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Abstract 
 

In response to the challenges related to the increasing size and complexity of systems, 
organizations have recognized the need to integrate human considerations in the 
beginning stages of systems development. Human Systems Integration (HSI) seeks to 
accomplish this objective by incorporating human factors within systems engineering 
(SE) processes and methodologies, which is the focus of this paper. A representative 
set of HSI methods from multiple sources are organized, analyzed, and mapped to the 
systems engineering Vee-model. These methods are then consolidated and evaluated 
against the SE process and Models-Based Systems Engineering (MBSE) 
methodology to determine where and how they could integrate within systems 
development activities in the form of specific enhancements. Overall conclusions 
based on these evaluations are presented and future research areas are proposed.  
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There is no such thing as an ‘unmanned system’. 
 

-Brigadier General Don D. Flickinger, 
Director of Human Factors, USAF 
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1. INTRODUCTION  
 
In an era where the complexity and size of systems has grown exponentially, rigorous 
competition has demanded the need for continuous innovation, and volatile economic climates 
push organizations to produce more with less, the integration of humans within systems poses an 
ever-growing challenge. The disconnect between people and technology is well documented1 
and has led to several major disasters such as Three Mile Island, Chernobyl, and more recently, 
an incident involving the Patriot Missile radar system in which two friendly military aircraft 
were shot down.2 These examples have shown that the integration of human considerations must 
begin in the early stages of the systems development life cycle and has led to multiple initiatives 
by organizations3 to accomplish this objective through what is known as Human Systems 
Integration (HSI). 
 
Currently, there exist multiple definitions of HSI. According to Booher (2003) HSI is the process 
of integrating people, technology, and an organization at a systems level, with full consideration 
given to the human requirements of the user. More specifically, the human, together with 
hardware and software, is considered an element of the system and identifies the necessary 
interactions between these elements to realize successful systems. “Human” according to the 
International Council on Systems Engineering (INCOSE), includes all personnel who interact 
with the system in any capacity (e.g., system owners, users, operators, maintainers, etc.) 
(INCOSE SE Handbook, v 3.2.2). 
 
Although at the time not formally recognized as “HSI”, the human factors community predates 
most of the more recent initiatives including the failure incidents referenced above. In his 
keynote presentation at the 1957 National Symposium on Human Factors in Systems 
Engineering, Brigadier General Don D. Flickinger, Director of Human Factors, USAF, stated, 
“[T]he impact of man’s characteristics must be taken into account in the design of the equipment 
if the system is to possess maximum probability of achieving the goal for which it was designed 
in the first place” (Flickinger, 1957). While the objective of this paper is not to provide an 
argument for what HSI is or why it is needed4, it should be recognized that since at least the time 
Br. Gen. Flickinger gave this keynote, the HSI domain is especially interested the integration of 
human factors in the design, rather than a post-solution application of human factors to the 
system. 
 
In order to successfully integrate human factors within a project development life cycle, it is 
recommended that HSI take place within the context of systems engineering (SE). Given its 
formal, structured approach, HSI practitioners can work within the processes and methodologies 
that SE provides to ensure successful integration of the human element into systems (Muralidhar, 

                                                 
1 (Madni, 2009). 
2 (Defense Science Board, 2005). 
3 Some examples include Army MANPRINT, Navy Human Performance Center, DoD HSI 
Initiative, U.S. Coast Guard HSI Program, NASA Human Factors Research and Technology 
Division, Human Factors Integration Defence Technology Centre. 
4 Many sources exist that discuss these topics, a few of which include: (Booher, 2003), 
(Chapanis, 1996), (Sanders and McCormick, 1993), (Stammers, et. al, 1990). 
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2008). More specifically, the SE process, as defined by one or more standards, is the means by 
which this is accomplished. As Burns, et al., (2005) states, a key tenet of the systems engineering 
process is that system-level optimization requires trade-off analyses and integration to be 
conducted within and across all system elements. Similarly, the potential payoff of HSI cannot 
be realized by providing stovepipe support, but must live within the systems engineering process. 
 
To date, there exist a large number of HSI methods1 that span a wide variety of competencies2. 
While many of these methods would be beneficial for defining and analyzing human factors 
during systems development, the organization of these methods into a coherent framework is 
lacking. Madni (2009) asserts that the HSI domain is fragmented and the challenge for HSI 
practitioners is to mature and consolidate HSI practices for “prime-time” use. In order for HSI to 
be effective within the context of systems engineering, the related methods must be assimilated 
to the SE process. The first objective of this paper is to provide a framework to reach this goal.  
 
In addition to integrating HSI methods within the SE process, attention must also be given to 
Models-Based Systems Engineering (MBSE). Like other engineering disciplines, such as 
mechanical and electrical engineering, systems engineering is transitioning from a document-
based approach to a models-based approach (Friedenthal, et al., 2012). The application of the 
MBSE approach results in improved design quality, efficient reuse of development artifacts, and 
effective communications within the development team, leading to increased productivity, 
quality, and reduced risk. Within the HSI context, INCOSE provides examples of such benefits, 
“validated HSI modeling and simulation also can pay large dividends early in the development 
process…” and, “decisions about whether or not to automate certain functions can be evaluated 
with modeling and simulation to identify and reduce risk, or at least scope the types and levels of 
risk involved” (INCOSE SE Handbook, v 3.2.2). Therefore, the second objective of this paper is 
to identify how HSI methods could enhance the MBSE methodology to enable a more thorough 
and effectual consideration of human factors. 
 
The structure of this paper is as follows: research methods are described with a summarization of 
the literature reviewed; the steps of the SE process as illustrated by the Vee-model are briefly 
described; the analysis used to map the identified HSI methods to the SE process (Vee-model) is 
illustrated; a discussion section is presented in which the SE process and the MBSE method are 
summarized, unique HSI methods are described and evaluated against the SE process and 
MBSE, and recommended integration ‘enhancements’ are proposed;  and finally, concluding 
remarks are provided along with references and appendices. 
 
 
 
 
 
  

                                                 
1 The U.S. Department of Defense alone identifies forty-five methods in its MIL-HDBK-
46855A, Human Engineering Program Process and Procedures (DoD, 1999). 
2 The U.S. Air Force identifies twenty-eight HSI competency areas in its Air Force Human 
Systems Integration Handbook (USAF 2009, Table 1). 
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2. METHODS 
 
2.1 Data Collection 
 
The first step in researching this topic began by conducting a literature review, which initially 
required identifying a few topical papers in the published domain. Based on the references found 
in these papers, citation searches were conducted to identify additional relevant sources. These 
citation “branches” were followed to a level of depth that was thorough, yet manageable. 
Overall, fifty-seven resources were cited. 
 
2.2 Data Analysis 
 
Sources were then reviewed for content, specifically to identify HSI methods. The list of sources 
was then culled down to six sources that, although not exhaustive, were representative of the 
published HSI methods. In total, ninety-seven methods were identified. As a means of 
organization, these methods were then mapped to the SE Vee-model. Given this large volume of 
methods, the scope of the analysis was limited to include only the HSI methods that mapped to 
the first half of the Vee-model, Stakeholder Requirements Definition through Architectural 
Design. The HSI methods mapped to each respective step were then analyzed across sources. 
Methods that showed strong similarities with regards to activities, inputs, outputs, and tools, 
were grouped into unique, cross-cutting methods and evaluated as one method. 
 
Comparative analyses of the HSI methods against the SE process and MBSE methodology were 
conducted. The results of these analyses were then evaluated to determine whether general 
conclusions or suggested enhancements could be drawn. Where appropriate, a summary of 
enhancements is provided in each section. 
 
2.3 Standards and Tools 
 
The Systems Engineering process used in the HSI methods evaluation was based on the technical 
processes found in ISO/IEC 15288 and INCOSE Systems Engineering Handbook, v.3.2.2. It 
should be noted that due to a limitation of resources, two different versions ISO/IEC 15288 were 
used based on their availability: 2002 and 2008. Specifically, ISO/IEC 15288:2002 was fully 
available and ISO/IEC 15288:2008 was partially available through a secondary source, the 
INCOSE SE Handbook. 
 
Text and figures make reference to diagrams from the Object Management Group (OMG) 
Systems Modeling Language (SysML) Version 1.3. 
 
Resource citation information was collected and organized using the Zotero (www.zotero.org) 
research tool. 

http://www.zotero.org/


14 

  



15 

3. LITERATURE REVIEW 
 
As mentioned in §2 Methods, beginning with a few HSI sources, citation searches were 
conducted to identify a representative set of HSI methods that could be evaluated against the SE 
process and MBSE methodology.  
 
A common theme in the literature reveals the need for a stronger representation of human factors 
within systems. More specifically, human capabilities and their implications on the design, 
deployment, operation, and maintenance of systems have not been explicitly addressed in 
systems engineering and acquisition lifecycles (Madni, 2009). In response to this, many 
organizations began human factors initiatives, the most notable among them being the DoD’s 
recent push to incorporate the human factors discipline into systems engineering. DoD 5000.2-R, 
Mandatory Procedures for Major Defense Acquisition Programs, states, “Human factors 
engineering requirements shall be established to develop effective human-machine 
interfaces…[and] the capabilities and limitations of the operator…shall be identified prior to 
program initiation…and refined during the development process” (DoD, 1999). Madni (2009) 
asserts that this led to the creation of the new multidisciplinary field of Human Systems 
Integration, which is intended to remedy the disconnect between human factors and systems 
development. 
 
Since that time, the definition and scope of HSI has remained unclear. As McGovern, et al. 
(2008) explain, this is largely due to the fact that it is an amalgamation of pre-existing diverse 
technical disciplines (domains) with established vocabularies. Despite this fact, the discipline of 
HSI has matured, and, as Wilson (1990) states, “after many years of discussion of its 
nomenclature, direction and so on…the methods we use are more the focus of attention”. It is 
quite clear that the HSI domain covers a wide range of methods, techniques, and tools that apply 
to the research, design, and evaluation of human-centered systems. For example, Booher (2003) 
identifies fifty subcategories, the U.S. Department of Defense (DoD) (1999) identifies forty-five, 
and the U.S. Air Force (USAF) (2009) identifies twenty-eight. Overall, nearly a hundred HSI 
methods were initially identified for evaluation for this paper. 
 
However, while there is no lack of methods and associated tools available for capturing the 
human element in systems development, there is still the need for organization among these 
methods and an accurate mapping to the SE process. The literature shows and Madni (2009) 
asserts that the HSI domain is fragmented and needs to first be internally integrated in order to 
assess the impact of human performance on system cost and schedule. Most sources organize 
methods around human factors categories and do not directly relate them to the SE process. For 
example, both Wilson and Corlett (1990) and Booher (2003) group methods based on areas of 
human factors, such as task analysis, accident and incident analyses, assessment and design of 
the physical workplace, etc. Some sources, such as Stanton, et. al (2012), provide a general 
indication of where the methods could be applied in the development process (i.e., during the 
design process and not after system production). There are a few sources that specifically point 
out where certain HSI methods should be applied. For example, Sanders and McCormick (1993) 
define a serial set of development “stages” and identify applicable HSI methods for each “stage.” 
McNeely, et al. (2006) take this one step further and show where certain HSI methods should 
integrate into a standardized SE process (e.g., IEEE 1220). Still, even with a more formal 
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organization, these latter sources lack the required analysis to determine how HSI methods can 
be integrated within systems engineering, and by extension models-based systems engineering 
(MBSE), in order to reach the desired state of a systems development process that fully 
integrates human considerations. 
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4. VEE-MODEL PROCESS 
 
As stated previously, the SE process described in this paper is based on the technical processes 
found in ISO/IEC 15288:2002 and INCOSE Systems Engineering Handbook, v.3.2.2 standards. 
Although various1 life cycle models could be used to portray this process, the Vee-model 
adequately captures and illustrates the verification and validation needed between a system in its 
last stages of development to its requirements. In addition, the SE Process is arranged and 
depicted as a “Vee” in both ISO/IEC 15288:2002, Annex C, Figure C.1 and INCOSE Systems 
Engineering Handbook, v. 3.2.2, Chapter 3, Figure 3-4. 
 
As shown in Figure 1, the left side of the “Vee” follows the waterfall model in that it 
decomposes and defines the user or stakeholder requirements in terms directly applicable to the 
system to be designed, then allocates the requirements to functional and then physical 
architectures down to the component level, generally developing derived requirements in the 
process.  The right side of the “Vee” illustrates how components are integrated back up to the 
system level, and explicitly relates testing to the verification and validation of requirements at 
each successive level. 
 

 
Figure 1: The Vee-model (INCOSE SE Handbook, v 3.2.2). 

