

1

SANDIA REPORT
SAND2013-8847
Unlimited Release
Printed October 2013

Comparison of Open-Source Linear
Programming Solvers

Jared L. Gearhart, Kristin L. Adair, Richard J. Detry, Justin D. Durfee, Katherine A.
Jones, Nathaniel Martin

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2013-8847
Unlimited Release

Printed October 2013

Comparison of Open-Source Linear
Programming Solvers

Jared L. Gearhart, Kristin L. Adair, Justin D. Durfee,
Katherine A. Jones, Nathaniel Martin

Operations Research and Computational Analysis
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS1188

Richard J. Detry

ISR Real Time Processing
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS0532

Abstract

When developing linear programming models, issues such as budget limitations,
customer requirements, or licensing may preclude the use of commercial linear
programming solvers. In such cases, one option is to use an open-source linear
programming solver. A survey of linear programming tools was conducted to identify
potential open-source solvers. From this survey, four open-source solvers were tested
using a collection of linear programming test problems and the results were compared
to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers
considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear
Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear
Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX,
this study demonstrates the power of commercial linear programming software. CLP
was found to be the top performing open-source solver considered in terms of
capability and speed. GLPK also performed well but cannot match the speed of CLP
or CPLEX. lp_solve and MINOS were considerably slower and encountered issues
when solving several test problems.

4

ACKNOWLEDGMENTS

This work was funded by the Office of the Under Secretary of Defense for Acquisition,
Technology, & Logistics (AT&L).

5

CONTENTS

1. Introduction .. 9

2. Survey and Selection of LP Solvers ... 11
2.1 Initial Screening: Survey of LP Tools .. 11
2.2 Second Screening: Down-Selection of LP Solvers ... 13
2.3 Discussion of Selected Solvers ... 13

2.3.1 COIN-OR Linear Programming (CLP) ... 15
2.3.2 GNU Linear Programming Kit (GLPK) .. 15
2.3.3 lp_solve ... 15
2.3.4 MINOS .. 16

3. LP Solver Testing ... 17
3.1 Test LP Problems .. 17
3.2 LP Solver Tests ... 19

3.2.1 CPLEX .. 20
3.2.2 CLP .. 21
3.2.3 GLPK ... 23
3.2.4 lp_solve ... 24
3.2.5 MINOS .. 25
3.2.6 Comments and Comparison of First Round Testing Results 26
3.2.7 Results of “Hard” Problem Tests .. 30
3.2.8 Comments on LP Solver Testing ... 32

3. Conclusions .. 33

4. References .. 35

Appendix A: LP Tool Screening... 37

Appendix B: Open-Source LP Modeling Environments .. 43

Appendic C: List of Test Problems ... 45

Appendix D: Test Problem Read Errors ... 51

Appendix E: Comparison of CLP 1.7.4 and 1.14 ... 53

FIGURES

Figure 1. Plot of Problem Size in Terms of Constraints and Variables .. 19
Figure 2. Plot of Solution Times versus the Number of Constraints for each Solver 29
Figure 3. Plot of Solution Times versus the Number of Variables ... 29
Figure 4. Plot of Solution Times versus the Number of Non-zero Elements 30

TABLES

Table 1. Candidate LP Solvers Identified During First Round Screening 12
Table 2. List of Modeling Environments Identified During the Initial Screening Process 12

6

Table 3. List of Integer and Quadratic Program Solvers Identified During the Initial Screening
Process .. 13
Table 4. Summary of LP Solvers Eliminated During Second Round of Testing 14
Table 5. Summary of Key Aspects of Tested Solvers .. 14
Table 6. Number of Test Problems in Each Problem Set ... 19
Table 7. Comparison of Solution Times for CLP Interior Point and Simplex Algorithms 22
Table 8. Comparison of Solution Times for GLPK Interior Point and Simplex Algorithms 24
Table 9. Summary of Simplex Solution Results for Each Solver ... 26
Table 10. Comparison of “Easy” Problem Solution Times for Each Solver 28
Table 11. Comparison of Geometric Means (in Seconds) of “Easy” Problem Solution Times for
Each Solver ... 28
Table 12. CLP and CPLEX Solution Times for “Hard” Problems. Italics indicate problems that
timed out. Bold indicates the fasted solver (CLP or CPLEX). ... 31
Table 13. First Round Screening Results for Tools Listed in INFORMS LP Software Survey [7]
... 39
Table 14. First Round Screening Results of Propriety LP Tool from Wikipedia [8] 40
Table 15. First Round Screening Results of Non-propriety LP Tool from Wikipedia [8] 41
Table 16. First Round Screening Results from a General Survey of LP Websites 42
Table 17. List of Top Open-Source LP Modeling Environments. Solvers studied in this model
are highlighted in bold. Other open-source solvers are italicized. .. 43
Table 18. Listing of Test LP Problems ... 50
Table 19. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set Using
the Dual Simplex Algorithms for CLP 1.7.4 and CLP 1.14 ... 54
Table 20. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set Using
the Primal Simplex Algorithms for CLP 1.7.4 and CLP 1.14 .. 55
Table 21. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set Using
CPLEX, CLP 1.7.4, and CLP 1.14 ... 56
Table 22. Various Statistics Comparing CPLEX, CLP 1.7.4, and CLP 1.14 for the “Hard” Test
Problems ... 58

7

NOMENCLATURE

API Application Programming Interface
CCO Contingency Contractor Optimization
CLP COIN-OR Linear Programming
COIN Computational Infrastructure for Operations Research
COIN-OR See COIN
DoD Department of Defense
GLPK GNU Linear Programming Kit
GMPL GNU Mathematical Programming Language
IP Integer Programming
LP Linear Programming
MINOS Modular In-core Nonlinear Optimization System
OPL Optimization Programming Language

8

9

1. INTRODUCTION

This report documents a study that was conducted as part of the Contingency Contractor
Optimization (CCO) project to determine if there are viable open-source linear programming
(LP) solvers that could be used in place of commercial LP solvers. One requirement of the CCO
project is that all software and algorithms developed or used by the final engineering prototype
should be freely distributable within the Department of Defense (DoD). Since the core model
developed for this project was an LP, it was necessary to create or identify a low-cost or no-cost
solver. Production licenses for standard commercial LP solvers such as CPLEX [1] have annual
costs of tens of thousands of dollars, which precluded their use for the CCO project. In order to
fulfill the freely distributable requirement, a survey and assessment of alternative LP solvers was
conducted. While this study was motivated by the CCO project, the findings are general and
should be useful to any group who is interested in using a low-cost or no-cost LP solver.

This study was divided into two phases. In the first phase, a survey was conducted of all
available LP tools to identify which ones could be used given the requirements of the CCO
project. In the second phase, the most promising LP solvers identified during the survey were
tested on a range of problems to determine the quality of each solver. Since the solver selected
for the CCO project will be used in a production environment, it is important that the solver be
accurate, efficient, and mature. Therefore, each solver was also compared to IBM’s CPLEX
solver, an industry standard.

This report is organized as follows: Section 2 discusses the findings from the survey of the LP
solvers. Section 3 describes the testing approach and results used for a subset of the available
solvers. Section 4 provides a summary and conclusion.

10

11

2. SURVEY AND SELECTION OF LP SOLVERS

This section describes the results of a survey of available LP solver tools. This survey was
conducted in two rounds. The first round focused on reviewing all of the available tools and
eliminating those which were not LP solvers and would not meet the requirements of the CCO
project (free or low-cost, usable in a production environment for a government application, and
not tied to a commercial product such as MATLAB). Once this initial survey was completed and
candidate solvers were identified, a second round screening was conducted to identify the top LP
solvers that would be tested.

2.1 Initial Screening: Survey of LP Tools

An initial screening of LP tools was conducted using two types of data sources. The first data
source was a survey of linear programming software conducted by Robert Fourer [7], available
through the INFORMS website. The second source of data was a general web search for linear
programming tools. Modeling-related websites provided lists of both commercial and free LP
solvers [8], [9], [10]. Once this survey was complete, each product was reviewed and screened
according to the following criteria with the desired answer of “Yes”:

- Is the product free or low-cost?
- Is the product an LP solver?
- Does the product use an exact method such as the Simplex algorithm or an Interior Point

algorithm?; (tools using heuristic methods such as Monte Carlo sampling or genetic
algorithms are discounted, since there are well established exact algorithms for solving
LPs)

- Is the product mature?; (as demonstrated through software development practices,
documentation, and active commercial or academic user communities)

- Is the product a stand-alone product (e.g. not an add-in to MATLAB, Excel)?

In total, about 100 LP tools were identified using the two data sources described above. The
screening criteria above were then applied to this list to create a down-selected list of solvers. A
complete list of all the tools considered and the justification for why they were accepted or
rejected in the first round of screening can be found in Appendix A. The initial screening
identified ten potential LP solvers. These solvers are listed in Table 1.

12

Solver Name Website
lp_solve http://lpsolve.sourceforge.net/5.5/
MINOS http://www.sbsi-sol-

optimize.com/asp/sol_product_minos.htm
CLP https://projects.coin-or.org/Clp
GLPK http://www.gnu.org/software/glpk/
PCx http://pages.cs.wisc.edu/~swright/PCx/
PPL http://bugseng.com/products/ppl/
JOptimizer http://www.joptimizer.com/
LiPS http://lipside.sourceforge.net/
CVXOPT http://abel.ee.ucla.edu/cvxopt/
QSOPT http://www2.isye.gatech.edu/~wcook/qsopt/

Table 1. Candidate LP Solvers Identified During First Round Screening

In addition to LP solvers, the screening process identified several other sets of tools that might be
of potential use to those requiring open-source math programming tools. These tools are
summarized in Table 2 and Table 3. Table 2 lists the modeling environments that were identified
during the survey. In general, it is very difficult to develop models by interacting directly with
solvers. A commonly used approach is to create problem statements in a modeling environment
and then pass the problem to a solver. Table 3 lists quadratic program and integer program
solvers that were identified during the survey. While not directly applicable to this study, it is
worth pointing out that open-source tools also exist for integer and quadratic programming. CLP
and PPL are included in both Table 1 and Table 3, since they are both linear and quadratic
programming solvers.

Software Name Website
Coopr https://software.sandia.gov/trac/coopr
CMPL https://projects.coin-or.org/Cmpl
OptimJ http://www.ateji.com/optimj/index.html
PuLP http://code.google.com/p/pulp-or/
OpenOpt http://openopt.org/Welcome
Microsoft Solver
Foundation

http://msdn.microsoft.com/en-
us/devlabs/hh145003.aspx

COINMP https://projects.coin-or.org/CoinMP

Table 2. List of Modeling Environments Identified During the Initial Screening Process

13

Software Name Website
CVXOPT http://abel.ee.ucla.edu/cvxopt/
OOQP http://pages.cs.wisc.edu/~swright/ooqp/
LSSOL http://www.sbsi-sol-

optimize.com/asp/sol_product_lssol.htm
CLP https://projects.coin-or.org/Clp
PPL http://bugseng.com/products/ppl/
MINTO http://coral.ie.lehigh.edu/~minto/
CBC https://projects.coin-or.org/Cbc

Table 3. List of Integer and Quadratic Program Solvers Identified During the Initial
Screening Process

2.2 Second Screening: Down-Selection of LP Solvers

Given time and resource limitations, only four of the solvers identified during the initial
screening could be tested. A second round of screening was conducted to identify the top four
candidates for testing. All of the same selection criteria were applied during the second round as
the first. However, during the second round, the solvers were scrutinized more closely and
compared against each other.

The second round of screening identified lp_solve, MINOS, CLP, and GLPK as the test
candidates. A complete description of each of these tools is provided in section 2.3; however
they do have common desirable traits. First, all of the tested solvers have a mature code base and
are extensively documented. MINOS is a commercial solver that can be purchased with AMPL
and GAMS [9], [10]. While it is not free, it was included since it is available to the government
for $350 [11]. The other three solvers are open-source applications. In a survey of websites,
presentations, and papers discussing open-source solvers ([7], [8], [9], [10], [12], [13], [14],
[15]), these three solvers were referenced the most often. Also, all of the major open-source
development environments provide an interface to some combination of these three tools (see
Appendix B). The six tools that were eliminated during the second screening and the reason they
were eliminated are given below in Table 4.

