

SANDIA REPORT
SAND2013-10742
Unlimited Release
Printed December 2013

Integrating the Human Element into the Systems
Engineering Process and MBSE Methodology

Michael S. Tadros

Prepared by Michael S. Tadros
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2013-10742
Unlimited Release

Printed December 2013

Integrating the Human Element into the Systems
Engineering Process and MBSE Methodology

Michael S. Tadros
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS0933

Abstract

In response to the challenges related to the increasing size and complexity of systems,
organizations have recognized the need to integrate human considerations in the
beginning stages of systems development. Human Systems Integration (HSI) seeks to
accomplish this objective by incorporating human factors within systems engineering
(SE) processes and methodologies, which is the focus of this paper. A representative
set of HSI methods from multiple sources are organized, analyzed, and mapped to the
systems engineering Vee-model. These methods are then consolidated and evaluated
against the SE process and Models-Based Systems Engineering (MBSE)
methodology to determine where and how they could integrate within systems
development activities in the form of specific enhancements. Overall conclusions
based on these evaluations are presented and future research areas are proposed.

4

There is no such thing as an ‘unmanned system’.

-Brigadier General Don D. Flickinger,
Director of Human Factors, USAF

5

ACKNOWLEDGMENTS

I would like to give a special thanks to my mentor, Reverend Father Symeon-Anthony (David)
Beck, who’s guidance was invaluable in completing this work and without whom I would have
never discovered systems engineering.

6

7

CONTENTS
1. Introduction ... 11

2. Methods... 13
2.1 Data Collection ... 13
2.2 Data Analysis .. 13
2.3 Standards and Tools .. 13

3. Literature Review .. 15

4. Vee-model process .. 17

5. Mapping Analysis ... 21
5.1. Scoping the Vee-model ... 21
5.2. HSI Methods Mapped to the Vee-model .. 21

6. Discussion ... 23
6.1. Stakeholder Requirements Definition ... 23

6.1.1 Unique Methods .. 25
6.1.1.1 Interviewing .. 25
6.1.1.1.1 Critical Incident Study .. 25
6.1.1.2 Reviewing ... 26
6.1.1.3 Mission Analysis ... 26

6.1.2 Unique Methods Summary ... 26
6.1.3 Models-Based Systems Engineering Support ... 27

6.1.3.1 MBSE Stakeholder Requirements Definition Summary 27
6.1.3.2 Evaluation of HSI Methods Against MBSE ... 31

6.1.4 Models-Based Systems Engineering Support Summary 32
6.2. Requirements Analysis ... 34

6.2.1 Unique Methods .. 36
6.2.1.1 Analysis of Similar Systems ... 36
6.2.1.2 Requirements Analysis ... 36
6.2.1.2.1 Functional Flow Block Diagramming .. 37

6.2.2 Unique Methods Summary ... 38
6.2.3 Models-Based Systems Engineering Support ... 39

6.2.3.1 MBSE System Technical Requirements Summary .. 39
6.2.3.2 Evaluation of HSI Methods Against MBSE ... 41

6.2.4 Models-Based Systems Engineering Support Summary 42
6.3. Architectural Design: Functional Architecting ... 44

6.3.1 Unique Methods .. 46
6.3.1.1 Task Analysis for Knowledge Description (TAKD) .. 46
6.3.1.2 Functional Analysis .. 47
6.3.1.3 Timeline Analysis ... 50
6.3.1.4 Simulation ... 51
6.3.1.5 Action/Information Analysis .. 51
6.3.1.6 Operational Sequence Diagram (OSD) ... 52

6.3.2 Unique Methods Summary ... 53
6.3.3 Models-Based Systems Engineering Support ... 54

6.3.3.1 MBSE Functional Architectures Summary .. 54

8

6.3.3.2 Evaluation of HSI Methods Against MBSE ... 58
6.3.4 Models-Based Systems Engineering Support Summary 60

6.4. Architectural Design: Physical Architecting .. 61
6.4.1 Unique Methods .. 62

6.4.1.1 Function Allocation .. 62
6.4.1.2 Task Description and Analysis ... 63
6.4.1.3 Performance, Workload and Manning Level Estimation 64
6.4.1.3.1 Failure Analysis .. 65

6.4.2 Unique Methods Summary ... 66
6.4.3 Models-Based Systems Engineering Support ... 67

6.4.3.1 MBSE Physical Architectures Summary .. 67
6.4.3.2 Evaluation of HSI Methods Against MBSE ... 71

6.4.4 Models-Based Systems Engineering Support Summary 72

7. Conclusions .. 75

8. References ... 77

Appendix A: Mapping Analysis Diagrams ... 81

Appendix B: MBSE Stakeholder Requirements Definition .. 87

Appendix C: MBSE Functional Architectures .. 93

Distribution ... 95

FIGURES

Figure 1: The Vee-model (INCOSE SE Handbook, v 3.2.2).. 17
Figure 2: Context Diagram for Stakeholder Requirements Definition Process (INCOSE SE
Handbook, v 3.2.2).. 23
Figure 3: Unique and Complimentary HSI Methods .. 25
Figure 4: Strategic context graphical example (UML or SysML use case diagram) (Beck, 2011).
... 28
Figure 5: Generic strategic context graphical example (DoDAF CV-1 diagram; in SysML use req
diagrams) (Beck, 2011). .. 28
Figure 6: A SysML Package Diagram (pkg) is used to develop simple views and viewpoints
(Friedenthal, et al., Chapter 4, 2011). ... 30
Figure 7: Context Diagram for Requirements Analysis Process (INCOSE SE Handbook, v 3.2.2)
... 34
Figure 8: Vee-Model Step Two HSI Methods .. 36
Figure 9: A zero-order functional flow block diagram (Chapanis 1996, Ch. 4). 37
Figure 10: A first-order functional flow block diagram (Chapanis 1996, Ch. 4). 38
Figure 11: Generic ECD (Beck, 2011). .. 39
Figure 12: System Scenarios vs. ECD (Beck, 2011). ... 40
Figure 13: Elaborated Context Diagram (ECD) with design constraints (Beck, 2011). 41
Figure 14: Context Diagram for Architectural Design Process (INCOSE SE Handbook, v 3.2.2)
... 44
Figure 15: Vee-Model Step Three HSI Methods .. 46
Figure 16: Third-level Functional Flow Block Diagram (DoD 1999, §8.3.5.2.3). 47

9

Figure 17: Flow Process Chart (sample) (DoD 1999, §8.3.7.1). .. 48
Figure 18: Example from a hierarchical task analysis (Stammers, et. al, 1990). 49
Figure 19: System decomposition using multiple IDEF0 graphs (DoD 1999, §8.3.11.1.4). 49
Figure 20: Timeline plot (sample) (DoD 1999, §8.3.10.2). .. 50
Figure 21: Example of an Action-Information Analysis: Filling an Automobile Gas Tank
(Chapanis, 1996, Ch. 4). ... 52
Figure 22: Operational Sequence Diagram (sample) (DoD 1999, §8.3.6.2). 53
Figure 23: N2 diagram features (Beck, 2011). .. 56
Figure 24: Example SysML diagram comparable to N2 diagram (Beck, 2011). 56
Figure 25: Example logical hierarchy (Beck, 2011). .. 57
Figure 26: Example logical interface diagram (Beck, 2011). ... 58
Figure 27: Vee-Model Step Four HSI Methods .. 62
Figure 28: Human-Machine Allocation Decision Space (Sanders and McCormick 1993, Ch. 22)
... 63
Figure 29: Workload analysis profile (sample) (DoD 1999, §8.3.13.1). 64
Figure 30: Fault tree (sample) (Chapanis 1996, Ch. 4). ... 66
Figure 31: Generic physical architecture (sample) (Beck, 2011). .. 68
Figure 32: Trade tree for NASA Manned Mars Mission (Beck, 2011). 70
Figure 33: Physical architecture represented in a block diagram (Beck, 2011). 71
Figure 34: Use Case Diagram (uc) of a human operating a vehicle. .. 87
Figure 35: High-level human-system interaction captured using a Sequence Diagram (sd). 88
Figure 36: Detailed model of human-system interaction captured using a sequence diagram (sd).
... 89
Figure 37: The Drive Vehicle use case elaborated using a State Machine (stm) diagram. 90
Figure 38: An Activity Diagram (act) with "swim lanes" distinguishes the actions performed by
the human and those performed by the vehicle. ... 91
Figure 39: A contextual depiction of the vehicle's environment is captured using an Internal
Block Definition Diagram (ibd). ... 92
Figure 40: Block definition diagram (bdd) of the Automobile Domain (Friedenthal, et al.,
Chapter 4, 2011).. 93

