
should be useful to any group who is interested in using a low-cost or no-cost LP solver. 
 
This study was divided into two phases. In the first phase, a survey was conducted of all 
available LP tools to identify which ones could be used given the requirements of the CCO 
project. In the second phase, the most promising LP solvers identified during the survey were 
tested on a range of problems to determine the quality of each solver. Since the solver selected 
for the CCO project will be used in a production environment, it is important that the solver be 
accurate, efficient, and mature. Therefore, each solver was also compared to IBM’s CPLEX 
solver, an industry standard.  
 
This report is organized as follows: Section 2 discusses the findings from the survey of the LP 
solvers. Section 3 describes the testing approach and results used for a subset of the available 
solvers. Section 4 provides a summary and conclusion.  
 
  



10 
 

 



11 
 

2.  SURVEY AND SELECTION OF LP SOLVERS 
 
This section describes the results of a survey of available LP solver tools. This survey was 
conducted in two rounds. The first round focused on reviewing all of the available tools and 
eliminating those which were not LP solvers and would not meet the requirements of the CCO 
project (free or low-cost, usable in a production environment for a government application, and 
not tied to a commercial product such as MATLAB). Once this initial survey was completed and 
candidate solvers were identified, a second round screening was conducted to identify the top LP 
solvers that would be tested. 
 
2.1 Initial Screening: Survey of LP Tools 
 
An initial screening of LP tools was conducted using two types of data sources. The first data 
source was a survey of linear programming software conducted by Robert Fourer [7], available 
through the INFORMS website. The second source of data was a general web search for linear 
programming tools. Modeling-related websites provided lists of both commercial and free LP 
solvers [8], [9], [10]. Once this survey was complete, each product was reviewed and screened 
according to the following criteria with the desired answer of “Yes”: 
 

- Is the product free or low-cost? 
- Is the product an LP solver? 
- Does the product use an exact method such as the Simplex algorithm or an Interior Point 

algorithm?; (tools using heuristic methods such as Monte Carlo sampling or genetic 
algorithms are discounted, since there are well established exact algorithms for solving 
LPs) 

- Is the product mature?; (as demonstrated through software development practices, 
documentation, and active commercial or academic user communities) 

- Is the product a stand-alone product (e.g. not an add-in to MATLAB, Excel)? 
 
In total, about 100 LP tools were identified using the two data sources described above. The 
screening criteria above were then applied to this list to create a down-selected list of solvers. A 
complete list of all the tools considered and the justification for why they were accepted or 
rejected in the first round of screening can be found in Appendix A. The initial screening 
identified ten potential LP solvers. These solvers are listed in Table 1. 
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Solver Name Website 
lp_solve http://lpsolve.sourceforge.net/5.5/ 
MINOS http://www.sbsi-sol-

optimize.com/asp/sol_product_minos.htm 
CLP https://projects.coin-or.org/Clp 
GLPK http://www.gnu.org/software/glpk/ 
PCx http://pages.cs.wisc.edu/~swright/PCx/ 
PPL http://bugseng.com/products/ppl/ 
JOptimizer http://www.joptimizer.com/ 
LiPS http://lipside.sourceforge.net/ 
CVXOPT http://abel.ee.ucla.edu/cvxopt/ 
QSOPT http://www2.isye.gatech.edu/~wcook/qsopt/ 

 
Table 1.  Candidate LP Solvers Identified During First Round Screening 

 
In addition to LP solvers, the screening process identified several other sets of tools that might be 
of potential use to those requiring open-source math programming tools. These tools are 
summarized in Table 2 and Table 3. Table 2 lists the modeling environments that were identified 
during the survey. In general, it is very difficult to develop models by interacting directly with 
solvers. A commonly used approach is to create problem statements in a modeling environment 
and then pass the problem to a solver. Table 3 lists quadratic program and integer program 
solvers that were identified during the survey. While not directly applicable to this study, it is 
worth pointing out that open-source tools also exist for integer and quadratic programming. CLP 
and PPL are included in both Table 1 and Table 3, since they are both linear and quadratic 
programming solvers. 
 

Software Name Website 
Coopr https://software.sandia.gov/trac/coopr 
CMPL https://projects.coin-or.org/Cmpl 
OptimJ http://www.ateji.com/optimj/index.html 
PuLP http://code.google.com/p/pulp-or/ 
OpenOpt http://openopt.org/Welcome 
Microsoft Solver 
Foundation 

http://msdn.microsoft.com/en-
us/devlabs/hh145003.aspx 

COINMP https://projects.coin-or.org/CoinMP 
 

Table 2.  List of Modeling Environments Identified During the Initial Screening Process 
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Software Name Website 
CVXOPT http://abel.ee.ucla.edu/cvxopt/ 
OOQP http://pages.cs.wisc.edu/~swright/ooqp/ 
LSSOL http://www.sbsi-sol-

optimize.com/asp/sol_product_lssol.htm 
CLP https://projects.coin-or.org/Clp 
PPL http://bugseng.com/products/ppl/ 
MINTO http://coral.ie.lehigh.edu/~minto/ 
CBC https://projects.coin-or.org/Cbc 

 
Table 3. List of Integer and Quadratic Program Solvers Identified During the Initial 
Screening Process 
 
2.2 Second Screening: Down-Selection of LP Solvers 
 
Given time and resource limitations, only four of the solvers identified during the initial 
screening could be tested. A second round of screening was conducted to identify the top four 
candidates for testing. All of the same selection criteria were applied during the second round as 
the first. However, during the second round, the solvers were scrutinized more closely and 
compared against each other.  
 
The second round of screening identified lp_solve, MINOS, CLP, and GLPK as the test 
candidates. A complete description of each of these tools is provided in section 2.3; however 
they do have common desirable traits. First, all of the tested solvers have a mature code base and 
are extensively documented. MINOS is a commercial solver that can be purchased with AMPL 
and GAMS [9], [10]. While it is not free, it was included since it is available to the government 
for $350 [11]. The other three solvers are open-source applications. In a survey of websites, 
presentations, and papers discussing open-source solvers ( [7], [8], [9], [10], [12], [13], [14], 
[15]), these three solvers were referenced the most often. Also, all of the major open-source 
development environments provide an interface to some combination of these three tools (see 
Appendix B). The six tools that were eliminated during the second screening and the reason they 
were eliminated are given below in Table 4. 
 
2.3 Discussion of Selected Solvers 
 
The solvers selected for further testing based on the results from the second screening were: 
CLP, GLPK, lp_solve and MINOS. A discussion of each of these solvers is provided in the 
following sub-sections. Table 5 provides a summary of the key aspects of each solver described 
in the sub-sections below. 
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LP Solver Reason Rejected 
PCx PCx has not been updated since 2006. This was rejected since other 

solvers that are in active development were available. 
PPL The PPL code is mature and has good software development practices 

and documentation. However, it is not widely used. It is not referenced 
in any of the sources used in the screening process nor do any of the 
researched modeling environments provide accesses to this tool.  

JOptimizer JOptimizer is a relatively new project and is not widely used at this 
time.  It is not referenced in any of the sources used in the screening 
process nor do any modeling environments provide access to the tool. 

LiPS LiPS was developed to teach linear programming in an academic 
setting and is not intended to be used in production.  It is not referenced 
in any of the sources used in the screening process nor do any modeling 
environments provide access to the tool. 

CVXOPT The CVXOPT code contains many useful algorithms, but it was 
developed for use in a research environment and is not intended to be 
used in production.  It is not referenced in any of the sources used in 
the screening process nor do any modeling environments provide 
access to the tool. 

QSOPT The QSOPT code contains many useful algorithms, but it was 
developed by a university and intended for research uses. Apart from 
being tested by Hans Mittleman [15], it is not referenced in any of the 
other sources used in the screening process nor do any modeling 
environments provide access to the tool.  

 
Table 4. Summary of LP Solvers Eliminated During Second Round of Testing 

 
 
LP Solver Command 

Line 
Interface? 

Application 
Programming 
Interface 
(API) 

Input File Algorithms 

CLP Y C++ MPS, Free MPS Primal and Dual 
Simplex, Interior Point 

GLPK Y C, Java MPS, Free MPS, LP, 
GLPK, MathProg 

Primal and Dual 
Simplex, Interior Point 

lp_solve Y Java, .NET, C, 
C++, C# 

MPS, Free MPS, LP Primal and Dual 
Simplex 

MINOS Y Fortran, C, 
MATLAB 

MPS, LP + SPEC File Primal Simplex 

 
Table 5. Summary of Key Aspects of Tested Solvers 
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2.3.1 COIN-OR Linear Programming (CLP) 
 
COIN-OR Linear Programming (CLP) is a project that is part of the Computational 
Infrastructure for Operations Research (COIN-OR, or simply COIN) initiative [2], [16]. COIN-
OR is an initiative to encourage development of open-source, operations research software. CLP 
is an LP solver containing Dual and Primal Simplex algorithms. It has been tested on problems 
of up to 1.5 million constraints and is as reliable as OSL [17]. CLP is available under the Eclipse 
Public License version 1.0. CLP has also been tested by Hans Mittelmann [15] and was 
mentioned in several references discussing LP solvers [13], [14]. 
 
CLP is written in the C++ programming language. Its primary algorithms are the Primal and 
Dual Simplex algorithms, but it also contains an Interior Point algorithm. Users can interact with 
CLP through an interactive command line or through a C++ application programming interface 
(API). While the user can create LP problem statements in code through the API, CLP is also 
able to accept MPS, Free MPS and LP files [2]. These three file formats are standards for 
specifying LP problems. All LP solvers are capable of reading one of more of these formats. 
 
2.3.2 GNU Linear Programming Kit (GLPK) 
 
GNU Linear Programming Kit (GLPK) is a math programming project that is part of the GNU 
project [4]. It was developed to solve large scale LP problems. GLPK was developed by Andrew 
Makhorin of the Moscow Aviation Institute. GLPK is available under the GNU General Public 
License. It can solve LPs using Primal and Dual Simplex algorithms, as well as an Interior Point 
algorithm. Like CLP, it has been tested by Hans Mittelmann [15] and was referenced in several 
sources pertaining to LP solvers [13] , [14]. 
 
GLPK is written in the C programming language. Users can interact with GLPK through the 
command line or through an API. GLPK offers a C and Java API. GLPK accepts models in the 
MPS, Free MPS and LP format. It also accepts problem statements in the MathProg format 
which are created using the GNU Mathematical Programming Language (GMPL), a modeling 
environment related to GLPK. 
 
2.3.3 lp_solve 
 
lp_solve [5] is an LP and integer programming (IP) solver based on the revised Simplex Method 
and the branch-and-bound method for the integers. It is freely available under the GNU Lesser 
General Public License. It was originally developed by Michel Merelaar at Eindhoven University 
of Technology but has had many contributors since the original development. It uses the Primal 
and Dual Simplex algorithms for solving LP models. lp_solve is an active project and is 
referenced in several sources [13], [14]. 
 
lp_solve is written in the C programming language. Users can interact with lp_solve through the 
command line of through an API. lp_solve offers a C, C#, C++, Java, and .NET API. lp_solve 
can read the MPS, Free MPS and LP file format. 
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2.3.4 MINOS 
 
MINOS [6] is a commercial software package sold by Stanford Business Software, Inc. MINOS 
stands for Modular In-core Nonlinear Optimization System. It was developed by Stanford 
University and was supported by a grant from the U.S. government. It is able to solve both non-
linear and linear programs. Development on MINOS is not as active as the other three solvers 
selected for testing. Version 5.0 was released in 1983, and the most recent version (5.51) was 
released in 2002. Also, MINOS was not referenced in any of the sources used in this effort 
discussing LP solvers. However, MINOS is used by commercial modeling languages such as 
AMPL [9] and GAMS [10]. Since the development of MINOS was funded by the U.S. 
government, a government organization can purchase a license at a cost of $350, which can be 
used indefinitely by the entire organization at a single site. Since MINOS offers a low-cost 
commercial option for government use, it was selected for testing despite the fact that it is not 
actively being developed. 
 