2.3 Discussion of Selected Solvers

The solvers selected for further testing based on the results from the second screening were:
CLP, GLPK, lp_solve and MINOS. A discussion of each of these solvers is provided in the
following sub-sections. Table 5 provides a summary of the key aspects of each solver described
in the sub-sections below.

14

LP Solver Reason Rejected
PCx PCx has not been updated since 2006. This was rejected since other

solvers that are in active development were available.
PPL The PPL code is mature and has good software development practices

and documentation. However, it is not widely used. It is not referenced
in any of the sources used in the screening process nor do any of the
researched modeling environments provide accesses to this tool.

JOptimizer JOptimizer is a relatively new project and is not widely used at this
time. It is not referenced in any of the sources used in the screening
process nor do any modeling environments provide access to the tool.

LiPS LiPS was developed to teach linear programming in an academic
setting and is not intended to be used in production. It is not referenced
in any of the sources used in the screening process nor do any modeling
environments provide access to the tool.

CVXOPT The CVXOPT code contains many useful algorithms, but it was
developed for use in a research environment and is not intended to be
used in production. It is not referenced in any of the sources used in
the screening process nor do any modeling environments provide
access to the tool.

QSOPT The QSOPT code contains many useful algorithms, but it was
developed by a university and intended for research uses. Apart from
being tested by Hans Mittleman [15], it is not referenced in any of the
other sources used in the screening process nor do any modeling
environments provide access to the tool.

Table 4. Summary of LP Solvers Eliminated During Second Round of Testing

LP Solver Command

Line
Interface?

Application
Programming
Interface
(API)

Input File Algorithms

CLP Y C++ MPS, Free MPS Primal and Dual
Simplex, Interior Point

GLPK Y C, Java MPS, Free MPS, LP,
GLPK, MathProg

Primal and Dual
Simplex, Interior Point

lp_solve Y Java, .NET, C,
C++, C#

MPS, Free MPS, LP Primal and Dual
Simplex

MINOS Y Fortran, C,
MATLAB

MPS, LP + SPEC File Primal Simplex

Table 5. Summary of Key Aspects of Tested Solvers

15

2.3.1 COIN-OR Linear Programming (CLP)

COIN-OR Linear Programming (CLP) is a project that is part of the Computational
Infrastructure for Operations Research (COIN-OR, or simply COIN) initiative [2], [16]. COIN-
OR is an initiative to encourage development of open-source, operations research software. CLP
is an LP solver containing Dual and Primal Simplex algorithms. It has been tested on problems
of up to 1.5 million constraints and is as reliable as OSL [17]. CLP is available under the Eclipse
Public License version 1.0. CLP has also been tested by Hans Mittelmann [15] and was
mentioned in several references discussing LP solvers [13], [14].

CLP is written in the C++ programming language. Its primary algorithms are the Primal and
Dual Simplex algorithms, but it also contains an Interior Point algorithm. Users can interact with
CLP through an interactive command line or through a C++ application programming interface
(API). While the user can create LP problem statements in code through the API, CLP is also
able to accept MPS, Free MPS and LP files [2]. These three file formats are standards for
specifying LP problems. All LP solvers are capable of reading one of more of these formats.

2.3.2 GNU Linear Programming Kit (GLPK)

GNU Linear Programming Kit (GLPK) is a math programming project that is part of the GNU
project [4]. It was developed to solve large scale LP problems. GLPK was developed by Andrew
Makhorin of the Moscow Aviation Institute. GLPK is available under the GNU General Public
License. It can solve LPs using Primal and Dual Simplex algorithms, as well as an Interior Point
algorithm. Like CLP, it has been tested by Hans Mittelmann [15] and was referenced in several
sources pertaining to LP solvers [13] , [14].

GLPK is written in the C programming language. Users can interact with GLPK through the
command line or through an API. GLPK offers a C and Java API. GLPK accepts models in the
MPS, Free MPS and LP format. It also accepts problem statements in the MathProg format
which are created using the GNU Mathematical Programming Language (GMPL), a modeling
environment related to GLPK.

2.3.3 lp_solve

lp_solve [5] is an LP and integer programming (IP) solver based on the revised Simplex Method
and the branch-and-bound method for the integers. It is freely available under the GNU Lesser
General Public License. It was originally developed by Michel Merelaar at Eindhoven University
of Technology but has had many contributors since the original development. It uses the Primal
and Dual Simplex algorithms for solving LP models. lp_solve is an active project and is
referenced in several sources [13], [14].

lp_solve is written in the C programming language. Users can interact with lp_solve through the
command line of through an API. lp_solve offers a C, C#, C++, Java, and .NET API. lp_solve
can read the MPS, Free MPS and LP file format.

16

2.3.4 MINOS

MINOS [6] is a commercial software package sold by Stanford Business Software, Inc. MINOS
stands for Modular In-core Nonlinear Optimization System. It was developed by Stanford
University and was supported by a grant from the U.S. government. It is able to solve both non-
linear and linear programs. Development on MINOS is not as active as the other three solvers
selected for testing. Version 5.0 was released in 1983, and the most recent version (5.51) was
released in 2002. Also, MINOS was not referenced in any of the sources used in this effort
discussing LP solvers. However, MINOS is used by commercial modeling languages such as
AMPL [9] and GAMS [10]. Since the development of MINOS was funded by the U.S.
government, a government organization can purchase a license at a cost of $350, which can be
used indefinitely by the entire organization at a single site. Since MINOS offers a low-cost
commercial option for government use, it was selected for testing despite the fact that it is not
actively being developed.

MINOS is written in the Fortran 77 programming language and distributed as source code. Users
can interact with MINOS through the command line or an API. MINOS offers Fortran, C, and
MATLAB APIs. Unlike the other solvers, MINOS is only able to support the MPS file format.
MINOS also requires that a SPEC or specification file be created by the user which specifies
problem specific parameters related to MPS, in addition to settings for the solver. This is
different from the other solvers, which are able to determine the problem specific parameters by
reading the MPS file. This means that the user must create both a MPS and SPEC file before
using MINOS.

17

3. LP SOLVER TESTING

Each of the solvers selected during the screening process were tested using a collection of LP test
problems drawn from several sources. These results were compared to IBM’s CPLEX solver.
The testing focused on addressing two important questions for each solver. First, is the solver
able to solve each problem to optimality? Second, how long does it take each solver to solve
each problem? Before these questions could be addressed, a collection of test LP problems was
created. Section 3.1 describes the test problems used for this study. Section 3.2 describes the
results when each solver was tested using the test problems.

3.1 Test LP Problems

In order to test each solver, a collection of test problems was created. While the motivation
behind this effort was to find a solver for the CCO problem, a much broader test data set was
created. The need for a free and freely distributable solver was identified during the second phase
of the CCO project. The goal of the third phase of this effort is to create an engineering prototype
based on an electronic storyboard prototype created during Phase 2. During Phase 2, a collection
of demonstration data sets were created. Since the CCO tool is still in development, the size of
problems when real data is used is not yet well-defined. Given this, a more holistic testing
approach was taken, where the test problems ranged from very small problems to problems
several orders of magnitude larger than the CCO demonstration problems developed during
Phase 2. By using this approach, confidence could be gained that the selected solver would be
able to solve larger problems in the future should the data change.

A total of 201 test problems were identified using three data sources. The first data source was
Netlib [18] which is a repository that contains collections of test data sets which can be used for
benchmarking various algorithms. Specifically, the LP library was used. The LP problems in
Netlib are divided into three groups: the main data set (referred to here as just Netlib), Infeasible,
and Kennington. A total of 138 problems were drawn from these problem sets. Netlib contains a
total of 97 problems, 93 of which were used during the testing. The remaining four test problems
required a conversion process to generate an MPS file, and were excluded from the test set.
These problems are generally small, with most constraints (row) counts in the hundreds to low
thousands and most variables (column) counts in the hundreds to ten thousand range. The largest
number of constraints and variables was 6,071 and 13,525 respectively. The Infeasible problem
set contains 29 infeasible problems, all of which were included in the set of test problems. These
problems are generally the same size as the Netlib problems, with a maximum of 3,792
constraints and 10,733 variables. Finally, the Kennington data set contains 16 problems, all of
which were included in the set of test problems. These problems are slightly larger than the
Netlib and Infeasible problems, with row and column counts ranging from the thousands to low
hundreds of thousands. The maximum constraints and variables counts were 105,127 and
232,966, respectively.

The second data source was the pre-loaded examples included with the CCO prototype
developed during Phase 2. Twelve model runs were selected for testing. This problem set was
included since the intention of this study was to determine a replacement solver that could solve
CCO problems. These problems were created by using the Optimization Programming Language

18

(OPL)/CPLEX implementation of the CCO model from Phase 2. A CPLEX setting was used to
export each problem to a Free MPS file. The problems created through this approach were very
large, with constraint counts ranging from 47,522 to 181,443 and variable counts ranging from
517,971 to 2,106,004. Further investigation into the Phase 2 implementation of the CCO model
revealed that it created problems which were much larger than necessary, and that the size of the
problem could be reduced by eliminating unnecessary constraints and variables. This was not a
concern during Phase 2, since CPLEX was able to quickly pre-solve the model, eliminating the
excess constraints and variables. In order to provide a more fair comparison between the solvers,
12 simplified problems were created by pre-solving each of the original 12 problems. This was
accomplished using CLP’s pre-solve option and writing a new MPS file (the solutions to both the
original and modified problems were compared to ensure they were the same). The resulting
problems are considerably smaller with constraint counts between 1,608 and 2,889, and variable
counts between 2,954 and 5,414. In total, 24 CCO problems are tested: 12 “Large CCO”
problems and 12 “Small CCO” problems.

The final data source was a set of test problems made available by Professor Hans Mittelman
from Arizona State University [15]. A total of 39 were selected from this source. These problems
were divided into six categories based on the folders containing the files on the website: Plato,
FOME, Misc, Nug, PDS, and Rail. These problems were selected because they are large and tend
to be difficult to solve. The size of these problems ranges from tens of thousands to around one
million constraints and variables. The maximum numbers of constraints and variables are
1,918,399 and 1,259,121, respectively.

For testing purposes, the 201 test problems were divided into two groups: “easy” and “hard”
problems. An initial screening of the test problems using CPLEX revealed that some of the
problems in the Plato, Misc, and Nug problems sets were especially difficult to solve. The 21
problems in these data sets were categorized as “hard” problems and excluded from the initial
testing. The remaining 180 “easy” problems were used for the first round of testing. It should be
noted that the terms “easy” and “hard” are only designated with respect to CPLEX solve time.
As the results section will show, some of the “hard” problems were solved very quickly with
other LP solvers while other solvers took a very long time on the same problems. Conversely,
while CPLEX was able to solve the “easy” problems in seven minutes, some other solvers were
unable to obtain an optimal solution to all of these problems after several days.

Figure 1 shows the size of each test problem in terms of the number of constraints and variables.
The problems are grouped into the “hard” and “easy” data sets. Observe that while there is some
overlap between these two sets, the “hard” problems tend to be larger than most of the “easy”
problems. Also note that this collection of test problems covers a wide range of problem sizes
(the arrows indicate the largest problems in each set). Table 6 shows the number of test problems
in each set. Appendix C contains a complete listing of the test problems.

19

Figure 1. Plot of Problem Size in Terms of Constraints and Variables

Problem Set Number of

Problems
Netlib 93
Infeasible 29
Kennington 16
Large CCO 12
Small CCO 12
Plato 2
PDS 8
Rail 5
FOME 5
Misc 16
Nug 3
Grand Total 201

Table 6. Number of Test Problems in Each Problem Set

3.2 LP Solver Tests

The following sub-sections describe the various tests that were conducted for each LP solver.
The general approach was to test all four candidate solvers using the 180 “easy” problems. Based
on the results from this initial test, the best solver would also be tested using the 21 “hard”
problems. All of the problem statements were passed to the model through the command line

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

N
u
m
b
e
r
o
f
V
ar
ia
b
le
s

Number of Constraints

Number of Constraints and Variables for each Test Problem

"Easy" MPS

"Hard" MPS

181,443 Constraints &
2,106,004 Variables

1,259,121 Variables

1,918,399
Constraints

20

interface in the MPS or Free MPS format. Each solver was given four hours to solve each “easy”
problem and eight hours to solve each “hard” problem. The primary algorithms of interest for
each solver were the Primal and Dual Simplex algorithms (as applicable). For each solver, both
algorithms were run for each problem and the best solution time was used. This was motivated
by the fact that certain problems may be easier to solve using one of these algorithms.
Additionally, the Interior Point algorithms for CLP and GLPK were tested to see if they offered
any benefits over the associated Simplex algorithms. Unless otherwise stated, all of the results
associated with the time required to read or solve a problem are based on rounding the actual
time to the nearest tenth of a second, since this was the level of timing reported by GLPK. All of
the other solvers reported timing at the two or three digit level of precision.