TABLES

Table 1: Vee-model Step One: HSI Methods Comparison ... 24
Table 2: Vee-model Step Two: HSI Methods Comparison .. 35
Table 3: Vee-model Step Three: HSI Methods Comparison .. 45
Table 4: Vee-model Step Four: HSI Methods Comparison .. 61
Table 5: Morphological Box for Hammer (Beck, 2011). ... 69

10

 NOMENCLATURE

BPMN Business Process Modeling Notation
CONOPS Concept of Operations
DoD United States Department of Defense
EPC Event-driven Process Chain
FFBD Functional Flow Block Diagram
GPA Generic Physical Architecture
HFE Human Factors Engineering
HSI Human Systems Integration
HTA Hierarchical Task Analysis
I/O Input(s)/Output(s)
INCOSE International Council on Systems Engineering
MA Morphological Analysis
MBSE Models-Based Systems Engineering
OMG Object Management Group
OOA Object-Oriented Analysis
OOSEM Object-Oriented Systems Engineering Methodology
OSD Operational Sequence Diagram
SE Systems Engineering
SME Subject Matter Expert
SRD Systems Requirements Document
SysML Systems Modeling Language
T&E Test and Evaluation
TAG Task Action Grammar
TAKD Task Analysis for Knowledge Description
TBR Technical Basis Report
TCSD Task-Centered System Design
TDD Technical Description Document
USAF United States Air Force

11

1. INTRODUCTION

In an era where the complexity and size of systems has grown exponentially, rigorous
competition has demanded the need for continuous innovation, and volatile economic climates
push organizations to produce more with less, the integration of humans within systems poses an
ever-growing challenge. The disconnect between people and technology is well documented1
and has led to several major disasters such as Three Mile Island, Chernobyl, and more recently,
an incident involving the Patriot Missile radar system in which two friendly military aircraft
were shot down.2 These examples have shown that the integration of human considerations must
begin in the early stages of the systems development life cycle and has led to multiple initiatives
by organizations3 to accomplish this objective through what is known as Human Systems
Integration (HSI).

Currently, there exist multiple definitions of HSI. According to Booher (2003) HSI is the process
of integrating people, technology, and an organization at a systems level, with full consideration
given to the human requirements of the user. More specifically, the human, together with
hardware and software, is considered an element of the system and identifies the necessary
interactions between these elements to realize successful systems. “Human” according to the
International Council on Systems Engineering (INCOSE), includes all personnel who interact
with the system in any capacity (e.g., system owners, users, operators, maintainers, etc.)
(INCOSE SE Handbook, v 3.2.2).

Although at the time not formally recognized as “HSI”, the human factors community predates
most of the more recent initiatives including the failure incidents referenced above. In his
keynote presentation at the 1957 National Symposium on Human Factors in Systems
Engineering, Brigadier General Don D. Flickinger, Director of Human Factors, USAF, stated,
“[T]he impact of man’s characteristics must be taken into account in the design of the equipment
if the system is to possess maximum probability of achieving the goal for which it was designed
in the first place” (Flickinger, 1957). While the objective of this paper is not to provide an
argument for what HSI is or why it is needed4, it should be recognized that since at least the time
Br. Gen. Flickinger gave this keynote, the HSI domain is especially interested the integration of
human factors in the design, rather than a post-solution application of human factors to the
system.

In order to successfully integrate human factors within a project development life cycle, it is
recommended that HSI take place within the context of systems engineering (SE). Given its
formal, structured approach, HSI practitioners can work within the processes and methodologies
that SE provides to ensure successful integration of the human element into systems (Muralidhar,

1 (Madni, 2009).
2 (Defense Science Board, 2005).
3 Some examples include Army MANPRINT, Navy Human Performance Center, DoD HSI
Initiative, U.S. Coast Guard HSI Program, NASA Human Factors Research and Technology
Division, Human Factors Integration Defence Technology Centre.
4 Many sources exist that discuss these topics, a few of which include: (Booher, 2003),
(Chapanis, 1996), (Sanders and McCormick, 1993), (Stammers, et. al, 1990).

12

2008). More specifically, the SE process, as defined by one or more standards, is the means by
which this is accomplished. As Burns, et al., (2005) states, a key tenet of the systems engineering
process is that system-level optimization requires trade-off analyses and integration to be
conducted within and across all system elements. Similarly, the potential payoff of HSI cannot
be realized by providing stovepipe support, but must live within the systems engineering process.

To date, there exist a large number of HSI methods1 that span a wide variety of competencies2.
While many of these methods would be beneficial for defining and analyzing human factors
during systems development, the organization of these methods into a coherent framework is
lacking. Madni (2009) asserts that the HSI domain is fragmented and the challenge for HSI
practitioners is to mature and consolidate HSI practices for “prime-time” use. In order for HSI to
be effective within the context of systems engineering, the related methods must be assimilated
to the SE process. The first objective of this paper is to provide a framework to reach this goal.

In addition to integrating HSI methods within the SE process, attention must also be given to
Models-Based Systems Engineering (MBSE). Like other engineering disciplines, such as
mechanical and electrical engineering, systems engineering is transitioning from a document-
based approach to a models-based approach (Friedenthal, et al., 2012). The application of the
MBSE approach results in improved design quality, efficient reuse of development artifacts, and
effective communications within the development team, leading to increased productivity,
quality, and reduced risk. Within the HSI context, INCOSE provides examples of such benefits,
“validated HSI modeling and simulation also can pay large dividends early in the development
process…” and, “decisions about whether or not to automate certain functions can be evaluated
with modeling and simulation to identify and reduce risk, or at least scope the types and levels of
risk involved” (INCOSE SE Handbook, v 3.2.2). Therefore, the second objective of this paper is
to identify how HSI methods could enhance the MBSE methodology to enable a more thorough
and effectual consideration of human factors.

The structure of this paper is as follows: research methods are described with a summarization of
the literature reviewed; the steps of the SE process as illustrated by the Vee-model are briefly
described; the analysis used to map the identified HSI methods to the SE process (Vee-model) is
illustrated; a discussion section is presented in which the SE process and the MBSE method are
summarized, unique HSI methods are described and evaluated against the SE process and
MBSE, and recommended integration ‘enhancements’ are proposed; and finally, concluding
remarks are provided along with references and appendices.

1 The U.S. Department of Defense alone identifies forty-five methods in its MIL-HDBK-
46855A, Human Engineering Program Process and Procedures (DoD, 1999).
2 The U.S. Air Force identifies twenty-eight HSI competency areas in its Air Force Human
Systems Integration Handbook (USAF 2009, Table 1).

13

2. METHODS

2.1 Data Collection

The first step in researching this topic began by conducting a literature review, which initially
required identifying a few topical papers in the published domain. Based on the references found
in these papers, citation searches were conducted to identify additional relevant sources. These
citation “branches” were followed to a level of depth that was thorough, yet manageable.
Overall, fifty-seven resources were cited.