MINOS is written in the Fortran 77 programming language and distributed as source code. Users 
can interact with MINOS through the command line or an API. MINOS offers Fortran, C, and 
MATLAB APIs. Unlike the other solvers, MINOS is only able to support the MPS file format. 
MINOS also requires that a SPEC or specification file be created by the user which specifies 
problem specific parameters related to MPS, in addition to settings for the solver. This is 
different from the other solvers, which are able to determine the problem specific parameters by 
reading the MPS file. This means that the user must create both a MPS and SPEC file before 
using MINOS. 
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3. LP SOLVER TESTING 
 
Each of the solvers selected during the screening process were tested using a collection of LP test 
problems drawn from several sources. These results were compared to IBM’s CPLEX solver. 
The testing focused on addressing two important questions for each solver. First, is the solver 
able to solve each problem to optimality? Second, how long does it take each solver to solve 
each problem? Before these questions could be addressed, a collection of test LP problems was 
created. Section 3.1 describes the test problems used for this study. Section 3.2 describes the 
results when each solver was tested using the test problems. 
 
3.1 Test LP Problems 
 
In order to test each solver, a collection of test problems was created. While the motivation 
behind this effort was to find a solver for the CCO problem, a much broader test data set was 
created. The need for a free and freely distributable solver was identified during the second phase 
of the CCO project. The goal of the third phase of this effort is to create an engineering prototype 
based on an electronic storyboard prototype created during Phase 2. During Phase 2, a collection 
of demonstration data sets were created. Since the CCO tool is still in development, the size of 
problems when real data is used is not yet well-defined. Given this, a more holistic testing 
approach was taken, where the test problems ranged from very small problems to problems 
several orders of magnitude larger than the CCO demonstration problems developed during 
Phase 2. By using this approach, confidence could be gained that the selected solver would be 
able to solve larger problems in the future should the data change. 
 
A total of 201 test problems were identified using three data sources. The first data source was 
Netlib [18] which is a repository that contains collections of test data sets which can be used for 
benchmarking various algorithms. Specifically, the LP library was used. The LP problems in 
Netlib are divided into three groups: the main data set (referred to here as just Netlib), Infeasible, 
and Kennington. A total of 138 problems were drawn from these problem sets. Netlib contains a 
total of 97 problems, 93 of which were used during the testing. The remaining four test problems 
required a conversion process to generate an MPS file, and were excluded from the test set. 
These problems are generally small, with most constraints (row) counts in the hundreds to low 
thousands and most variables (column) counts in the hundreds to ten thousand range. The largest 
number of constraints and variables was 6,071 and 13,525 respectively. The Infeasible problem 
set contains 29 infeasible problems, all of which were included in the set of test problems. These 
problems are generally the same size as the Netlib problems, with a maximum of 3,792 
constraints and 10,733 variables. Finally, the Kennington data set contains 16 problems, all of 
which were included in the set of test problems. These problems are slightly larger than the 
Netlib and Infeasible problems, with row and column counts ranging from the thousands to low 
hundreds of thousands. The maximum constraints and variables counts were 105,127 and 
232,966, respectively. 
 
The second data source was the pre-loaded examples included with the CCO prototype 
developed during Phase 2. Twelve model runs were selected for testing. This problem set was 
included since the intention of this study was to determine a replacement solver that could solve 
CCO problems. These problems were created by using the Optimization Programming Language 
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(OPL)/CPLEX implementation of the CCO model from Phase 2. A CPLEX setting was used to 
export each problem to a Free MPS file. The problems created through this approach were very 
large, with constraint counts ranging from 47,522 to 181,443 and variable counts ranging from 
517,971 to 2,106,004. Further investigation into the Phase 2 implementation of the CCO model 
revealed that it created problems which were much larger than necessary, and that the size of the 
problem could be reduced by eliminating unnecessary constraints and variables. This was not a 
concern during Phase 2, since CPLEX was able to quickly pre-solve the model, eliminating the 
excess constraints and variables. In order to provide a more fair comparison between the solvers, 
12 simplified problems were created by pre-solving each of the original 12 problems. This was 
accomplished using CLP’s pre-solve option and writing a new MPS file (the solutions to both the 
original and modified problems were compared to ensure they were the same). The resulting 
problems are considerably smaller with constraint counts between 1,608 and 2,889, and variable 
counts between 2,954 and 5,414. In total, 24 CCO problems are tested: 12 “Large CCO” 
problems and 12 “Small CCO” problems. 
 
The final data source was a set of test problems made available by Professor Hans Mittelman 
from Arizona State University [15]. A total of 39 were selected from this source. These problems 
were divided into six categories based on the folders containing the files on the website: Plato, 
FOME, Misc, Nug, PDS, and Rail. These problems were selected because they are large and tend 
to be difficult to solve. The size of these problems ranges from tens of thousands to around one 
million constraints and variables. The maximum numbers of constraints and variables are 
1,918,399 and 1,259,121, respectively. 
 
For testing purposes, the 201 test problems were divided into two groups: “easy” and “hard” 
problems. An initial screening of the test problems using CPLEX revealed that some of the 
problems in the Plato, Misc, and Nug problems sets were especially difficult to solve. The 21 
problems in these data sets were categorized as “hard” problems and excluded from the initial 
testing. The remaining 180 “easy” problems were used for the first round of testing. It should be 
noted that the terms “easy” and “hard” are only designated with respect to CPLEX solve time.  
As the results section will show, some of the “hard” problems were solved very quickly with 
other LP solvers while other solvers took a very long time on the same problems. Conversely, 
while CPLEX was able to solve the “easy” problems in seven minutes, some other solvers were 
unable to obtain an optimal solution to all of these problems after several days.  
 
Figure 1 shows the size of each test problem in terms of the number of constraints and variables. 
The problems are grouped into the “hard” and “easy” data sets. Observe that while there is some 
overlap between these two sets, the “hard” problems tend to be larger than most of the “easy” 
problems. Also note that this collection of test problems covers a wide range of problem sizes 
(the arrows indicate the largest problems in each set). Table 6 shows the number of test problems 
in each set. Appendix C contains a complete listing of the test problems. 
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Figure 1. Plot of Problem Size in Terms of Constraints and Variables 

 
Problem Set Number of 

Problems 
Netlib 93 
Infeasible 29 
Kennington 16 
Large CCO 12 
Small CCO 12 
Plato 2 
PDS 8 
Rail 5 
FOME 5 
Misc 16 
Nug 3 
Grand Total 201 

 
Table 6. Number of Test Problems in Each Problem Set 

 
3.2 LP Solver Tests 
 
The following sub-sections describe the various tests that were conducted for each LP solver. 
The general approach was to test all four candidate solvers using the 180 “easy” problems. Based 
on the results from this initial test, the best solver would also be tested using the 21 “hard” 
problems. All of the problem statements were passed to the model through the command line 
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interface in the MPS or Free MPS format. Each solver was given four hours to solve each “easy” 
problem and eight hours to solve each “hard” problem. The primary algorithms of interest for 
each solver were the Primal and Dual Simplex algorithms (as applicable). For each solver, both 
algorithms were run for each problem and the best solution time was used. This was motivated 
by the fact that certain problems may be easier to solve using one of these algorithms. 
Additionally, the Interior Point algorithms for CLP and GLPK were tested to see if they offered 
any benefits over the associated Simplex algorithms. Unless otherwise stated, all of the results 
associated with the time required to read or solve a problem are based on rounding the actual 
time to the nearest tenth of a second, since this was the level of timing reported by GLPK. All of 
the other solvers reported timing at the two or three digit level of precision. 
 
A collection of MS-DOS batch files were created to call each experiment for each solver. All 
solver outputs were captured and stored in log files. Code was written to extract and consolidate 
the relevant results. Each solver recorded the solution time within its log file. The solution time 
is based on the wall clock. All tests were run using an Intel Core2 Quad CPU 3.00Ghz with 8GB 
of RAM running the 64-bit version of Windows 7. Additional processing was minimized during 
experiments. All test problems were run using CPLEX as a benchmark.  
 
Prior to testing the solve capability of each LP solver, the read capability of each solver was 
tested. In several cases, some solvers had difficulty reading certain problems in their original 
form. When possible, the original problem files were modified so that they could be read by each 
solver. This was motivated by the desire to have a common set of problems that all solvers could 
read and solve. In the end, there were only six problem-solver pairs that could not be read into 
the solver. A summary of the issues associated with reading input files can be found in Appendix 
D. 
 
The following five subsections, 3.2.1-3.2.5, describe the initial experiments conducted for 
CPLEX and the four candidate solvers. Subsection 3.2.6 compares the results of the initial 
experiments for each solver. Subsection 3.2.7 discusses the results of the experiments using the 
“hard” problems. Finally, subsection 3.2.8 provides some conclusions and comments on the 
findings from the tests. 
 
3.2.1 CPLEX 
 
All of the “easy” test problems were first run using CPLEX 12.4 as a benchmark. Only one 
experiment using the “easy” problem set was run, and with the exception of the four hour time 
limit the default solver settings were used. Unlike the other solvers, CPLEX contains logic which 
determines the algorithm that will be used to solve a problem (Primal Simplex, Dual Simplex, or 
Interior Point). While it is possible to overwrite this behavior and specify the solver of choice, 
this was not done for the CPLEX experiment. 
 
CPLEX was able to solve 179 out of the 180 “easy” problems. One problem, FORPLAN.mps, 
could not be read by CPLEX. Otherwise, CPLEX either solved or correctly identified each 
problem as infeasible. For those problems that have a published optimal objective value, the 
maximum relative error between the optimal CPLEX objective value and the optimal published 
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objective value was on the order of 1e-3. CPLEX was able to solve all 179 problems in about 
422 seconds. 
 
3.2.2 CLP 
 
Five experiments were conducted using the CLP 1.7.4 for 64-bit Windows. The first two 
experiments were for the Primal and Dual Simplex algorithms using the default CLP solver 
settings. A second set of experiments were run for the Primal and Dual Simplex algorithms using 
relaxed feasibility tolerance settings that matched CPLEX. The final experiment used CLP’s 
Interior Point algorithm. The first two experiments and the interior point experiment were run 
using CLP’s default feasibility tolerance, 1e-7. The relaxed primal and dual experiments changed 
the feasibility tolerances to 1e-6 to match the default value used by CPLEX. 
 
For the initial primal and dual experiments, using the default values, the Dual Simplex algorithm 
was able to solve all 180 test problems and the Primal Simplex algorithm was able to solve all 
test problems, with the exception of OCS_MR_17.mps. The reason that the Dual Simplex 
algorithm was able to solve this problem while the Primal Simplex algorithm was not is 
unknown, but it may be linked to the size of the problem. This is the largest problem, in terms of 
the number of decision variables. Initially, CPLEX2.mps was incorrectly identified as feasible by 
the Primal Simplex algorithm. However, when the feasibility tolerance setting was changed to 
1e-8 the problem was correctly identified as infeasible. This was not treated as a solver error 
since it appeared to be specific to the problem and was correctable. For both algorithms, there 
was essentially no difference between the objective values for CLP and CPLEX. All relative 
errors between CLP and CPLEX objective values were on the order of 1e-8 or less. For those 
problems that have a published optimal value, the maximum relative error between CLP and 
published objective value was on the order of 1e-3. When the minimum solution time (between 
the primal and dual) for each problem was added together, the total solution time for all 
problems was about 688 seconds. This is about 1.6 times longer than was required for CPLEX. 
 