 
The Vee-model steps can be summarized as follows: 
 
The first step (Step One) of the VEE-model, Stakeholder Requirements Definition, is intended to 
develop an understanding of the user (mission) needs and reconcile it to the “input” requirements 

                                                 
1 INCOSE SE Handbook, v.3.2.2, §3.3, Life-Cycle Stages 
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obtained from the user.  Understanding the system interfaces and establishing a validation plan 
are also core activities during this step.   
 
The next step (Step Two), Requirements Analysis, identifies and defines the required 
functionality of the system based on the user (mission) needs and system interfaces from Step 
One.  A “black box” model is established which clearly identifies the technical inputs and 
outputs of the system.  A verification plan is established defining the test and evaluation (T&E) 
activities to be used to demonstrate that the system meets the defined measures of performance 
(MOPs).   
 
Step Three, Architectural Design: Functional Architecting, is primarily concerned with 
developing a system functional design, which identifies and describes “all functions to be 
provided, along with the associated quantitative requirements to be met by each [functional] 
subsystem in order that the prescribed system-level capabilities can in fact be achieved” 
(Kossiakoff and Sweet, 2003). During this step, a “white box” model is created that establishes 
the context functions must operate within (i.e., interfaces and performance requirements).  
Justification in the form of trade studies or trade-off analysis must be provided for the selected 
functional and logical solution(s).   
 
During Step Four, Architectural Design: Physical Architecting, the system design undergoes 
“translation into hardware and software components, and the integration of these components 
into the total system” (Kossiakoff and Sweet, 2003). This physical architecture establishes the 
context components must operate within.  In addition, trade study results provide justification for 
the selected technologies and physical architecture(s) selected, and component verification 
objectives are established to ensure specifications are met.   
 
The next step (Step Five), Implementation, develops detailed design definition of the components 
for the selected physical architecture(s), which will then be implemented (manufacture or 
procurement).  
 
Step Six, Integration, integrates the components and verifies that the result can satisfy the system 
functional verification objectives (from Step Three) based on the interactions of the said 
components.   
 
The next step (Step Seven), Verification, demonstrates that the design conforms to the system 
verification objectives established during Step Two with the use of the integrated and 
functionally-verified system produced under Step Six.   
 
Step Eight, Transition, establishes a capability to provide services in the operational 
environment. This usually includes installing the verified system with relevant enabling systems 
and is used at each level in the system structure. Note that while Transition precedes Validation 
as listed herein, it does not necessitate that it occurs before Validation. Simply, this is how it was 
ordered within the INCOSE and ISO/IEC standards. 
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The final step (Step Nine), Validation, ensures that the system, which met the performance 
objectives of Step Seven, also satisfies the validation objectives (user mission requirements) 
established in Step One.  
 
These nine steps comprise the VEE-model, which is applied iteratively and recursively to each 
development stage of the system life cycle. However, in addition to the steps defined by the 
INCOSE and ISO/IEC standards, an additional sub-step, Technical Basis Reports, has been 
added to the model given its application to the Physical Architecting step within the context of 
MBSE. Technical Basis Reports explore various physical implementation options that populate 
the decision space with the intent of identifying an optimal alternative, thus informing the 
physical architecting activity. 
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5. MAPPING ANALYSIS 
 
5.1. Scoping the Vee-model 
 
Since the focus of this research was on methods for modeling human considerations, which 
typically takes place during the Concept, Development and Production Stages of the SE life 
cycle, emphasis was placed on the technical processes that have the highest level of effort during 
these stages: 

1. Stakeholder Requirements Definition 
2. Requirements Analysis 
3. Architectural Design 
4. Implementation 
5. Integration 
6. Verification 
7. Transition 
8. Validation 

 
HSI methods were individually analyzed within the context of the SE process steps in order to 
determine where they fit within the Vee-model. Specifically, method activities, inputs, outputs, 
and tools served as the criteria for making these determinations. After an initial attempt to map 
the HSI methods to the Vee-model, it was recognized that the majority of methods fit within the 
Architectural Design step, necessitating more granularity. As a result, this step was decomposed 
into two sub-steps: Functional Architecting and Physical Architecting. The reason for 
decomposing the step in this way was two-fold: 1) there was a clear dividing line between 
methods (i.e., some strongly focused on functional analysis, decomposition, etc. while others 
were focused on the physical design of the system); and 2) this breakdown would be better 
tailored to the MBSE methodology, facilitating a more effective evaluation. Additionally, the 
sub-step, Technical Basis Reports, was added to distinguish between HSI methods that informed 
the Physical Architecting activities through technology assessments and those that should be 
directly integrated into that step. 
 
Due to the large volume of methods mapped to the Vee-model and to allow for sufficient effort 
to be applied to evaluating the HSI methods against the SE process and MBSE, a determination 
was made to limit the scope of subsequent analysis to only those methods that mapped to the first 
four steps: Stakeholder Requirements Definition, Requirements Analysis, Functional 
Architecting, and Physical Architecting. 
 
5.2. HSI Methods Mapped to the Vee-model  
 
For each of the six sources selected, a diagram was generated showing where the HSI methods 
mapped to the Vee-model. These diagrams are located in Appendix A. 

 
During the methods mapping analysis, it was recognized that a few HSI methods combined the 
activities of multiple methods into one. Similar to the decomposition of the Vee-model step, 
there were some HSI methods that were decomposed to provide a more detailed level of 
granularity and allow for equitable comparisons between methods to determine similarities. One 
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such method, Task-Centered System Design (TCSD) (Stanton, et al., 2012, Ch. 11), was 
identified as being too high level in order to adequately compare it to other methods. As a result, 
this method was decomposed into three ‘sub-methods’. Other methods that were decomposed 
included Allocation of Function Analysis (Stanton, et al., 2013, Ch. 11) and STAGE 3: Basic 
Design (Sanders and McCormick, 1993). 

 
In the Discussion section that follows, each Vee-model step includes a detailed comparison 
between HSI methods as illustrated in the comparison tables embedded within each section.  
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6. DISCUSSION 
 
6.1. Stakeholder Requirements Definition 
 
The purpose of the Stakeholder Requirements Definition Process is to define the requirements 
for a system that can provide the services needed by users and other stakeholders in a defined 
environment (ISO/IEC 15288:2008). As the first step in the Vee-model, this process (and its 
outputs) serves as the foundation for defining and clarifying the system throughout the lifecycle.  
It is in this step that stakeholder needs (documented or undocumented) are converted into high-
level requirements, concept documents (e.g., CONOPS), measures of effectiveness (MOEs), etc. 
as shown in Figure 2. 
 

 
Figure 2: Context Diagram for Stakeholder Requirements Definition Process (INCOSE SE 

Handbook, v 3.2.2) 
 
The outputs from this process will serve as the basis for performance requirements, functional 
requirements, non-functional requirements, and architectural constraints determined to meet the 
mission.  
 
After mapping the HSI methods to the Vee-model process, nine methods were identified as 
applicable to this first step in the Vee-model (see Table 1 for a comparison matrix).  
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Table 1: Vee-model Step One: HSI Methods Comparison 
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Mission Analysis           
Mission Analysis            
Focus Groups             
Scenario-Based 
Design              
User ID & Sample 
Task Definition               
Operational Analysis                
Critical Incident Study                 
STAGE 1: Determine 
Obj & Perf Specs                  
 Mission Analysis                   

 
Same  
Different  
McKneely, et al., 2006  
Stanton, et al., 2012  
Chapanis, 1996  
Sanders and McCormick, 1993  
DoD, 1999  

 
 
After comparative analysis, four unique methods were identified and given the following 
categorical names: 1) Interviewing; 1A) Critical Incident Study (a type of interviewing); 2) 
Reviewing; 3) Mission Analysis. These methods were shown to be complimentary to each other, 
rather than competing. As shown in Figure 3, Interviewing, Critical Incident Study, and 
Reviewing are inputs to Mission Analysis. 
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Figure 3: Unique and Complimentary HSI Methods 

 
6.1.1 Unique Methods 
 
6.1.1.1 Interviewing 
 
Method Objective: Gather raw data regarding stakeholder requirements as input for the concept 
development phase of the system design. 
 
Approach: Interview stakeholders; this includes both one-on-one and group interviews of the 
HSI methods reviewed. Stanton, et al. (2012, Ch. 11) provides a structured process for formally 
conducting group interviews that he termed, “Focus Groups”.  
 
Inputs: Potential stakeholders, subject matter experts (SMEs), other relevant project personnel 
(e.g., project manager, designers, etc.), and facilitator. 
 
Outputs: Transcripts of interviews, which include agreed upon stakeholder requirements 
including users and human-user interfaces. 
 
 
6.1.1.1.1 Critical Incident Study 
 
Method Objective: Identify and assess risk factors and possible risk management actions. 
 
Approach: Conduct one-on-one or group interviews with operators of existing systems with the 
intent of eliminating or mitigating sources of operational failures in the system-of-interest. 
Chapanis (1996, Ch. 4) provides a method for collecting and analyzing data related to critical 
incident situations and discusses a related example. 
 
Inputs: Legacy or existing systems and their users, operators, and/or maintainers. 
 
Outputs: Sources of serious human-system difficulties (risk factors), suggested solutions to 
critical incident situations (risk management actions). 
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6.1.1.2 Reviewing 
 
Method Objective: Define system objectives, identify and describe a representative list of 
potential users or user groups, and define system functions. 
 
Approach: Observe/review an existing system similar to the system-of-interest. Gather relevant 
information for mission analysis, which may include users (Stanton, et al. 2012, Ch. 11), system 
performance specifications (Sanders and McCormick 1993, Ch. 22), or task descriptions 
(Stanton, et al. 2012, Ch.11). 
 
Inputs: Existing systems and their users, operators, and/or maintainers. 
 
Outputs: Objectives, representative list of user groups (e.g., operator, maintainer), detailed task 
descriptions including human-user interfaces. 
 
 
6.1.1.3 Mission Analysis 
 
Method Objective: Determine the mission objectives and define the basic functions that the 
total system (hardware, software, humanware) must perform to accomplish these objectives. 
 
Approach: Develop mission scenarios, that may take several forms, including narratives (DoD 
1999, §8.3.1.2), graphics or pictorial models (Chapanis 1996, Ch. 4) (DoD 1999, §8.3.1.1),  
‘storyboarding’ (Stanton, et al. 2012, Ch. 11) or Hierarchical Task Analysis (HTA) (Stanton, et 
al. 2012, Ch. 11). These scenarios are then used to clarify the mission objectives and identify 
basic mission functions, inputs, outputs, environments and constraints (McKneely, et al. 2006, 
§3.1). 
 
Inputs: Human user (e.g., operator, maintainer), human interfaces, stakeholder requirements, 
including system functions, environment, and other constraints. 
 
Outputs: Mission objectives, system functions, concept documentation (e.g., CONOPS), and 
refined stakeholder requirements. 
 
6.1.2 Unique Methods Summary 
 
While the sources reviewed undoubtedly intended to provide methods to effectively integrate 
HSI factors within systems, they do not offer anything unique apart from the standard SE 
process.1 Specifically, the inputs, outputs, and activities of these methods are captured within 
Stakeholder Requirements Definition (Vee-Model Step One), as is shown previously in Figures 
X and X. ISO/IEC 15288:2002, in particular, recognizes the need to “identify the interaction 
between users and the system” and that “scenarios are used to analyze the operation of the 
system…” 

                                                 
1 As defined by ISO/IEC 15288:2002 and INCOSE SE Handbook v. 3.2.2 standards. 
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While these HSI methods may discuss reviewing or observing operators of similar existing 
systems, they neglect to address conducting reviews of source documents, a crucial input to this 
process step (INCOSE Handbook 2011, §4.1.1.3). Documentation from precedent systems such 
as a System Requirements Document (SRD), concept documentation, operating procedures, etc. 
can provide an excellent starting point for extracting and clarifying relevant information for the 
system-of-interest and should be obtained whenever possible. 
 
Although these methods may not be novel to the SE process and despite their lack of inclusion of 
source documentation, it is evident that their overarching goal is to explicitly consider the human 
element when capturing and analyzing source requirements. Human factors knowledge and 
experience are necessary in this first step to ensure that human interfaces and interactions are 
identified early on and are well integrated and documented within the major outputs. It is 
unlikely that human considerations identified later on in the SE process will be appropriately1 
integrated into the system given the continually increasing costs of redesign as a project 
progresses through its lifecycle. 
 
6.1.3 Models-Based Systems Engineering Support 
 
The purpose of this section (and similar subsequent sections) is to briefly summarize the first 
step in the Model-Based Systems Engineering (MBSE) method and then evaluate the identified 
HSI methods against this method to elucidate similarities and differences that will help 
determine how human factors can be modeled in a system. While there exists at least half a 
dozen2 leading MBSE methodologies, the method summarized here will not refer to any one in 
particular, but will provide a general description that may contain similar elements from each. 
Similarly, although there are multiple SE process standards that vary in certain aspects, most 
have the same foundational approach. 
 