2.2 Data Analysis

Sources were then reviewed for content, specifically to identify HSI methods. The list of sources
was then culled down to six sources that, although not exhaustive, were representative of the
published HSI methods. In total, ninety-seven methods were identified. As a means of
organization, these methods were then mapped to the SE Vee-model. Given this large volume of
methods, the scope of the analysis was limited to include only the HSI methods that mapped to
the first half of the Vee-model, Stakeholder Requirements Definition through Architectural
Design. The HSI methods mapped to each respective step were then analyzed across sources.
Methods that showed strong similarities with regards to activities, inputs, outputs, and tools,
were grouped into unique, cross-cutting methods and evaluated as one method.

Comparative analyses of the HSI methods against the SE process and MBSE methodology were
conducted. The results of these analyses were then evaluated to determine whether general
conclusions or suggested enhancements could be drawn. Where appropriate, a summary of
enhancements is provided in each section.

2.3 Standards and Tools

The Systems Engineering process used in the HSI methods evaluation was based on the technical
processes found in ISO/IEC 15288 and INCOSE Systems Engineering Handbook, v.3.2.2. It
should be noted that due to a limitation of resources, two different versions ISO/IEC 15288 were
used based on their availability: 2002 and 2008. Specifically, ISO/IEC 15288:2002 was fully
available and ISO/IEC 15288:2008 was partially available through a secondary source, the
INCOSE SE Handbook.

Text and figures make reference to diagrams from the Object Management Group (OMG)
Systems Modeling Language (SysML) Version 1.3.

Resource citation information was collected and organized using the Zotero (www.zotero.org)
research tool.

http://www.zotero.org/

14

15

3. LITERATURE REVIEW

As mentioned in §2 Methods, beginning with a few HSI sources, citation searches were
conducted to identify a representative set of HSI methods that could be evaluated against the SE
process and MBSE methodology.

A common theme in the literature reveals the need for a stronger representation of human factors
within systems. More specifically, human capabilities and their implications on the design,
deployment, operation, and maintenance of systems have not been explicitly addressed in
systems engineering and acquisition lifecycles (Madni, 2009). In response to this, many
organizations began human factors initiatives, the most notable among them being the DoD’s
recent push to incorporate the human factors discipline into systems engineering. DoD 5000.2-R,
Mandatory Procedures for Major Defense Acquisition Programs, states, “Human factors
engineering requirements shall be established to develop effective human-machine
interfaces…[and] the capabilities and limitations of the operator…shall be identified prior to
program initiation…and refined during the development process” (DoD, 1999). Madni (2009)
asserts that this led to the creation of the new multidisciplinary field of Human Systems
Integration, which is intended to remedy the disconnect between human factors and systems
development.

Since that time, the definition and scope of HSI has remained unclear. As McGovern, et al.
(2008) explain, this is largely due to the fact that it is an amalgamation of pre-existing diverse
technical disciplines (domains) with established vocabularies. Despite this fact, the discipline of
HSI has matured, and, as Wilson (1990) states, “after many years of discussion of its
nomenclature, direction and so on…the methods we use are more the focus of attention”. It is
quite clear that the HSI domain covers a wide range of methods, techniques, and tools that apply
to the research, design, and evaluation of human-centered systems. For example, Booher (2003)
identifies fifty subcategories, the U.S. Department of Defense (DoD) (1999) identifies forty-five,
and the U.S. Air Force (USAF) (2009) identifies twenty-eight. Overall, nearly a hundred HSI
methods were initially identified for evaluation for this paper.

However, while there is no lack of methods and associated tools available for capturing the
human element in systems development, there is still the need for organization among these
methods and an accurate mapping to the SE process. The literature shows and Madni (2009)
asserts that the HSI domain is fragmented and needs to first be internally integrated in order to
assess the impact of human performance on system cost and schedule. Most sources organize
methods around human factors categories and do not directly relate them to the SE process. For
example, both Wilson and Corlett (1990) and Booher (2003) group methods based on areas of
human factors, such as task analysis, accident and incident analyses, assessment and design of
the physical workplace, etc. Some sources, such as Stanton, et. al (2012), provide a general
indication of where the methods could be applied in the development process (i.e., during the
design process and not after system production). There are a few sources that specifically point
out where certain HSI methods should be applied. For example, Sanders and McCormick (1993)
define a serial set of development “stages” and identify applicable HSI methods for each “stage.”
McNeely, et al. (2006) take this one step further and show where certain HSI methods should
integrate into a standardized SE process (e.g., IEEE 1220). Still, even with a more formal

16

organization, these latter sources lack the required analysis to determine how HSI methods can
be integrated within systems engineering, and by extension models-based systems engineering
(MBSE), in order to reach the desired state of a systems development process that fully
integrates human considerations.

17

4. VEE-MODEL PROCESS

As stated previously, the SE process described in this paper is based on the technical processes
found in ISO/IEC 15288:2002 and INCOSE Systems Engineering Handbook, v.3.2.2 standards.
Although various1 life cycle models could be used to portray this process, the Vee-model
adequately captures and illustrates the verification and validation needed between a system in its
last stages of development to its requirements. In addition, the SE Process is arranged and
depicted as a “Vee” in both ISO/IEC 15288:2002, Annex C, Figure C.1 and INCOSE Systems
Engineering Handbook, v. 3.2.2, Chapter 3, Figure 3-4.

As shown in Figure 1, the left side of the “Vee” follows the waterfall model in that it
decomposes and defines the user or stakeholder requirements in terms directly applicable to the
system to be designed, then allocates the requirements to functional and then physical
architectures down to the component level, generally developing derived requirements in the
process. The right side of the “Vee” illustrates how components are integrated back up to the
system level, and explicitly relates testing to the verification and validation of requirements at
each successive level.

Figure 1: The Vee-model (INCOSE SE Handbook, v 3.2.2).

The Vee-model steps can be summarized as follows:

The first step (Step One) of the VEE-model, Stakeholder Requirements Definition, is intended to
develop an understanding of the user (mission) needs and reconcile it to the “input” requirements

1 INCOSE SE Handbook, v.3.2.2, §3.3, Life-Cycle Stages

18

obtained from the user. Understanding the system interfaces and establishing a validation plan
are also core activities during this step.

The next step (Step Two), Requirements Analysis, identifies and defines the required
functionality of the system based on the user (mission) needs and system interfaces from Step
One. A “black box” model is established which clearly identifies the technical inputs and
outputs of the system. A verification plan is established defining the test and evaluation (T&E)
activities to be used to demonstrate that the system meets the defined measures of performance
(MOPs).

Step Three, Architectural Design: Functional Architecting, is primarily concerned with
developing a system functional design, which identifies and describes “all functions to be
provided, along with the associated quantitative requirements to be met by each [functional]
subsystem in order that the prescribed system-level capabilities can in fact be achieved”
(Kossiakoff and Sweet, 2003). During this step, a “white box” model is created that establishes
the context functions must operate within (i.e., interfaces and performance requirements).
Justification in the form of trade studies or trade-off analysis must be provided for the selected
functional and logical solution(s).

During Step Four, Architectural Design: Physical Architecting, the system design undergoes
“translation into hardware and software components, and the integration of these components
into the total system” (Kossiakoff and Sweet, 2003). This physical architecture establishes the
context components must operate within. In addition, trade study results provide justification for
the selected technologies and physical architecture(s) selected, and component verification
objectives are established to ensure specifications are met.

The next step (Step Five), Implementation, develops detailed design definition of the components
for the selected physical architecture(s), which will then be implemented (manufacture or
procurement).

Step Six, Integration, integrates the components and verifies that the result can satisfy the system
functional verification objectives (from Step Three) based on the interactions of the said
components.

The next step (Step Seven), Verification, demonstrates that the design conforms to the system
verification objectives established during Step Two with the use of the integrated and
functionally-verified system produced under Step Six.