The second set of experiments was conducted using the Primal and Dual Simplex algorithms 
with relaxed feasibility tolerance settings. In this case, the values were changed to 1e-6 to match 
CPLEX’s settings. This test was conducted to determine if the differences between the default 
CLP and CPLEX settings produced different results. In both the primal and dual cases, the 
results for the relaxed experiments were similar to those using the default settings. For the Dual 
Simplex algorithm, all 180 problems were solved with no issues. With the relaxed settings, the 
Dual Simplex algorithm was able to solve the 180 “easy” problems in 4,884 seconds; 416.9 
seconds faster than when the default parameters were used. However, if the two problems with 
largest reduction in solution time are excluded (316.4 and 106.6), the next best improvement was 
only 1.4 seconds and the relaxed algorithm required 6.1 seconds longer. For the Primal Simplex 
algorithm, all problems except OCS_MR_17.mps and CPLEX2.mps were solved correctly. 
However, this was expected, since these problems encountered issues during the initial CLP 
Primal Simplex algorithm testing. In this case, the Primal Simplex algorithm using the relaxed 
parameters took 200 seconds longer to solve than the original experiment. Based on these 
observations, it was determined that using the default or relaxed tolerance setting did not produce 
a meaningful difference for the purposes of this study. Unless otherwise stated, all CLP results 
for the Primal and Dual Simplex algorithms are for the experiments using the default setting. 
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The final CLP experiment was for the Interior Point algorithm. For this test, the default CLP 
parameters were used. As with the Primal Simplex algorithm, CPLEX2.mps was incorrectly 
identified as feasible. Unlike the primal case, the command line interface for CLP did not allow 
access to any parameters that might make this solution feasible. Additionally, three problems 
failed to obtain the optimal solution within the allotted time. For those problems that were 
solved, all relative errors between the CLP and CPLEX objective values were on the order of 1e-
8 or less. For those problems with a published optimal value, the maximum relative error 
between CLP and that answer was on the order of 1e-3 or less. In general, the Interior Point 
algorithm took considerably longer than the Simplex algorithms. Including the problems that 
were stopped at the time limit, the Interior Point algorithm required 90,062.8 seconds to solve the 
“easy” test problems compared to 688.4 seconds for the Simplex algorithms. There was only one 
case where the Interior Point algorithm was faster than the primal and dual solution (using the 
full three digit accuracy available in CLP) and the difference was not substantial (0.062 vs. 0.072 
seconds). Table 7 provides a more detailed comparison of the solution times. Given these results, 
it was concluded that CLP’s Interior Point algorithm does not demonstrate a substantial 
advantage over its Simplex algorithms, and it was excluded from further testing. 
 

Problem Set Sum of Interior 
Point Solution 
Times (Seconds)

Sum of Fastest 
CLP Simplex 
Times (Seconds)

Ratio Comments 

Infeasible 636.8 3.6 176.9 CPLEX2.mps not 
included in sum 

Kennington 272.3 16.1 16.9  

Netlib 242.6 29.5 8.2  

Large CCO 21.9 19.0 1.2  

Small CCO 3.5 0.1 35.0  

FOME 3,856.0 182.7 21.1  

PDS 73,380.6 224.5 326.9 3 problems timed out for 
Interior Point algorithm 

Rail 11,649.1 212.9 54.7  

Grand Total 90,062.8 688.4 130.8  

 
Table 7. Comparison of Solution Times for CLP Interior Point and Simplex Algorithms 

 
At the time that the tests described above were performed, CLP 1.7.4 was the latest compiled 
version of CLP available. After these tests were complete, follow-on testing was accomplished 
using a newly compiled version of CLP 1.14, to see if both versions of CLP produced similar 
results. This study showed that both versions of CLP are comparable and that CLP 1.14 can be 
used in place of CLP 1.7.4. Since this test was not part of the original experimental design, the 
results for CLP 1.7.4 are used in the subsequent solver comparisons. See Appendix E for a 
complete description of the comparison between the two versions of this solver. 
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3.2.3 GLPK 
 
Three experiments were conducted using GLPK4.47 for 64-bit Windows to test the Dual 
Simplex, Primal Simplex and Interior Point algorithms. All three experiments were done using 
the default GLPK settings. Unlike CLP and CPLEX, the GLPK command line interface did not 
allow tolerance parameters to be adjusted (though these parameters can be changed through the 
API). By default, GLPK tolerances for the Simplex algorithms are 1e-7 or less. 
 
Collectively the Primal and Dual Simplex algorithms were able to solve 175 out of the 180 
“easy” test problems. GLPK was unable to read all five problems in the Rail data set. This read 
error was unexpected, since GLPK was able to read these problems during read-only test but 
could not read them during the solver test. Both algorithms correctly identified all of the 
infeasible problems. The Primal Simplex algorithm was able to solve all 175 problems; however 
the Dual Simplex algorithm reached the time limit on nine problems. For those problems that 
were solved, all relative errors between the GLPK and CPLEX objective values were on the 
order of 1e-8 or less. For those problems that have a published optimal value, the maximum 
relative error between the optimal GLPK objective and the published optimal objective was on 
the order of 1e-3. Excluding the five problems from the Rail dataset, GLPK required 40,967 
seconds to solve the test problems compared to 269 seconds for CPLEX to solve the same 
problems. 
 
The GLPK Interior Point algorithm was also tested. As with the Primal and Dual Simplex 
algorithm experiments, the five problems in the Rail data set could not be read. Additionally, 37 
problems were terminated due to convergence or stability issues and 7 problems reached the 
solution time limit. For those problems that solved normally, all relative errors between GLPK 
and CPLEX objective values were on the order of 1e-8 or less. For those problems that have a 
published optimal value, the maximum relative error between GLPK and the published objective 
was on the order of 1e-3. In general, the Interior Point algorithm required more time than the 
Simplex algorithms: 193,736 versus 34,873 seconds. There were only eight cases where the 
Interior Point algorithm was faster than either Simplex solution, and in these cases the difference 
was never greater than 0.8 seconds. Table 8 provides a more detailed comparison of the solution 
times. Given the increase in solution time and the number of problems that encountered solution 
errors the GLPK Interior Point algorithm was excluded from further testing in favor of the 
Simplex algorithms. 
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Problems Set Sum of Interior 
Points Solution 
Times (Seconds) 

Sum of Fasted 
GLPK Simplex 
Time (Seconds) 

Ratio 

Infeasible 10.4 0.3 34.7 

Kennington 2,542.1 98.9 25.7 

Netlib 482.2 23.0 21.0 

Large CCO 106,908.5 108.4 986.2 

Small CCO 2.2 1.3 1.7 

FOME 4,444.7 522.9 8.5 

PDS 79,345.9 34,118.3 2.3 

Grand Total 193,736.0 34,873.1 5.6 

 
Table 8. Comparison of Solution Times for GLPK Interior Point and Simplex Algorithms 

 
3.2.4 lp_solve 
 
A total of four major experiments were conducted using lp_solve 5.5.2.0 for 64-bit Windows to 
test the Primal and Dual Simplex algorithms. The first two tests were for the Primal and Dual 
Simplex algorithms using the default solver settings. During these tests, lp_solve was unable to 
solve the 24 CCO problems due to an unexplained read error. The second two tests used 
modified versions of the CCO problems, which could be solved by lp_solve. After the initial 
lp_solve test was complete, a method for converting the CCO problems from the Free MPS 
format to the MPS format was found. It was necessary to convert these problems to the MPS 
format since MINOS is only able to solve problems in this format (see the next section for a 
more detailed description). Once these problems had been converted it was possible to repeat the 
lp_solve test for the CCO problems.  
 
While lp_solve did allow tolerance settings to be adjusted, it was not clear how these related to 
the tolerance settings in the other solvers, therefore the defaults were used. One major difference 
between these first and second set of tests was the use of the pre-solve capability within lp_solve. 
Pre-solve is turned off by default and was not used during the first set of tests. However, pre-
solve was turned on during the CCO test, since half of the CCO problems contained a large 
amount of unnecessary data. Ideally, the entire set of “easy” problems would have been rerun 
with the pre-solve feature turned on, but time constraints precluded this experiment. However, a 
side experiment using lp_solve was run on the “easy” test problems where pre-solve was turned 
on and tolerance settings were relaxed. A comparison of the solution times between the first 
experiment and this side test did not indicate a major difference in the solution times for the non-
CCO “easy” problems. When the pre-solver was used and the tolerances relaxed, the Dual 
Simplex algorithm required 242,551 seconds to solve the “easy” problems (excluding the CCO 
problems) compared to 227,830 seconds without. For the Primal Simplex algorithm, 260,501 
seconds were required compared to 260,548 without. Since there was no indication that the 
results for the non-CCO “easy” problems would be drastically improved by adding the pre-
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solver, these results were combined with the CCO solution results which did use the pre-solve 
option. 
 
The Primal and Dual Simplex algorithms were able to solve all but 13 problems collectively due 
to time limits. The Primal and Dual Simplex algorithms reached the time limit on 15 and 14 
problems, respectively. Apart from the 14 problems that timed out, the Dual Simplex algorithm 
did not encounter any other issues. In addition to the 15 problems that timed out, the Primal 
Simplex algorithm encountered issues with 11 other problems. Seven problems failed to solve, 
three CCO problems were reported as infeasible, and an infeasible problem, KLEIN2.mps, was 
reported as unbounded. For those problems that were solved, all relative errors between the 
lp_solve and CPLEX objective values were on the order of 1e-8 or less. For those problems that 
have a published optimal value, the maximum relative error between lp_solve and the published 
objective was on the order of 1e-3. Including the 13 problems that timed out, the total solution 
time required for lp_solve to solve the “easy” problems set was 215,388 seconds compared to 
422 seconds for CPLEX. 
 
3.2.5 MINOS 
 
Two experiments were conducted using MINOS 5.51 to test the Primal Simplex algorithm. In 
addition to an MPS file, MINOS requires that a SPEC or specification file be created that 
describes the size of the problem and the solver settings. Apart from the parameters specifying 
the size of the problems, all solver settings were left at their default values. The default 
feasibility tolerance settings for MINOS are 1e-6, which is the same as CPLEX. 
 
In the first experiment, all of the test problems except the 24 CCO problems were solved. At the 
time the initial experiment was conducted, the 24 CCO problems were in the Free MPS format 
which cannot be read by MINOS. After the first experiment was completed, it was discovered 
that CLP could be used to create an MPS file from a Free MPS file. This approach was used to 
convert the 24 CCO problems to the MPS format. This was the same approach that was used to 
fix the read errors with lp_solve for the CCO problems. The second experiment was to solve the 
remaining 24 CCO problems with MINOS using the Primal Simplex algorithm. Apart from 
occurring at two different times, there was no difference between these two experiments. It 
should be noted that CPLEX, CLP and GLPK solved the Free MPS version of the CCO 
problems, whereas lp_solve and MINOS solved the MPS version of the CCO files. However, 
since the only difference between the two formats is the length of the variable names and both 
formats represent numerical values with 12 characters, the underlying problem that was solved in 
both cases was the same. 
 