6.1.3.1 MBSE Stakeholder Requirements Definition Summary 
 
The activities of the first step in the MBSE method are basically the same to SE Process Step 
One: describe system (product) scope; identify system stakeholders; elicit stakeholder 
requirements; validate stakeholder requirements. While these activities define the “what”, MBSE 
specifies the “how”.  
 
If relevant strategic guidance is available (e.g., strategic vision, goals, policies, standard, etc.), a 
preliminary system scope may be developed prior to identifying all system stakeholders. In order 
to describe the system scope, a contextual analysis of the strategic problem in terms of 
operational capabilities is performed (Beck, 2011). While textual descriptions may be used to 
develop a strategic context, it is recommended that graphical models such as use cases or 
requirements diagrams be used, as shown in Figure 4 and Figure 5 (Beck, 2011). 
 

                                                 
1 According to Madni (2009), HSI advocates a full lifecycle view of the integrated human-
machine system during system definition, development and deployment. 
2 (Estefan, 2008). 
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Figure 4: Strategic context graphical example (UML or SysML use case diagram) (Beck, 

2011). 

 
Figure 5: Generic strategic context graphical example (DoDAF CV-1 diagram; in SysML 

use req diagrams) (Beck, 2011). 



29 

 
From this analysis, a concise problem statement and the capabilities necessary to solve this 
problem can be developed. Based on the strategic context and required system capabilities, a 
concept of the main operational context is developed in the form of a graphical depiction. This 
initial model should not be confused with the suite of related operational models that comprise 
the CONOPS defined later in this step. Rather, such a model establishes the context for 
developing these mission scenarios. Examples of an operational context model include DoDAF 
OV-1 model, internal block diagrams (SysML) and block definition diagrams (SysML). 
 
Once the system scope has been described or if strategic guidance does not exist, stakeholders 
must then be identified. Generally, stakeholders may include an enterprise, organization, team, or 
individual, or classes thereof who will have an interest or stake in the outcome of the project 
(Beck, 2011). For each stakeholder, one or more concerns should be developed that describe the 
interests a stakeholder has that pertains to the system’s development, its operation, or any other 
important aspect. 
 
Identified stakeholders should then be polled (e.g., interview, request for information) to collect 
system requirements. After obtaining requirements from all stakeholders, a necessary risk-
reducing activity is to rewrite the requirements to ensure the necessary attributes1 are considered. 
In defining stakeholder requirements, it is helpful to develop views and viewpoints for the 
stakeholders. A view is a representation of a whole system from the perspective of a related set of 
concerns (IEEE Std 1471 §3.9). A viewpoint is a pattern or template from which to develop 
individual views by establishing the purposes and audience for a view and the techniques for its 
creation and analysis (IEEE Std 1741 §3.10). The systems engineer can package multiple views 
by types of models (e.g., behavior, structure) or by model elements (e.g., classes, typed blocks) 
in order to demonstrate that the system will satisfy the concerns of the respective stakeholder 
(Beck, 2011). Similar to the idea of views and viewpoints are concept documents (e.g., 
production, deployment, operations, support, disposal), which serve as major outputs in this 
step.2 An example diagram of simple views and viewpoints is shown in Figure 6. 

                                                 
1 INCOSE SE Handbook v. 3.2.2, §4.2.2.2 Characteristics of Good Requirements 
2 INCOSE SE Handbook v. 3.2.2 §4.1.1.4 Outputs 
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Figure 6: A SysML Package Diagram (pkg) is used to develop simple views and 

viewpoints (Friedenthal, et al., Chapter 4, 2011). 
 
Although there may be multiple views for one system, probably the most key is the CONOPS or 
operational model. In order to develop content for the operational model, the strategic mission is 
decomposed into lower-level operational activities and resource flow (e.g., information) 
exchanges are identified (Beck, 2011). To start, use cases are developed to capture the mission 
objectives as they relate to the system stakeholders. For each use case, a set of well-posed 
mission scenarios that explore the range of possible operational conditions is developed. From 
this set, critical scenario objectives are down-selected and analyzed to identify the necessary 
system capabilities that will produce the effects that ultimately meet stakeholder objectives. 
 
After determining the capabilities that will fulfill the mission objective, more in-depth analyses 
are used to develop an operational plan. These include identifying the “as is” operations in 
legacy systems, determining the mission tasks to analyze (based on the previously identified 
capabilities) in the form of a function structure, and identifying evaluation criteria (e.g., 
measures of effectiveness). As shown by Beck (2011), these analyses can all be captured using 
models.  
 
Finally, validation test cases are defined based on the mission scenarios, mission tasks, and the 
evaluation criteria. The objectives of validation in this step are to ensure traceability between the 
documented stakeholder needs and the content contained in the views, resolve any conflicts or 
inconsistency within the requirements, ensure all validation activities are well-documented, and 
the validated set of requirements are under configuration management. 
 
For an example set of diagrams that illustrate the activities in this step, please refer to Appendix 
B. 
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6.1.3.2 Evaluation of HSI Methods Against MBSE 
 
6.1.3.2.1 Interviewing 
As mentioned in the preceding section, having a “good” set of requirements will help reduce risk 
for the project. An important part of developing such requirements is to ensure that the customer 
needs are effectively translated, interpreted, and understood. This is especially important when 
collecting requirements related to human factors because they may be more difficult to articulate. 
Utilizing the one-on-one interview or Focus Groups (Stanton, et al., 2012, Ch. 11) approaches 
would provide the opportunity for the systems engineer to conduct in-depth queries to help 
stakeholders define their needs and clear up any ambiguous information. An effective method for 
requirements elicitation, Interviewing is already captured within the first step of the MBSE 
method. However, it would be beneficial to emphasize the importance of human factors during 
this activity to ensure relevant HSI concerns are vetted. The use of views and viewpoints would 
be especially useful for capturing human factors such as usability, ergonomics, safety, etc. For 
example, a viewpoint may include information about the operator and related concerns (e.g., 
safety during operation, usability of controls). A “human” view could then be generated from this 
viewpoint and would include all aspects of the system that interfaces and interacts with the 
operator. These views and viewpoints could then be iteratively developed with stakeholder input 
through individual meetings or group reviews where the models would serve as the focus of 
discussion. 
 
6.1.3.2.2 Critical Incident Study 
Although similar to Interviewing, this HSI method is only partially integrated within MBSE in 
that the approach is captured, but the objective is not. Specifically, there is a risk reducing 
activity within MBSE by rewriting requirements after they have been collected. The difference is 
that Critical Incident Study focuses on reducing risk during requirements elicitation by 
conducting interviews with the intent of eliminating or mitigating sources of operational failure. 
Of course, this assumes that a legacy or existing system exists and their operators and 
maintainers are available for interview. It is recommended that this method be integrated in the 
MBSE method in order to more thoroughly under the circumstances that lead to human-system 
difficulties in order to mitigate these risk factors during new system development. Some of the 
advantages of integrating Critical Incident Study into the first MBSE step include: 
 

1. Sources of human-system difficulties can be used as strategic guidance to develop a 
system scope. Specifically, critical incident situations reveal gaps in capability and can be 
used to develop a problem statement.  

2. Sources of human-system difficulties can be used to define the “as is” operations and 
highlight mission tasks that require in-depth analysis. 

3. Suggested solutions to the critical incident situations can be used to support identification 
of necessary capabilities to overcome system deficiencies. 

4. Suggested solutions to the critical incident situations can be used to initiate risk 
management actions early in the development lifecycle. 

 
6.1.3.2.3 Reviewing 
Like Critical Incident Study, this HSI method assumes that an existing system is available for 
study. When compared to MBSE, Reviewing does not really offer anything unique. The method 
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objective of defining the system objective (i.e., describe system scope), identify a list of potential 
users (i.e., identify stakeholders), and define system functions (i.e., determine the capabilities 
that will fulfill the mission objective) all fall in line with the MBSE activities.  
 
However, one key difference is that while MBSE suggests using existing strategic guidance to 
define a system scope and gathering requirements from stakeholders, it does not include 
observation or review of a legacy system. Important human factors information (e.g., human-
system interactions) could be gleaned by simply observing the system in operation. This 
information could then be used to supplement stakeholder-provided needs and constraints. At the 
very least, documented observations could be used to define task descriptions to develop a 
function structure when determining which mission tasks require further scrutiny. 
 
One other minor distinction is that while Reviewing indicates that system performance 
specifications (i.e., MOEs) should be gathered in order to inform mission analysis, the MBSE 
method explains that MOEs are derived out of mission analysis. This difference probably owes 
to the fact that Reviewing is based on observation of an existing system, which most likely 
already has established system performance specifications. MBSE does not necessarily preclude 
MOEs from informing mission analysis and, if a legacy system exists, this information should be 
used when developing mission scenarios, even though it is likely that the evaluation criteria for 
the new system will be redefined. 
 
6.1.3.2.4 Mission Analysis 
The objectives and activities of this HSI method closely resemble the Define Operational Model 
activity within MBSE. Specifically, both seek to determine the mission objectives and basic 
functions of the system by developing mission scenarios. Both describe multiple acceptable 
approaches (e.g., narratives, graphic models, storyboarding, HTA), although they may use 
varying terminology. MBSE especially calls the development of mission scenarios a “critical” 
step (Beck, 2011).  
 
Although MBSE does not preclude textual descriptions, it is expected that models be leveraged 
to conduct mission analysis activities due to their clarity, organization, traceability, and their 
ability to capture relationships and constraints (e.g., parametric diagrams. Again, emphasis 
should be placed on elements that involve the human user and human-system interfaces). 
Appendix B offers a set of example models that illustrates the potential of MBSE to effectively 
execute the Stakeholder Requirements Definition step. 
 
6.1.4 Models-Based Systems Engineering Support Summary 
 
For the most part, the HSI methods evaluated are captured within MBSE, although the 
terminology used may vary based on the source. A few differences introduced by the HSI 
methods that would enhance MBSE include: 
 

1. Observe/review of existing/legacy systems (when available) 
2. Integrate Critical Incident Study to support:  

a. Development of system scope;  
b. Identification of “as is” operations;  
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c. Identification of solutions to capability gaps; and  
d. Initiation of risk management actions. 

 
Despite the fact that MBSE already incorporates most of these HSI methods in Stakeholder 
Requirements Definition, the chief point is to consider human factors both during stakeholder 
elicitation and mission analysis. 
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6.2. Requirements Analysis 
 
The purpose of the Requirements Analysis Process is to transform the stakeholder, requirement-
driven view of desired services into a technical view of a required product that could deliver 
those services (ISO/IEC 15288:2008). The objective in this second step of the Vee-model is to 
build a technical representation (i.e., defined requirements) of the system derived from elicited 
stakeholder needs, which will serve as the basis for architectural design, integration, and 
verification. As such, a major output of this step is a set of system functions, which must remain 
abstract enough such that no particular implementation is implied. In addition, performance 
requirements, non-functional requirements, and architectural constraints must be defined, as 
these will affect the emergent behaviors of the integrated system. As shown in Figure 7, other 
common outputs include a specification tree, a hierarchical representation of the set of 
specification for the system, and a system specification, a formal document of the approved 
system requirements. 
 

 
Figure 7: Context Diagram for Requirements Analysis Process (INCOSE SE Handbook, v 

3.2.2) 
 
Due to the iterative1 and recursive2 nature of this process, requirements may change based on 
new information gleaned from later process systems. Caution is recommended, however, as 
changes in requirements later in the development cycle can have a significant cost impact on the 
project, possibly resulting in cancellation (INCOSE SE Handbook v 3.2.2, §4.2.1.2). 
 
Based on the mapping analysis, six methods were identified as applicable Requirements Analysis 
(see Table 2for a comparison matrix).  
 

                                                 
1 When the application of the same process or set of processes is repeated on the same level of 
the system, the application is referred to as iterative (ISO/IEC CD 29148, Requirements 
Engineering). 
2 When the same set of processes or the same set of process activities are applied to successive 
levels of system elements within the system structure, the application form is referred to as 
recursive (ISO/IEC CD 29148, Requirements Engineering). 
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Table 2: Vee-model Step Two: HSI Methods Comparison 
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Requirements Analysis        
User-Centered 
Requirements Analysis         
STAGE 2: Definition of 
the System          
Functional Flow 
Analysis           
Decision-Action 
Analysis            
Analysis of Similar 
Systems             

 
Same  
Different  
McKneely, et al., 2006  
Stanton, et al., 2012  
Chapanis, 1996  
Sanders and McCormick, 1993  

 
 
After comparison, three unique methods were identified and categorized as follows: 1) Analysis 
of Similar Systems; 2) Requirements Analysis; 2A) Functional Flow Block Diagramming 
(FFBD) (a sub-method for identifying system functions). Similar to the previous step, there is a 
complimentary element between these methods. As shown in Figure 8, Analysis of Similar 
Systems provides input to Requirements Analysis and FFBD. However, depending on the type of 
project, there are multiple approaches to creating a FFBD that will be explored in more detail 
below. 
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Figure 8: Vee-Model Step Two HSI Methods 

 
6.2.1 Unique Methods 
 
6.2.1.1 Analysis of Similar Systems 
 
Method Objective: Identify salient features of systems that are similar to the one under 
consideration to provide human factors considerations input into Requirements Analysis. 
 