Step Eight, Transition, establishes a capability to provide services in the operational
environment. This usually includes installing the verified system with relevant enabling systems
and is used at each level in the system structure. Note that while Transition precedes Validation
as listed herein, it does not necessitate that it occurs before Validation. Simply, this is how it was
ordered within the INCOSE and ISO/IEC standards.

19

The final step (Step Nine), Validation, ensures that the system, which met the performance
objectives of Step Seven, also satisfies the validation objectives (user mission requirements)
established in Step One.

These nine steps comprise the VEE-model, which is applied iteratively and recursively to each
development stage of the system life cycle. However, in addition to the steps defined by the
INCOSE and ISO/IEC standards, an additional sub-step, Technical Basis Reports, has been
added to the model given its application to the Physical Architecting step within the context of
MBSE. Technical Basis Reports explore various physical implementation options that populate
the decision space with the intent of identifying an optimal alternative, thus informing the
physical architecting activity.

20

21

5. MAPPING ANALYSIS

5.1. Scoping the Vee-model

Since the focus of this research was on methods for modeling human considerations, which
typically takes place during the Concept, Development and Production Stages of the SE life
cycle, emphasis was placed on the technical processes that have the highest level of effort during
these stages:

1. Stakeholder Requirements Definition
2. Requirements Analysis
3. Architectural Design
4. Implementation
5. Integration
6. Verification
7. Transition
8. Validation

HSI methods were individually analyzed within the context of the SE process steps in order to
determine where they fit within the Vee-model. Specifically, method activities, inputs, outputs,
and tools served as the criteria for making these determinations. After an initial attempt to map
the HSI methods to the Vee-model, it was recognized that the majority of methods fit within the
Architectural Design step, necessitating more granularity. As a result, this step was decomposed
into two sub-steps: Functional Architecting and Physical Architecting. The reason for
decomposing the step in this way was two-fold: 1) there was a clear dividing line between
methods (i.e., some strongly focused on functional analysis, decomposition, etc. while others
were focused on the physical design of the system); and 2) this breakdown would be better
tailored to the MBSE methodology, facilitating a more effective evaluation. Additionally, the
sub-step, Technical Basis Reports, was added to distinguish between HSI methods that informed
the Physical Architecting activities through technology assessments and those that should be
directly integrated into that step.

Due to the large volume of methods mapped to the Vee-model and to allow for sufficient effort
to be applied to evaluating the HSI methods against the SE process and MBSE, a determination
was made to limit the scope of subsequent analysis to only those methods that mapped to the first
four steps: Stakeholder Requirements Definition, Requirements Analysis, Functional
Architecting, and Physical Architecting.

5.2. HSI Methods Mapped to the Vee-model

For each of the six sources selected, a diagram was generated showing where the HSI methods
mapped to the Vee-model. These diagrams are located in Appendix A.

During the methods mapping analysis, it was recognized that a few HSI methods combined the
activities of multiple methods into one. Similar to the decomposition of the Vee-model step,
there were some HSI methods that were decomposed to provide a more detailed level of
granularity and allow for equitable comparisons between methods to determine similarities. One

22

such method, Task-Centered System Design (TCSD) (Stanton, et al., 2012, Ch. 11), was
identified as being too high level in order to adequately compare it to other methods. As a result,
this method was decomposed into three ‘sub-methods’. Other methods that were decomposed
included Allocation of Function Analysis (Stanton, et al., 2013, Ch. 11) and STAGE 3: Basic
Design (Sanders and McCormick, 1993).

In the Discussion section that follows, each Vee-model step includes a detailed comparison
between HSI methods as illustrated in the comparison tables embedded within each section.

23

6. DISCUSSION

6.1. Stakeholder Requirements Definition

The purpose of the Stakeholder Requirements Definition Process is to define the requirements
for a system that can provide the services needed by users and other stakeholders in a defined
environment (ISO/IEC 15288:2008). As the first step in the Vee-model, this process (and its
outputs) serves as the foundation for defining and clarifying the system throughout the lifecycle.
It is in this step that stakeholder needs (documented or undocumented) are converted into high-
level requirements, concept documents (e.g., CONOPS), measures of effectiveness (MOEs), etc.
as shown in Figure 2.

Figure 2: Context Diagram for Stakeholder Requirements Definition Process (INCOSE SE

Handbook, v 3.2.2)

The outputs from this process will serve as the basis for performance requirements, functional
requirements, non-functional requirements, and architectural constraints determined to meet the
mission.

After mapping the HSI methods to the Vee-model process, nine methods were identified as
applicable to this first step in the Vee-model (see Table 1 for a comparison matrix).

24

Table 1: Vee-model Step One: HSI Methods Comparison

HSI Methods M
iss

io
n

An
al

ys
is

M
iss

io
n

An
al

ys
is

Fo
cu

s G
ro

up
s

Sc
en

ar
io

-B
as

ed
 D

es
ig

n

U
se

r I
D

&
 S

am
pl

e
Ta

sk

De
fin

iti
on

O
pe

ra
tio

na
l A

na
ly

sis

Cr
iti

ca
l I

nc
id

en
t S

tu
dy

ST
AG

E
1:

 D
et

er
m

in
e

O
bj

 &
 P

er
f S

pe
cs

M
iss

io
n

An
al

ys
is

Mission Analysis        
Mission Analysis       
Focus Groups      
Scenario-Based
Design     
User ID & Sample
Task Definition    
Operational Analysis   
Critical Incident Study  
STAGE 1: Determine
Obj & Perf Specs 
 Mission Analysis

Same 
Different 
McKneely, et al., 2006
Stanton, et al., 2012
Chapanis, 1996
Sanders and McCormick, 1993
DoD, 1999

After comparative analysis, four unique methods were identified and given the following
categorical names: 1) Interviewing; 1A) Critical Incident Study (a type of interviewing); 2)
Reviewing; 3) Mission Analysis. These methods were shown to be complimentary to each other,
rather than competing. As shown in Figure 3, Interviewing, Critical Incident Study, and
Reviewing are inputs to Mission Analysis.

25

Figure 3: Unique and Complimentary HSI Methods

6.1.1 Unique Methods

6.1.1.1 Interviewing

Method Objective: Gather raw data regarding stakeholder requirements as input for the concept
development phase of the system design.

Approach: Interview stakeholders; this includes both one-on-one and group interviews of the
HSI methods reviewed. Stanton, et al. (2012, Ch. 11) provides a structured process for formally
conducting group interviews that he termed, “Focus Groups”.

Inputs: Potential stakeholders, subject matter experts (SMEs), other relevant project personnel
(e.g., project manager, designers, etc.), and facilitator.

Outputs: Transcripts of interviews, which include agreed upon stakeholder requirements
including users and human-user interfaces.

6.1.1.1.1 Critical Incident Study

Method Objective: Identify and assess risk factors and possible risk management actions.

Approach: Conduct one-on-one or group interviews with operators of existing systems with the
intent of eliminating or mitigating sources of operational failures in the system-of-interest.
Chapanis (1996, Ch. 4) provides a method for collecting and analyzing data related to critical
incident situations and discusses a related example.

Inputs: Legacy or existing systems and their users, operators, and/or maintainers.

Outputs: Sources of serious human-system difficulties (risk factors), suggested solutions to
critical incident situations (risk management actions).

26

6.1.1.2 Reviewing

Method Objective: Define system objectives, identify and describe a representative list of
potential users or user groups, and define system functions.

Approach: Observe/review an existing system similar to the system-of-interest. Gather relevant
information for mission analysis, which may include users (Stanton, et al. 2012, Ch. 11), system
performance specifications (Sanders and McCormick 1993, Ch. 22), or task descriptions
(Stanton, et al. 2012, Ch.11).

Inputs: Existing systems and their users, operators, and/or maintainers.

Outputs: Objectives, representative list of user groups (e.g., operator, maintainer), detailed task
descriptions including human-user interfaces.