When the results from these two experiments are considered together, all 180 test problems 
could be read. MINOS correctly identified all infeasible problems. 13 problems exceeded the 
maximum solution time. The optimal objective values for 16 of the 24 CCO problems had 
relative errors (compared to CPLEX) that ranged from 1-18%. These errors were large enough 
that these cases were treated as solution errors. Apart from these problems, all relative errors 
between the CPLEX objective values and the published objective values were on the order of 1e-
3 or less. The total solution time for the “easy” problem set was 258,720 seconds compared to 
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422 seconds for CPLEX. Again, note that this time includes 13 problems that timed out and 16 
problems that did not reach the optimal solution. 
 
The 16 CCO problems that failed were split evenly between the Small and Large problem sets. It 
should be noted that these errors could be caused by problems with the structure of the CCO 
problem. As mentioned previously, the Large CCO problems are excessively large and without a 
pre-solve MINOS may have encountered precision issues. The Small CCO problems also appear 
to contain some scaling issues that could lead to larger errors. The fact that all of the other 
solvers were able to match the CPLEX objective with relative errors on the order of 1e-8 or less, 
while MINOS could only match these errors on the order of 1e-3 or less, suggests that MINOS 
does not match the precision of these solvers. The results for the non-CCO “easy” problems 
indicate that MINOS could solve the CCO problems if these scaling issues were resolved. 
However, all of the other solvers were able to solve them in their current form. 
 
3.2.6 Comments and Comparison of First Round Testing Results 
 
As stated previously, the two primary metrics of interest were the ability of the solver to 
correctly solve the problem and the overall speed of the solver. Table 9 summarizes the results of 
the initial tests related to the first metric. It provides a summary of the number of read errors, 
solve errors, problems exceeding the maximum time limit (time outs), and an upper bound on the 
maximum relative error compared to CPLEX and published optimal objective value. For the 
solve errors and time outs, Table 9 provides the results based on combining both the results from 
both Primal and Dual Simplex algorithms. In the cases where one algorithm experienced errors 
or time out but the other algorithm did not, more details are provided in parenthesis. Recall that 
MINOS only has the Primal Simplex algorithm. 
 

Solver Read 
Errors 

Solve Errors Time Outs Max 
Objective 
Rel. Error 
Cplex 

Max 
Objective 
Rel. Error 
Source 

Comments 

CPLEX 1 0 0 N/A 1e-3 FORPLAN.mps failed to read 

CLP 0 0  
(1 Primal) 

0 1e-8 1e-3 OCS_MR_17.mps failed to 
solve for the Primal Simplex 
algorithm 

GLPK 5 0 0 (9 Dual) 1e-8 1e-3 5 Rail problems failed to read 

lp_solve 0 0  
(11 Primal) 

13 (14 
Dual/15 
Primal) 

1e-8 1e-3  

MINOS 0 16 13 1e-3 1e-3 16 CCO problems had errors on 
order of 1e-2 to 1e-1. These 
were treated as solve errors. Max 
CPLEX error shown to left 
excludes these errors 

 
Table 9. Summary of Simplex Solution Results for Each Solver 
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Observe that CPLEX and CLP performed well. Since there is considerable variability in the MPS 
format, the fact that CPLEX was unable to read one problem should not be given too much 
importance. CPLEX was able to solve all of the problems that it could read accurately and within 
the allotted time. With the exception of OCS_MR_17.mps, CLP produced similar results to 
CPLEX. The results for GLPK show that it also performed well. While it failed to read five 
problems, it was able to solve all problems with the Primal Simplex algorithm within the allotted 
time. The only drawback with GLPK was that nine of problems timed out when using the Dual 
Simplex algorithm. lp_solve and MINOS had the worst performance of the solvers considered. 
While lp_solve was able to read all the problems and collectively had no solver errors, there 
were 13 problems that could not be solved by the Primal or Dual Simplex algorithms within the 
allotted time. Furthermore, while the Dual Simplex algorithm was able to solve these problems, 
the Primal Simplex algorithm encountered a solver error on 11 problems. For those problems 
that did solve using either algorithm, the relative errors were very low. For MINOS, the Primal 
Simplex algorithm timed out on 13 problems and encountered a solve error on 16 of the CCO 
problems. 
 
A comparison of the solution times indicates substantial differences in the solvers. Table 10 
shows the total solution time for each problem set as well the total time to solve all “easy” 
problems. Each entry was computed as follows. First, all solution times were rounded to the 
nearest tenth, since this was the lowest level of precision reported by any of the solvers 
(specifically, GLPK). Then, the minimum solution time between the primal and dual solutions 
was selected for each problem. Finally, the sum of the minimums was calculated for each 
problem set. 
 
Observe that there are considerable differences in the solution times for each solver. CPLEX was 
able to solve all of the problems in about seven minutes. The solution time for CPLEX2.mps is 
not included in the total infeasible solution time or in the grand total for CPLEX due to the read 
error. However, since the other four solvers were able to solve this problem in 0.1 seconds or 
less, there is little evidence that the CPLEX results are affected by omitting it from the 
summation. CLP was the next best solver in terms of solution time, requiring about 11.5 minutes. 
With the exception of the Infeasible problem set, it was the fastest solver for each problem set, 
after CPLEX. GLPK was the next best solver, though it required about 11.5 hours. lp_solve and 
MINOS were the slowest solvers, requiring 2.5 and 3.0 days, respectively.  
 
In addition to looking at the total solution time for each solver, it is also useful to look at the 
geometric mean. The geometric mean is useful for comparing the results from different solvers, 
since there is a large variation in the solution time for each problem. In order to calculate the 
geometric mean, only problems that had a non-zero solution time across all solvers were 
considered. Of the 180 test problems, 63 were solved by all solvers and had non-zero solution 
times. The results are given in Table 11. 
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Problem Set CPLEX
 

CLP GLPK lp_solve3 MINOS4

Small CCO 0.0 0.1 1.3 19.0 3.1

Infeasible 0.21 3.6 0.7 43.8 16.3

Netlib 9.1 29.5 52.5 14,975.1 3,198.7

Kennington 12.9 16.1 624.3 19,417.5 10,123.8

Large CCO 13.0 19.0 108.4 3,175.8 41,976.1

FOME 54.5 182.7 6,061.4 33,544.5 59,301.9

Rail 152.5 212.9 N/A2 29,012.2 28,899.9

PDS 179.6 224.5 34,118.3 115,200.0 115,200.0

Grand Total 421.8 688.4 40,966.9 215,387.9 258,719.8

1Infeasible problem set solution time for CPLEX does not include CPLEX2.mps in summation. 
2None of the Rail problems for GLPK could be solved due to read error. 
3lp_solve included 1 Netlib time out, 1 Kennington time out, 1 FOME time out, 2 Rail time outs, and 8 PDS time outs. 
4MINOS included 3 FOME time outs, 2 Rail time outs, and 8 PDS time outs, 8 solve Small COO solve errors and 8 Large OCC 
solve errors. 

 
Table 10. Comparison of “Easy” Problem Solution Times for Each Solver 

 
 

 CPLEX CLP GLPK lp_solve
 

MINOS
 

Geometric Mean 0.8 1.3 7.4 138.4 130.7 

Ratio to CPLEX 
Geometric Mean 

N/A 1.6 9.4 177.0 167.1 

 
Table 11. Comparison of Geometric Means (in Seconds) of “Easy” Problem Solution 

Times for Each Solver 
 
Finally, it is useful to look at the solution times for each problem based on the size of the 
problem. The three figures below show the solution times for each problem and solver by the 
number of constraints, variables, and non-zero elements in the problem. Given the range of 
problem sizes and solution times, all charts are presented using logarithmic scales for both axes. 
Additionally, since many problems had solution times that were rounded, and logarithmic charts 
cannot represent zeros, these problems are notionally represented by points within the boxes on 
each chart. For all points in the box, the size (x-axis value) is correct but the solution time (y-axis 
value) was zero. For lp_solve and MINOS, the problems that reached the maximum solution 
time of 14,400 seconds can be seen on each graph. 
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Figure 2. Plot of Solution Times versus the Number of Constraints for each Solver 

 

 
Figure 3. Plot of Solution Times versus the Number of Variables 
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Figure 4. Plot of Solution Times versus the Number of Non-zero Elements 

 
Based on these results, it is clear that CLP performed the best in terms of its ability to accurately 
and efficiently solve problems. Both the Primal and Dual Simplex algorithms were able to solve 
all problems, and the geometric mean was only 1.6 times greater than the geometric mean for 
CPLEX. After CLP, the next best solver was GLPK. While the Dual Simplex algorithm failed to 
solve 9 problems within the allotted time, the Primal Simplex algorithm was able to solve all 
problems that could be read. The major drawback with GLPK was the solution time compared to 
CPLEX and CLP. The geometric mean for GLPK was 9.4 and 5.7 times greater than CPLEX and 
CLP, respectively. Despite this, GLPK appears to be a very capable solver which could be 
acceptable for use in applications where the increase in solve time is not a factor. The last two 
solvers, lp_solve and MINOS, had several drawbacks. First, both solvers encountered solve 
errors. In the case of lp_solve, only the Primal Simplex algorithm encountered these errors; the 
Dual Simplex algorithm was able to solve those problems. Second, both solvers were unable to 
solve all of the problems within the allotted time. Despite these errors, lp_solve and MINOS 
were still able to solve a large number of problems. These results suggest that more issues are 
likely to be encountered when using these solvers, especially when the problems being solved 
are difficult.  
 
3.2.7 Results of “Hard” Problem Tests 
 
Based on the findings from the initial study, only CLP was tested using the “hard” problem set.  
The testing approach used for these problems was essentially the same as the initial test. Both the 
Primal and Dual Simplex algorithms were run for each problem and the best result was used. 
CLP’s default solver parameters were used and each problem was allowed eight hours to solve. 
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CPLEX was also used to solve the problems as a point of comparison. The “hard” data set 
contained 21 problems. Table 12 shows the solution times for each “hard” problem. 
 
Problem Rows Columns Best CLP Solution 

Time (Seconds) 
CPLEX Solution 
Time (Seconds) 

neos2 132,568 1,560 1.7 7.0

NEOS1 131,581 1,892 2.7 9.2

SGPF 246,077 308,634 5.5 1.4

WAT 201,155 383,927 30.5 8.1

WATSON_2 352,013 671,861 48.7 33.3

bpmpd 479,119 36,786 58.5 12.3

cont4 160,792 40,398 562.2 261.7

Prob_2 528,185 1,259,121 616.0 224.2

nug08-3rd 19,728 20,448 844.4 657.1

cont1 160,792 40,398 1,147.0 265.9

ns168703 50,622 43,749 2,444.8 18,193.7

neos3 512,209 6,624 2,976.0 171.6

cont11 160,792 80,396 2,991.2 6,900.2

Linf_five20c 93,326 69,004 4,146.3 793.6

ns168892 32,768 16,587 28,800.0 28.1

nug20 15,240 72,600 28,800.0 451.7

w100cc00r004p001o004 10,203 321,696 28,800.0 10,795.9

cont1_l 1,918,399 641,598 28,800.0 28,800.0

nug30 52,260 379,350 28,800.0 28,800.0

L1_d10-40x3 80,476 420,366 28,800.0 28,800.0

cont11_l 1,468,599 981,396 28,800.0 28,800.0

 
Table 12. CLP and CPLEX Solution Times for “Hard” Problems. Italics indicate problems 

that timed out. Bold indicates the fasted solver (CLP or CPLEX). 
 