Approach: Analyze data output from Vee-Model Step One HSI methods: Interviewing, Critical 
Incident Study, and Reviewing. Although information produced from these methods were used as 
inputs to Mission Analysis, the focus of this method is to extract information that provides the 
level of detail necessary for developing technical requirements and functions (e.g., skills, 
training, HF design problems, operability data, etc.) and is the reason for its inclusion with Vee-
Model Step Two. Other potential data sources include questionnaires, activity analyses, or 
accident investigations (Chapanis 1996, Ch. 4). 
 
Inputs: Productivity records, maintenance records, training records, accident or incident reports. 
 
Outputs: Skills assessment, identification of relevant environmental factors, estimates of future 
staffing and manpower requirements, identification of operator and maintainer problems, 
preliminary assessments of workloads and stress levels, assessments of the desirability of and 
consequences of reallocating system functions. 
 
6.2.1.2 Requirements Analysis 
 
Method Objective: Specify the system characteristics necessary to meet the stakeholder 
requirements. 
 
Approach:  Develop system technical requirements and functions. Although both McKneely, et 
al. (2006) and Stanton, et al. (2012) suggest identifying intended system users and maintainers 
that the future proposed design with cater for, it is assumed that this activity would have been 
completed in the previous step if the Vee-model process is being used. Define MOEs (if not done 
previously) and Measures of Performance (MOPs) as they pertain to mission, human, and 
function requirements (McKneely, et al. 2006). Feasibility and internal compatibility of system 
requirements are assessed (McKneely, et al. 2006). One way to accomplish this is by the use of 
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design scenarios or storybooks (Stanton, et al. 2012, Ch. 11). For users, tasks, and scenarios, 
Stanton, et al. (2012) recommend that each should be categorized as “absolutely must include”, 
“should include if possible”, and “exclude”. The role of the human, manning, training and cost 
guidelines are also developed (McKneely, et al. 2006). 
 
Inputs: Mission objectives, system functions (i.e., high-level, non-technical), concept 
documentation, stakeholder requirements, and outputs from Analysis of Similar Systems, such as 
skills, staffing, manpower, environment, and human factors assessments. 
 
Outputs: System requirements, system functions (i.e., high-level, technical), MOEs, MOPs, 
feasibility/compatibility assessment results (including any scenarios/storybooks), and human 
factors guidelines. 
 
6.2.1.2.1 Functional Flow Block Diagramming 
 
Method Objective: Specify the functions that must be performed by the system to meet the 
stakeholder requirements. 
 
Approach: Develop functional flow block diagrams (a.k.a., functional flow diagrams, functional 
block diagram, or functional flows) that provide a graphical, sequential ordering of functions. 
These diagrams depict the interrelationships among the system functions, with each box 
representing one function (Sanders and McCormick 1993, Ch. 22). These functions are also 
numbered in a way that clarifies their relationship to one another and permits traceability of 
functions through the whole system (Chapanis 1996, Ch. 4). It should be noted that although 
FFBDs can be decomposed into multiple levels of detail, only “zero-order” and “first-order” are 
typically necessary to capture high-level functions. During the next step in the Vee-model, 
Functional Architecting, FFBDs may be used to decompose higher-level functions into detailed 
functions, as necessary. Figure 9 illustrates a zero-order FFBD, and Figure 10 illustrates a first-
order FFBD, which elaborates on one of the zero-order functions. 
 

 
Figure 9: A zero-order functional flow block diagram (Chapanis 1996, Ch. 4). 
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Figure 10: A first-order functional flow block diagram (Chapanis 1996, Ch. 4). 

 
FFBDs may also be used to identify and depict functions in a system in which binary decisions 
have to be made (e.g., software-oriented projects). Chapanis (1996) terms this variation 
“Decision-Action Analysis.”  
 
Human factors specialists are tasked to ensure that the functions identified match the needs of the 
intended users (Sanders and McCormick 1993, Ch. 22). 
 
Inputs: Mission objectives, system functions (i.e., high-level, non-technical), concept 
documentation, and stakeholder requirements. 
 
Outputs: FFBDs, system functions (i.e., high-level, technical). 
 
6.2.2 Unique Methods Summary 
 
Generally, the activities described by these HSI methods do not introduce anything novel to the 
SE Process. However, within the context of Requirements Analysis, they offer valuable 
enhancements. For example, INCOSE identifies FFBDs as a “Cross-Cutting Technical Method” 
that may be used across the system lifecycle (INCOSE SE Handbook v 3.2.2, §4.12), but does 
not elaborate its application to this process step. The application of FFBDs to the Requirements 
Analysis process as discussed in these HSI methods, however, highlights the advantages of its 
use, such as enabling the justification of requirements (i.e., ensures identified functions match 
the needs of intended users by serving as a detailed “checklist” during verification), avoiding 
over/under specification (higher level functions are identified and described iteratively), and 
serving as a key input to subsequent process steps (i.e., allocation determinations and trade 
studies).  
 
Analysis of Similar Systems, like the Reviewing and Interviewing HSI methods, feeds important 
human factors data within the SE Process. Since there is a more detailed (i.e., technical) focus on 
human factors within this analysis (e.g., skills, training, manpower), its outputs are more 
appropriately integrated within Requirements Analysis. Although the SE Process touches on 
this1, it does not go into same level of depth as this HSI method. 
 

                                                 
1 ISO/IEC 15288:2002, §5.5.3.3 e) Specify system requirements and functions…that relate to 
critical qualities, such as health, safety, security, reliability, availability and supportability. 
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Although these HSI methods discuss at a high-level the need for traceable and verifiable 
requirements, they do not consider the role that configuration control plays in maintaining 
continuity, a critical activity to ensure that system requirements meet at least one stakeholder 
requirement (ISO/IEC 15288:2002, §5.5.3.3). Rationale, decisions and assumptions are also 
maintained along with system requirements in a data repository, which will feed Architectural 
Design. The human factors data collected from Analysis of Similar Systems, for example, should 
be maintained in such a repository to help capture the details that support the HSI-related 
requirements. 
 
While the HSI methods mapped to the Requirements Analysis process may not make major 
contributions to this step, they help instill a user-centered approach in defining requirements. In a 
way, these methods reuse traditional Requirements Analysis concepts and/or tools, but through 
the lens of HSI. With the human factors elements integrated into system requirements, the 
functional and physical architectures should inherently reflect the needs of the user. 
 
6.2.3 Models-Based Systems Engineering Support 
 
6.2.3.1 MBSE System Technical Requirements Summary 
 
The purpose of MBSE Step Two is to translate customer needs (identified in MBSE Step One) 
into a set of “black box” system requirements (Beck, 2011). The activities closely resemble those 
defined in the SE Process above, yet at a more detailed level.  
 
In order to begin transforming the stakeholder requirements in system (technical) requirements, 
the first step is to develop an initial Elaborated Context Diagram (ECD). An ECD captures the 
system black box requirements (e.g., functions, interfaces, controls, performance, non-
behavioral) and represents a static, composite view of the system input/output (I/O) flows across 
multiple scenarios (Beck, 2011). In SysML, this is typically represented using an internal block 
diagram (ibd) as shown in Figure 11. 
 

 
Figure 11: Generic ECD (INCOSE, 2006). 
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Captured within the ECD are the system-of-interest, external systems, users, and I/O items 
(flows). 
 
After constructing an ECD, the next step is to develop system scenarios. Use cases and scenarios 
defined in the previous MBSE step are further developed using behavioral diagrams to produce 
system scenarios (Beck, 2011). The intent of creating system scenarios is to elaborate the 
requirements for an element or set of elements contained in the ECD. In SysML, these elements 
are typically known as operations or attributes. Figure 12illustrates a scenario using a subset of 
these elements from the ECD above using sequence diagram (sd). 
 

 
Figure 12: System Scenarios vs. ECD (INCOSE, 2006). 

 
System scenarios should address all high-probability mission scenarios identified in the previous 
step, external system interactions with the system-of-interest, stressing scenarios, failure 
conditions, and support scenarios (e.g., system backups, configuration management, etc.). 
 
Using the ECD and supporting modeling artifacts, block box requirements are further refined. 
For example, highly detailed functions may need the use of algorithms and mathematical 
relationships in order to be appropriately specified. Likewise, critical MOPs that impact mission 
MOEs may need to be identified (e.g., timelines in critical system scenarios that affect mission 
critical timelines) (Beck, 2011).  
 
Design constraints also serve as an important input in developing technical requirements1, and as 
such, must be assembled from the outputs of the previous step (e.g., concept documents) and 

                                                 
1 INCOSE SE Handbook v 3.2.2, §4.2.1.5 
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linked to the ECD. These constraints are realized as design constraints within the SysML 
language, as illustrated in Figure 13. 
 

 
Figure 13: Elaborated Context Diagram (ECD) with design constraints (INCOSE, 2006). 

 
The next step is to perform system requirements analyses, such as requirements variation, trade 
off, effectiveness, and risk analyses. Based on the results, system requirements and constraints 
are updated. Finally, the system requirements are verified against established requirements 
criteria1 and validated against stakeholder requirements to ensure they will fulfill the mission 
objectives. The main output of this process step should be a set of requirements that describe the 
required system functions and associated I/O, the required external interfaces, and MOPs.  
 
6.2.3.2 Evaluation of HSI Methods Against MBSE 
 
6.2.3.2.1 Analysis of Similar Systems 
 
Typically, the inputs to the Requirements Analysis step are collected from the outputs of the 
previous step, Stakeholder Requirements Definition. As described in the previous evaluation of 
the MBSE Step One, Interviewing and Reviewing can provide valuable human factors 
information for defining mission objectives and stakeholder requirements. However, this 
information will tend to be more high level and does not capture the necessary details (e.g., 
skills, training, HF design problems, etc.) to sufficiently capture HSI considerations within the 

                                                 
1 INCOSE SE Handbook v. 3.2.2, §4.2.2.2 Characteristics of Good Requirements 
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system technical requirements. Analysis of Similar Systems could enhance the MBSE System 
Technical Requirements step by refining this information and providing it as a secondary input. 
 
Specifically, outputs from this method could supplement the development of an ECD and related 
scenarios. For example, operability data from a legacy system could be used as a starting point 
for either identifying operations of the system-of-interest, or (if operations are already identified) 
creating related scenarios. Environmental factors could help identify/elaborate I/O items and 
skills assessment information could help detail the human-system interactions (i.e., depending on 
the required user skills, the system-of-interest may need to automate certain operations). Given 
the potential advantages of incorporating the outputs of this method into MBSE, it is 
recommended that it be integrated into this step. 
 
6.2.3.2.2 Requirements Analysis 
 
As stated previously, this method does not offer major contributions to the established SE 
Process. Nonetheless, given this method’s recommendation to use design scenarios or storybooks 
(Stanton, et al. 2012, Ch. 11), it would potentially integrate better with MBSE. The intent of 
using scenarios in this HSI method is to assess the feasibility and internal compatibility of 
system requirements, which can be viewed as part of the MBSE goal to elaborate requirements 
for elements within the ECD. Both methods recognize the need for prioritization of scenarios, 
although the HSI method provides a more defined categorization guideline. Overall, MBSE 
would benefit by integrating this method in order to better capture the role of the human within 
the technical requirements. 
 
6.2.3.2.3 Functional Flow Block Diagramming 
 
Since the objective of this method is to specify system functions, the potential enhancements to 
MBSE are potentially two-fold. With regards to developing an ECD, the act of creating FFBDs 
would help the systems engineer determine the necessary functions (operations) and related data 
(attributes) that must be defined for the system-of-interest. Since FFBDs can be decomposed into 
increasing levels of detail (e.g., zero-order, first-order, etc.), they would serve as excellent tools 
for deriving technical requirements from stakeholder requirements. Additionally, if an ECD has 
already been created and has defined operations, FFBDs could be used to elaborate these 
operations in the form of scenarios. By diagramming scenarios with FFBDs, functions that 
involve human-system interaction may become more apparent, facilitating efficient verification 
to ensure that the functions match the needs of the intended user. 
 