6.1.1.3 Mission Analysis

Method Objective: Determine the mission objectives and define the basic functions that the
total system (hardware, software, humanware) must perform to accomplish these objectives.

Approach: Develop mission scenarios, that may take several forms, including narratives (DoD
1999, §8.3.1.2), graphics or pictorial models (Chapanis 1996, Ch. 4) (DoD 1999, §8.3.1.1),
‘storyboarding’ (Stanton, et al. 2012, Ch. 11) or Hierarchical Task Analysis (HTA) (Stanton, et
al. 2012, Ch. 11). These scenarios are then used to clarify the mission objectives and identify
basic mission functions, inputs, outputs, environments and constraints (McKneely, et al. 2006,
§3.1).

Inputs: Human user (e.g., operator, maintainer), human interfaces, stakeholder requirements,
including system functions, environment, and other constraints.

Outputs: Mission objectives, system functions, concept documentation (e.g., CONOPS), and
refined stakeholder requirements.

6.1.2 Unique Methods Summary

While the sources reviewed undoubtedly intended to provide methods to effectively integrate
HSI factors within systems, they do not offer anything unique apart from the standard SE
process.1 Specifically, the inputs, outputs, and activities of these methods are captured within
Stakeholder Requirements Definition (Vee-Model Step One), as is shown previously in Figures
X and X. ISO/IEC 15288:2002, in particular, recognizes the need to “identify the interaction
between users and the system” and that “scenarios are used to analyze the operation of the
system…”

1 As defined by ISO/IEC 15288:2002 and INCOSE SE Handbook v. 3.2.2 standards.

27

While these HSI methods may discuss reviewing or observing operators of similar existing
systems, they neglect to address conducting reviews of source documents, a crucial input to this
process step (INCOSE Handbook 2011, §4.1.1.3). Documentation from precedent systems such
as a System Requirements Document (SRD), concept documentation, operating procedures, etc.
can provide an excellent starting point for extracting and clarifying relevant information for the
system-of-interest and should be obtained whenever possible.

Although these methods may not be novel to the SE process and despite their lack of inclusion of
source documentation, it is evident that their overarching goal is to explicitly consider the human
element when capturing and analyzing source requirements. Human factors knowledge and
experience are necessary in this first step to ensure that human interfaces and interactions are
identified early on and are well integrated and documented within the major outputs. It is
unlikely that human considerations identified later on in the SE process will be appropriately1
integrated into the system given the continually increasing costs of redesign as a project
progresses through its lifecycle.

6.1.3 Models-Based Systems Engineering Support

The purpose of this section (and similar subsequent sections) is to briefly summarize the first
step in the Model-Based Systems Engineering (MBSE) method and then evaluate the identified
HSI methods against this method to elucidate similarities and differences that will help
determine how human factors can be modeled in a system. While there exists at least half a
dozen2 leading MBSE methodologies, the method summarized here will not refer to any one in
particular, but will provide a general description that may contain similar elements from each.
Similarly, although there are multiple SE process standards that vary in certain aspects, most
have the same foundational approach.

6.1.3.1 MBSE Stakeholder Requirements Definition Summary

The activities of the first step in the MBSE method are basically the same to SE Process Step
One: describe system (product) scope; identify system stakeholders; elicit stakeholder
requirements; validate stakeholder requirements. While these activities define the “what”, MBSE
specifies the “how”.

If relevant strategic guidance is available (e.g., strategic vision, goals, policies, standard, etc.), a
preliminary system scope may be developed prior to identifying all system stakeholders. In order
to describe the system scope, a contextual analysis of the strategic problem in terms of
operational capabilities is performed (Beck, 2011). While textual descriptions may be used to
develop a strategic context, it is recommended that graphical models such as use cases or
requirements diagrams be used, as shown in Figure 4 and Figure 5 (Beck, 2011).

1 According to Madni (2009), HSI advocates a full lifecycle view of the integrated human-
machine system during system definition, development and deployment.
2 (Estefan, 2008).

28

Figure 4: Strategic context graphical example (UML or SysML use case diagram) (Beck,

2011).

Figure 5: Generic strategic context graphical example (DoDAF CV-1 diagram; in SysML

use req diagrams) (Beck, 2011).

29

From this analysis, a concise problem statement and the capabilities necessary to solve this
problem can be developed. Based on the strategic context and required system capabilities, a
concept of the main operational context is developed in the form of a graphical depiction. This
initial model should not be confused with the suite of related operational models that comprise
the CONOPS defined later in this step. Rather, such a model establishes the context for
developing these mission scenarios. Examples of an operational context model include DoDAF
OV-1 model, internal block diagrams (SysML) and block definition diagrams (SysML).

Once the system scope has been described or if strategic guidance does not exist, stakeholders
must then be identified. Generally, stakeholders may include an enterprise, organization, team, or
individual, or classes thereof who will have an interest or stake in the outcome of the project
(Beck, 2011). For each stakeholder, one or more concerns should be developed that describe the
interests a stakeholder has that pertains to the system’s development, its operation, or any other
important aspect.

Identified stakeholders should then be polled (e.g., interview, request for information) to collect
system requirements. After obtaining requirements from all stakeholders, a necessary risk-
reducing activity is to rewrite the requirements to ensure the necessary attributes1 are considered.
In defining stakeholder requirements, it is helpful to develop views and viewpoints for the
stakeholders. A view is a representation of a whole system from the perspective of a related set of
concerns (IEEE Std 1471 §3.9). A viewpoint is a pattern or template from which to develop
individual views by establishing the purposes and audience for a view and the techniques for its
creation and analysis (IEEE Std 1741 §3.10). The systems engineer can package multiple views
by types of models (e.g., behavior, structure) or by model elements (e.g., classes, typed blocks)
in order to demonstrate that the system will satisfy the concerns of the respective stakeholder
(Beck, 2011). Similar to the idea of views and viewpoints are concept documents (e.g.,
production, deployment, operations, support, disposal), which serve as major outputs in this
step.2 An example diagram of simple views and viewpoints is shown in Figure 6.

1 INCOSE SE Handbook v. 3.2.2, §4.2.2.2 Characteristics of Good Requirements
2 INCOSE SE Handbook v. 3.2.2 §4.1.1.4 Outputs

30

Figure 6: A SysML Package Diagram (pkg) is used to develop simple views and

viewpoints (Friedenthal, et al., Chapter 4, 2011).

Although there may be multiple views for one system, probably the most key is the CONOPS or
operational model. In order to develop content for the operational model, the strategic mission is
decomposed into lower-level operational activities and resource flow (e.g., information)
exchanges are identified (Beck, 2011). To start, use cases are developed to capture the mission
objectives as they relate to the system stakeholders. For each use case, a set of well-posed
mission scenarios that explore the range of possible operational conditions is developed. From
this set, critical scenario objectives are down-selected and analyzed to identify the necessary
system capabilities that will produce the effects that ultimately meet stakeholder objectives.

After determining the capabilities that will fulfill the mission objective, more in-depth analyses
are used to develop an operational plan. These include identifying the “as is” operations in
legacy systems, determining the mission tasks to analyze (based on the previously identified
capabilities) in the form of a function structure, and identifying evaluation criteria (e.g.,
measures of effectiveness). As shown by Beck (2011), these analyses can all be captured using
models.

Finally, validation test cases are defined based on the mission scenarios, mission tasks, and the
evaluation criteria. The objectives of validation in this step are to ensure traceability between the
documented stakeholder needs and the content contained in the views, resolve any conflicts or
inconsistency within the requirements, ensure all validation activities are well-documented, and
the validated set of requirements are under configuration management.

For an example set of diagrams that illustrate the activities in this step, please refer to Appendix
B.