A collection of MS-DOS batch files were created to call each experiment for each solver. All
solver outputs were captured and stored in log files. Code was written to extract and consolidate
the relevant results. Each solver recorded the solution time within its log file. The solution time
is based on the wall clock. All tests were run using an Intel Core2 Quad CPU 3.00Ghz with 8GB
of RAM running the 64-bit version of Windows 7. Additional processing was minimized during
experiments. All test problems were run using CPLEX as a benchmark.

Prior to testing the solve capability of each LP solver, the read capability of each solver was
tested. In several cases, some solvers had difficulty reading certain problems in their original
form. When possible, the original problem files were modified so that they could be read by each
solver. This was motivated by the desire to have a common set of problems that all solvers could
read and solve. In the end, there were only six problem-solver pairs that could not be read into
the solver. A summary of the issues associated with reading input files can be found in Appendix
D.

The following five subsections, 3.2.1-3.2.5, describe the initial experiments conducted for
CPLEX and the four candidate solvers. Subsection 3.2.6 compares the results of the initial
experiments for each solver. Subsection 3.2.7 discusses the results of the experiments using the
“hard” problems. Finally, subsection 3.2.8 provides some conclusions and comments on the
findings from the tests.

3.2.1 CPLEX

All of the “easy” test problems were first run using CPLEX 12.4 as a benchmark. Only one
experiment using the “easy” problem set was run, and with the exception of the four hour time
limit the default solver settings were used. Unlike the other solvers, CPLEX contains logic which
determines the algorithm that will be used to solve a problem (Primal Simplex, Dual Simplex, or
Interior Point). While it is possible to overwrite this behavior and specify the solver of choice,
this was not done for the CPLEX experiment.

CPLEX was able to solve 179 out of the 180 “easy” problems. One problem, FORPLAN.mps,
could not be read by CPLEX. Otherwise, CPLEX either solved or correctly identified each
problem as infeasible. For those problems that have a published optimal objective value, the
maximum relative error between the optimal CPLEX objective value and the optimal published

21

objective value was on the order of 1e-3. CPLEX was able to solve all 179 problems in about
422 seconds.

3.2.2 CLP

Five experiments were conducted using the CLP 1.7.4 for 64-bit Windows. The first two
experiments were for the Primal and Dual Simplex algorithms using the default CLP solver
settings. A second set of experiments were run for the Primal and Dual Simplex algorithms using
relaxed feasibility tolerance settings that matched CPLEX. The final experiment used CLP’s
Interior Point algorithm. The first two experiments and the interior point experiment were run
using CLP’s default feasibility tolerance, 1e-7. The relaxed primal and dual experiments changed
the feasibility tolerances to 1e-6 to match the default value used by CPLEX.

For the initial primal and dual experiments, using the default values, the Dual Simplex algorithm
was able to solve all 180 test problems and the Primal Simplex algorithm was able to solve all
test problems, with the exception of OCS_MR_17.mps. The reason that the Dual Simplex
algorithm was able to solve this problem while the Primal Simplex algorithm was not is
unknown, but it may be linked to the size of the problem. This is the largest problem, in terms of
the number of decision variables. Initially, CPLEX2.mps was incorrectly identified as feasible by
the Primal Simplex algorithm. However, when the feasibility tolerance setting was changed to
1e-8 the problem was correctly identified as infeasible. This was not treated as a solver error
since it appeared to be specific to the problem and was correctable. For both algorithms, there
was essentially no difference between the objective values for CLP and CPLEX. All relative
errors between CLP and CPLEX objective values were on the order of 1e-8 or less. For those
problems that have a published optimal value, the maximum relative error between CLP and
published objective value was on the order of 1e-3. When the minimum solution time (between
the primal and dual) for each problem was added together, the total solution time for all
problems was about 688 seconds. This is about 1.6 times longer than was required for CPLEX.

The second set of experiments was conducted using the Primal and Dual Simplex algorithms
with relaxed feasibility tolerance settings. In this case, the values were changed to 1e-6 to match
CPLEX’s settings. This test was conducted to determine if the differences between the default
CLP and CPLEX settings produced different results. In both the primal and dual cases, the
results for the relaxed experiments were similar to those using the default settings. For the Dual
Simplex algorithm, all 180 problems were solved with no issues. With the relaxed settings, the
Dual Simplex algorithm was able to solve the 180 “easy” problems in 4,884 seconds; 416.9
seconds faster than when the default parameters were used. However, if the two problems with
largest reduction in solution time are excluded (316.4 and 106.6), the next best improvement was
only 1.4 seconds and the relaxed algorithm required 6.1 seconds longer. For the Primal Simplex
algorithm, all problems except OCS_MR_17.mps and CPLEX2.mps were solved correctly.
However, this was expected, since these problems encountered issues during the initial CLP
Primal Simplex algorithm testing. In this case, the Primal Simplex algorithm using the relaxed
parameters took 200 seconds longer to solve than the original experiment. Based on these
observations, it was determined that using the default or relaxed tolerance setting did not produce
a meaningful difference for the purposes of this study. Unless otherwise stated, all CLP results
for the Primal and Dual Simplex algorithms are for the experiments using the default setting.

22

The final CLP experiment was for the Interior Point algorithm. For this test, the default CLP
parameters were used. As with the Primal Simplex algorithm, CPLEX2.mps was incorrectly
identified as feasible. Unlike the primal case, the command line interface for CLP did not allow
access to any parameters that might make this solution feasible. Additionally, three problems
failed to obtain the optimal solution within the allotted time. For those problems that were
solved, all relative errors between the CLP and CPLEX objective values were on the order of 1e-
8 or less. For those problems with a published optimal value, the maximum relative error
between CLP and that answer was on the order of 1e-3 or less. In general, the Interior Point
algorithm took considerably longer than the Simplex algorithms. Including the problems that
were stopped at the time limit, the Interior Point algorithm required 90,062.8 seconds to solve the
“easy” test problems compared to 688.4 seconds for the Simplex algorithms. There was only one
case where the Interior Point algorithm was faster than the primal and dual solution (using the
full three digit accuracy available in CLP) and the difference was not substantial (0.062 vs. 0.072
seconds). Table 7 provides a more detailed comparison of the solution times. Given these results,
it was concluded that CLP’s Interior Point algorithm does not demonstrate a substantial
advantage over its Simplex algorithms, and it was excluded from further testing.

Problem Set Sum of Interior
Point Solution
Times (Seconds)

Sum of Fastest
CLP Simplex
Times (Seconds)

Ratio Comments

Infeasible 636.8 3.6 176.9 CPLEX2.mps not
included in sum

Kennington 272.3 16.1 16.9

Netlib 242.6 29.5 8.2

Large CCO 21.9 19.0 1.2

Small CCO 3.5 0.1 35.0

FOME 3,856.0 182.7 21.1

PDS 73,380.6 224.5 326.9 3 problems timed out for
Interior Point algorithm

Rail 11,649.1 212.9 54.7

Grand Total 90,062.8 688.4 130.8

Table 7. Comparison of Solution Times for CLP Interior Point and Simplex Algorithms

At the time that the tests described above were performed, CLP 1.7.4 was the latest compiled
version of CLP available. After these tests were complete, follow-on testing was accomplished
using a newly compiled version of CLP 1.14, to see if both versions of CLP produced similar
results. This study showed that both versions of CLP are comparable and that CLP 1.14 can be
used in place of CLP 1.7.4. Since this test was not part of the original experimental design, the
results for CLP 1.7.4 are used in the subsequent solver comparisons. See Appendix E for a
complete description of the comparison between the two versions of this solver.

23

3.2.3 GLPK

Three experiments were conducted using GLPK4.47 for 64-bit Windows to test the Dual
Simplex, Primal Simplex and Interior Point algorithms. All three experiments were done using
the default GLPK settings. Unlike CLP and CPLEX, the GLPK command line interface did not
allow tolerance parameters to be adjusted (though these parameters can be changed through the
API). By default, GLPK tolerances for the Simplex algorithms are 1e-7 or less.

Collectively the Primal and Dual Simplex algorithms were able to solve 175 out of the 180
“easy” test problems. GLPK was unable to read all five problems in the Rail data set. This read
error was unexpected, since GLPK was able to read these problems during read-only test but
could not read them during the solver test. Both algorithms correctly identified all of the
infeasible problems. The Primal Simplex algorithm was able to solve all 175 problems; however
the Dual Simplex algorithm reached the time limit on nine problems. For those problems that
were solved, all relative errors between the GLPK and CPLEX objective values were on the
order of 1e-8 or less. For those problems that have a published optimal value, the maximum
relative error between the optimal GLPK objective and the published optimal objective was on
the order of 1e-3. Excluding the five problems from the Rail dataset, GLPK required 40,967
seconds to solve the test problems compared to 269 seconds for CPLEX to solve the same
problems.

The GLPK Interior Point algorithm was also tested. As with the Primal and Dual Simplex
algorithm experiments, the five problems in the Rail data set could not be read. Additionally, 37
problems were terminated due to convergence or stability issues and 7 problems reached the
solution time limit. For those problems that solved normally, all relative errors between GLPK
and CPLEX objective values were on the order of 1e-8 or less. For those problems that have a
published optimal value, the maximum relative error between GLPK and the published objective
was on the order of 1e-3. In general, the Interior Point algorithm required more time than the
Simplex algorithms: 193,736 versus 34,873 seconds. There were only eight cases where the
Interior Point algorithm was faster than either Simplex solution, and in these cases the difference
was never greater than 0.8 seconds. Table 8 provides a more detailed comparison of the solution
times. Given the increase in solution time and the number of problems that encountered solution
errors the GLPK Interior Point algorithm was excluded from further testing in favor of the
Simplex algorithms.

24

Problems Set Sum of Interior
Points Solution
Times (Seconds)

Sum of Fasted
GLPK Simplex
Time (Seconds)

Ratio

Infeasible 10.4 0.3 34.7

Kennington 2,542.1 98.9 25.7

Netlib 482.2 23.0 21.0

Large CCO 106,908.5 108.4 986.2

Small CCO 2.2 1.3 1.7

FOME 4,444.7 522.9 8.5

PDS 79,345.9 34,118.3 2.3

Grand Total 193,736.0 34,873.1 5.6

Table 8. Comparison of Solution Times for GLPK Interior Point and Simplex Algorithms

3.2.4 lp_solve

A total of four major experiments were conducted using lp_solve 5.5.2.0 for 64-bit Windows to
test the Primal and Dual Simplex algorithms. The first two tests were for the Primal and Dual
Simplex algorithms using the default solver settings. During these tests, lp_solve was unable to
solve the 24 CCO problems due to an unexplained read error. The second two tests used
modified versions of the CCO problems, which could be solved by lp_solve. After the initial
lp_solve test was complete, a method for converting the CCO problems from the Free MPS
format to the MPS format was found. It was necessary to convert these problems to the MPS
format since MINOS is only able to solve problems in this format (see the next section for a
more detailed description). Once these problems had been converted it was possible to repeat the
lp_solve test for the CCO problems.

While lp_solve did allow tolerance settings to be adjusted, it was not clear how these related to
the tolerance settings in the other solvers, therefore the defaults were used. One major difference
between these first and second set of tests was the use of the pre-solve capability within lp_solve.
Pre-solve is turned off by default and was not used during the first set of tests. However, pre-
solve was turned on during the CCO test, since half of the CCO problems contained a large
amount of unnecessary data. Ideally, the entire set of “easy” problems would have been rerun
with the pre-solve feature turned on, but time constraints precluded this experiment. However, a
side experiment using lp_solve was run on the “easy” test problems where pre-solve was turned
on and tolerance settings were relaxed. A comparison of the solution times between the first
experiment and this side test did not indicate a major difference in the solution times for the non-
CCO “easy” problems. When the pre-solver was used and the tolerances relaxed, the Dual
Simplex algorithm required 242,551 seconds to solve the “easy” problems (excluding the CCO
problems) compared to 227,830 seconds without. For the Primal Simplex algorithm, 260,501
seconds were required compared to 260,548 without. Since there was no indication that the
results for the non-CCO “easy” problems would be drastically improved by adding the pre-

25

solver, these results were combined with the CCO solution results which did use the pre-solve
option.