6.2.4 Models-Based Systems Engineering Support Summary 
 
Although similar to the System Technical Requirements step, these HSI methods offer some 
enhancements that are not addressed in this step that would be advantageous to MBSE: 

1. Apply relevant HSI information from Analysis of Similar Systems to the development of 
the ECD and related scenarios 

2. Focus on HSI considerations when building scenarios 
3. Prioritize scenarios using the following categorization: “absolutely must include”, 

“should include if possible”, and “exclude” 
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4. Utilize FFBDs to: 
a. Derive technical requirements from stakeholder requirements; 
b. Determine operations and attributes within the ECD;  
c. Elaborate operations in the form of scenarios; and 
d. Assist in verification by elucidating the functions that involve human-system 

interactions. 
 
Although there is not a strong correlation between the HSI methods to MBSE, they have enough 
similarities to effectively integrate into this step while offering a renewed emphasis on human 
factors. 
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6.3. Architectural Design: Functional Architecting 
 
As explained in Mapping Analysis (§5) above, Architectural Design has been decomposed into 
two sub-steps: Functional Architecting and Physical Architecting in order to facilitate a more 
accurate mapping of HSI methods to the SE Process. However, in keeping with the structure of 
this paper, the following is a brief description of this SE process step as defined by ISO/IEC 
15288 and the INCOSE SE Handbook. This description should be viewed as an overall summary 
for both sub-steps, with more detailed descriptions in the subsequent MBSE sections. 
 
The purpose of Architectural Design is to synthesize a solution that satisfies system requirements 
(ISO/IEC 15288:2008). Multiple possible implementations are usually developed to explore the 
trade space in order to reach an optimal architecture. The project baseline, as documented in the 
previous two steps, serves as the primary input along with lifecycle constraints (e.g., operability, 
maintainability, disposability). System-level functions are decomposed down the lowest logical 
element, requirements are partitioned and allocated to these elements, and interface requirements 
are documented. A major output of this step is the system architecture description, which is 
typically represented using diagrams, including justifications for the selected concept. As shown 
in Figure 14, Technical Performance Measures (TPMs) and system element requirements 
traceability are also among the outputs of this step. 
 

 
Figure 14: Context Diagram for Architectural Design Process (INCOSE SE Handbook, v 

3.2.2) 
 
In addition, the system element requirements derived in this step will serve as the basis for 
verifying the realized system and generating a verification strategy (ISO/IEC 15288:2008). It 
should also be noted that INCOSE (2011, v 3.2.2, §4.3.1.5) mentions capturing human elements 
when identifying interfaces and interactions as well as including HSI considerations in support of 
defining a system integration strategy. 
 
Based on the mapping analysis, twenty-one methods were identified as applicable to Functional 
Architecting (see Table 3for a comparison matrix).  
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Table 3: Vee-model Step Three: HSI Methods Comparison 

 
 

Same  
Different  
McKneely, et al., 2006  
Stanton, et al., 2012  
Stammers, et. al, 1990  
Chapanis, 1996  
Sanders and McCormick, 
1993  

DoD, 1999  
 
The results of the comparison helped to identify six unique methods: 1) Task Analysis for 
Knowledge Description (TAKD) 2) Functional Analysis (includes Functional Flow Block 
Diagramming, Flow Process Charts, and Hierarchical Task Analysis (HTA); 3) Timeline 
Analysis; 4) Simulation; 5) Action/Information Analysis; and 6) Operational Sequence Diagrams 
(OSDs). 
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While there are complimentary interactions between these methods, most of them can be used as 
separate methods and some may even be redundant (e.g., when decision/action diagrams are 
used, OSDs are not (DoD 1999, §8.3.6.4)). As shown in Figure 15, TAKD is a preliminary step 
to Functional Analysis, which has multiple “sub-methods”. Functional Analysis then outputs to 
Action/Information Analysis and/or OSDs. Timeline Analysis and Simulation are separate 
methods, however they may inform other HSI methods as shown in the diagram. 

 
Figure 15: Vee-Model Step Three HSI Methods 

 
6.3.1 Unique Methods 
 
6.3.1.1 Task Analysis for Knowledge Description (TAKD) 
 
Method Objective: Define a set of abstracted functions (tasks) that take into account human 
cognitive components to help facilitate functional architecture development. 
 
Approach: Compile a list of system functions (usually already identified in the previous Vee-
model steps) into two separate lists: objects and actions. Abstract these terms into generic actions 
and objects that are implementation-agnostic (i.e., not specific to any particular task 
environment). Recast each original function using the abstracted terminology. Stammers, et al. 
(1990) recommend created a “knowledge representation grammar sentence” for each function, 
which is comprised of one generic action (function) and up to three generic objects, upon which 
this action can act. A similar method, Task Action Grammar (TAG), may be used to help 
develop a “dictionary” of simple functions including their components or features, helping to 
describe interfaces between functions (Stammers, et al., 1990). 
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Inputs: System (high-level) functions, functional interfaces, system requirements, concept 
documents. 
 
Outputs: Abstracted functions, grammar sentences that describe functions (verbs) and the 
objects (nouns) that they may act upon. 
 
 
6.3.1.2 Functional Analysis 
 
Method Objective: Develop the system’s functional architecture and evaluate architecture 
alternatives. 
 
Approach: Decompose high-level system functions into progressively lower level functions. 
Functions are described by verb-noun phrases and may be instantaneous, prolonged, simple or 
complex (Sanders and McCormick 1993, Ch. 22). While there are many different variations of 
this method, the following three approaches, Functional Flow Block Diagrams, Flow Process 
Charts, and Hierarchical Task Analysis, were the main methods identified from the HSI sources 
and will be described in further detail below. 
 
Functional Flow Block Diagrams, see §6.2.1.2.1 above for a basic description, are iteratively 
carried out to additional levels of detail as may be necessary to at least determine significant 
performance requirements. Although the system may be broken into functions, tasks and 
subtasks to be performed, they are not allocated to any particular system component (e.g., 
hardware, software, humanware) (McKneely, et al. 2006). A detailed level FFBD is depicted in 
Figure 16. 
 

 
Figure 16: Third-level Functional Flow Block Diagram (DoD 1999, §8.3.5.2.3). 
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FFBDs may be modified for software-intensive systems where binary decisions are prevalent, in 
which case, decision-action diagrams are typically used (DoD 1999, §8.3.8 and Chapanis 1996, 
Ch. 4). 
 
Flow Process Charts, also known as Job Process Charts, are basically plots of a sequence of 
activities usually with a corresponding time scale (DoD 1999, §8.3.7). Flow chart type symbols 
are used to represent the different task elements of a particular function (Stammers, et. al, 1990). 
Flow Process Charts provide a means to represent and analyze a function at any hierarchical 
level with added detail. Stammers, et al. and the DoD describe the advantages of using Flow 
Process Charts to model human-computer interactions (e.g., operator station). Figure 17 shows a 
segment of a Flow Process Chart. 
 

 
Figure 17: Flow Process Chart (sample) (DoD 1999, §8.3.7.1). 

 
Although Hierarchical Task Analysis shares the same objective as FFBDs and Flow Process 
Charts, the main difference is that, unlike other charting methods, it does not necessarily show 
the order in which functions are carried out. Rather, it portrays the relationships between 
functions (DoD 1999, §8.3.11.1.4). In a hierarchical approach, a function is analyzed by breaking 
it into sub-functions, which become increasingly detailed as the hierarchy progresses (Stammers, 
et. al, 1990). Verb-noun phrases are used to describe each function and interfaces between 
functions are identified and may be captured in what Stammers, et. al call “plans”, as shown in 
Figure 18. 
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Figure 18: Example from a hierarchical task analysis (Stammers, et. al, 1990). 

 
A more detailed version of this method has been formally defined as Integrated Definition for 
Functional Modeling (IDEF0) (DoD 1999, §8.3.11.1). IDEF0 is a formally defined language for 
modeling systems by creating a series of interrelated parent-child diagrams that describe the 
functions and the relationships (e.g., inputs, outputs, controls, and mechanisms) between 
functions. Figure 19 illustrates this functional decomposition through parent-child diagrams. 
 

 
Figure 19: System decomposition using multiple IDEF0 graphs (DoD 1999, §8.3.11.1.4). 
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Inputs: System (high-level) functions, functional interfaces, system requirements, concept 
documents, functions analyzed by TAKD, knowledge description grammar sentences. 
 
Outputs: Functional architecture, derived/decomposed functions, system element (detailed) 
requirements (including performance specifications), interface requirements. 
 
6.3.1.3 Timeline Analysis 
 
Method Objective: Verify that temporal relationships among functions are compatible, facilitate 
workload evaluation, and provide early personnel estimates. 
 
Approach: Plot sequences of functions and their respective durations on a timeline. The DoD 
states that if time data from a previous system is not available, then using a predetermined time 
standard is recommended (DoD 1999, §8.3.10.2). Charts and graphs are used to visually identify 
potential sequencing problems or show overlapping activities (functions) (Chapanis 1996, Ch. 4). 
Timeline analysis may also serve as a complement to Functional Analysis by mapping time 
durations to functions, and Functional Analysis may also provide information on potential 
conflicts as they relate to sequencing of functions (DoD 1999, §8.3.10.4). Figure 20 shows a 
sample timeline plot. 
 

 
Figure 20: Timeline plot (sample) (DoD 1999, §8.3.10.2). 

 
Inputs: Data from task analyses including Functional Analysis (e.g., function durations, 
sequencing of functions). 
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Outputs: Timeline plots, temporal relationships among functions, sequencing incompatibilities. 
 
6.3.1.4 Simulation 
 
Method Objective: Predict the performance of the system-of-interest, evaluate alternative 
architectures, and generate requirements for system “-ilities”. 
 
Approach: Prepare models or mockups that evaluate system functions and multiple functional 
architectures against performance measures. Chapanis (1996) explains that during preliminary 
design (architectural design), simulations may also be used to identify design requirements for 
ease of maintenance, develop preliminary specifications (functions) for equipment operability 
and maintainability, or allow users to experience and receive training on systems that are 
complex, dangerous, or expensive. Simulations may also provide more detailed and accurate 
estimates of task overlap or times needed for the execution of long sequences with multiple 
subtasks, which may serve as inputs to Timeline Analysis (DoD 1999, 8.3.10.4).  
 
Inputs: Functions, operating procedures, hardware and software to run simulations. 
 
Outputs: Simulated predictions about performance, evaluations of alternative configurations, 
and evaluations of operating procedures. 
 
6.3.1.5 Action/Information Analysis 
 
Method Objective: Elaborate the system functions to help facilitate functional allocation and 
allocation trade studies. 
 
Approach: Both Chapanis (1996) and the DoD (1999) indicate that this method should be 
implemented after Functional Analysis, but prior to the allocation of functions, which occurs 
during Physical Architecting (Vee-model Step Four). Using a tabular format, create a list of 
functions and for each function identify and describe the specific actions necessary to perform 
that function, information requirements, sources of information, potential problems, error-
inducing features and any other relevant commentary. Figure 21 depicts a sample table based on 
Action/Information Analysis. 
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Figure 21: Example of an Action-Information Analysis: Filling an Automobile Gas Tank 

(Chapanis, 1996, Ch. 4). 
 
Additional columns may be added if more detail is desired for the preparation of allocation 
trades (DoD 1999, §8.3.9.2). In particular, Action/Information Analysis may help highlight 
requirements for operator-system interfaces, necessary personnel provisions, and support 
requirements (Chapanis 1996, Ch. 4).  
 
Inputs: Functions and data from Functional Analysis, comments and data from knowledgeable 
experts. 
 
Outputs: Detailed list of action and information requirements, personnel and support 
requirements, potential problems, and probable solutions. 
 
 
6.3.1.6 Operational Sequence Diagram (OSD) 
 
Method Objective: Determine the functional relationships and interactions among system 
elements (e.g., flow of materials/information, I/O, potential sources of human-system 
difficulties). 
 
Approach: Develop a graphic representation of operator tasks as they relate sequentially to both 
equipment and other operators. According to Chapanis (1996), an OSD is a time-based chart 
with special symbology that combines events, information, actions, decisions, and data. OSDs 
retain the same basic attributes as Flow Process Charts, but additionally show the flow of 
information/material through a system and the interactions among stakeholders and/or 
subsystems that facilitate this flow (DoD 1999, §8.3.6.1). The DoD (1999, §8.3.6.4) also 
references a similar method, Functional Sequence Diagram, that may be easier to construct, but 
does not provide as much useful information as the OSD. Figure 22 depicts a sample OSD. 
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Figure 22: Operational Sequence Diagram (sample) (DoD 1999, §8.3.6.2). 

 
Inputs: System (high-level) functions, functional interfaces, scenarios, timelines, and data from 
task analyses including Functional Analysis (e.g., FFBDs, decision/action diagrams). 
 
Outputs: Time-based chart (OSD) showing functional relationships, flow of 
materials/information, physical and sequential distribution of operations, I/O, consequences of 
alternative design configurations, and potential sources of human-system difficulties (Chapanis 
1996, Ch. 4).  
 