CPLEX and CLP were able to solve 17 and 14 of the 21 “hard” problems, respectively. The CLP 
Dual Simplex algorithm timed out in seven cases and was stopped for numerical issues for one 
problem. The CLP Primal Simplex algorithm timed out for 10 problems. In all cases where CLP 
obtained an optimal answer, the relative error between the objective values for CLP and CPLEX 
was on the order of 1e-3 or less. If all 21 problems are considered, CLP and CLPEX required 
217,475.5 seconds and 154,015.0 seconds to solve the problem set, respectively. CLP had a 
geometric mean of 1,004.2 seconds which was 2.5 times longer than the geometric mean of 
402.2 seconds for CPLEX. If only the 14 problems solved by both solvers are considered, CLP 
and CLPEX required 15,875.5 seconds and 27,539.3 seconds, respectively, solving the problem 
set. In this case CLP was able to solve these problems faster than CPLEX, in terms of the total 
solution time. However, CLP had a geometric mean of 187.5 seconds, which was 1.74 times 
longer than the geometric mean of 112.6 seconds for CPLEX.  
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These results demonstrate some important points. First, since CPLEX was unable to solve 4 of 
these problems in 8 hours, it suggests that this test set contains problems that are sufficiently 
large to test the limits of both solvers. It also gives an indication of the size of the problems that 
can be handled by CLP. These results show that CLP can solve problems with about half a 
million constraints and just over 1 million variables. While CLP is generally slower, it was able 
to solve several of these problems in considerably less time than CPLEX. 
 
3.2.8 Comments on LP Solver Testing 
 
Based on the results of the tests described above, CLP stood out as the open-source solver of 
choice. It demonstrated the ability to accurately solve problems in a short amount of time. It also 
demonstrated several other features which suggest it is a mature application. First, of all the 
solvers used in this study, it was the only one that was able to read all of the input files without 
any issues. Even CPLEX was unable to read five of the test problems initially and one of these 
read errors could not be corrected. CLP also had comparable performance to CPLEX, with 
respect to the time required to read each input file. CPLEX required 207.1 seconds to read 199 of 
the test problems (excludes FORPLAN.mps and OCS_MR_17.mps) and CLP required 209.2 
seconds to read the same set of problems. 
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3.  CONCLUSIONS 
 
The survey of open-source source LP solvers conducted for this study found that there are many 
options available when the use of commercial tools is not an option. Furthermore, testing 
demonstrated the capabilities of a subset of these solvers. While the primary goal of this study 
was to look at open-source solvers, it also demonstrates the value of using a commercial tool like 
CPLEX, as none of the open-source solvers were able to match its performance. However, this 
study also showed that capable open-source solvers are available when a tool like CPLEX is not 
an option. This study found that CLP was the best solver of those considered, in terms of 
capability and performance. GLPK is also a very capable solver, though it does not match the 
performance of CLP. lp_solve and MINOS had the slowest performance of the solvers 
considered and also encountered difficulties with a subset of the test problems. However, both of 
these tools are used in academia and can be purchased with commercial software, such as 
AMPL, and this study shows that they are able to handle many problems. Given this, all of the 
tools considered may work for problems of a certain size and difficulty. However, these results 
indicate that CLP is the tool of choice given the range of problems it can solve and the speed 
with which it can solve them.  
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APPENDIX A: LP TOOL SCREENING 
 
This appendix lists all of the tools that were considered during the initial LP software survey. For 
each tool, a decision was made to include or reject it from the second round of screening. For 
those tools that were rejected, the reason is provided in each of the tables below. Comments are 
also provided for tools that were identified as candidate tools. Not all of the tools that were 
accepted were LP solvers. Open-source tools such as modeling environments or integer program 
solvers were accepted in the initial round of screening. They were not considered as part of this 
study since they address a different need; however they are highlighted here since they are open-
source tools that may be useful in another application.  
 
Table 13 lists the tools described in the INFORMS survey [7].  
 

 Product Candidate 
Tool 

Reason Rejected Comments 

AIMMS N $8,500 per license   
AMPL N $4,000 per license, only provides 

modeling environment 
  

CBC Y   IP solver that uses CLP (a LP 
solver) while not useful for this 
application this tool might be of 
general interest.  

CLP Y    LP Solver 
CoinMP Open-
Source Solver 

Y   Not an LP solver but potentially 
useful as a modeling 
environment  

Coopr Y   Not an LP solver but potentially 
useful as a modeling 
environment  

C-WHIZ N $2,500 per license   
DATAFORM N $2,500 per license; Data 

management tool (not relevant) 
 

FICO Xpress 
Optimization 
Suite 

N Commercial software   

Frontier Analyst 
4 

N 4,000GBP per license   

GAMS N $3,200 per license   
GENO N Not free; Genetic algorithm   
GIPALS - 
Linear 
Programming 
Environment  

N $150-300; Immature   

Gipals32 - 
Linear 

N $150-300; Immature   
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Programming 
Library 
GLPK (GNU 
Linear 
Programming 
Kit) 

Y    LP Solver 

Gurobi 
Optimizer 4.5 

N Not free   

IBM ILOG 
CPLEX 
Optimization 
Studio 

N Not free   

KNITRO N Not free   
LINDO API N Not free   
LINGO N Not free   
LOQO N Not free   
Mathematical 
Modeling 
System 

N Not free   

Microsoft 
Solver 
Foundation 

Y   Not an LP solver but potentially 
useful as a modeling 
environment  

MOSEK N Not free   
MPL Modeling 
System 

N Not free   

OML 
(Optimization 
and Modeling 
Library) 

N Not free   

OMP Plus N Not free   
OptiMax 
Component 
Library 

N Not free   

OptimJ Y   Not an LP solver but potentially 
useful as a modeling 
environment  

Oracle Crystal 
Ball Suite 

N Not free; Monte Carlo algorithm   

PICO N Questionable reliability   
Premium Solver 
Platform 

N Excel Solver   

Premium Solver 
Pro 

N Excel Solver   

QMS N Not free   
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Risk Solver 
Platform 

N Excel Solver   

SAS N Not free   
SCIP N Not free for non-academic uses   
Solver SDK 
Platform 

N Not free   

Solver SDK Pro N Not free   
SoPlex N Not free for non-academic uses   
SOPT (Smart 
Optimizer) 4.2 

N Not free   

Vanguard 
Global 
Optimizer 

N Not free   

What'sBest! N Not free   
XA  N Not free   
YALMIP N MATLAB add-in   

 
Table 13. First Round Screening Results for Tools Listed in INFORMS LP Software 

Survey [7] 
 
Table 14 lists the proprietary tools listed on the Wikipedia page for Linear Programming [8]. 
Proprietary tools were considered during the survey because some tools offer government pricing 
and flexible licensing which may still meet the criteria. This source was used only to identify 
candidate tools. All screening decisions were based on information gathered by reviewing the 
official documentation for each tool. 
 
 Product Candidate 

Tool 
Reason Rejected Comments 

APMonitor N Not relevant  
AIMMS N $8,500 per license   
AMPL N $4,000 per license, only provides 

modeling environment 
  

Analytica N Not free  
BUGSENG 
Polyhedra 
Library 

Y    LP Solver 

CPLEX N Not free  
EXCEL Solver 
Function 

N Excel tool  

FinMath N Not free  
FortMP N Not free  
GAMS N Not free  
GIPALS N Not free  
Gurobi N Not free  
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IMSL 
Numerical 
Libraries 

N Not free  

Lingo N Not free  
LPL N Information on tool could not be 

found 
 

LiPS 
(freeware) 

Y   LP Solver 

MATLAB N Not free  
Mathematica N Not free  
MOPS N Information on tool could not be 

found 
 

MOSEK N Not free  
NAG 
Numerical 
Library 

N Not free  

NMath Stats N Not free  

OptimJ Y   Not an LP solver but 
potentially useful as a 
modeling environment  

SAS/OR N Not free  
SCIP N Not free for non-academic use  
Microsoft 
Solver 
Foundation 

Y   Not an LP solver but 
potentially useful as a 
modeling environment  

SoPlex N Not free  
SuanShu N Not free  
TOMLAB N MATLAB add-in  
VisSim N Not relevant  
Xpress N Not free  
 

Table 14. First Round Screening Results of Propriety LP Tool from Wikipedia [8] 
 
Table 15 lists the non-proprietary tools listed on the Wikipedia page on Linear Programming [8]. 
This source was used only to identify candidate tools. All screening decisions were based on 
information gathered by reviewing the official documentation for each tool. 
 
 Product Candidate 

Tool 
Reason Rejected Comments 

lp_solve Y   LP Solver 

Cassowary 
constraint 
solver 

N Immature  
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CVXOPT Y   Quadratic program 
solver 

glpk Y   LP solver 
PPL Y   LP solver and quadratic 

program solver 
Qoca N Immature  
CBC Y   IP solver that uses CLP 

(a LP solver) while not 
useful for this 
application this tool 
might be of general 
interest.  

CLP Y    LP Solver 
R-Project N Not relevant  
CVX N MATLAB add-in  
CVXMOD N Immature  
SDPT3 N MATLAB add-in  
SeDuMi N MATLAB add-in  
OpenOpt Y   Not an LP solver but 

potentially useful as a 
modeling environment  

pulp-or N   Not an LP solver but 
potentially useful as a 
modeling environment  

Pyomo 
(Coopr) 

N   Not an LP solver but 
potentially useful as a 
modeling environment  

JOptimizer Y   LP solver 
 

Table 15. First Round Screening Results of Non-propriety LP Tool from Wikipedia [8] 
 
Table 16 lists additional tools that were discovered by looking at a variety other linear 
programming websites [9] , [10]. 
 
 Product Candidate Tool Reason Rejected Comments 
BARON N Only available with 

commercial software 
  

BDMLP N Only available with 
commercial software 

  

LOGMIP N Immature   
OSL N Discontinued IBM product   
MOP N Information on tool could not 

be found 
  

LSGRG2 N Information on tool could not   
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be found 
BPMPD N Immature   
MINTO Y    IP solver that uses CLP or 

CPLEX (LP solvers) while 
not useful for this 
application this tool might be 
of general interest.  

OOQP Y   Quadratic program solver 
PCx Y   LP solver 
QPOPT Y   Quadratic program solver 
QSOPT Y   LP solver 
CMPL Y    Not an LP solver but 

potentially useful as a 
modeling environment  

MINOS Y   LP solver 
GMPL Y   Not an LP solver but 

potentially useful as a 
modeling environment  

LSSOL Y   Quadratic program solver  
 

Table 16. First Round Screening Results from a General Survey of LP Websites  
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APPENDIX B: OPEN-SOURCE LP MODELING ENVIRONMENTS 
 
In addition to surveying open-source LP solvers, a parallel study was conducted to look for open-
source modeling environments. As mentioned in Section 2.1, it is difficult to create problem 
statements using a solver’s API. Modeling environments allow problems to be written in a 
concise and easy to read manner. Modeling environments also offer the added benefits that they 
can connect to several solvers and are extensions to standard programming languages. This 
provides the flexibility to switch solvers while maintaining a single implementation of the model. 
It also means that all the features of programming languages, such as database connections, can 
be used when creating models. While details of this study are outside the scope of this report, 
Table 17 lists the top open-source modeling environments that were identified during that study. 
Note that Microsoft Solver Foundation was included on this list even though it is not an open-
source product. Since many organizations have Microsoft Development licenses, this tool may 
still be a good option that is considerably less expensive than a modeling environment like 
AMPL [12]. 
 