The Primal and Dual Simplex algorithms were able to solve all but 13 problems collectively due
to time limits. The Primal and Dual Simplex algorithms reached the time limit on 15 and 14
problems, respectively. Apart from the 14 problems that timed out, the Dual Simplex algorithm
did not encounter any other issues. In addition to the 15 problems that timed out, the Primal
Simplex algorithm encountered issues with 11 other problems. Seven problems failed to solve,
three CCO problems were reported as infeasible, and an infeasible problem, KLEIN2.mps, was
reported as unbounded. For those problems that were solved, all relative errors between the
lp_solve and CPLEX objective values were on the order of 1e-8 or less. For those problems that
have a published optimal value, the maximum relative error between lp_solve and the published
objective was on the order of 1e-3. Including the 13 problems that timed out, the total solution
time required for lp_solve to solve the “easy” problems set was 215,388 seconds compared to
422 seconds for CPLEX.

3.2.5 MINOS

Two experiments were conducted using MINOS 5.51 to test the Primal Simplex algorithm. In
addition to an MPS file, MINOS requires that a SPEC or specification file be created that
describes the size of the problem and the solver settings. Apart from the parameters specifying
the size of the problems, all solver settings were left at their default values. The default
feasibility tolerance settings for MINOS are 1e-6, which is the same as CPLEX.

In the first experiment, all of the test problems except the 24 CCO problems were solved. At the
time the initial experiment was conducted, the 24 CCO problems were in the Free MPS format
which cannot be read by MINOS. After the first experiment was completed, it was discovered
that CLP could be used to create an MPS file from a Free MPS file. This approach was used to
convert the 24 CCO problems to the MPS format. This was the same approach that was used to
fix the read errors with lp_solve for the CCO problems. The second experiment was to solve the
remaining 24 CCO problems with MINOS using the Primal Simplex algorithm. Apart from
occurring at two different times, there was no difference between these two experiments. It
should be noted that CPLEX, CLP and GLPK solved the Free MPS version of the CCO
problems, whereas lp_solve and MINOS solved the MPS version of the CCO files. However,
since the only difference between the two formats is the length of the variable names and both
formats represent numerical values with 12 characters, the underlying problem that was solved in
both cases was the same.

When the results from these two experiments are considered together, all 180 test problems
could be read. MINOS correctly identified all infeasible problems. 13 problems exceeded the
maximum solution time. The optimal objective values for 16 of the 24 CCO problems had
relative errors (compared to CPLEX) that ranged from 1-18%. These errors were large enough
that these cases were treated as solution errors. Apart from these problems, all relative errors
between the CPLEX objective values and the published objective values were on the order of 1e-
3 or less. The total solution time for the “easy” problem set was 258,720 seconds compared to

26

422 seconds for CPLEX. Again, note that this time includes 13 problems that timed out and 16
problems that did not reach the optimal solution.

The 16 CCO problems that failed were split evenly between the Small and Large problem sets. It
should be noted that these errors could be caused by problems with the structure of the CCO
problem. As mentioned previously, the Large CCO problems are excessively large and without a
pre-solve MINOS may have encountered precision issues. The Small CCO problems also appear
to contain some scaling issues that could lead to larger errors. The fact that all of the other
solvers were able to match the CPLEX objective with relative errors on the order of 1e-8 or less,
while MINOS could only match these errors on the order of 1e-3 or less, suggests that MINOS
does not match the precision of these solvers. The results for the non-CCO “easy” problems
indicate that MINOS could solve the CCO problems if these scaling issues were resolved.
However, all of the other solvers were able to solve them in their current form.

3.2.6 Comments and Comparison of First Round Testing Results

As stated previously, the two primary metrics of interest were the ability of the solver to
correctly solve the problem and the overall speed of the solver. Table 9 summarizes the results of
the initial tests related to the first metric. It provides a summary of the number of read errors,
solve errors, problems exceeding the maximum time limit (time outs), and an upper bound on the
maximum relative error compared to CPLEX and published optimal objective value. For the
solve errors and time outs, Table 9 provides the results based on combining both the results from
both Primal and Dual Simplex algorithms. In the cases where one algorithm experienced errors
or time out but the other algorithm did not, more details are provided in parenthesis. Recall that
MINOS only has the Primal Simplex algorithm.

Solver Read
Errors

Solve Errors Time Outs Max
Objective
Rel. Error
Cplex

Max
Objective
Rel. Error
Source

Comments

CPLEX 1 0 0 N/A 1e-3 FORPLAN.mps failed to read

CLP 0 0
(1 Primal)

0 1e-8 1e-3 OCS_MR_17.mps failed to
solve for the Primal Simplex
algorithm

GLPK 5 0 0 (9 Dual) 1e-8 1e-3 5 Rail problems failed to read

lp_solve 0 0
(11 Primal)

13 (14
Dual/15
Primal)

1e-8 1e-3

MINOS 0 16 13 1e-3 1e-3 16 CCO problems had errors on
order of 1e-2 to 1e-1. These
were treated as solve errors. Max
CPLEX error shown to left
excludes these errors

Table 9. Summary of Simplex Solution Results for Each Solver

27

Observe that CPLEX and CLP performed well. Since there is considerable variability in the MPS
format, the fact that CPLEX was unable to read one problem should not be given too much
importance. CPLEX was able to solve all of the problems that it could read accurately and within
the allotted time. With the exception of OCS_MR_17.mps, CLP produced similar results to
CPLEX. The results for GLPK show that it also performed well. While it failed to read five
problems, it was able to solve all problems with the Primal Simplex algorithm within the allotted
time. The only drawback with GLPK was that nine of problems timed out when using the Dual
Simplex algorithm. lp_solve and MINOS had the worst performance of the solvers considered.
While lp_solve was able to read all the problems and collectively had no solver errors, there
were 13 problems that could not be solved by the Primal or Dual Simplex algorithms within the
allotted time. Furthermore, while the Dual Simplex algorithm was able to solve these problems,
the Primal Simplex algorithm encountered a solver error on 11 problems. For those problems
that did solve using either algorithm, the relative errors were very low. For MINOS, the Primal
Simplex algorithm timed out on 13 problems and encountered a solve error on 16 of the CCO
problems.

A comparison of the solution times indicates substantial differences in the solvers. Table 10
shows the total solution time for each problem set as well the total time to solve all “easy”
problems. Each entry was computed as follows. First, all solution times were rounded to the
nearest tenth, since this was the lowest level of precision reported by any of the solvers
(specifically, GLPK). Then, the minimum solution time between the primal and dual solutions
was selected for each problem. Finally, the sum of the minimums was calculated for each
problem set.

Observe that there are considerable differences in the solution times for each solver. CPLEX was
able to solve all of the problems in about seven minutes. The solution time for CPLEX2.mps is
not included in the total infeasible solution time or in the grand total for CPLEX due to the read
error. However, since the other four solvers were able to solve this problem in 0.1 seconds or
less, there is little evidence that the CPLEX results are affected by omitting it from the
summation. CLP was the next best solver in terms of solution time, requiring about 11.5 minutes.
With the exception of the Infeasible problem set, it was the fastest solver for each problem set,
after CPLEX. GLPK was the next best solver, though it required about 11.5 hours. lp_solve and
MINOS were the slowest solvers, requiring 2.5 and 3.0 days, respectively.

In addition to looking at the total solution time for each solver, it is also useful to look at the
geometric mean. The geometric mean is useful for comparing the results from different solvers,
since there is a large variation in the solution time for each problem. In order to calculate the
geometric mean, only problems that had a non-zero solution time across all solvers were
considered. Of the 180 test problems, 63 were solved by all solvers and had non-zero solution
times. The results are given in Table 11.

28

Problem Set CPLEX

CLP GLPK lp_solve3 MINOS4

Small CCO 0.0 0.1 1.3 19.0 3.1

Infeasible 0.21 3.6 0.7 43.8 16.3

Netlib 9.1 29.5 52.5 14,975.1 3,198.7

Kennington 12.9 16.1 624.3 19,417.5 10,123.8

Large CCO 13.0 19.0 108.4 3,175.8 41,976.1

FOME 54.5 182.7 6,061.4 33,544.5 59,301.9

Rail 152.5 212.9 N/A2 29,012.2 28,899.9

PDS 179.6 224.5 34,118.3 115,200.0 115,200.0

Grand Total 421.8 688.4 40,966.9 215,387.9 258,719.8

1Infeasible problem set solution time for CPLEX does not include CPLEX2.mps in summation.
2None of the Rail problems for GLPK could be solved due to read error.
3lp_solve included 1 Netlib time out, 1 Kennington time out, 1 FOME time out, 2 Rail time outs, and 8 PDS time outs.
4MINOS included 3 FOME time outs, 2 Rail time outs, and 8 PDS time outs, 8 solve Small COO solve errors and 8 Large OCC
solve errors.

Table 10. Comparison of “Easy” Problem Solution Times for Each Solver

 CPLEX CLP GLPK lp_solve

MINOS

Geometric Mean 0.8 1.3 7.4 138.4 130.7

Ratio to CPLEX
Geometric Mean

N/A 1.6 9.4 177.0 167.1

Table 11. Comparison of Geometric Means (in Seconds) of “Easy” Problem Solution

Times for Each Solver

Finally, it is useful to look at the solution times for each problem based on the size of the
problem. The three figures below show the solution times for each problem and solver by the
number of constraints, variables, and non-zero elements in the problem. Given the range of
problem sizes and solution times, all charts are presented using logarithmic scales for both axes.
Additionally, since many problems had solution times that were rounded, and logarithmic charts
cannot represent zeros, these problems are notionally represented by points within the boxes on
each chart. For all points in the box, the size (x-axis value) is correct but the solution time (y-axis
value) was zero. For lp_solve and MINOS, the problems that reached the maximum solution
time of 14,400 seconds can be seen on each graph.

29

Figure 2. Plot of Solution Times versus the Number of Constraints for each Solver

Figure 3. Plot of Solution Times versus the Number of Variables

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1 10 100 1,000 10,000 100,000 1,000,000

So
lu
ti
o
n
 T
im

e
 (
Se
co
n
d
s)

Number of Constraints

Solution Time vs. Number of Constraints for Each Solver

CPLEX

CLP

GLPK

lp_solve

MINOS

Solution times less than 0.1
seconds

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

So
lu
ti
o
n
 T
im

e
 (
Se
co
n
d
s)

Number of Variables

Solution Time vs. Number of Variables for Each Solver

CPLEX

CLP

GLPK

lp_solve

MINOS

Solution times less than 0.1
seconds

30

Figure 4. Plot of Solution Times versus the Number of Non-zero Elements

Based on these results, it is clear that CLP performed the best in terms of its ability to accurately
and efficiently solve problems. Both the Primal and Dual Simplex algorithms were able to solve
all problems, and the geometric mean was only 1.6 times greater than the geometric mean for
CPLEX. After CLP, the next best solver was GLPK. While the Dual Simplex algorithm failed to
solve 9 problems within the allotted time, the Primal Simplex algorithm was able to solve all
problems that could be read. The major drawback with GLPK was the solution time compared to
CPLEX and CLP. The geometric mean for GLPK was 9.4 and 5.7 times greater than CPLEX and
CLP, respectively. Despite this, GLPK appears to be a very capable solver which could be
acceptable for use in applications where the increase in solve time is not a factor. The last two
solvers, lp_solve and MINOS, had several drawbacks. First, both solvers encountered solve
errors. In the case of lp_solve, only the Primal Simplex algorithm encountered these errors; the
Dual Simplex algorithm was able to solve those problems. Second, both solvers were unable to
solve all of the problems within the allotted time. Despite these errors, lp_solve and MINOS
were still able to solve a large number of problems. These results suggest that more issues are
likely to be encountered when using these solvers, especially when the problems being solved
are difficult.

3.2.7 Results of “Hard” Problem Tests

Based on the findings from the initial study, only CLP was tested using the “hard” problem set.
The testing approach used for these problems was essentially the same as the initial test. Both the
Primal and Dual Simplex algorithms were run for each problem and the best result was used.
CLP’s default solver parameters were used and each problem was allowed eight hours to solve.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

So
lu
ti
o
n
 T
im

e
 (
Se
co
n
d
s)

Number of Non‐zero Elements

Solution Time vs. Number of Non‐zero Elements for Each Solver

CPLEX

CLP

GLPK

lp_solve

MINOS

Solution times less than 0.1
seconds

31

CPLEX was also used to solve the problems as a point of comparison. The “hard” data set
contained 21 problems. Table 12 shows the solution times for each “hard” problem.