6.3.2 Unique Methods Summary 
 
Although some aspects of these HSI methods are already identified in the SE process (e.g., 
FFBD, see §6.2.2), most of them have unique human factors considerations that should be 
integrated within Architectural Design (Functional Architecting) step.  
 
As Stammers, et al. (1990) point out, since systems have become increasingly complex and more 
highly automated, the role of the human has moved away from the physical ‘hands on’ approach, 
involving more and more complex cognitive processing. As a result, newer systems must take 
into account the abstracted functions in order to adequately document the cognitive components 
of tasks. Task Analysis for Knowledge Description provides a method for accomplishing this and 
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enables the systems engineer to build an architecture that is implementation-agnostic, or as 
INCOSE terms it, a consistent logical architecture.1 
 
Timeline Analysis does not appear to be captured within the SE process, but may useful in 
supplementing Functional Analysis. Specifically, time durations could be added to functions and 
through a timeline plot, potential sequencing problems may be identified.  
 
Although according to the SE process each system architecture option should include a 
description of the salient features and parameter values of the system elements, it does not go 
into the level of detail described in the Action/Information Analysis method. As a subsequent 
activity to Functional Analysis, this method could prove beneficial in allocating functions to a 
physical architecture (Vee-model Step 4), by identifying the specific actions and related 
information elements for functions. 
 
The general principles and methods of Functional Analysis (as defined by these HSI methods) 
are already captured by the SE process. For instance, INCOSE recognizes system hierarchy (i.e., 
HTA), FFBDs, and IDEF0 diagrams as relevant tools for constructing and evaluating system 
architectures2 and identifies the Object-Oriented Systems Engineering Method (OOSEM) and 
SysML (which may include forms of HTA, FFBDs, and Flow Process Charts) as useful 
techniques for deriving a logical architecture. 3 However, there are some instances where the 
author calls out how a method is useful in integrating human factors (e.g., Flow Process Charts 
are used to model human-computer interactions). Similarly, Simulation is accounted for in the 
SE process and is discussed at length in the INCOSE SE Handbook4, although it is highlighted 
that it facilitates life-like training for users and helps to determine functions for equipment 
operability and maintainability. Operational Sequence Diagrams is another example of a method 
generally accounted for in the SE process (i.e., its use in OOSEM and SysML), but emphasized 
through the lens of HSI.  
 
The HSI methods mapped to this step in the Vee-model clearly have more potential impact for 
enhancing the SE process, at least more so than the previous two steps, which may also indicate 
an increased level of effort expended in this step. If this is the case, this may show that HSI 
involvement and the corresponding effort to integrate human factors within the systems 
development begins to increase as the project transitions from the Concept to Development 
within the system lifecycle.  
 
6.3.3 Models-Based Systems Engineering Support 
 
6.3.3.1 MBSE Functional Architectures Summary 
 
A key step in the system design process, functional (and, for object-oriented methods, logical) 
architecting serve to define a “white box” view of the system (Beck, 2011). Specifically, 

                                                 
1 INCOSE SE Handbook v 3.2.2, §4.3.1.5 
2 INCOSE SE Handbook v 3.2.2, §4.3.2.4 
3 INCOSE SE Handbook v 3.2.2, §4.3.1.5 
4 INCOSE SE Handbook v 3.2.2, §4.12.1 
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structured and object-oriented analyses are performed to identify and describe system functions, 
how they relate to each other, and under what circumstances they must be performed, both 
operational and environmental. Beck (2011) suggests that the best functional architectures are 
technology agnostic (i.e., they do not address how functions will be performed), thereby leaving 
physical architecture trade spaces unbiased. 
 
Based on the elaborated context diagram, system scenarios, and system technical requirements 
identified in the previous step, a functional hierarchy can be developed. In order to capture all 
relevant functions, this activity is two-fold: 1) decompose system functions (a top-down 
activity); and 2) compose system functions from sub-system scenarios (a bottom-up activity).  
 
Decomposition typically begins by partitioning the top-level functions from the system ECD into 
second-level functions, and repeated recursively to develop functions for the third-level, fourth-
level, etc. The level of granularity will depend on the amount of detail available from the 
scenarios. In SysML, a functional hierarchy is captured using a block definition diagram (bdd) in 
the form of an inverted “tree” structure. An example bdd are other SysML diagrams related to 
this Vee-model step are provided in Appendix B and C and will be referenced when appropriate 
throughout this section. 
 
Beck (2011) notes that while the decomposition procedure is somewhat unguided, a partitioning 
scheme1 can be applied as outline below. Functions should be identified to: 

• interface with each external system  
• receive (e.g., format) each system input  
• produce each system output  
• control the system  
• provide required system support services (e.g., manage data, communications, faults) 

 
It should also be noted that each function is identified with verb-noun pair and should be at the 
same level of abstraction as its parent function. 
 
Composition (bottom-up structuring) uses detailed scenarios (usually one that elaborates an 
activity from the system scenarios) to identify functions. The traditional way to construct these 
scenarios is through a network diagram, however current MBSE practices would capture these as 
SysML activity diagrams (act), as shown in Appendix B. These functions are then organized into 
higher-level functions based on their attributes and this process is repeated successively until a 
hierarchy is formed from bottom to top. Beck (2011) strongly recommends composition when 
the system is unprecedented or represents a radical departure from an existing system, although it 
may be used to augment decomposition as a means to help assure completeness. 
 
Once a functional hierarchy has been developed, the sequential relationships between functions 
are identified, typically using a method such as FFBD or IDEF0. In SysML, functional flow 
diagrams may also be represented in activity diagrams, as shown in Appendix B. After defining 
the sequencing of functions, interfaces are then identified. N2 diagrams, similar to those depicted 

                                                 
1 Adapted from Hatley, D. J., and I. A. Pirbhai, Strategies for Real-Time System Specification, 
Dorset House, New York, 1988. 
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in Figure 23, are used to record these interfaces and highlight where potential regroupings may 
facilitate more effective system partitioning.  
 

 
Figure 23: N2 diagram features (NASA, 1995). 

 
Although the OMG SysML specification does not define any table or matrix modeling construct 
similar to the N2 diagram, Beck (2011) recommends mimicking similar pair-wise queries on an 
activity diagram, as shown in Figure 24. 
 

 
Figure 24: Example SysML diagram comparable to N2 diagram (adapted from OMG, 2006). 
 
After the functions and interfaces are identified, system technical requirements (e.g., functional, 
performance, I/O) are allocated to the associated functions. Requirements allocated to the first 
level of the hierarchy are decomposed and allocated to the appropriate sub-functions until all 
functions are linked to required behavior (Beck, 2011). Once the system requirements have been 
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mapped to functions, they are analyzed through the use of various modeling or simulation 
techniques. Beck (2011) suggests that at a minimum it is generally considered necessary to 
define a functional timeline for the system in order to, for example, identify time-critical design 
requirements. This type of information could also be captured in a SysML sequence diagram 
(sd). Other types of evaluation methods may include the Petri net mathematical modeling 
language (for systems with complex interactions), Business Process Modeling Notation (BPMN), 
or Event-driven Process Chain (EPC). Most importantly, the results of these analyses must be 
used to update the system requirements. 
 
Although the functional architecture has been defined, there are some limitations to the 
structured analysis described above. Specifically, it does not address the management of system 
parameters (e.g., storage and passing or flow of data), nor does it account for the allocation of 
non-functional requirements. Beck (2011) states that while this may not be an issue for systems 
with a smaller functional hierarchy and simple flows, the problem can become unwieldy as 
functional structure size and complexity grows – especially in understanding and managing the 
impact of system requirements or design changes.  
 
To alleviate this problem, object-oriented analysis (OOA) is used to develop a logical 
architecture, which combines the system operations and attributes (i.e., parameter statements) 
into “objects”, or logical components. Essentially, functions, flows, and controls are 
repartitioned into a logical architecture that remains technology agnostic and therefore maintains 
an appropriate level of abstraction. An example logical hierarchy is depicted in Figure 25. 
 

 
Figure 25: Example logical hierarchy (INCOSE, 2006). 
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Estefan (2008, §3.2.1) states that developing a logical architecture mitigates requirements 
changes on the system design and helps to manage technology changes. Another advantage to 
using a logical architecture is that it helps to reduce the set of criteria to consider when 
evaluating the physical solution space (e.g., physical architecture) by ruling out potential 
physical architectural alternatives based on basic partitioning criteria applied to the logical 
architecture.  
 
Partitioning criteria used to help group functions together at some level in a logical hierarchy 
include modularity (i.e., maximize cohesion and minimize coupling), similarity (i.e., related 
functions), changeability (i.e., functions that have a high likelihood of changing), and constraints 
(i.e., functions that share common constraints). Similar to the structured analysis, the logical 
hierarchy may be developed via decomposition (i.e., allocating functions to logical components, 
working from top down) and/or composition (i.e., assign a one-for-one logical element to each 
leaf-level function, then group them based on the partitioning criteria). Interface diagrams are 
updated by adding “swim lanes” that allocate functions to logical components, as shown in 
Figure 26.  
 

 
Figure 26: Example logical interface diagram (INCOSE, 2006). 

 
Once these logical diagrams have been developed, requirements allocated to the functional 
architecture are now allocated to the appropriate (function performing) logical components and 
should include the following types: functional, performance, I/O, control, store, and design 
constraints. (Beck, 2011). Logical flows are then analyzed through timeline analyses via 
sequence diagrams and additional modeling and simulation may be used to evaluate system 
parameters. The results of these analyses will then be used to update the system requirements. 
 
6.3.3.2 Evaluation of HSI Methods Against MBSE 
 
6.3.3.2.1 Task Analysis for Knowledge Description 



59 

 
Given that the architectures developed in this step, both functional and logical, should be 
technology agnostic and therefore have a certain level of abstraction, TAKD would serve as an 
excellent method for defining functions and/or logical components. The structure of the 
knowledge representation grammar sentence closely resembles object-oriented analysis in that 
functions (operations) are grouped with objects (attributes) upon which they can act. In fact, 
these grammar sentences may even serve to define the components in the logical architecture. 
Moreover, Task Action Grammar would be a useful starting point to N2 diagramming by 
providing a list of functions and their associated features, helping to describe potential interfaces. 
 
6.3.3.2.2 Functional Analysis 
 
As stated previously, this method does not offer anything new to the SE process, nor does it 
identify a method that is not already captured by MBSE. However, the strong similarities 
between the activities within this HSI method and those described in this MBSE step indicate 
that a models-based approach to systems development may more effectively take into account 
human factors than the “classical” SE process. For example, Hierarchical Task Analysis, 
FFBDs/IDEF0 diagrams, and Flow Process Charts are key activities within MBSE and can be 
modeled using SysML diagrams (e.g., block definition diagram for HTA, activity diagram for 
FFBDs/IDEF0 diagrams and Flow Process Charts). With these methods already incorporated to 
MBSE, successful integration of human factors within this activity merely becomes a matter of 
the level of HSI emphasis within the project.  
 
6.3.3.2.3 Timeline Analysis 
 
Although this method was not accounted for in the SE process, it is identified as one of the most 
important analyses in the MBSE Functional Architectures Step. In addition to identifying time-
critical design requirements, Timeline Analysis helps to ensure that functional sequencing is 
correct and, with regards to human factors, facilitates workload evaluation and provides early 
personnel estimates. 
 
6.3.3.2.4 Simulation 
 
Like Functional Analysis, this method is already described within MBSE. For example, 
simulation, through various tools, may be used to evaluate system parameters, which may help 
identify or update performance requirements. Given its existing integration within MBSE, 
simulations focused on operability and maintainability should be emphasized. 
 
6.3.3.2.5 Action/Information Analysis 
 
This method would be probably most useful in identifying how the functional architecture should 
allocate to the logical architecture. Specifically, actions and information requirements identified 
through this HSI method could be incorporated into the partitioning criteria used to group 
functions within the logical hierarchy.  
 
6.3.3.2.6 Operational Sequence Diagram 
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Although this method is described in this MBSE step as useful for diagramming timeline 
analyses, its application in determining the functional relationships and interactions among 
system elements is not adequately covered. Additional OSD-based analyses that include detailed 
information about events, actions, and decisions related to operator-equipment or operator-
operator interactions would be beneficial in identifying functional relationships and interactions 
among logical components. OSDs may also help define partitioning criteria, clarifying how 
functions should be mapped to logical components. 
 