31

6.1.3.2 Evaluation of HSI Methods Against MBSE

6.1.3.2.1 Interviewing
As mentioned in the preceding section, having a “good” set of requirements will help reduce risk
for the project. An important part of developing such requirements is to ensure that the customer
needs are effectively translated, interpreted, and understood. This is especially important when
collecting requirements related to human factors because they may be more difficult to articulate.
Utilizing the one-on-one interview or Focus Groups (Stanton, et al., 2012, Ch. 11) approaches
would provide the opportunity for the systems engineer to conduct in-depth queries to help
stakeholders define their needs and clear up any ambiguous information. An effective method for
requirements elicitation, Interviewing is already captured within the first step of the MBSE
method. However, it would be beneficial to emphasize the importance of human factors during
this activity to ensure relevant HSI concerns are vetted. The use of views and viewpoints would
be especially useful for capturing human factors such as usability, ergonomics, safety, etc. For
example, a viewpoint may include information about the operator and related concerns (e.g.,
safety during operation, usability of controls). A “human” view could then be generated from this
viewpoint and would include all aspects of the system that interfaces and interacts with the
operator. These views and viewpoints could then be iteratively developed with stakeholder input
through individual meetings or group reviews where the models would serve as the focus of
discussion.

6.1.3.2.2 Critical Incident Study
Although similar to Interviewing, this HSI method is only partially integrated within MBSE in
that the approach is captured, but the objective is not. Specifically, there is a risk reducing
activity within MBSE by rewriting requirements after they have been collected. The difference is
that Critical Incident Study focuses on reducing risk during requirements elicitation by
conducting interviews with the intent of eliminating or mitigating sources of operational failure.
Of course, this assumes that a legacy or existing system exists and their operators and
maintainers are available for interview. It is recommended that this method be integrated in the
MBSE method in order to more thoroughly under the circumstances that lead to human-system
difficulties in order to mitigate these risk factors during new system development. Some of the
advantages of integrating Critical Incident Study into the first MBSE step include:

1. Sources of human-system difficulties can be used as strategic guidance to develop a
system scope. Specifically, critical incident situations reveal gaps in capability and can be
used to develop a problem statement.

2. Sources of human-system difficulties can be used to define the “as is” operations and
highlight mission tasks that require in-depth analysis.

3. Suggested solutions to the critical incident situations can be used to support identification
of necessary capabilities to overcome system deficiencies.

4. Suggested solutions to the critical incident situations can be used to initiate risk
management actions early in the development lifecycle.

6.1.3.2.3 Reviewing
Like Critical Incident Study, this HSI method assumes that an existing system is available for
study. When compared to MBSE, Reviewing does not really offer anything unique. The method

32

objective of defining the system objective (i.e., describe system scope), identify a list of potential
users (i.e., identify stakeholders), and define system functions (i.e., determine the capabilities
that will fulfill the mission objective) all fall in line with the MBSE activities.

However, one key difference is that while MBSE suggests using existing strategic guidance to
define a system scope and gathering requirements from stakeholders, it does not include
observation or review of a legacy system. Important human factors information (e.g., human-
system interactions) could be gleaned by simply observing the system in operation. This
information could then be used to supplement stakeholder-provided needs and constraints. At the
very least, documented observations could be used to define task descriptions to develop a
function structure when determining which mission tasks require further scrutiny.

One other minor distinction is that while Reviewing indicates that system performance
specifications (i.e., MOEs) should be gathered in order to inform mission analysis, the MBSE
method explains that MOEs are derived out of mission analysis. This difference probably owes
to the fact that Reviewing is based on observation of an existing system, which most likely
already has established system performance specifications. MBSE does not necessarily preclude
MOEs from informing mission analysis and, if a legacy system exists, this information should be
used when developing mission scenarios, even though it is likely that the evaluation criteria for
the new system will be redefined.

6.1.3.2.4 Mission Analysis
The objectives and activities of this HSI method closely resemble the Define Operational Model
activity within MBSE. Specifically, both seek to determine the mission objectives and basic
functions of the system by developing mission scenarios. Both describe multiple acceptable
approaches (e.g., narratives, graphic models, storyboarding, HTA), although they may use
varying terminology. MBSE especially calls the development of mission scenarios a “critical”
step (Beck, 2011).

Although MBSE does not preclude textual descriptions, it is expected that models be leveraged
to conduct mission analysis activities due to their clarity, organization, traceability, and their
ability to capture relationships and constraints (e.g., parametric diagrams. Again, emphasis
should be placed on elements that involve the human user and human-system interfaces).
Appendix B offers a set of example models that illustrates the potential of MBSE to effectively
execute the Stakeholder Requirements Definition step.

6.1.4 Models-Based Systems Engineering Support Summary

For the most part, the HSI methods evaluated are captured within MBSE, although the
terminology used may vary based on the source. A few differences introduced by the HSI
methods that would enhance MBSE include:

1. Observe/review of existing/legacy systems (when available)
2. Integrate Critical Incident Study to support:

a. Development of system scope;
b. Identification of “as is” operations;

33

c. Identification of solutions to capability gaps; and
d. Initiation of risk management actions.

Despite the fact that MBSE already incorporates most of these HSI methods in Stakeholder
Requirements Definition, the chief point is to consider human factors both during stakeholder
elicitation and mission analysis.

34

6.2. Requirements Analysis

The purpose of the Requirements Analysis Process is to transform the stakeholder, requirement-
driven view of desired services into a technical view of a required product that could deliver
those services (ISO/IEC 15288:2008). The objective in this second step of the Vee-model is to
build a technical representation (i.e., defined requirements) of the system derived from elicited
stakeholder needs, which will serve as the basis for architectural design, integration, and
verification. As such, a major output of this step is a set of system functions, which must remain
abstract enough such that no particular implementation is implied. In addition, performance
requirements, non-functional requirements, and architectural constraints must be defined, as
these will affect the emergent behaviors of the integrated system. As shown in Figure 7, other
common outputs include a specification tree, a hierarchical representation of the set of
specification for the system, and a system specification, a formal document of the approved
system requirements.

Figure 7: Context Diagram for Requirements Analysis Process (INCOSE SE Handbook, v

3.2.2)

Due to the iterative1 and recursive2 nature of this process, requirements may change based on
new information gleaned from later process systems. Caution is recommended, however, as
changes in requirements later in the development cycle can have a significant cost impact on the
project, possibly resulting in cancellation (INCOSE SE Handbook v 3.2.2, §4.2.1.2).

Based on the mapping analysis, six methods were identified as applicable Requirements Analysis
(see Table 2for a comparison matrix).

1 When the application of the same process or set of processes is repeated on the same level of
the system, the application is referred to as iterative (ISO/IEC CD 29148, Requirements
Engineering).
2 When the same set of processes or the same set of process activities are applied to successive
levels of system elements within the system structure, the application form is referred to as
recursive (ISO/IEC CD 29148, Requirements Engineering).

35

Table 2: Vee-model Step Two: HSI Methods Comparison

HSI Methods Re
qu

ire
m

en
ts

 A
na

ly
si

s

U
se

r-
Ce

nt
er

ed

Re
qu

ire
m

en
ts

 A
na

ly
si

s

ST
AG

E
2:

 D
ef

in
iti

on
 o

f
th

e
Sy

st
em

Fu
nc

tio
na

l F
lo

w

An
al

ys
is

De
ci

si
on

-A
ct

io
n

An
al

ys
is

An
al

ys
is

 o
f S

im
ila

r
Sy

st
em

s

Requirements Analysis     
User-Centered
Requirements Analysis    
STAGE 2: Definition of
the System   
Functional Flow
Analysis  
Decision-Action
Analysis 
Analysis of Similar
Systems

Same 
Different 
McKneely, et al., 2006
Stanton, et al., 2012
Chapanis, 1996
Sanders and McCormick, 1993

After comparison, three unique methods were identified and categorized as follows: 1) Analysis
of Similar Systems; 2) Requirements Analysis; 2A) Functional Flow Block Diagramming
(FFBD) (a sub-method for identifying system functions). Similar to the previous step, there is a
complimentary element between these methods. As shown in Figure 8, Analysis of Similar
Systems provides input to Requirements Analysis and FFBD. However, depending on the type of
project, there are multiple approaches to creating a FFBD that will be explored in more detail
below.