Problem Rows Columns Best CLP Solution

Time (Seconds)
CPLEX Solution
Time (Seconds)

neos2 132,568 1,560 1.7 7.0

NEOS1 131,581 1,892 2.7 9.2

SGPF 246,077 308,634 5.5 1.4

WAT 201,155 383,927 30.5 8.1

WATSON_2 352,013 671,861 48.7 33.3

bpmpd 479,119 36,786 58.5 12.3

cont4 160,792 40,398 562.2 261.7

Prob_2 528,185 1,259,121 616.0 224.2

nug08-3rd 19,728 20,448 844.4 657.1

cont1 160,792 40,398 1,147.0 265.9

ns168703 50,622 43,749 2,444.8 18,193.7

neos3 512,209 6,624 2,976.0 171.6

cont11 160,792 80,396 2,991.2 6,900.2

Linf_five20c 93,326 69,004 4,146.3 793.6

ns168892 32,768 16,587 28,800.0 28.1

nug20 15,240 72,600 28,800.0 451.7

w100cc00r004p001o004 10,203 321,696 28,800.0 10,795.9

cont1_l 1,918,399 641,598 28,800.0 28,800.0

nug30 52,260 379,350 28,800.0 28,800.0

L1_d10-40x3 80,476 420,366 28,800.0 28,800.0

cont11_l 1,468,599 981,396 28,800.0 28,800.0

Table 12. CLP and CPLEX Solution Times for “Hard” Problems. Italics indicate problems

that timed out. Bold indicates the fasted solver (CLP or CPLEX).

CPLEX and CLP were able to solve 17 and 14 of the 21 “hard” problems, respectively. The CLP
Dual Simplex algorithm timed out in seven cases and was stopped for numerical issues for one
problem. The CLP Primal Simplex algorithm timed out for 10 problems. In all cases where CLP
obtained an optimal answer, the relative error between the objective values for CLP and CPLEX
was on the order of 1e-3 or less. If all 21 problems are considered, CLP and CLPEX required
217,475.5 seconds and 154,015.0 seconds to solve the problem set, respectively. CLP had a
geometric mean of 1,004.2 seconds which was 2.5 times longer than the geometric mean of
402.2 seconds for CPLEX. If only the 14 problems solved by both solvers are considered, CLP
and CLPEX required 15,875.5 seconds and 27,539.3 seconds, respectively, solving the problem
set. In this case CLP was able to solve these problems faster than CPLEX, in terms of the total
solution time. However, CLP had a geometric mean of 187.5 seconds, which was 1.74 times
longer than the geometric mean of 112.6 seconds for CPLEX.

32

These results demonstrate some important points. First, since CPLEX was unable to solve 4 of
these problems in 8 hours, it suggests that this test set contains problems that are sufficiently
large to test the limits of both solvers. It also gives an indication of the size of the problems that
can be handled by CLP. These results show that CLP can solve problems with about half a
million constraints and just over 1 million variables. While CLP is generally slower, it was able
to solve several of these problems in considerably less time than CPLEX.

3.2.8 Comments on LP Solver Testing

Based on the results of the tests described above, CLP stood out as the open-source solver of
choice. It demonstrated the ability to accurately solve problems in a short amount of time. It also
demonstrated several other features which suggest it is a mature application. First, of all the
solvers used in this study, it was the only one that was able to read all of the input files without
any issues. Even CPLEX was unable to read five of the test problems initially and one of these
read errors could not be corrected. CLP also had comparable performance to CPLEX, with
respect to the time required to read each input file. CPLEX required 207.1 seconds to read 199 of
the test problems (excludes FORPLAN.mps and OCS_MR_17.mps) and CLP required 209.2
seconds to read the same set of problems.

33

3. CONCLUSIONS

The survey of open-source source LP solvers conducted for this study found that there are many
options available when the use of commercial tools is not an option. Furthermore, testing
demonstrated the capabilities of a subset of these solvers. While the primary goal of this study
was to look at open-source solvers, it also demonstrates the value of using a commercial tool like
CPLEX, as none of the open-source solvers were able to match its performance. However, this
study also showed that capable open-source solvers are available when a tool like CPLEX is not
an option. This study found that CLP was the best solver of those considered, in terms of
capability and performance. GLPK is also a very capable solver, though it does not match the
performance of CLP. lp_solve and MINOS had the slowest performance of the solvers
considered and also encountered difficulties with a subset of the test problems. However, both of
these tools are used in academia and can be purchased with commercial software, such as
AMPL, and this study shows that they are able to handle many problems. Given this, all of the
tools considered may work for problems of a certain size and difficulty. However, these results
indicate that CLP is the tool of choice given the range of problems it can solve and the speed
with which it can solve them.

34

35

4. REFERENCES

[1] International Business Machines Corporation, IBM ILOG CPLEX Optimization Studio
v12.4, Armonk, 2011.

[2] J. Forrest and J. Hall, COIN-OR Linear Programming (CLP) v1.7.4, Computational
Infrastructure for Operations Research (COIN-OR), 2008.

[3] J. Forrest and J. Hall, COIN-OR Linear Programming (CLP) v1.14.8, Computational
Infrastructure for Operations Research (COIN-OR), 2012.

[4] A. Makhorin, GLPK (GNU Linear Programming Kit) v4.47.1, Moscow: Department for
Applied Informatics, Moscow Aviation Institute, 2011.

[5] K. N. P. Eikland, lp_solve v5.5.2.0, 2010.

[6] MINOS v5.51, Palo Alto: Stanford Business Software Incorporated, 2002.

[7] R. Fourer, "Software Survey: Linear Programming," OR/MS Today, June 2011.

[8] "Wikipeida - Linear Programming," [Online]. Available:
http://en.wikipedia.org/wiki/Linear_programming#Solvers_and_scripting_.28programmin
g.29_languages. [Accessed 17 January 2013].

[9] "Solvers that Work with AMPL," [Online]. Available: http://www.ampl.com/solvers.html.
[Accessed 17 January 2013].

[10] "GAMS Solver," [Online]. Available: http://www.gams.com/solvers/index.htm. [Accessed
17 January 2013].

[11] MINOS 5.5 Order Form (Government), Palo Alto: Stanford Business Software
Incorporated.

[12] "AMPL," [Online]. Available: http://www.ampl.com/. [Accessed 19 April 2013].

[13] T. Magee, "Linear Programming: Alternatives to CPLEX," in 2006 RiverWare User
Group Meeting, Boulder, 2006.

[14] B. Meindl and M. Templ, "Analysis of commercial and free open source solvers for linear
optimization problems," Essnet Project on Common Tools and Harmonized
Methodologies for SDC in the ESS, 2012.

[15] H. Mittelmann, "Benchmark for Optimization Software," [Online]. Available:
http://plato.asu.edu/bench.html. [Accessed 17 January 2013].

[16] "COIN-OR," [Online]. Available: http://www.coin-or.org/index.html. [Accessed 17
January 2013].

[17] "CLP FAQ," [Online]. Available: https://projects.coin-or.org/Clp/wiki/FAQ. [Accessed 17
January 2013].

[18] J. Dongarra and E. Grosse, "Netlib," [Online]. Available: http://www.netlib.org/.
[Accessed 17 January 2013].

36

37

APPENDIX A: LP TOOL SCREENING

This appendix lists all of the tools that were considered during the initial LP software survey. For
each tool, a decision was made to include or reject it from the second round of screening. For
those tools that were rejected, the reason is provided in each of the tables below. Comments are
also provided for tools that were identified as candidate tools. Not all of the tools that were
accepted were LP solvers. Open-source tools such as modeling environments or integer program
solvers were accepted in the initial round of screening. They were not considered as part of this
study since they address a different need; however they are highlighted here since they are open-
source tools that may be useful in another application.

Table 13 lists the tools described in the INFORMS survey [7].

 Product Candidate
Tool

Reason Rejected Comments

AIMMS N $8,500 per license
AMPL N $4,000 per license, only provides

modeling environment

CBC Y IP solver that uses CLP (a LP
solver) while not useful for this
application this tool might be of
general interest.

CLP Y LP Solver
CoinMP Open-
Source Solver

Y Not an LP solver but potentially
useful as a modeling
environment

Coopr Y Not an LP solver but potentially
useful as a modeling
environment

C-WHIZ N $2,500 per license
DATAFORM N $2,500 per license; Data

management tool (not relevant)

FICO Xpress
Optimization
Suite

N Commercial software

Frontier Analyst
4

N 4,000GBP per license

GAMS N $3,200 per license
GENO N Not free; Genetic algorithm
GIPALS -
Linear
Programming
Environment

N $150-300; Immature

Gipals32 -
Linear

N $150-300; Immature

38

Programming
Library
GLPK (GNU
Linear
Programming
Kit)

Y LP Solver

Gurobi
Optimizer 4.5

N Not free

IBM ILOG
CPLEX
Optimization
Studio

N Not free

KNITRO N Not free
LINDO API N Not free
LINGO N Not free
LOQO N Not free
Mathematical
Modeling
System

N Not free

Microsoft
Solver
Foundation

Y Not an LP solver but potentially
useful as a modeling
environment

MOSEK N Not free
MPL Modeling
System

N Not free

OML
(Optimization
and Modeling
Library)

N Not free

OMP Plus N Not free
OptiMax
Component
Library

N Not free

OptimJ Y Not an LP solver but potentially
useful as a modeling
environment

Oracle Crystal
Ball Suite

N Not free; Monte Carlo algorithm

PICO N Questionable reliability
Premium Solver
Platform

N Excel Solver

Premium Solver
Pro

N Excel Solver

QMS N Not free

39

Risk Solver
Platform

N Excel Solver

SAS N Not free
SCIP N Not free for non-academic uses
Solver SDK
Platform

N Not free

Solver SDK Pro N Not free
SoPlex N Not free for non-academic uses
SOPT (Smart
Optimizer) 4.2

N Not free

Vanguard
Global
Optimizer

N Not free

What'sBest! N Not free
XA N Not free
YALMIP N MATLAB add-in

Table 13. First Round Screening Results for Tools Listed in INFORMS LP Software

Survey [7]

Table 14 lists the proprietary tools listed on the Wikipedia page for Linear Programming [8].
Proprietary tools were considered during the survey because some tools offer government pricing
and flexible licensing which may still meet the criteria. This source was used only to identify
candidate tools. All screening decisions were based on information gathered by reviewing the
official documentation for each tool.

 Product Candidate

Tool
Reason Rejected Comments

APMonitor N Not relevant
AIMMS N $8,500 per license
AMPL N $4,000 per license, only provides

modeling environment

Analytica N Not free
BUGSENG
Polyhedra
Library

Y LP Solver

CPLEX N Not free
EXCEL Solver
Function

N Excel tool

FinMath N Not free
FortMP N Not free
GAMS N Not free
GIPALS N Not free
Gurobi N Not free

40

IMSL
Numerical
Libraries

N Not free

Lingo N Not free
LPL N Information on tool could not be

found

LiPS
(freeware)

Y LP Solver

MATLAB N Not free
Mathematica N Not free
MOPS N Information on tool could not be

found

MOSEK N Not free
NAG
Numerical
Library

N Not free

NMath Stats N Not free

OptimJ Y Not an LP solver but
potentially useful as a
modeling environment

SAS/OR N Not free
SCIP N Not free for non-academic use
Microsoft
Solver
Foundation

Y Not an LP solver but
potentially useful as a
modeling environment

SoPlex N Not free
SuanShu N Not free
TOMLAB N MATLAB add-in
VisSim N Not relevant
Xpress N Not free

Table 14. First Round Screening Results of Propriety LP Tool from Wikipedia [8]

Table 15 lists the non-proprietary tools listed on the Wikipedia page on Linear Programming [8].
This source was used only to identify candidate tools. All screening decisions were based on
information gathered by reviewing the official documentation for each tool.

 Product Candidate

Tool
Reason Rejected Comments

lp_solve Y LP Solver

Cassowary
constraint
solver

N Immature

41

CVXOPT Y Quadratic program
solver

glpk Y LP solver
PPL Y LP solver and quadratic

program solver
Qoca N Immature
CBC Y IP solver that uses CLP

(a LP solver) while not
useful for this
application this tool
might be of general
interest.