6.3.4 Models-Based Systems Engineering Support Summary 
 
While some of these HSI methods have been accounted for within MBSE, the majority offer 
important enhancements: 

1. Use TAKD to: 
a. Define (abstracted) functions; 
b. Use knowledge representation grammar sentences to define logical components; 
c. Develop a list of functions via the TAG method to identify potential interfaces 

within the N2 diagram. 
2. Given the existing integration of Functional Analysis within MBSE, place additional 

emphasis on human factors considerations. 
3. Use Timeline Analysis to: 

a. Identify time-critical design requirements; 
b. Verify that the temporal relationships among functions are compatible; 
c. Facilitate workload evaluation and provide early personnel estimates. 

4. Focus on operability, maintainability, and other human factors non-functional 
requirements during simulations. 

5. Use Action/Information Analysis to help define partitioning criteria while allocating 
functions to the logical architecture. 

6. Use Operational Sequence Diagrams to: 
a. Identify functional relationships and interactions among logical components; 
b. Define partitioning criteria (i.e., how functions should be mapped to logical 

components). 
 
Based on the fact that the HSI methods identified use several of the modeling tools used in 
MBSE, human factors can be more effectively integrated into systems development when MBSE 
is implemented when compared to the “classical” SE process. 
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6.4. Architectural Design: Physical Architecting 
 
As stated in the previous section, although Architectural Design has been decomposed into 
Functional Architecting and Physical Architecting in this paper, it is summarized as one step to 
maintain consistency with ISO/IEC 15288 and the INCOSE SE Handbook. For a summary of the 
Architectural Design process, please refer to §6.3. A detailed description of Physical 
Architecting is provided in the subsequent MBSE section.  
 
Based on the mapping analysis, twenty-one methods were identified as applicable to Physical 
Architecting (see Table 4 for a comparison matrix).  
 

Table 4: Vee-model Step Four: HSI Methods Comparison 

 
 

Same  
Different  
McKneely, et al., 2006  
Stanton, et al., 2012  
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Chapanis, 1996  
Sanders and McCormick, 
1993  

DoD, 1999  
 
After comparative analysis, four unique methods were identified: 1) Function Allocation 2) Task 
Description and Analysis; 3) Performance, Workload and Manning Level Estimation; and 3A) 
Failure Analysis (a sub-method for determining performance impacts). 
 
The methods in this step are sequential, beginning with the Function Allocation, then Task 
Description and Analysis, and finally Performance, Workload, and Manning Level Estimation, 
which includes Failure Analysis. As shown in Figure 27, these methods are also iterative 
(Sanders and McCormick 1993, Ch.22) to the extent that the results of the latter three methods 
necessitate a change in the allocation of functions. 

 
Figure 27: Vee-Model Step Four HSI Methods 

 
6.4.1 Unique Methods 
 
6.4.1.1 Function Allocation 
 
Method Objective:  Assign each system function, action, and decision to hardware, software, or 
humanware such that the resulting physical configuration maximizes total system performance 
and effectiveness. 
 
Approach: Allocate each system function to a physical component (e.g., hardware, software, 
humanware). Although allocation decisions may be predetermined by constraints established 
during Mission Analysis and Requirements Analysis (McNeely, et. al 2006), also known as 
Mandatory Allocation (Sanders and McCormick 1993, Ch. 22) they are typically determined by 
comparing alterative configurations in terms of their effectiveness in performing a given function 
(Chapanis 1996, Ch. 4). There are many techniques for making allocation decisions. Sanders and 
McCormick list a few (1993, Ch. 22, A Strategy for Allocating Functions), one of which defines 
a “decision space” as an aid in making allocation decisions (see Figure 28). 
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Figure 28: Human-Machine Allocation Decision Space (Sanders and McCormick 1993, Ch. 

22) 
 
The DoD identifies other techniques including trial-and-error, Fitts lists, and design evaluation 
matrix (DoD 1999, §8.3.12.1). Chapanis (1996, Ch. 4) recommends establishing weighting 
criteria for comparing physical configurations and using a simple rating scheme for making 
allocation decisions. While these techniques are helpful, they can be dated and must be used 
judiciously (McNeely, et. al 2006). Sanders and McCormick (1993, Ch. 22) point out a number 
of limitations in using such comparisons, such as the rapid evolution of machines relative to 
humans, the inability to account for costs related to allocation decisions, and the lack of 
consideration of social, cultural, or political issues. Dynamic allocation may also be used, in 
which allocation decisions are made real-time by the operator (e.g., autopilot on aircraft and 
cruise control in automobiles) (Sanders and McCormick 1993, Ch. 22). Finally, the impact of 
allocation decisions on total system performance is assessed. For any allocations that have a 
significant negative effect on performance, an alternative allocation should be determined 
(Stanton, et. al, 2012). Likewise, results from the three subsequent methods of this step are used 
to reallocate functions as necessary.  
 
Inputs: Functional architecture, functional flow analyses, technical basis reports, known human 
capabilities and limitations, task analysis results, and performance, workload and manning level 
estimations. 
 
Outputs: Physical architecture, and allocation justifications including evaluation matrices, 
weighted comparisons, Fitts lists, etc. 
 
6.4.1.2 Task Description and Analysis 
 
Method Objective: Record and analyze how the human interacts with the system.  
 
Approach: List and describe all tasks, subdividing tasks into subtasks, and record related 
supplementary information. At a minimum details should be provided for: information 
requirements; evaluations and decisions that must be made; task times; operator actions; and 
environmental conditions (Chapanis 1996, Ch. 4). McNeely, et al. (2006) provide a similar list: 
task cues, user decision/action, information required to support the decision/action, and 
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mechanisms to implement the results of the decision/action. The DoD (1999, §8.3.2.3) 
recommends analyzing tasks that are: potentially hazardous; time consuming; difficult; show 
potential for improvement; or required by the procuring activity. Human-machine interactions 
are articulated (McNeely, et al., 2006) and are often reflected in an operational sequence 
diagram1 (Sander and McCormick 1993, Ch. 22). 
 
Inputs: Physical architecture, allocation justifications, and expert opinion from users of similar 
systems. 
 
Outputs: Ordered list of human-specific tasks including supplementary information. 
 
6.4.1.3 Performance, Workload and Manning Level Estimation 
 
Method Objective: Assess workloads and related manning and training requirements in order to 
predict and optimize system performance. 
 
Approach: Determine human performance requirements for each function/task if not previously 
identified. These may include required accuracy, speed, or time necessary to develop 
performance proficiency and user satisfaction (Sanders and McCormick 1993, Ch. 22). Next, 
appraise operator task loadings. These are typically calculated by estimating the time required to 
perform a task, divided by the time available or allotted to perform it (Chapanis 1996, Ch. 4). A 
workload profile, as depicted in Figure 29, may be used to highlight unbalanced workload 
distributions (DoD 1999, §8.3.13.1). 
 

 
Figure 29: Workload analysis profile (sample) (DoD 1999, §8.3.13.1). 

                                                 
1 See §6.3.1.6 for an overview of Operational Sequence Diagram (OSD). 
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Estimates of manning (personnel) and training requirements are also determined, typically by 
direct observation when a precedent system exists. Chapanis (1996, Ch. 4) refers to this as 
Activity Analysis, which may yield other important information such as assessments of stress 
levels and indications where changes in procedure would improve performance. Simulation and 
controlled experimentation provide mechanisms for assessment of system performance with the 
defined human role (McNeely, et al., 2006). Simulations may also help evaluate alternative 
configurations, evaluate operating procedures, provide training, and identify mismatches 
between personnel and equipment (Chapanis 1996, Ch. 4). Controlled experimentations help 
define relationships or correlations between variables as well as differences between alternative 
configurations, procedures, or environments (Chapanis 1996, Ch. 4). These estimates are then 
evaluated against the performance requirements. If workload and manning estimates are within 
acceptable performance limits, hardware and software detailed design may begin. If workload 
overloads/underloads exist or if manning levels are disproportionate, reallocation of functions is 
necessary to meet required performance levels. 
 
Inputs: MOPs, task time/frequency/precision data, and expert opinion from users of similar 
systems. 
 
Outputs: Workload/manning/training estimates, workload profiles, performance evaluation data, 
and areas that require reallocation.  
 
6.4.1.3.1 Failure Analysis 
 
Method Objective: Predict human errors and determine the resulting impacts to system 
performance. 
 
Approach: This method is comprised of two ‘sub-methods’, Fault Tree Analysis and Failure 
Modes and Effects Analysis (FMEA). Although different in their respective approaches, they both 
focus on anticipating operator/maintainer mistakes with the aim of designing against those 
mistakes for the system-of-interest. Specifically, Fault Tree Analysis begins with an undesirable 
event or failure and attempts to determine those combinations of events and circumstances that 
could lead to it (Chapanis 1996, Ch. 4). As shown in Figure 30, probabilities of various 
undesirable events and the sequences that would produce those undesirable events are depicted 
in a tree-like structure.  
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Figure 30:  Fault tree (sample) (Chapanis 1996, Ch. 4). 

 
Conversely, FMEA begins with components (e.g., human operator) and deduces the 
consequences of a failure in one or more of those components (Chapanis 1996, Ch. 4). A list of 
human failures that have major impacts on system performance is produced along with the 
probabilities of failure occurrence. Based on this information reallocation decisions are made to 
reduce the probability of serious system failures. 
 
Inputs: Results from task analyses, functional flow analyses, action/information analyses, and 
human reliability data. 
 
Outputs: Probabilities of undesirable events and system failures due to human errors and areas 
that require reallocation. 
 
6.4.2 Unique Methods Summary 
 
While the general concepts of these HSI methods are touched upon within the SE process, it does 
not go into the same level of detail necessary for integrating human factors within the systems 
development. 
 
Although the SE process describes allocating functions to a physical architecture and notes the 
importance of taking human factors into account.1, it does not provide the same level of detail as 
the Function Allocation method. Since allocation decisions made in this step will determine how 
the human interacts with the system, this HSI method should be integrated into the SE process. 
The HSI sources related to this method offer various approaches and tools that can help the 
systems engineer make informed allocation decisions while providing supporting documentation 
(e.g., decision space chart, evaluation matrix, ‘Fitts’ list) that may serve as a basis for selection 
justification. These artifacts are also crucial in the feedback loops between these HSI methods, 

                                                 
1 ISO/IEC 15288:2002, §5.5.4.3 d) 
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which the SE process describes as necessary in order to ensure proper allocation, requirements 
satisfaction, and manufacturing compliance (INCOSE SE Handbook v.3.2.2, §4.3.2.8).  
 
The activities related to Task Description and Analysis are identified within the SE process, 
although described more generally.1 The advantage of this HSI method is that it focuses on 
human tasks and analyzes how the human interacts with the system. However, it should be noted 
that INCOSE makes reference to task analyses and their importance in understanding human 
capabilities.2 That being said, specific techniques, such as those described in Task Description 
and Analysis provide needed detail about how to conduct these analyses. 
 
While the SE process identifies3 key activities within Performance, Workload and Manning 
Level Estimation, such as establishing performance requirements and evaluating design solutions 
against these requirements, it does not offer a specific method for doing this. In addition, the HSI 
method provides multiple ways for assessing humanware allocations to ensure workload and 
manning levels are not disproportionate, whereas the SE process does not address this. 
 
The sub-methods described in Failure Analysis are typically used by safety engineers for 
evaluating system errors and therefore are described within the SE process. For example, 
INCOSE dedicates a section to elaborating Failure Modes and Effects Analysis (FMEA).4 
However, since the Failure Analysis method as described herein adapts these methods to deal 
specifically with human errors, it would be beneficial to consider these sub-methods as defined 
by HSI during system development. 
 
The HSI methods mapped to Physical Architecting focus on one of the most important aspects to 
HSI: defining and evaluating how the human interacts with the system.  Similar to the previous 
step, Functional Architecting, there is an increased level of effort in analyzing and evaluating 
human factors within the system, especially due to the iterative nature of reallocating functions. 
As the life cycle continues to progress through development, it is crucial to ensure that sufficient 
human factors analyses are conducted and incorporated into the physical architecture prior to 
Implementation activities in order to avoid failures across human-machine interfaces, resulting in 
costly changes. 
 
6.4.3 Models-Based Systems Engineering Support 
 
6.4.3.1 MBSE Physical Architectures Summary 
 
After structured and object-oriented analyses have been conducted to produce both functional 
and logical architectures, the next step is to define one or more physical architectures to which 
functions or logical components will be allocated. Based on technical screening criteria, physical 
architecture alternatives are down-selected for further analysis. These alternatives should also 
explore various component technologies, which will be used to conduct trade studies. Physics-

                                                 
1 INCOSE SE Handbook v.3.2.2, §4.3.2.3 
2 INCOSE SE Handbook v.3.2.2, §9.12.2.1 
3 ISO/IEC 15288:2002, §5.5.4.3 f) 
4 INCOSE SE Handbook v.3.2.2, §9.1.2.1 
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based models are then used to evaluate the remaining architectures and serve as a means to 
conduct performance-based evaluations to help make a final selection. 
 