Environment Language API Command 
Line 
Interface 

Supported Solvers 

CMPL C++ N Y CPLEX, CLP, GLPK, Gurobi, SCIP 

Coopr Python Y Y CPLEX, CLP, GLPK, Gurobi, AMPL 
Solver Library 

OptimJ Java Y N CPLEX, lp_solve, GLPK, Gurobi, 
Mosek 

PuLP Python Y N CPLEX, CLP, GLPK, Gurobi 

Microsoft 
Solver 
Foundation 

.NET Y N CPLEX, CLP, FICO, Gurobi, LINDO, 
lp_solve, Mosek, Ziena, Frontline 

FLOPC++ C++ Y N CPLEX, CLP, Dylp, GLPK, OSL, 
SOPLEX, VOL, XPRESS-MP 

  
Table 17. List of Top Open-Source LP Modeling Environments. Solvers studied in this 

model are highlighted in bold. Other open-source solvers are italicized. 
 

For the purposes of this study, the most important information can be found in the last column. 
Observe that all of these tools support some combination of CLP, GLPK, and lp_solve. The fact 
that the top modeling environments have chosen to support these solvers suggests that these 
solvers are used by a sufficiently large community and that they are reasonably well developed. 
The solvers shown in italics are other open-source solvers (not CLP, GLPK, or lp_solve). 
Observe that outside of CLP, GLPK and lp_solve, no other open source solver is supported by 
more than one modeling environment. This suggests that no other open-source solvers have the 
same level of acceptance with the modeling environment community.  
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APPENDIC C: LIST OF TEST PROBLEMS 
 
Table 18 lists all of the test problems, as well as their size, the problem set they belong to, and 
the published optimal objective value if known. All problems were minimization problems. All 
problems except for the Small and Large CCO problems were in the MPS format. The CCO 
problems were created in the Free MPS format. After CPLEX, CLP, and GLPK were tested, 
MPS versions of these files were created and used to test lp_solve and MINOS. 
 

MPS File Rows Columns Non-
Zeros 

Problem 
Set 

Published 
Optimal 

Value 

GOSH.mps 3,792 10,733 97,231 Infeasible N/A

BGINDY.mps 2,671 10,116 65,502 Infeasible N/A

GREENBEA_inf.mps 2,393 5,405 30,883 Infeasible N/A

CPLEX1.mps 3,005 3,221 8,944 Infeasible N/A

GRAN.mps 2,658 2,520 20,106 Infeasible N/A

PILOT4I.mps 410 1,000 5,141 Infeasible N/A

CERIA3D.mps 3,576 824 17,602 Infeasible N/A

CHEMCOM.mps 288 720 1,566 Infeasible N/A

BGETAM.mps 400 688 2,409 Infeasible N/A

REACTOR.mps 318 637 2,420 Infeasible N/A

MONDOU2.mps 312 604 1,208 Infeasible N/A

QUAL.mps 323 464 1,646 Infeasible N/A

REFINERY.mps 323 464 1,626 Infeasible N/A

VOL1.mps 323 464 1,646 Infeasible N/A

PANG.mps 361 460 2,652 Infeasible N/A

BGDBG1.mps 348 407 1,440 Infeasible N/A

BOX1.mps 231 261 651 Infeasible N/A

CPLEX2.mps 224 221 1,058 Infeasible N/A

EX72A.mps 197 215 467 Infeasible N/A

EX73A.mps 193 211 457 Infeasible N/A

FOREST.mps 66 95 210 Infeasible N/A

WOODINFE.mps 35 89 140 Infeasible N/A

KLEIN3.mps 994 88 12,107 Infeasible N/A

KLEIN2.mps 477 54 4,585 Infeasible N/A

KLEIN1.mps 54 54 696 Infeasible N/A

BGPRTR.mps 20 34 64 Infeasible N/A

ITEST6.mps 11 8 20 Infeasible N/A

GALENET.mps 8 8 16 Infeasible N/A

ITEST2.mps 9 4 17 Infeasible N/A

OSA-60.mps 10,280 232,966 1,397,793 Kennington 4.04E+06

KEN-18.mps 105,127 154,699 358,171 Kennington -5.22E+10

PDS-20.mps 33,874 105,728 230,200 Kennington 2.38E+10
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OSA-30.mps 4,350 100,024 600,138 Kennington 2.14E+06

CRE-B.mps 9,648 72,447 256,095 Kennington 2.31E+07

CRE-D.mps 8,926 69,980 242,646 Kennington 2.45E+07

OSA-14.mps 2,337 52,460 314,760 Kennington 1.11E+06

PDS-10.mps 16,558 48,763 106,436 Kennington 2.67E+10

KEN-13.mps 28,632 42,659 97,246 Kennington -1.03E+10

PDS-06.mps 9,881 28,655 62,524 Kennington 2.78E+10

OSA-07.mps 1,118 23,949 143,694 Kennington 5.36E+05

KEN-11.mps 14,694 21,349 49,058 Kennington -6.97E+09

PDS-02.mps 2,953 7,535 16,390 Kennington 2.89E+10

CRE-A.mps 3,516 4,067 14,987 Kennington 2.36E+07

CRE-C.mps 3,068 3,678 13,244 Kennington 2.53E+07

KEN-07.mps 2,426 3,602 8,404 Kennington -6.80E+08

FIT2P.mps 3,000 13,525 50,284 Netlib 6.85E+04

DFL001.mps 6,071 12,230 35,632 Netlib 1.13E+07

FIT2D.mps 25 10,500 129,018 Netlib -6.85E+04

80BAU3B.mps 2,262 9,799 21,002 Netlib 9.87E+05

MAROS-R7.mps 3,136 9,408 144,848 Netlib 1.50E+06

WOODW.mps 1,098 8,405 37,474 Netlib 1.30E+00

D6CUBE.mps 415 6,184 37,704 Netlib 3.15E+02

SHIP12L.mps 1,151 5,427 16,170 Netlib 1.47E+06

GREENBEA.mps 2,392 5,405 30,877 Netlib -7.25E+07

GREENBEB.mps 2,392 5,405 30,877 Netlib -4.30E+06

D2Q06C.mps 2,171 5,167 32,417 Netlib 1.23E+05

PILOT87.mps 2,030 4,883 73,152 Netlib 3.02E+02

SHIP08L.mps 778 4,283 12,802 Netlib 1.91E+06

PILOT.mps 1,441 3,652 43,167 Netlib -5.57E+02

CZPROB.mps 929 3,523 10,669 Netlib 2.19E+06

BNL2.mps 2,324 3,489 13,999 Netlib 1.81E+03

NESM.mps 662 2,923 13,288 Netlib 1.41E+07

CYCLE.mps 1,903 2,857 20,720 Netlib -5.23E+00

PILOT.WE.mps 722 2,789 9,126 Netlib -2.72E+06

SHIP12S.mps 1,151 2,763 8,178 Netlib 1.49E+06

SCSD8.mps 397 2,750 8,584 Netlib 9.05E+02

WOOD1P.mps 244 2,594 70,215 Netlib 1.44E+00

SCTAP3.mps 1,480 2,480 8,874 Netlib 1.42E+03

SHIP08S.mps 778 2,387 7,114 Netlib 1.92E+06

PILOTNOV.mps 975 2,172 13,057 Netlib -4.50E+03

SHIP04L.mps 402 2,118 6,332 Netlib 1.79E+06

SIERRA.mps 1,227 2,036 7,302 Netlib 1.54E+07

STOCFOR2.mps 2,157 2,031 8,343 Netlib -3.90E+04

PILOT.JA.mps 940 1,988 14,698 Netlib -6.11E+03
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SCTAP2.mps 1,090 1,880 6,714 Netlib 1.72E+03

DEGEN3.mps 1,503 1,818 24,646 Netlib -9.87E+02

SHELL.mps 536 1,775 3,556 Netlib 1.21E+09

GANGES.mps 1,309 1,681 6,912 Netlib -1.10E+05

FIT1P.mps 627 1,677 9,868 Netlib 9.15E+03

MODSZK1.mps 687 1,620 3,168 Netlib 3.21E+02

25FV47.mps 821 1,571 10,400 Netlib 5.50E+03

SHIP04S.mps 402 1,458 4,352 Netlib 1.80E+06

MAROS.mps 846 1,443 9,614 Netlib -5.81E+04

PEROLD.mps 625 1,376 6,018 Netlib -9.38E+03

SCFXM3.mps 990 1,371 7,777 Netlib 5.49E+04

SCSD6.mps 147 1,350 4,316 Netlib 5.05E+01

STANDGUB.mps 361 1,184 3,139 Netlib N/A

BNL1.mps 643 1,175 5,121 Netlib 1.98E+03

SCRS8.mps 490 1,169 3,182 Netlib 9.04E+02

GFRD-PNC.mps 616 1,092 2,377 Netlib 6.90E+06

STANDMPS.mps 467 1,075 3,679 Netlib 1.41E+03

STANDATA.mps 359 1,075 3,031 Netlib 1.26E+03

SEBA.mps 515 1,028 4,352 Netlib 1.57E+04

FIT1D.mps 24 1,026 13,404 Netlib -9.15E+03

PILOT4.mps 410 1,000 5,141 Netlib -2.58E+03

GROW22.mps 440 946 8,252 Netlib -1.61E+08

SCFXM2.mps 660 914 5,183 Netlib 3.67E+04

FFFFF800.mps 524 854 6,227 Netlib 5.56E+05

SCSD1.mps 77 760 2,388 Netlib 8.67E+00

ETAMACRO.mps 400 688 2,409 Netlib -7.56E+02

GROW15.mps 300 645 5,620 Netlib -1.07E+08

FINNIS.mps 497 614 2,310 Netlib 1.73E+05

TUFF.mps 333 587 4,520 Netlib 2.92E-01

DEGEN2.mps 444 534 3,978 Netlib -1.44E+03

SCAGR25.mps 471 500 1,554 Netlib -1.48E+07

SCTAP1.mps 300 480 1,692 Netlib 1.41E+03

BANDM.mps 305 472 2,494 Netlib -1.59E+02

STAIR.mps 356 467 3,856 Netlib -2.51E+02

SCFXM1.mps 330 457 2,589 Netlib 1.84E+04

FORPLAN.mps 161 421 4,563 Netlib -6.64E+02

BOEING1.mps 351 384 3,485 Netlib -3.35E+02

SCORPION.mps 388 358 1,426 Netlib 1.88E+03

CAPRI.mps 271 353 1,767 Netlib 2.69E+03

BORE3D.mps 233 315 1,429 Netlib 1.37E+03

LOTFI.mps 153 308 1,078 Netlib -2.53E+01

AGG3.mps 516 302 4,300 Netlib 1.03E+07
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AGG2.mps 516 302 4,284 Netlib -2.02E+07