CLP Y LP Solver
R-Project N Not relevant
CVX N MATLAB add-in
CVXMOD N Immature
SDPT3 N MATLAB add-in
SeDuMi N MATLAB add-in
OpenOpt Y Not an LP solver but

potentially useful as a
modeling environment

pulp-or N Not an LP solver but
potentially useful as a
modeling environment

Pyomo
(Coopr)

N Not an LP solver but
potentially useful as a
modeling environment

JOptimizer Y LP solver

Table 15. First Round Screening Results of Non-propriety LP Tool from Wikipedia [8]

Table 16 lists additional tools that were discovered by looking at a variety other linear
programming websites [9] , [10].

 Product Candidate Tool Reason Rejected Comments
BARON N Only available with

commercial software

BDMLP N Only available with
commercial software

LOGMIP N Immature
OSL N Discontinued IBM product
MOP N Information on tool could not

be found

LSGRG2 N Information on tool could not

42

be found
BPMPD N Immature
MINTO Y IP solver that uses CLP or

CPLEX (LP solvers) while
not useful for this
application this tool might be
of general interest.

OOQP Y Quadratic program solver
PCx Y LP solver
QPOPT Y Quadratic program solver
QSOPT Y LP solver
CMPL Y Not an LP solver but

potentially useful as a
modeling environment

MINOS Y LP solver
GMPL Y Not an LP solver but

potentially useful as a
modeling environment

LSSOL Y Quadratic program solver

Table 16. First Round Screening Results from a General Survey of LP Websites

43

APPENDIX B: OPEN-SOURCE LP MODELING ENVIRONMENTS

In addition to surveying open-source LP solvers, a parallel study was conducted to look for open-
source modeling environments. As mentioned in Section 2.1, it is difficult to create problem
statements using a solver’s API. Modeling environments allow problems to be written in a
concise and easy to read manner. Modeling environments also offer the added benefits that they
can connect to several solvers and are extensions to standard programming languages. This
provides the flexibility to switch solvers while maintaining a single implementation of the model.
It also means that all the features of programming languages, such as database connections, can
be used when creating models. While details of this study are outside the scope of this report,
Table 17 lists the top open-source modeling environments that were identified during that study.
Note that Microsoft Solver Foundation was included on this list even though it is not an open-
source product. Since many organizations have Microsoft Development licenses, this tool may
still be a good option that is considerably less expensive than a modeling environment like
AMPL [12].

Environment Language API Command
Line
Interface

Supported Solvers

CMPL C++ N Y CPLEX, CLP, GLPK, Gurobi, SCIP

Coopr Python Y Y CPLEX, CLP, GLPK, Gurobi, AMPL
Solver Library

OptimJ Java Y N CPLEX, lp_solve, GLPK, Gurobi,
Mosek

PuLP Python Y N CPLEX, CLP, GLPK, Gurobi

Microsoft
Solver
Foundation

.NET Y N CPLEX, CLP, FICO, Gurobi, LINDO,
lp_solve, Mosek, Ziena, Frontline

FLOPC++ C++ Y N CPLEX, CLP, Dylp, GLPK, OSL,
SOPLEX, VOL, XPRESS-MP

Table 17. List of Top Open-Source LP Modeling Environments. Solvers studied in this

model are highlighted in bold. Other open-source solvers are italicized.

For the purposes of this study, the most important information can be found in the last column.
Observe that all of these tools support some combination of CLP, GLPK, and lp_solve. The fact
that the top modeling environments have chosen to support these solvers suggests that these
solvers are used by a sufficiently large community and that they are reasonably well developed.
The solvers shown in italics are other open-source solvers (not CLP, GLPK, or lp_solve).
Observe that outside of CLP, GLPK and lp_solve, no other open source solver is supported by
more than one modeling environment. This suggests that no other open-source solvers have the
same level of acceptance with the modeling environment community.

44

45

APPENDIC C: LIST OF TEST PROBLEMS

Table 18 lists all of the test problems, as well as their size, the problem set they belong to, and
the published optimal objective value if known. All problems were minimization problems. All
problems except for the Small and Large CCO problems were in the MPS format. The CCO
problems were created in the Free MPS format. After CPLEX, CLP, and GLPK were tested,
MPS versions of these files were created and used to test lp_solve and MINOS.