Prior to allocating functions to the physical architecture, partitioning criteria, from which 
functions will be grouped, must be defined (Beck, 2011). These may include: 
 

• COTS, reuse, and other design constraints 
• Physical or environmental 
• Safety and security 
• Subcontractor or development responsibility. 

 
Once the portioning criteria have been established, a generic physical hierarchy (GPA) is 
developed. Beck (2011) intends generic to mean that the partitioning is made without any 
specification of the performance characteristics of the physical resources that comprise each 
element. For every logical (or functional) architecture, a generic physical architecture is defined, 
usually by decomposition or composition. Figure 31 shows an example GPA. 
 

 
Figure 31: Generic physical architecture (sample) (Weirich, 1999). 

 
With the GPA defined, all functions or logical components, including system design constraints, 
are allocated to each element (node) within the GPA, producing one-to-one or one-to-many 
relationships. For each leaf node within the hierarchy, different solutions that are likely to satisfy 
the allocated requirements are generated. Beck (2011) notes that by identifying a relatively large, 
creative number of options, there is a greater chance that the best alternatives will be considered 
in the final analysis. These options are documented in Technical Basis Reports (TBRs). 
 
The list of component alternatives and the GPA are then combined to form what Beck (2011) 
calls instantiated physical architectures. These architecture instantiations identify how specific 
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technologies are used to implement the system, and are frequently represented using two 
techniques: the morphological box and the trade tree.  
 
A morphological analysis (MA) divides a problem into segments and identified at least two 
solutions for each segment (Beck, 2011). This is typically portrayed as a table with the columns 
representing the problem segments (e.g., components of the GPA) and the rows filled with the 
alternate specific instantiations for each component, as shown in Table 5. The total number of 
alternatives is given by multiplying the number of options in each column (e.g., using the table 
below, there are 2x5x4x4x2=320 possible hammers defined). 
 
 

Table 5: Morphological Box for Hammer (Beck, 2011). 
 

Handle Size  
 

Handle 
Material  

 

Striking 
Element  

 

Weight of 
Hammer 
Head  

 

Nail Removal 
Element  

 

8 inches  
 

Fiberglass  
 

1-‐inch-‐ 
 

12 oz.  
 

Steel claw at  
 with rubber  diameter flat   nearly a  
 grip  steel   straight angle  
 

22 inches  
 

Graphite with  
 

1-‐inch-‐ 
 

16 oz.  
 

Steel claw at a  
 rubber grip  diameter   60-‐degree  
  grooved steel   angle with  
    handle  
 

  
 

Steel with  
 

1.25-‐inch-‐ 
 

20 oz.  
 

  
 rubber grip  diameter flat    
  steel    
 

  
 

Steel I-‐beam  
 

1.25-‐inch-‐ 
 

24 oz.  
 

  
 encased in  diameter    
 plastic with  grooved steel    
 rubber grip     
 

  
 

Wood  
 

  
 

  
 

  
 
A trade tree uses a hierarchy structure, in which each branch level represents a problem segment 
and each node on that branch represents a proposed segment solution (Beck, 2011). Each line 
through the root rode to leaf node represents an alternative, with the total number of alternatives 
given by the number of leaf nodes, as shown in Figure 32. 
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Figure 32: Trade tree for NASA Manned Mars Mission (adapted from Guerra, 2008). 

 
Once a set of alternatives has been identified, the next step is to begin the down-selection 
process. Eliminating infeasible alternatives (e.g., those that have incompatible technologies) 
should be the first activity in this process. Beck (2011) recommends conducting pairwise 
comparisons between all component alternatives similar to those used in an upper triangular 
matrix or a Quality Function Deployment correlation matrix. Within a trade tree, branches may 
be “pruned” to eliminate non-workable solutions. In addition, a preliminary screening should be 
conducted to help narrow down the set of alternatives even further before developing models, 
which require extensive resources to generate and analyze. Examples of technical screening 
criteria include: technical maturity, similarity of alternatives, flexibility, reliability, etc. 
 
The output of these activities should be a small set of instantiated physical architectures. Each 
alternative is formally documented in the form of either a Technical Description Document 
(TDD) or model-based concept description, either of which should be used as living documents. 
Beck (2011) explains that TDDs will usually include graphical representations of the physical 
architectures they describe, as shown in Figure 33. In SysML, these diagrams may be captured in 
block definition diagrams (bdd) that depict system hierarchy, internal block diagrams (ibd) that 
depict interfaces, and sequence diagrams (sd) to depict scenarios. At this point, component-level 
requirements should be documented and trace to the system-level requirements. 
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Figure 33: Physical architecture represented in a block diagram (Guerra, 2008). 

 
The final step in developing physical architectures is to generate physics-based models that 
measure the effectiveness of the alternatives. Beck (2011) asserts that these models form the 
“backbone” for assessing each physical architectures performance against system requirements 
after suitable component-level models are developed (completed in later steps of the Vee-
model). 
 
6.4.3.2 Evaluation of HSI Methods Against MBSE 
 
6.4.3.2.1 Function Allocation 
 
Although this MBSE step describes allocation as a necessary activity in developing physical 
architectures, it does not provide the level of detail elaborated in the Function Allocation method. 
Specifically, by integrating this HSI method into MBSE, the systems engineer would have 
multiple approaches available for allocating functions or logical components to the physical 
architecture. For example, Fitts lists, design evaluation matrices, and decision space diagrams 
may be used to supplement partitioning criteria in making allocation decisions. Dynamic 
allocation may also be used, which increases architecture flexibility although may introduce 
added complexity. Moreover, since Function Allocation is clearly focused on ensuring that 
functions are appropriately allocated to the human element, integrating this HSI method into 
MBSE helps to resolve allocation decisions where, for example, a function could be performed 
by either a human or by a machine necessitating further analysis to make the proper 
determination. 
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6.4.3.2.2 Task Description and Analysis 
 
A key activity in the MBSE method is the identification of component alternatives from which 
instantiated physical architectures are developed. However, it is important to first understand, in 
detail, the allocated functions prior to exploring differing solutions that will execute those 
functions. Task Description and Analysis provides this level of detail for human-related tasks, 
which can help guide the identification of technologies with which the human must interact. This 
information should also be used to identify infeasible physical architecture alternatives (i.e., 
those that use technologies incompatible or difficult to use by humans). 
 
6.4.3.2.3 Performance, Workload and Manning Level Estimation 
 
With the potential of generating millions of possible combinations1, it becomes necessary to 
screen out physical architectures based on a set of screening criteria. Performance, Workload 
and Manning Level Estimation can be used to help define criteria based on the human-specific 
performance requirements (e.g., accuracy, speed) and constraints (e.g., task loadings, personnel 
levels), thereby ensuring that only those physical architectures “optimized” for human interaction 
make it through the screening process. The performance evaluation data generated by this HSI 
method should also be used to inform the system physical models in evaluating alternatives. 
 
6.4.3.2.4 Failure Analysis 
 
This HSI method is particularly useful when one or more physical architectures under 
consideration are based on a precedent system. Since Failure Analysis is concerned with failure 
occurrence in current physical systems, the results should be used to throughout this MBSE step. 
When identifying component alternatives, technologies known to have a high probability of 
failure could be precluded from list. Likewise, physical configurations that lead to circumstances 
or events that cause errors can be eliminated as an infeasible alternative. Finally, screening 
criteria should take into account reliability data (i.e., probability of failure) generated by this HSI 
method. 
 
6.4.4 Models-Based Systems Engineering Support Summary 
 
While there are some similarities between the HSI methods described in this step and MBSE, 
they offer distinct enhancements that should be taken into account: 

1. Use Function Allocation to: 
a. Supplement partitioning criteria to make allocation decisions; 
b. Conduct human-machine comparisons (e.g., Fitts list, decision space diagram) to 

determine proper allocations; 
c. Consider dynamic allocation, which increases architecture flexibility. 

2. Use Task Description and Analysis to: 
a. Provide details for human-related tasks, which can help identify component 

alternatives; 

                                                 
1 “For real systems there are usually millions of possible combinations, evaluation of which is 
likely intractable, making a preliminary screening necessary” (Beck, 2011). 
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b. Identify which physical architectures are infeasible due human-machine 
incompatibilities. 

3. Use Performance, Workload and Manning Level Estimation to: 
a. Define criteria to “screen out” physical architectures that do not meet human-

specific performance requirements and constraints; 
b. Generate performance evaluation data that should inform physics-based models. 

4. If one or more candidate physical architectures are based on a precedent system, use 
Failure Analysis data when:  

a. Identifying component technologies; 
b. Assessing infeasible alternatives; 
c. Generating preliminary screening criteria. 

 
Generating, synthesizing, and down-selecting physical architectures could potentially be onerous 
depending on the number of alternatives, saying nothing of attempting to incorporate human 
factors. In such cases, these HSI methods provide valuable information to help inform the 
activities of this MBSE step and ensure optimal integration of the human within the system. 
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7.  CONCLUSIONS 
 
The incorporation of human factors within systems development continues to face several 
challenges within the systems engineering domain: 1) the human factors body of knowledge 
itself is currently fragmented; 2) there is a lack of formal integration of human factors methods 
within the SE process as defined by established standards; and 3) as MBSE continues to become 
more pervasive within the SE discipline, human factors are at risk of being left behind if MBSE 
support for human factors is not identified and implemented. 
 
Human Systems Integration aims to address these problems. To accomplish this goal, the human 
factors domain must first be organized and consolidated in preparation for effective analysis and 
evaluation within the context of systems engineering. In order for human factors to be 
successfully incorporated within the systems development life cycle, HSI methods must be 
evaluated against the SE process to define what potential enhancements they offer and determine 
how they could be integrated to maximize the impact of those enhancements. Moreover, the 
same kind of evaluation must be conducted for MBSE to identify how models could be 
leveraged to represent the human element and, likewise, how HSI methods could be used to 
enhance the MBSE methodology. 
 
The goal of this paper is to accomplish these tasks by providing a framework within which HSI 
methods could be assimilated into the SE process and identify how these methods could enhance 
the MBSE methodology. The results show that, while there are some HSI methods that do not 
introduce anything unique to the SE process or MBSE, there are some that, when integrated, 
enhance both. In general, most of these enhancements pertain to architectural activities of the SE 
process: Functional Architecting and Physical Architecting. Overall, whether defining 
stakeholder requirements or defining the physical architecture, the chief point is that when 
applying any method, there should be a focused effort to incorporate human factors within the 
development activities. Using the results from this paper as a starting point, the systems engineer 
can identify which HSI methods should be applied to a project, whether using an established SE 
process only or in conjunction with the MBSE methodology. In that regard, there are strong 
similarities between the HSI methods and the MBSE methodology, such as commonality of 
approaches and tools, which would potentially lead to more effective integration. 
 
While this research may provide a stepping-stone to reaching a more complete integration of 
human factors within systems engineering and MBSE, there are several possible research 
opportunities going forward. Due to the limited scope of this paper, evaluation of the HSI 
methods mapped to the remaining Vee-model steps, Implementation through Validation, is 
needed to offer a more comprehensive approach to the integration of human factors within 
systems development. In addition, although many HSI methods were identified for this paper, 
there are still a significant number of sources within the human factors domain that remain 
untapped. Identifying the methods within these sources, organizing, and consolidating them will 
be key to enable a more effective integration within the systems engineering process. Finally, 
MBSE offers significant advantages through the use of modeling and simulation methods and 
related tools. The correlation between the human factors domain and MBSE requires further 
investigation to determine additional enhancements that HSI methods may provide to the MBSE 
methodology, with the intent of more accurately capturing the human element within systems. 
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APPENDIX A: MAPPING ANALYSIS DIAGRAMS 
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APPENDIX B:  MBSE STAKEHOLDER REQUIREMENTS DEFINITION 
 
The following set of diagrams represents some of the activities from the first step in the MBSE 
method by using SysML to model an automobile system (Friedenthal, et al., Chapter 4, 2011). 
 

 
Figure 34: Use Case Diagram (uc) of a human operating a vehicle. 
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Figure 35: High-level human-system interaction captured using a Sequence Diagram (sd). 
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Figure 36: Detailed model of human-system interaction captured using a sequence 

diagram (sd). 
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Figure 37: The Drive Vehicle use case elaborated using a State Machine (stm) diagram. 
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Figure 38: An Activity Diagram (act) with "swim lanes" distinguishes the actions 

performed by the human and those performed by the vehicle. 
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Figure 39: A contextual depiction of the vehicle's environment is captured using an 
Internal Block Definition Diagram (ibd). 
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APPENDIX C:  MBSE FUNCTIONAL ARCHITECTURES 
 

 
Figure 40: Block definition diagram (bdd) of the Automobile Domain (Friedenthal, et al., 

Chapter 4, 2011). 
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