GROW7.mps 140 301 2,612 Netlib -4.78E+07

E226.mps 223 282 2,578 Netlib -1.88E+01

BEACONFD.mps 173 262 3,375 Netlib 3.36E+04

BRANDY.mps 220 249 2,148 Netlib 1.52E+03

SHARE1B.mps 117 225 1,151 Netlib -7.66E+04

SC205.mps 205 203 551 Netlib -5.22E+01

VTP.BASE.mps 198 203 908 Netlib 1.30E+05

RECIPE.mps 91 180 663 Netlib -2.67E+02

AGG.mps 488 163 2,410 Netlib -3.60E+07

BOEING2.mps 166 143 1,196 Netlib -3.15E+02

ISRAEL.mps 174 142 2,269 Netlib -8.97E+05

SCAGR7.mps 129 140 420 Netlib -2.33E+06

STOCFOR1.mps 117 111 447 Netlib -4.11E+04

SC105.mps 105 103 280 Netlib -5.22E+01

ADLITTLE.mps 56 97 383 Netlib 2.25E+05

BLEND.mps 74 83 491 Netlib -3.08E+01

SHARE2B.mps 96 79 694 Netlib -4.16E+02

SC50A.mps 50 48 130 Netlib -6.46E+01

SC50B.mps 50 48 118 Netlib -7.00E+01

KB2.mps 43 41 286 Netlib -1.75E+03

AFIRO.mps 27 32 83 Netlib -4.65E+02

L1_d10-40x3.mps 80,476 420,366 1,642,290 Plato N/A

Linf_five20c.mps 93,326 69,004 566,193 Plato N/A

FOME21.mps 67,748 211,456 460,400 FOME N/A

FOME20.mps 33,874 105,728 230,200 FOME N/A

FOME13.mps 48,568 97,840 285,056 FOME N/A

FOME12.mps 24,284 48,920 142,528 FOME N/A

FOME11.mps 12,142 24,460 71,264 FOME N/A

Prob_2.mps 528,185 1,259,121 3,341,696 Misc N/A

cont11_l.mps 1,468,599 981,396 4,403,001 Misc N/A

WATSON_2.mps 352,013 671,861 1,841,028 Misc N/A

cont1_l.mps 1,918,399 641,598 5,752,001 Misc N/A

WAT.mps 201,155 383,927 1,052,028 Misc N/A

w100cc00r004p001o004.mps 10,203 321,696 46,168,124 Misc N/A

SGPF.mps 246,077 308,634 828,070 Misc N/A

cont11.mps 160,792 80,396 399,990 Misc N/A

ns168703.mps 50,622 43,749 1,406,739 Misc N/A

cont1.mps 160,792 40,398 399,990 Misc N/A

cont4.mps 160,792 40,398 398,398 Misc N/A

bpmpd.mps 479,119 36,786 1,047,675 Misc N/A

ns168892.mps 32,768 16,587 1,712,128 Misc N/A
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neos3.mps 512,209 6,624 1,542,816 Misc N/A

NEOS1.mps 131,581 1,892 468,009 Misc N/A

neos2.mps 132,568 1,560 552,519 Misc N/A

nug30.mps 52,260 379,350 1,567,800 Nug N/A

nug20.mps 15,240 72,600 304,800 Nug N/A

nug08-3rd.mps 19,728 20,448 139,008 Nug N/A

PDS-100.mps 156,243 505,360 1,086,785 PDS N/A

PDS-90.mps 142,823 466,671 1,005,359 PDS N/A

PDS-80.mps 129,181 426,278 919,524 PDS N/A

PDS-70.mps 114,944 382,311 825,771 PDS N/A

PDS-60.mps 99,431 329,643 712,779 PDS N/A

PDS-50.mps 83,060 270,095 585,114 PDS N/A

PDS-40.mps 66,844 212,859 462,128 PDS N/A

PDS-30.mps 49,944 154,998 337,144 PDS N/A

rail4284.mps 4,284 1,092,610 11,279,748 Rail N/A

rail2586.mps 2,586 920,683 8,008,776 Rail N/A

rail507.mps 507 63,009 409,349 Rail N/A

rail582.mps 582 55,515 401,708 Rail N/A

rail516.mps 516 47,311 314,896 Rail N/A

CCO_MR_31_CLP.mps 1,608 2,954 28,621 Small CCO N/A

CCO_MR_35_CLP.mps 1,695 3,244 29,256 Small CCO N/A

CCO_MR_33_CLP.mps 1,701 3,279 29,275 Small CCO N/A

CCO_MR_36_CLP.mps 1,715 3,272 29,312 Small CCO N/A

CCO_MR_37_CLP.mps 1,715 3,272 29,312 Small CCO N/A

CCO_MR_32_CLP.mps 2,272 4,226 52,435 Small CCO N/A

CCO_MR_14_CLP.mps 2,449 4,629 53,254 Small CCO N/A

CCO_MR_15_CLP.mps 2,483 4,886 53,625 Small CCO N/A

CCO_MR_17_CLP.mps 2,606 5,258 54,181 Small CCO N/A

CCO_MR_13_CLP.mps 2,674 4,824 70,563 Small CCO N/A

CCO_MR_27_CLP.mps 2,674 4,824 70,563 Small CCO N/A

CCO_MR_28_CLP.mps 2,889 5,414 71,599 Small CCO N/A

CCO_MR_31.mps 47,522 517,971 833,978 Large CCO N/A

CCO_MR_33.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_35.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_36.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_37.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_14.mps 123,123 1,406,164 2,187,003 Large CCO N/A

CCO_MR_15.mps 123,123 1,406,164 2,238,843 Large CCO N/A

CCO_MR_32.mps 123,123 1,406,164 2,187,003 Large CCO N/A

CCO_MR_13.mps 143,643 1,640,524 2,570,403 Large CCO N/A

CCO_MR_27.mps 143,643 1,640,524 2,570,403 Large CCO N/A

CCO_MR_28.mps 143,643 1,640,524 2,570,403 Large CCO N/A
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CCO_MR_17.mps 181,443 2,106,004 3,048,843 Large CCO N/A

 
Table 18. Listing of Test LP Problems  
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APPENDIX D: TEST PROBLEM READ ERRORS 
 
Before algorithm testing was started, a set of tests were conducted to ensure that each problem 
could be read by every solver. While the MPS format is the standard text input format for LP 
solvers, there are some variations within this format. For example, comments and blank lines 
within an MPS file cause issues with some solvers. Since the intention was to create a common 
set of test problems, every effort was made to correct read errors provided that it did not change 
the problem (i.e. while removing comments would be acceptable, changing data would not). 
With the exception of MINOS, all solvers provided an import feature that allowed the model to 
be read without being solved. 
 
CPLEX 
 
CPLEX encountered an error while reading the following problems: DFL001.mps, 
SIERRA.mps, GFRD-PNC.mps, FORPLAN.mps, and BLEND.mps. With the exception of 
FORPLAN.mps, all of these read errors were corrected by having lp_solve import these models 
then create a new copy of the model through an export. The cause of the read error for 
FORPLAN.mps could not be determined and this model was not solved by CPLEX. 
 
CLP 
 
CLP did not encounter any read errors. 
 
GLPK 
 
GLPK encountered read errors on the following problems during the import tests: 
GREENBEA.mps, PANG.mps, DFL001.mps, SIERRA.mps, GFRD-PNC.mps, FORPLAN.mps, 
and BLEND.mps. With the exception of PANG.mps and FORPLAN.mps, all of these errors 
were corrected by using lp_solve to import then export a new MPS file. The cause of the read 
errors for PANG.mps and FORPLAN.mps could not be determined, however, GLPK was able to 
read and solve these problems during the algorithms testing. 
 
During the algorithms testing, GLPK was unable to read any of the five Rail problems, despite 
the fact that they could be read during the import tests. The cause of this read error is unknown. 
 
lp_solve 
 
lp_solve encountered read errors while attempting to read all of the CCO problems in the Free 
MPS format, despite the fact that lp_solve can accept this format. This error was corrected by 
using the import feature for CLP to import these files as Free MPS problems and export them as 
MPS problems. 
 
MINOS 
 
Unlike the other solvers, MINOS does not offer an import feature. Therefore the read capability 
of MINOS was tested with the algorithm testing. Since MINOS was not tested using the “hard” 
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problems, only the 180 “easy” problems were read. Since MINOS only accepts MPS files, it was 
known in advance that the CCO problems in the Free MPS format could not be solved. However, 
MINOS was able to read the CCO problems after they were converted to the MPS format and 
read all other “easy” problems with no issues.  
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APPENDIX E: COMPARISON OF CLP 1.7.4 AND 1.14 
 
The purpose of this appendix is to describe the results of a test to compare CLP version 1.7.4  to 
CLP version 1.14 [2], [3]. CLP 1.7.4 was used during the original LP solver testing, since it was 
the last version for which the COIN-OR Binaries project offered a compiled 64-bit Windows 
application. Since this version of CLP was several years old, there was a desire to use a more 
current version. The most current version of CLP is 1.15; however CLP version 1.14 was 
selected for this comparison. At the time that this test was started, CLP version 1.15 was only a 
few days old. Given this, the decision was made to use the previous release.  
 
The approach used for this test was to rerun the “easy” and “hard” test problems for the Primal 
and Dual Simplex algorithms using the new version of CLP and compare the results to the 
previous version of CLP. The primary concerns of this test were to ensure that the new version of 
the algorithm reached the correct optimal value for each problem and that the solution times 
were about the same. As in the original LP solver tests, all timing results were rounded to the 
nearest tenth prior to performing any calculations, unless otherwise stated. Geometric means are 
reported using the lowest level of precision possible since zeros cannot be included in the 
calculation: three digits when comparing CLP results and two digits when comparing CPLEX 
results. 
 
Based on the results of this test both versions of the solver were determined to be comparable in 
their overall performance. The new version of CLP was slower than the original version of CLP 
that was tested. However, there have been many updates and bug fixes since CLP 1.7.4, and the 
new version of CLP was able to solve some problems that could not be solved by CLP and 
CPLEX during the original testing. Given these results, it was determined that CLP 1.14 can be 
used in place of CLP 1.7. 
 
Results for “Easy” Test Problems 
 
This section describes the comparison of the results for the “easy” test problems. The results 
were considered in three different ways. The first two comparisons are between the primal and 
dual results for CLP 1.14 to the respective results for CLP 1.7. The third comparison is between 
the best results between the both algorithms for both versions of CLP. This last comparison is the 
same approach that was used in the original testing. The original testing did not compare primal 
results to primal results, and dual results to dual results, however this is done here since the 
intention of this test is to ensure that both the Primal and Dual Simplex algorithms perform the 
same or better. 
 
The first test was to compare the Dual Simplex algorithm results for both versions of CLP. The 
new version of CLP was able to solve all 180 problems, just as CLP 1.7.4 was. Initially, 
CPLEX2.mps was incorrectly identified as feasible. However, once the tolerance settings were 
adjusted, CLP version 1.14 identified it as infeasible. This was interesting because, in the 
original test, CLP 1.7.4 correctly solved this problem using the Dual Simplex algorithm but 
required tolerance setting adjustment to solve it correctly, using the Primal Simplex algorithm. 
For the new version of CLP, the Primal Simplex algorithm was able to solve this problem 
correctly, but the Dual Simplex algorithm required adjustments to the tolerances settings. As 
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with the original test, this was not treated as an error with the solver since the issue was 
correctable and appears to be specific to this problem. The new version of CLP correctly 
identified all of the infeasible problems. For all but 2 of the 151 problems with feasible solutions, 
the optimal objective values were the same. The remaining two problem’s objective values were 
essentially the same with relative errors on the order of 1e-8 or less. These results show that the 
Dual Simplex algorithm in both versions of CLP produces the same results. 
 
The new version of CLP generally takes longer to solve the “easy” problems using the Dual 
Simplex algorithm. Table 19 gives the total time to solve the each of the “easy” problem sets 
using the Dual Simplex algorithm in CLP 1.7.4 and CLP 1.14. While the total solution time is 
shorter using the new version of CLP, the geometric mean (using the three-digit timing 
precision) shows a 31.7% increase in the solution times using CLP 1.14. In terms of the total 
solution time, there were substantial increases for the Infeasible, Plato – PDS, and Large CCO 
problems sets. Essentially all of the increase in the Large CCO problem set solution time can be 
attributed to an increase in the pre-solve time. The exact cause of this is unknown. It is also 
worth noticing that the total solution time for the Small CCO problem decreased slightly. Since 
the intention is to construct the CCO problem without the unnecessary constraints in the Large 
CCO problems, there should be minimal increases in the solution time of the CCO problem due 
to the pre-solver. 
 