MPS File Rows Columns Non-
Zeros

Problem
Set

Published
Optimal

Value

GOSH.mps 3,792 10,733 97,231 Infeasible N/A

BGINDY.mps 2,671 10,116 65,502 Infeasible N/A

GREENBEA_inf.mps 2,393 5,405 30,883 Infeasible N/A

CPLEX1.mps 3,005 3,221 8,944 Infeasible N/A

GRAN.mps 2,658 2,520 20,106 Infeasible N/A

PILOT4I.mps 410 1,000 5,141 Infeasible N/A

CERIA3D.mps 3,576 824 17,602 Infeasible N/A

CHEMCOM.mps 288 720 1,566 Infeasible N/A

BGETAM.mps 400 688 2,409 Infeasible N/A

REACTOR.mps 318 637 2,420 Infeasible N/A

MONDOU2.mps 312 604 1,208 Infeasible N/A

QUAL.mps 323 464 1,646 Infeasible N/A

REFINERY.mps 323 464 1,626 Infeasible N/A

VOL1.mps 323 464 1,646 Infeasible N/A

PANG.mps 361 460 2,652 Infeasible N/A

BGDBG1.mps 348 407 1,440 Infeasible N/A

BOX1.mps 231 261 651 Infeasible N/A

CPLEX2.mps 224 221 1,058 Infeasible N/A

EX72A.mps 197 215 467 Infeasible N/A

EX73A.mps 193 211 457 Infeasible N/A

FOREST.mps 66 95 210 Infeasible N/A

WOODINFE.mps 35 89 140 Infeasible N/A

KLEIN3.mps 994 88 12,107 Infeasible N/A

KLEIN2.mps 477 54 4,585 Infeasible N/A

KLEIN1.mps 54 54 696 Infeasible N/A

BGPRTR.mps 20 34 64 Infeasible N/A

ITEST6.mps 11 8 20 Infeasible N/A

GALENET.mps 8 8 16 Infeasible N/A

ITEST2.mps 9 4 17 Infeasible N/A

OSA-60.mps 10,280 232,966 1,397,793 Kennington 4.04E+06

KEN-18.mps 105,127 154,699 358,171 Kennington -5.22E+10

PDS-20.mps 33,874 105,728 230,200 Kennington 2.38E+10

46

OSA-30.mps 4,350 100,024 600,138 Kennington 2.14E+06

CRE-B.mps 9,648 72,447 256,095 Kennington 2.31E+07

CRE-D.mps 8,926 69,980 242,646 Kennington 2.45E+07

OSA-14.mps 2,337 52,460 314,760 Kennington 1.11E+06

PDS-10.mps 16,558 48,763 106,436 Kennington 2.67E+10

KEN-13.mps 28,632 42,659 97,246 Kennington -1.03E+10

PDS-06.mps 9,881 28,655 62,524 Kennington 2.78E+10

OSA-07.mps 1,118 23,949 143,694 Kennington 5.36E+05

KEN-11.mps 14,694 21,349 49,058 Kennington -6.97E+09

PDS-02.mps 2,953 7,535 16,390 Kennington 2.89E+10

CRE-A.mps 3,516 4,067 14,987 Kennington 2.36E+07

CRE-C.mps 3,068 3,678 13,244 Kennington 2.53E+07

KEN-07.mps 2,426 3,602 8,404 Kennington -6.80E+08

FIT2P.mps 3,000 13,525 50,284 Netlib 6.85E+04

DFL001.mps 6,071 12,230 35,632 Netlib 1.13E+07

FIT2D.mps 25 10,500 129,018 Netlib -6.85E+04

80BAU3B.mps 2,262 9,799 21,002 Netlib 9.87E+05

MAROS-R7.mps 3,136 9,408 144,848 Netlib 1.50E+06

WOODW.mps 1,098 8,405 37,474 Netlib 1.30E+00

D6CUBE.mps 415 6,184 37,704 Netlib 3.15E+02

SHIP12L.mps 1,151 5,427 16,170 Netlib 1.47E+06

GREENBEA.mps 2,392 5,405 30,877 Netlib -7.25E+07

GREENBEB.mps 2,392 5,405 30,877 Netlib -4.30E+06

D2Q06C.mps 2,171 5,167 32,417 Netlib 1.23E+05

PILOT87.mps 2,030 4,883 73,152 Netlib 3.02E+02

SHIP08L.mps 778 4,283 12,802 Netlib 1.91E+06

PILOT.mps 1,441 3,652 43,167 Netlib -5.57E+02

CZPROB.mps 929 3,523 10,669 Netlib 2.19E+06

BNL2.mps 2,324 3,489 13,999 Netlib 1.81E+03

NESM.mps 662 2,923 13,288 Netlib 1.41E+07

CYCLE.mps 1,903 2,857 20,720 Netlib -5.23E+00

PILOT.WE.mps 722 2,789 9,126 Netlib -2.72E+06

SHIP12S.mps 1,151 2,763 8,178 Netlib 1.49E+06

SCSD8.mps 397 2,750 8,584 Netlib 9.05E+02

WOOD1P.mps 244 2,594 70,215 Netlib 1.44E+00

SCTAP3.mps 1,480 2,480 8,874 Netlib 1.42E+03

SHIP08S.mps 778 2,387 7,114 Netlib 1.92E+06

PILOTNOV.mps 975 2,172 13,057 Netlib -4.50E+03

SHIP04L.mps 402 2,118 6,332 Netlib 1.79E+06

SIERRA.mps 1,227 2,036 7,302 Netlib 1.54E+07

STOCFOR2.mps 2,157 2,031 8,343 Netlib -3.90E+04

PILOT.JA.mps 940 1,988 14,698 Netlib -6.11E+03

47

SCTAP2.mps 1,090 1,880 6,714 Netlib 1.72E+03

DEGEN3.mps 1,503 1,818 24,646 Netlib -9.87E+02

SHELL.mps 536 1,775 3,556 Netlib 1.21E+09

GANGES.mps 1,309 1,681 6,912 Netlib -1.10E+05

FIT1P.mps 627 1,677 9,868 Netlib 9.15E+03

MODSZK1.mps 687 1,620 3,168 Netlib 3.21E+02

25FV47.mps 821 1,571 10,400 Netlib 5.50E+03

SHIP04S.mps 402 1,458 4,352 Netlib 1.80E+06

MAROS.mps 846 1,443 9,614 Netlib -5.81E+04

PEROLD.mps 625 1,376 6,018 Netlib -9.38E+03

SCFXM3.mps 990 1,371 7,777 Netlib 5.49E+04

SCSD6.mps 147 1,350 4,316 Netlib 5.05E+01

STANDGUB.mps 361 1,184 3,139 Netlib N/A

BNL1.mps 643 1,175 5,121 Netlib 1.98E+03

SCRS8.mps 490 1,169 3,182 Netlib 9.04E+02

GFRD-PNC.mps 616 1,092 2,377 Netlib 6.90E+06

STANDMPS.mps 467 1,075 3,679 Netlib 1.41E+03

STANDATA.mps 359 1,075 3,031 Netlib 1.26E+03

SEBA.mps 515 1,028 4,352 Netlib 1.57E+04

FIT1D.mps 24 1,026 13,404 Netlib -9.15E+03

PILOT4.mps 410 1,000 5,141 Netlib -2.58E+03

GROW22.mps 440 946 8,252 Netlib -1.61E+08

SCFXM2.mps 660 914 5,183 Netlib 3.67E+04

FFFFF800.mps 524 854 6,227 Netlib 5.56E+05

SCSD1.mps 77 760 2,388 Netlib 8.67E+00

ETAMACRO.mps 400 688 2,409 Netlib -7.56E+02

GROW15.mps 300 645 5,620 Netlib -1.07E+08

FINNIS.mps 497 614 2,310 Netlib 1.73E+05

TUFF.mps 333 587 4,520 Netlib 2.92E-01

DEGEN2.mps 444 534 3,978 Netlib -1.44E+03

SCAGR25.mps 471 500 1,554 Netlib -1.48E+07

SCTAP1.mps 300 480 1,692 Netlib 1.41E+03

BANDM.mps 305 472 2,494 Netlib -1.59E+02

STAIR.mps 356 467 3,856 Netlib -2.51E+02

SCFXM1.mps 330 457 2,589 Netlib 1.84E+04

FORPLAN.mps 161 421 4,563 Netlib -6.64E+02

BOEING1.mps 351 384 3,485 Netlib -3.35E+02

SCORPION.mps 388 358 1,426 Netlib 1.88E+03

CAPRI.mps 271 353 1,767 Netlib 2.69E+03

BORE3D.mps 233 315 1,429 Netlib 1.37E+03

LOTFI.mps 153 308 1,078 Netlib -2.53E+01

AGG3.mps 516 302 4,300 Netlib 1.03E+07

48

AGG2.mps 516 302 4,284 Netlib -2.02E+07

GROW7.mps 140 301 2,612 Netlib -4.78E+07

E226.mps 223 282 2,578 Netlib -1.88E+01

BEACONFD.mps 173 262 3,375 Netlib 3.36E+04

BRANDY.mps 220 249 2,148 Netlib 1.52E+03

SHARE1B.mps 117 225 1,151 Netlib -7.66E+04

SC205.mps 205 203 551 Netlib -5.22E+01

VTP.BASE.mps 198 203 908 Netlib 1.30E+05

RECIPE.mps 91 180 663 Netlib -2.67E+02

AGG.mps 488 163 2,410 Netlib -3.60E+07

BOEING2.mps 166 143 1,196 Netlib -3.15E+02

ISRAEL.mps 174 142 2,269 Netlib -8.97E+05

SCAGR7.mps 129 140 420 Netlib -2.33E+06

STOCFOR1.mps 117 111 447 Netlib -4.11E+04

SC105.mps 105 103 280 Netlib -5.22E+01

ADLITTLE.mps 56 97 383 Netlib 2.25E+05

BLEND.mps 74 83 491 Netlib -3.08E+01

SHARE2B.mps 96 79 694 Netlib -4.16E+02

SC50A.mps 50 48 130 Netlib -6.46E+01

SC50B.mps 50 48 118 Netlib -7.00E+01

KB2.mps 43 41 286 Netlib -1.75E+03

AFIRO.mps 27 32 83 Netlib -4.65E+02

L1_d10-40x3.mps 80,476 420,366 1,642,290 Plato N/A

Linf_five20c.mps 93,326 69,004 566,193 Plato N/A

FOME21.mps 67,748 211,456 460,400 FOME N/A

FOME20.mps 33,874 105,728 230,200 FOME N/A

FOME13.mps 48,568 97,840 285,056 FOME N/A

FOME12.mps 24,284 48,920 142,528 FOME N/A

FOME11.mps 12,142 24,460 71,264 FOME N/A

Prob_2.mps 528,185 1,259,121 3,341,696 Misc N/A

cont11_l.mps 1,468,599 981,396 4,403,001 Misc N/A

WATSON_2.mps 352,013 671,861 1,841,028 Misc N/A

cont1_l.mps 1,918,399 641,598 5,752,001 Misc N/A

WAT.mps 201,155 383,927 1,052,028 Misc N/A

w100cc00r004p001o004.mps 10,203 321,696 46,168,124 Misc N/A

SGPF.mps 246,077 308,634 828,070 Misc N/A

cont11.mps 160,792 80,396 399,990 Misc N/A

ns168703.mps 50,622 43,749 1,406,739 Misc N/A

cont1.mps 160,792 40,398 399,990 Misc N/A

cont4.mps 160,792 40,398 398,398 Misc N/A

bpmpd.mps 479,119 36,786 1,047,675 Misc N/A

ns168892.mps 32,768 16,587 1,712,128 Misc N/A

49

neos3.mps 512,209 6,624 1,542,816 Misc N/A

NEOS1.mps 131,581 1,892 468,009 Misc N/A

neos2.mps 132,568 1,560 552,519 Misc N/A

nug30.mps 52,260 379,350 1,567,800 Nug N/A

nug20.mps 15,240 72,600 304,800 Nug N/A

nug08-3rd.mps 19,728 20,448 139,008 Nug N/A

PDS-100.mps 156,243 505,360 1,086,785 PDS N/A

PDS-90.mps 142,823 466,671 1,005,359 PDS N/A

PDS-80.mps 129,181 426,278 919,524 PDS N/A

PDS-70.mps 114,944 382,311 825,771 PDS N/A

PDS-60.mps 99,431 329,643 712,779 PDS N/A

PDS-50.mps 83,060 270,095 585,114 PDS N/A

PDS-40.mps 66,844 212,859 462,128 PDS N/A

PDS-30.mps 49,944 154,998 337,144 PDS N/A

rail4284.mps 4,284 1,092,610 11,279,748 Rail N/A

rail2586.mps 2,586 920,683 8,008,776 Rail N/A

rail507.mps 507 63,009 409,349 Rail N/A

rail582.mps 582 55,515 401,708 Rail N/A

rail516.mps 516 47,311 314,896 Rail N/A

CCO_MR_31_CLP.mps 1,608 2,954 28,621 Small CCO N/A

CCO_MR_35_CLP.mps 1,695 3,244 29,256 Small CCO N/A

CCO_MR_33_CLP.mps 1,701 3,279 29,275 Small CCO N/A

CCO_MR_36_CLP.mps 1,715 3,272 29,312 Small CCO N/A

CCO_MR_37_CLP.mps 1,715 3,272 29,312 Small CCO N/A

CCO_MR_32_CLP.mps 2,272 4,226 52,435 Small CCO N/A

CCO_MR_14_CLP.mps 2,449 4,629 53,254 Small CCO N/A

CCO_MR_15_CLP.mps 2,483 4,886 53,625 Small CCO N/A

CCO_MR_17_CLP.mps 2,606 5,258 54,181 Small CCO N/A

CCO_MR_13_CLP.mps 2,674 4,824 70,563 Small CCO N/A

CCO_MR_27_CLP.mps 2,674 4,824 70,563 Small CCO N/A

CCO_MR_28_CLP.mps 2,889 5,414 71,599 Small CCO N/A

CCO_MR_31.mps 47,522 517,971 833,978 Large CCO N/A

CCO_MR_33.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_35.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_36.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_37.mps 90,290 1,031,187 1,465,994 Large CCO N/A

CCO_MR_14.mps 123,123 1,406,164 2,187,003 Large CCO N/A

CCO_MR_15.mps 123,123 1,406,164 2,238,843 Large CCO N/A

CCO_MR_32.mps 123,123 1,406,164 2,187,003 Large CCO N/A

CCO_MR_13.mps 143,643 1,640,524 2,570,403 Large CCO N/A

CCO_MR_27.mps 143,643 1,640,524 2,570,403 Large CCO N/A

CCO_MR_28.mps 143,643 1,640,524 2,570,403 Large CCO N/A

50

CCO_MR_17.mps 181,443 2,106,004 3,048,843 Large CCO N/A

Table 18. Listing of Test LP Problems

51

APPENDIX D: TEST PROBLEM READ ERRORS

Before algorithm testing was started, a set of tests were conducted to ensure that each problem
could be read by every solver. While the MPS format is the standard text input format for LP
solvers, there are some variations within this format. For example, comments and blank lines
within an MPS file cause issues with some solvers. Since the intention was to create a common
set of test problems, every effort was made to correct read errors provided that it did not change
the problem (i.e. while removing comments would be acceptable, changing data would not).
With the exception of MINOS, all solvers provided an import feature that allowed the model to
be read without being solved.

CPLEX

CPLEX encountered an error while reading the following problems: DFL001.mps,
SIERRA.mps, GFRD-PNC.mps, FORPLAN.mps, and BLEND.mps. With the exception of
FORPLAN.mps, all of these read errors were corrected by having lp_solve import these models
then create a new copy of the model through an export. The cause of the read error for
FORPLAN.mps could not be determined and this model was not solved by CPLEX.

CLP

CLP did not encounter any read errors.

GLPK

GLPK encountered read errors on the following problems during the import tests:
GREENBEA.mps, PANG.mps, DFL001.mps, SIERRA.mps, GFRD-PNC.mps, FORPLAN.mps,
and BLEND.mps. With the exception of PANG.mps and FORPLAN.mps, all of these errors
were corrected by using lp_solve to import then export a new MPS file. The cause of the read
errors for PANG.mps and FORPLAN.mps could not be determined, however, GLPK was able to
read and solve these problems during the algorithms testing.

During the algorithms testing, GLPK was unable to read any of the five Rail problems, despite
the fact that they could be read during the import tests. The cause of this read error is unknown.

lp_solve

lp_solve encountered read errors while attempting to read all of the CCO problems in the Free
MPS format, despite the fact that lp_solve can accept this format. This error was corrected by
using the import feature for CLP to import these files as Free MPS problems and export them as
MPS problems.

MINOS

Unlike the other solvers, MINOS does not offer an import feature. Therefore the read capability
of MINOS was tested with the algorithm testing. Since MINOS was not tested using the “hard”

52

problems, only the 180 “easy” problems were read. Since MINOS only accepts MPS files, it was
known in advance that the CCO problems in the Free MPS format could not be solved. However,
MINOS was able to read the CCO problems after they were converted to the MPS format and
read all other “easy” problems with no issues.

53

APPENDIX E: COMPARISON OF CLP 1.7.4 AND 1.14

The purpose of this appendix is to describe the results of a test to compare CLP version 1.7.4 to
CLP version 1.14 [2], [3]. CLP 1.7.4 was used during the original LP solver testing, since it was
the last version for which the COIN-OR Binaries project offered a compiled 64-bit Windows
application. Since this version of CLP was several years old, there was a desire to use a more
current version. The most current version of CLP is 1.15; however CLP version 1.14 was
selected for this comparison. At the time that this test was started, CLP version 1.15 was only a
few days old. Given this, the decision was made to use the previous release.

The approach used for this test was to rerun the “easy” and “hard” test problems for the Primal
and Dual Simplex algorithms using the new version of CLP and compare the results to the
previous version of CLP. The primary concerns of this test were to ensure that the new version of
the algorithm reached the correct optimal value for each problem and that the solution times
were about the same. As in the original LP solver tests, all timing results were rounded to the
nearest tenth prior to performing any calculations, unless otherwise stated. Geometric means are
reported using the lowest level of precision possible since zeros cannot be included in the
calculation: three digits when comparing CLP results and two digits when comparing CPLEX
results.

Based on the results of this test both versions of the solver were determined to be comparable in
their overall performance. The new version of CLP was slower than the original version of CLP
that was tested. However, there have been many updates and bug fixes since CLP 1.7.4, and the
new version of CLP was able to solve some problems that could not be solved by CLP and
CPLEX during the original testing. Given these results, it was determined that CLP 1.14 can be
used in place of CLP 1.7.

Results for “Easy” Test Problems

This section describes the comparison of the results for the “easy” test problems. The results
were considered in three different ways. The first two comparisons are between the primal and
dual results for CLP 1.14 to the respective results for CLP 1.7. The third comparison is between
the best results between the both algorithms for both versions of CLP. This last comparison is the
same approach that was used in the original testing. The original testing did not compare primal
results to primal results, and dual results to dual results, however this is done here since the
intention of this test is to ensure that both the Primal and Dual Simplex algorithms perform the
same or better.

The first test was to compare the Dual Simplex algorithm results for both versions of CLP. The
new version of CLP was able to solve all 180 problems, just as CLP 1.7.4 was. Initially,
CPLEX2.mps was incorrectly identified as feasible. However, once the tolerance settings were
adjusted, CLP version 1.14 identified it as infeasible. This was interesting because, in the
original test, CLP 1.7.4 correctly solved this problem using the Dual Simplex algorithm but
required tolerance setting adjustment to solve it correctly, using the Primal Simplex algorithm.
For the new version of CLP, the Primal Simplex algorithm was able to solve this problem
correctly, but the Dual Simplex algorithm required adjustments to the tolerances settings. As

54

with the original test, this was not treated as an error with the solver since the issue was
correctable and appears to be specific to this problem. The new version of CLP correctly
identified all of the infeasible problems. For all but 2 of the 151 problems with feasible solutions,
the optimal objective values were the same. The remaining two problem’s objective values were
essentially the same with relative errors on the order of 1e-8 or less. These results show that the
Dual Simplex algorithm in both versions of CLP produces the same results.