36

Figure 8: Vee-Model Step Two HSI Methods

6.2.1 Unique Methods

6.2.1.1 Analysis of Similar Systems

Method Objective: Identify salient features of systems that are similar to the one under
consideration to provide human factors considerations input into Requirements Analysis.

Approach: Analyze data output from Vee-Model Step One HSI methods: Interviewing, Critical
Incident Study, and Reviewing. Although information produced from these methods were used as
inputs to Mission Analysis, the focus of this method is to extract information that provides the
level of detail necessary for developing technical requirements and functions (e.g., skills,
training, HF design problems, operability data, etc.) and is the reason for its inclusion with Vee-
Model Step Two. Other potential data sources include questionnaires, activity analyses, or
accident investigations (Chapanis 1996, Ch. 4).

Inputs: Productivity records, maintenance records, training records, accident or incident reports.

Outputs: Skills assessment, identification of relevant environmental factors, estimates of future
staffing and manpower requirements, identification of operator and maintainer problems,
preliminary assessments of workloads and stress levels, assessments of the desirability of and
consequences of reallocating system functions.

6.2.1.2 Requirements Analysis

Method Objective: Specify the system characteristics necessary to meet the stakeholder
requirements.

Approach: Develop system technical requirements and functions. Although both McKneely, et
al. (2006) and Stanton, et al. (2012) suggest identifying intended system users and maintainers
that the future proposed design with cater for, it is assumed that this activity would have been
completed in the previous step if the Vee-model process is being used. Define MOEs (if not done
previously) and Measures of Performance (MOPs) as they pertain to mission, human, and
function requirements (McKneely, et al. 2006). Feasibility and internal compatibility of system
requirements are assessed (McKneely, et al. 2006). One way to accomplish this is by the use of

37

design scenarios or storybooks (Stanton, et al. 2012, Ch. 11). For users, tasks, and scenarios,
Stanton, et al. (2012) recommend that each should be categorized as “absolutely must include”,
“should include if possible”, and “exclude”. The role of the human, manning, training and cost
guidelines are also developed (McKneely, et al. 2006).

Inputs: Mission objectives, system functions (i.e., high-level, non-technical), concept
documentation, stakeholder requirements, and outputs from Analysis of Similar Systems, such as
skills, staffing, manpower, environment, and human factors assessments.

Outputs: System requirements, system functions (i.e., high-level, technical), MOEs, MOPs,
feasibility/compatibility assessment results (including any scenarios/storybooks), and human
factors guidelines.

6.2.1.2.1 Functional Flow Block Diagramming

Method Objective: Specify the functions that must be performed by the system to meet the
stakeholder requirements.

Approach: Develop functional flow block diagrams (a.k.a., functional flow diagrams, functional
block diagram, or functional flows) that provide a graphical, sequential ordering of functions.
These diagrams depict the interrelationships among the system functions, with each box
representing one function (Sanders and McCormick 1993, Ch. 22). These functions are also
numbered in a way that clarifies their relationship to one another and permits traceability of
functions through the whole system (Chapanis 1996, Ch. 4). It should be noted that although
FFBDs can be decomposed into multiple levels of detail, only “zero-order” and “first-order” are
typically necessary to capture high-level functions. During the next step in the Vee-model,
Functional Architecting, FFBDs may be used to decompose higher-level functions into detailed
functions, as necessary. Figure 9 illustrates a zero-order FFBD, and Figure 10 illustrates a first-
order FFBD, which elaborates on one of the zero-order functions.

Figure 9: A zero-order functional flow block diagram (Chapanis 1996, Ch. 4).

38

Figure 10: A first-order functional flow block diagram (Chapanis 1996, Ch. 4).

FFBDs may also be used to identify and depict functions in a system in which binary decisions
have to be made (e.g., software-oriented projects). Chapanis (1996) terms this variation
“Decision-Action Analysis.”

Human factors specialists are tasked to ensure that the functions identified match the needs of the
intended users (Sanders and McCormick 1993, Ch. 22).

Inputs: Mission objectives, system functions (i.e., high-level, non-technical), concept
documentation, and stakeholder requirements.

Outputs: FFBDs, system functions (i.e., high-level, technical).

6.2.2 Unique Methods Summary

Generally, the activities described by these HSI methods do not introduce anything novel to the
SE Process. However, within the context of Requirements Analysis, they offer valuable
enhancements. For example, INCOSE identifies FFBDs as a “Cross-Cutting Technical Method”
that may be used across the system lifecycle (INCOSE SE Handbook v 3.2.2, §4.12), but does
not elaborate its application to this process step. The application of FFBDs to the Requirements
Analysis process as discussed in these HSI methods, however, highlights the advantages of its
use, such as enabling the justification of requirements (i.e., ensures identified functions match
the needs of intended users by serving as a detailed “checklist” during verification), avoiding
over/under specification (higher level functions are identified and described iteratively), and
serving as a key input to subsequent process steps (i.e., allocation determinations and trade
studies).

Analysis of Similar Systems, like the Reviewing and Interviewing HSI methods, feeds important
human factors data within the SE Process. Since there is a more detailed (i.e., technical) focus on
human factors within this analysis (e.g., skills, training, manpower), its outputs are more
appropriately integrated within Requirements Analysis. Although the SE Process touches on
this1, it does not go into same level of depth as this HSI method.

1 ISO/IEC 15288:2002, §5.5.3.3 e) Specify system requirements and functions…that relate to
critical qualities, such as health, safety, security, reliability, availability and supportability.

39

Although these HSI methods discuss at a high-level the need for traceable and verifiable
requirements, they do not consider the role that configuration control plays in maintaining
continuity, a critical activity to ensure that system requirements meet at least one stakeholder
requirement (ISO/IEC 15288:2002, §5.5.3.3). Rationale, decisions and assumptions are also
maintained along with system requirements in a data repository, which will feed Architectural
Design. The human factors data collected from Analysis of Similar Systems, for example, should
be maintained in such a repository to help capture the details that support the HSI-related
requirements.

While the HSI methods mapped to the Requirements Analysis process may not make major
contributions to this step, they help instill a user-centered approach in defining requirements. In a
way, these methods reuse traditional Requirements Analysis concepts and/or tools, but through
the lens of HSI. With the human factors elements integrated into system requirements, the
functional and physical architectures should inherently reflect the needs of the user.

6.2.3 Models-Based Systems Engineering Support

6.2.3.1 MBSE System Technical Requirements Summary

The purpose of MBSE Step Two is to translate customer needs (identified in MBSE Step One)
into a set of “black box” system requirements (Beck, 2011). The activities closely resemble those
defined in the SE Process above, yet at a more detailed level.

In order to begin transforming the stakeholder requirements in system (technical) requirements,
the first step is to develop an initial Elaborated Context Diagram (ECD). An ECD captures the
system black box requirements (e.g., functions, interfaces, controls, performance, non-
behavioral) and represents a static, composite view of the system input/output (I/O) flows across
multiple scenarios (Beck, 2011). In SysML, this is typically represented using an internal block
diagram (ibd) as shown in Figure 11.

Figure 11: Generic ECD (INCOSE, 2006).

40

Captured within the ECD are the system-of-interest, external systems, users, and I/O items
(flows).

After constructing an ECD, the next step is to develop system scenarios. Use cases and scenarios
defined in the previous MBSE step are further developed using behavioral diagrams to produce
system scenarios (Beck, 2011). The intent of creating system scenarios is to elaborate the
requirements for an element or set of elements contained in the ECD. In SysML, these elements
are typically known as operations or attributes. Figure 12illustrates a scenario using a subset of
these elements from the ECD above using sequence diagram (sd).