Problem Set Sum of CLP 
1.7.4 Solve 
Times 
(Seconds) 

Sum of CLP 1.14 
Solve Times 
(Seconds) 

Infeasible 3.9 18.3 
Kennington 17.0 20.0 
NetLib 31.9 28.6 
Plato - FOME 182.7 179.5 
Plato - PDS 224.5 455.2 
Plato - Rail 4,821.8 4,171.0 
Large CCO 19.0 378.0 
Small CCO 0.1 0.0 
Grand Total 5,300.9 5,250.6 

 
Table 19. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set 

Using the Dual Simplex Algorithms for CLP 1.7.4 and CLP 1.14 
 
The second test was to compare the Primal Simplex algorithm results for both versions of CLP. 
The new version of CLP was able to solve all 180 problems. This is an improvement over the 
Primal Simplex algorithm for CLP 1.7.4, which was unable to solve OCS_MR_17.mps and 
initially identified CPLEX2.mps as feasible. Again, this was interesting because, in the original 
test, CLP 1.7.4 correctly solved this problem using the Dual Simplex algorithm but required 
tolerance setting adjustment to solve it correctly using the Primal Simplex algorithm. For the 
new version of CLP, the Primal Simplex algorithm was able to solve this problem correctly but 
the Dual Simplex algorithm required adjustments to the tolerances settings. The new version of 
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CLP correctly identified all of the infeasible problems. For all but 4 of the 151 problems with 
feasible solutions, the optimal objective values were the same. The remaining four problem’s 
objective values were essentially the same, with relative errors on the order of 1e-8 or less. These 
results show that the Primal Simplex algorithm was able to match all of the results for the 
problems solved during the initial test and solve one problem that could not solved by CLP 1.7. 
 
CLP 1.14 appears to solve the “easy” problems slightly faster using the Primal Simplex 
algorithm than CLP 1.7. Table 20 gives the total time to solve the each of the “easy” problem 
sets using the Primal Simplex algorithm in CLP 1.7.4 and CLP 1.14. Using the three-digit timing 
precision, the total solution time is about 47.1% shorter using the new version of CLP. The 
geometric mean is about 2.8% shorter using the new version of CLP. In terms of the total 
solution time, all of the problem sets, except for Large CCO, were solved quicker using CLP 
1.14. As with the Dual Simplex algorithm for CLP 1.14, the increase in the total solution time for 
the Large CCO problems can be attributed to an increase in the pre-solve time. It is also worth 
noticing that the total solution time for the Small CCO problem decreased slightly. Since the 
intention is to construct the CCO problem without the unnecessary constraints in the Large CCO 
problems, there should be minimal increases in the solution time of the CCO problem due to the 
pre-solver. 
 

Problem 
Set 

Sum of CLP 
1.7.4 Solve 
Times 
(Seconds) 

Sum of CLP 
1.14 Solve 
Times 
(Seconds) 

Infeasible 8.1 4.5 
Kennington 108.2 56.6 
NetLib 61.6 41.1 
Plato - 
FOME 522.4 368.5 
Plato - PDS 7,351.6 3,400.8 
Plato - Rail 212.9 132.7 
Large CCO 16.7 377.8 
Small CCO 1.0 0.0 
Grand 
Total 8,282.5 4,382.0 

 
Table 20. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set 

Using the Primal Simplex Algorithms for CLP 1.7.4 and CLP 1.14 
 
For the final test, the results from the Primal and Dual Simplex algorithms were combined to 
determine the best possible solution times for each problem. These results were compared for 
both versions of CLP. This is the same approach that was used during the original tests. For this 
test only the solution times were compared since it was previously established that both 
algorithms were able to accurately solve all of the “easy” test problems. Table 21 shows the total 
solution times for CPLEX, CLP 1.7.4 and CLP 1.14, for each problem set. The total solution 
time for CLP 1.14 was about 20 minutes, compared to 11.5 minutes for CLP 1.7.4, and 7 minutes 
for CPLEX. Using two digits of timing precision, the geometric mean of solution times using 
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CLP 1.14 was 2.07 times greater than CPLEX and 1.41 times greater than CLP 1.7. Observe that 
CLP 1.14 was able to solve the Plato – Rail problem set faster than CPLEX or CLP 1.7.4, but 
otherwise matched the solution times of CLP 1.7.4 or did worse. 
 
CLP 1.14 also includes a new feature which attempts to select the best algorithm (between the 
primal and dual) automatically for the user. A side test was conducted to test this feature. When 
the “easy” test problems were run with this feature turned on, CLP 1.14 was able to solve all of 
the problems in about 20 minutes. This matches the total solution time that was required when 
the best results from the primal and dual were combined. This simple test suggests that this 
feature does a good job of selecting the fastest algorithm. 
 

Problem Set Sum of 
CPLEX 
Solve Times 
(Seconds) 

Sum of Best CLP 
1.7.4 Solve Times 
(Seconds) 

Sum of Best CLP 
1.14 Solve Times 
(Seconds) 

Infeasible 0.2 3.6 3.5 
Kennington 12.9 16.1 19.9 
Large CCO 13.0 19.0 377.6 
NetLib 9.1 29.5 27.4 
Plato - 
FOME 54.5 182.7 179.5 
Plato - PDS 179.6 224.5 455.2 
Plato - Rail 152.5 212.9 132.7 
Small CCO 0.0 0.1 0.0 
Grand Total 421.8 688.4 1,195.8 

 
Table 21. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set 

Using CPLEX, CLP 1.7.4, and CLP 1.14 
 
Results for “Hard” Test Problems 
 
CLP 1.14 was also tested using the “hard” test problems. The testing approach used for these 
problems was the same as the approached used for the “easy” test problems. First, the dual 
results for both versions of CLP were compared, and then the primal results for both versions of 
CLKP were compared. Finally, the primal and dual results were combined and best results from 
each algorithm were compared. 
 
The Dual Simplex algorithm in CLP 1.14 was used to solve the 21 “hard” test problems. Using 
this algorithm, 13 of the problems could be solved within the allotted time. Seven problems 
timed out and one problem was stopped for numerical reasons. This exactly matches the results 
from the original test using CLP 1.7. For those problems that could be solved, the total solution 
time increased from 4.7 hours to 5.6 hours, and the geometric mean (using the three-digit timing 
precision) increased by 20%. 
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The Primal Simplex algorithm in CLP 1.14 was able to solve 13 of the problems. This is an 
improvement over the Primal Simplex algorithm in CLP 1.7.4, which was only able to solve 11 
of the problems. For CLP 1.7.4, the ten problems that failed to solve all reached the maximum 
time limit. CLP 1.14 was able to solve two of these problems and timed out on the same 
remaining eight problems. Interestingly, one of the two problems that CLP 1.14 was able to 
solve, cont11_I.mps, was identified as infeasible and solved in 311 seconds. Neither, CLP 1.7.4 
or CPLEX was able to solve this problem within the 8 hour time limit. If the eight problems that 
could not be solved are ignored, the total solution times for CLP 1.14 and CLP 1.7.4 are 7.3 
hours and 19.9 hours, respectively. In this case the geometric mean of solution times for CLP 
1.14 is 58% shorter than CLP 1.7. If only the 11 problems that both solvers could solve are 
considered, the total solution times for CLP 1.14 and CLP 1.7.4 are 6.4 hours and 3.9 hours, 
respectively. Despite the fact that CLP 1.14 takes longer to solve, in terms of the total solution 
time, its geometric mean is actually 33% shorter then CLP 1.7. 
 
For the final test, the results from the Primal and Dual Simplex algorithms were combined to 
determine the best possible solution times for each problem. These results were compared for 
both versions of CLP. This is the same approach that was used during the original tests. Table 22 
summarizes the results for CPLEX, CLP 1.7.4 and CLP 1.14. All geometric means were 
computed using two digits of timing precision. Since each of these solvers was able to solve a 
different set of problems, the results are presented in three different ways. First, the results for all 
21 “hard” test problems are shown, then the results for the 18 problems that could be solved by 
at least one of the solvers are shown, and finally the results for the 14 problems that could be 
solved by at least one of the solvers are shown. Observe that, in terms of the geometric mean, 
CLPEX is always the fastest solver. For the first two groups of statistics, CLP1.14 is faster than 
CLP 1.7. When only the 14 problems that could be solved by all solvers are considered, the 
geometric mean for CLP 1.14 is about 7% larger than CLP 1.7’s geometric mean. 
 
Summary of Changes since CLP 1.7.4 
 
In addition to testing the algorithms, a review of the subversion commit messages since the CLP 
version 1.7.4 was accomplished to get a sense of the types of modifications that have been made. 
A complete listing of the revisions to the CLP source code is available at: https://projects.coin-
or.org/Clp/log/. The commit revisions of interest range from 1195 to 1889. The first change to 
CLP version 1.7.4 occurred on April 16, 2008. Change 1889 occurred on November 21, 2012. 
Based on the commit messages, it appears that a variety of changes have been made. There have 
been updates to correct memory leaks, fix mistakes with the algorithms, and improve the 
performance of the algorithms. Based on the commit messages, most of these changes appear to 
be fixes to minor bugs. However, there were two commit messages that are worth pointing out. 
The message for revision 1498 stated: “fix serious - if rare - bug which says optimal when not”. 
Since the optimal objective values were reached for the entire test problem set during the original 
testing, it does not appear that CLP 1.7.4 encountered this bug. The message for revision 1575 
stated: “Added OSI into externals”. This is important because the COIN-OR Open Solver 
Interface (OSI) was not available until this point in time. Without this, an interface tool such as 
FLOPC++ cannot be used to directly interface with CLP (using these tools to write an MPS input 
file for CLP is still an option). 
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 CPLEX CLP 1.7.4 CLP 1.14 
All 21 "Hard" Problems 
Total Time (Hours) 42.8 60.4 51.8 
Geometric Mean 402.1 1,004.4 846.3 
    Ratio to CPLEX  2.50 2.10 
    CLP 1.14 Ratio to CLP 1.7   0.84 
18 Problems Solved by One Solver 
Total Time (Hours) 18.8 36.4 27.8 
Geometric Mean 197.3 574.1 470.1 
    Ratio to CPLEX  2.91 2.38 
    CLP 1.14 Ratio to CLP 1.7   0.82 
14 Problems Solved by All Solvers 
Total Time (Hours) 7.6 4.4 3.7 
Geometric Mean 112.5 187.6 200.5 
    Ratio to CPLEX  1.67 1.78 
    CLP 1.14 Ratio to CLP 1.7   1.07 

 
Table 22. Various Statistics Comparing CPLEX, CLP 1.7.4, and CLP 1.14 for the “Hard” 

Test Problems 
 
Conclusion 
 
 Based on this analysis, it was determined that CLP 1.14 is suitable for use in place of CLP 1.7. 
The testing shows that both the Primal and Dual Simplex algorithms are able to achieve the 
correct optimal objective values. The results do indicate that, in some cases, using CLP 1.14 
instead of CLP 1.7.4 increases the solution time by 30-40%. However, the new version of CLP 
was able to solve three problems that CLP 1.7.4 could not solve and one problem that CPLEX 
could not solve. Additionally, the commit messages indicate that many bugs have been fixed 
since the release of CLP 1.7. Despite the fact that CLP 1.14 generally requires more time to solve 
the test problems, the solution time for the Small CCO problems did not increase. Furthermore, 
CLP 1.14 is still a very efficient solver when compared to CPLEX, requiring about 2.1 times as 
long to solve the “easy” test problems, compared to 1.6 times as long for CLP 1.7. Given that 
CLP 1.14 was able to solve more of the test problems, and that many bugs have been corrected 
since CLP 1.7.4 was released, the improvements in capability offset this increase in processing 
time. 
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