The new version of CLP generally takes longer to solve the “easy” problems using the Dual
Simplex algorithm. Table 19 gives the total time to solve the each of the “easy” problem sets
using the Dual Simplex algorithm in CLP 1.7.4 and CLP 1.14. While the total solution time is
shorter using the new version of CLP, the geometric mean (using the three-digit timing
precision) shows a 31.7% increase in the solution times using CLP 1.14. In terms of the total
solution time, there were substantial increases for the Infeasible, Plato – PDS, and Large CCO
problems sets. Essentially all of the increase in the Large CCO problem set solution time can be
attributed to an increase in the pre-solve time. The exact cause of this is unknown. It is also
worth noticing that the total solution time for the Small CCO problem decreased slightly. Since
the intention is to construct the CCO problem without the unnecessary constraints in the Large
CCO problems, there should be minimal increases in the solution time of the CCO problem due
to the pre-solver.

Problem Set Sum of CLP
1.7.4 Solve
Times
(Seconds)

Sum of CLP 1.14
Solve Times
(Seconds)

Infeasible 3.9 18.3
Kennington 17.0 20.0
NetLib 31.9 28.6
Plato - FOME 182.7 179.5
Plato - PDS 224.5 455.2
Plato - Rail 4,821.8 4,171.0
Large CCO 19.0 378.0
Small CCO 0.1 0.0
Grand Total 5,300.9 5,250.6

Table 19. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set

Using the Dual Simplex Algorithms for CLP 1.7.4 and CLP 1.14

The second test was to compare the Primal Simplex algorithm results for both versions of CLP.
The new version of CLP was able to solve all 180 problems. This is an improvement over the
Primal Simplex algorithm for CLP 1.7.4, which was unable to solve OCS_MR_17.mps and
initially identified CPLEX2.mps as feasible. Again, this was interesting because, in the original
test, CLP 1.7.4 correctly solved this problem using the Dual Simplex algorithm but required
tolerance setting adjustment to solve it correctly using the Primal Simplex algorithm. For the
new version of CLP, the Primal Simplex algorithm was able to solve this problem correctly but
the Dual Simplex algorithm required adjustments to the tolerances settings. The new version of

55

CLP correctly identified all of the infeasible problems. For all but 4 of the 151 problems with
feasible solutions, the optimal objective values were the same. The remaining four problem’s
objective values were essentially the same, with relative errors on the order of 1e-8 or less. These
results show that the Primal Simplex algorithm was able to match all of the results for the
problems solved during the initial test and solve one problem that could not solved by CLP 1.7.

CLP 1.14 appears to solve the “easy” problems slightly faster using the Primal Simplex
algorithm than CLP 1.7. Table 20 gives the total time to solve the each of the “easy” problem
sets using the Primal Simplex algorithm in CLP 1.7.4 and CLP 1.14. Using the three-digit timing
precision, the total solution time is about 47.1% shorter using the new version of CLP. The
geometric mean is about 2.8% shorter using the new version of CLP. In terms of the total
solution time, all of the problem sets, except for Large CCO, were solved quicker using CLP
1.14. As with the Dual Simplex algorithm for CLP 1.14, the increase in the total solution time for
the Large CCO problems can be attributed to an increase in the pre-solve time. It is also worth
noticing that the total solution time for the Small CCO problem decreased slightly. Since the
intention is to construct the CCO problem without the unnecessary constraints in the Large CCO
problems, there should be minimal increases in the solution time of the CCO problem due to the
pre-solver.

Problem
Set

Sum of CLP
1.7.4 Solve
Times
(Seconds)

Sum of CLP
1.14 Solve
Times
(Seconds)

Infeasible 8.1 4.5
Kennington 108.2 56.6
NetLib 61.6 41.1
Plato -
FOME 522.4 368.5
Plato - PDS 7,351.6 3,400.8
Plato - Rail 212.9 132.7
Large CCO 16.7 377.8
Small CCO 1.0 0.0
Grand
Total 8,282.5 4,382.0

Table 20. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set

Using the Primal Simplex Algorithms for CLP 1.7.4 and CLP 1.14

For the final test, the results from the Primal and Dual Simplex algorithms were combined to
determine the best possible solution times for each problem. These results were compared for
both versions of CLP. This is the same approach that was used during the original tests. For this
test only the solution times were compared since it was previously established that both
algorithms were able to accurately solve all of the “easy” test problems. Table 21 shows the total
solution times for CPLEX, CLP 1.7.4 and CLP 1.14, for each problem set. The total solution
time for CLP 1.14 was about 20 minutes, compared to 11.5 minutes for CLP 1.7.4, and 7 minutes
for CPLEX. Using two digits of timing precision, the geometric mean of solution times using

56

CLP 1.14 was 2.07 times greater than CPLEX and 1.41 times greater than CLP 1.7. Observe that
CLP 1.14 was able to solve the Plato – Rail problem set faster than CPLEX or CLP 1.7.4, but
otherwise matched the solution times of CLP 1.7.4 or did worse.

CLP 1.14 also includes a new feature which attempts to select the best algorithm (between the
primal and dual) automatically for the user. A side test was conducted to test this feature. When
the “easy” test problems were run with this feature turned on, CLP 1.14 was able to solve all of
the problems in about 20 minutes. This matches the total solution time that was required when
the best results from the primal and dual were combined. This simple test suggests that this
feature does a good job of selecting the fastest algorithm.

Problem Set Sum of
CPLEX
Solve Times
(Seconds)

Sum of Best CLP
1.7.4 Solve Times
(Seconds)

Sum of Best CLP
1.14 Solve Times
(Seconds)

Infeasible 0.2 3.6 3.5
Kennington 12.9 16.1 19.9
Large CCO 13.0 19.0 377.6
NetLib 9.1 29.5 27.4
Plato -
FOME 54.5 182.7 179.5
Plato - PDS 179.6 224.5 455.2
Plato - Rail 152.5 212.9 132.7
Small CCO 0.0 0.1 0.0
Grand Total 421.8 688.4 1,195.8

Table 21. Comparison of Total Solution Times (Seconds) for Each “Easy” Problem Set

Using CPLEX, CLP 1.7.4, and CLP 1.14

Results for “Hard” Test Problems

CLP 1.14 was also tested using the “hard” test problems. The testing approach used for these
problems was the same as the approached used for the “easy” test problems. First, the dual
results for both versions of CLP were compared, and then the primal results for both versions of
CLKP were compared. Finally, the primal and dual results were combined and best results from
each algorithm were compared.

The Dual Simplex algorithm in CLP 1.14 was used to solve the 21 “hard” test problems. Using
this algorithm, 13 of the problems could be solved within the allotted time. Seven problems
timed out and one problem was stopped for numerical reasons. This exactly matches the results
from the original test using CLP 1.7. For those problems that could be solved, the total solution
time increased from 4.7 hours to 5.6 hours, and the geometric mean (using the three-digit timing
precision) increased by 20%.

57

The Primal Simplex algorithm in CLP 1.14 was able to solve 13 of the problems. This is an
improvement over the Primal Simplex algorithm in CLP 1.7.4, which was only able to solve 11
of the problems. For CLP 1.7.4, the ten problems that failed to solve all reached the maximum
time limit. CLP 1.14 was able to solve two of these problems and timed out on the same
remaining eight problems. Interestingly, one of the two problems that CLP 1.14 was able to
solve, cont11_I.mps, was identified as infeasible and solved in 311 seconds. Neither, CLP 1.7.4
or CPLEX was able to solve this problem within the 8 hour time limit. If the eight problems that
could not be solved are ignored, the total solution times for CLP 1.14 and CLP 1.7.4 are 7.3
hours and 19.9 hours, respectively. In this case the geometric mean of solution times for CLP
1.14 is 58% shorter than CLP 1.7. If only the 11 problems that both solvers could solve are
considered, the total solution times for CLP 1.14 and CLP 1.7.4 are 6.4 hours and 3.9 hours,
respectively. Despite the fact that CLP 1.14 takes longer to solve, in terms of the total solution
time, its geometric mean is actually 33% shorter then CLP 1.7.

For the final test, the results from the Primal and Dual Simplex algorithms were combined to
determine the best possible solution times for each problem. These results were compared for
both versions of CLP. This is the same approach that was used during the original tests. Table 22
summarizes the results for CPLEX, CLP 1.7.4 and CLP 1.14. All geometric means were
computed using two digits of timing precision. Since each of these solvers was able to solve a
different set of problems, the results are presented in three different ways. First, the results for all
21 “hard” test problems are shown, then the results for the 18 problems that could be solved by
at least one of the solvers are shown, and finally the results for the 14 problems that could be
solved by at least one of the solvers are shown. Observe that, in terms of the geometric mean,
CLPEX is always the fastest solver. For the first two groups of statistics, CLP1.14 is faster than
CLP 1.7. When only the 14 problems that could be solved by all solvers are considered, the
geometric mean for CLP 1.14 is about 7% larger than CLP 1.7’s geometric mean.

Summary of Changes since CLP 1.7.4

In addition to testing the algorithms, a review of the subversion commit messages since the CLP
version 1.7.4 was accomplished to get a sense of the types of modifications that have been made.
A complete listing of the revisions to the CLP source code is available at: https://projects.coin-
or.org/Clp/log/. The commit revisions of interest range from 1195 to 1889. The first change to
CLP version 1.7.4 occurred on April 16, 2008. Change 1889 occurred on November 21, 2012.
Based on the commit messages, it appears that a variety of changes have been made. There have
been updates to correct memory leaks, fix mistakes with the algorithms, and improve the
performance of the algorithms. Based on the commit messages, most of these changes appear to
be fixes to minor bugs. However, there were two commit messages that are worth pointing out.
The message for revision 1498 stated: “fix serious - if rare - bug which says optimal when not”.
Since the optimal objective values were reached for the entire test problem set during the original
testing, it does not appear that CLP 1.7.4 encountered this bug. The message for revision 1575
stated: “Added OSI into externals”. This is important because the COIN-OR Open Solver
Interface (OSI) was not available until this point in time. Without this, an interface tool such as
FLOPC++ cannot be used to directly interface with CLP (using these tools to write an MPS input
file for CLP is still an option).

58

 CPLEX CLP 1.7.4 CLP 1.14
All 21 "Hard" Problems
Total Time (Hours) 42.8 60.4 51.8
Geometric Mean 402.1 1,004.4 846.3
 Ratio to CPLEX 2.50 2.10
 CLP 1.14 Ratio to CLP 1.7 0.84
18 Problems Solved by One Solver
Total Time (Hours) 18.8 36.4 27.8
Geometric Mean 197.3 574.1 470.1
 Ratio to CPLEX 2.91 2.38
 CLP 1.14 Ratio to CLP 1.7 0.82
14 Problems Solved by All Solvers
Total Time (Hours) 7.6 4.4 3.7
Geometric Mean 112.5 187.6 200.5
 Ratio to CPLEX 1.67 1.78
 CLP 1.14 Ratio to CLP 1.7 1.07

Table 22. Various Statistics Comparing CPLEX, CLP 1.7.4, and CLP 1.14 for the “Hard”

Test Problems

Conclusion

 Based on this analysis, it was determined that CLP 1.14 is suitable for use in place of CLP 1.7.
The testing shows that both the Primal and Dual Simplex algorithms are able to achieve the
correct optimal objective values. The results do indicate that, in some cases, using CLP 1.14
instead of CLP 1.7.4 increases the solution time by 30-40%. However, the new version of CLP
was able to solve three problems that CLP 1.7.4 could not solve and one problem that CPLEX
could not solve. Additionally, the commit messages indicate that many bugs have been fixed
since the release of CLP 1.7. Despite the fact that CLP 1.14 generally requires more time to solve
the test problems, the solution time for the Small CCO problems did not increase. Furthermore,
CLP 1.14 is still a very efficient solver when compared to CPLEX, requiring about 2.1 times as
long to solve the “easy” test problems, compared to 1.6 times as long for CLP 1.7. Given that
CLP 1.14 was able to solve more of the test problems, and that many bugs have been corrected
since CLP 1.7.4 was released, the improvements in capability offset this increase in processing
time.

59

Distribution

1 MS0532 R.J. Detry 5348 (electronic copy)
1 MS1188 J.L. Gearhart 6131 (electronic copy)
1 MS1188 K.L. Adair 6131 (electronic copy)
1 MS1188 J.D. Durfee 6131 (electronic copy)
1 MS1188 K.A. Jones 6131 (electronic copy)
1 MS1188 N. Martin 6131 (electronic copy)
1 MS0899 Technical Library 9536 (electronic copy)

60

61

62