Figure 12: System Scenarios vs. ECD (INCOSE, 2006).

System scenarios should address all high-probability mission scenarios identified in the previous
step, external system interactions with the system-of-interest, stressing scenarios, failure
conditions, and support scenarios (e.g., system backups, configuration management, etc.).

Using the ECD and supporting modeling artifacts, block box requirements are further refined.
For example, highly detailed functions may need the use of algorithms and mathematical
relationships in order to be appropriately specified. Likewise, critical MOPs that impact mission
MOEs may need to be identified (e.g., timelines in critical system scenarios that affect mission
critical timelines) (Beck, 2011).

Design constraints also serve as an important input in developing technical requirements1, and as
such, must be assembled from the outputs of the previous step (e.g., concept documents) and

1 INCOSE SE Handbook v 3.2.2, §4.2.1.5

41

linked to the ECD. These constraints are realized as design constraints within the SysML
language, as illustrated in Figure 13.

Figure 13: Elaborated Context Diagram (ECD) with design constraints (INCOSE, 2006).

The next step is to perform system requirements analyses, such as requirements variation, trade
off, effectiveness, and risk analyses. Based on the results, system requirements and constraints
are updated. Finally, the system requirements are verified against established requirements
criteria1 and validated against stakeholder requirements to ensure they will fulfill the mission
objectives. The main output of this process step should be a set of requirements that describe the
required system functions and associated I/O, the required external interfaces, and MOPs.

6.2.3.2 Evaluation of HSI Methods Against MBSE

6.2.3.2.1 Analysis of Similar Systems

Typically, the inputs to the Requirements Analysis step are collected from the outputs of the
previous step, Stakeholder Requirements Definition. As described in the previous evaluation of
the MBSE Step One, Interviewing and Reviewing can provide valuable human factors
information for defining mission objectives and stakeholder requirements. However, this
information will tend to be more high level and does not capture the necessary details (e.g.,
skills, training, HF design problems, etc.) to sufficiently capture HSI considerations within the

1 INCOSE SE Handbook v. 3.2.2, §4.2.2.2 Characteristics of Good Requirements

42

system technical requirements. Analysis of Similar Systems could enhance the MBSE System
Technical Requirements step by refining this information and providing it as a secondary input.

Specifically, outputs from this method could supplement the development of an ECD and related
scenarios. For example, operability data from a legacy system could be used as a starting point
for either identifying operations of the system-of-interest, or (if operations are already identified)
creating related scenarios. Environmental factors could help identify/elaborate I/O items and
skills assessment information could help detail the human-system interactions (i.e., depending on
the required user skills, the system-of-interest may need to automate certain operations). Given
the potential advantages of incorporating the outputs of this method into MBSE, it is
recommended that it be integrated into this step.

6.2.3.2.2 Requirements Analysis

As stated previously, this method does not offer major contributions to the established SE
Process. Nonetheless, given this method’s recommendation to use design scenarios or storybooks
(Stanton, et al. 2012, Ch. 11), it would potentially integrate better with MBSE. The intent of
using scenarios in this HSI method is to assess the feasibility and internal compatibility of
system requirements, which can be viewed as part of the MBSE goal to elaborate requirements
for elements within the ECD. Both methods recognize the need for prioritization of scenarios,
although the HSI method provides a more defined categorization guideline. Overall, MBSE
would benefit by integrating this method in order to better capture the role of the human within
the technical requirements.

6.2.3.2.3 Functional Flow Block Diagramming

Since the objective of this method is to specify system functions, the potential enhancements to
MBSE are potentially two-fold. With regards to developing an ECD, the act of creating FFBDs
would help the systems engineer determine the necessary functions (operations) and related data
(attributes) that must be defined for the system-of-interest. Since FFBDs can be decomposed into
increasing levels of detail (e.g., zero-order, first-order, etc.), they would serve as excellent tools
for deriving technical requirements from stakeholder requirements. Additionally, if an ECD has
already been created and has defined operations, FFBDs could be used to elaborate these
operations in the form of scenarios. By diagramming scenarios with FFBDs, functions that
involve human-system interaction may become more apparent, facilitating efficient verification
to ensure that the functions match the needs of the intended user.

6.2.4 Models-Based Systems Engineering Support Summary

Although similar to the System Technical Requirements step, these HSI methods offer some
enhancements that are not addressed in this step that would be advantageous to MBSE:

1. Apply relevant HSI information from Analysis of Similar Systems to the development of
the ECD and related scenarios

2. Focus on HSI considerations when building scenarios
3. Prioritize scenarios using the following categorization: “absolutely must include”,

“should include if possible”, and “exclude”

43

4. Utilize FFBDs to:
a. Derive technical requirements from stakeholder requirements;
b. Determine operations and attributes within the ECD;
c. Elaborate operations in the form of scenarios; and
d. Assist in verification by elucidating the functions that involve human-system

interactions.

Although there is not a strong correlation between the HSI methods to MBSE, they have enough
similarities to effectively integrate into this step while offering a renewed emphasis on human
factors.

44

6.3. Architectural Design: Functional Architecting

As explained in Mapping Analysis (§5) above, Architectural Design has been decomposed into
two sub-steps: Functional Architecting and Physical Architecting in order to facilitate a more
accurate mapping of HSI methods to the SE Process. However, in keeping with the structure of
this paper, the following is a brief description of this SE process step as defined by ISO/IEC
15288 and the INCOSE SE Handbook. This description should be viewed as an overall summary
for both sub-steps, with more detailed descriptions in the subsequent MBSE sections.

The purpose of Architectural Design is to synthesize a solution that satisfies system requirements
(ISO/IEC 15288:2008). Multiple possible implementations are usually developed to explore the
trade space in order to reach an optimal architecture. The project baseline, as documented in the
previous two steps, serves as the primary input along with lifecycle constraints (e.g., operability,
maintainability, disposability). System-level functions are decomposed down the lowest logical
element, requirements are partitioned and allocated to these elements, and interface requirements
are documented. A major output of this step is the system architecture description, which is
typically represented using diagrams, including justifications for the selected concept. As shown
in Figure 14, Technical Performance Measures (TPMs) and system element requirements
traceability are also among the outputs of this step.

Figure 14: Context Diagram for Architectural Design Process (INCOSE SE Handbook, v

3.2.2)

In addition, the system element requirements derived in this step will serve as the basis for
verifying the realized system and generating a verification strategy (ISO/IEC 15288:2008). It
should also be noted that INCOSE (2011, v 3.2.2, §4.3.1.5) mentions capturing human elements
when identifying interfaces and interactions as well as including HSI considerations in support of
defining a system integration strategy.

Based on the mapping analysis, twenty-one methods were identified as applicable to Functional
Architecting (see Table 3for a comparison matrix).

45

Table 3: Vee-model Step Three: HSI Methods Comparison

Same 
Different 
McKneely, et al., 2006 
Stanton, et al., 2012 
Stammers, et. al, 1990 
Chapanis, 1996 
Sanders and McCormick,
1993 

DoD, 1999 

The results of the comparison helped to identify six unique methods: 1) Task Analysis for
Knowledge Description (TAKD) 2) Functional Analysis (includes Functional Flow Block
Diagramming, Flow Process Charts, and Hierarchical Task Analysis (HTA); 3) Timeline
Analysis; 4) Simulation; 5) Action/Information Analysis; and 6) Operational Sequence Diagrams
(OSDs).

46

While there are complimentary interactions between these methods, most of them can be used as
separate methods and some may even be redundant (e.g., when decision/action diagrams are
used, OSDs are not (DoD 1999, §8.3.6.4)). As shown in Figure 15, TAKD is a preliminary step
to Functional Analysis, which has multiple “sub-methods”. Functional Analysis then outputs to
Action/Information Analysis and/or OSDs. Timeline Analysis and Simulation are separate
methods, however they may inform other HSI methods as shown in the diagram.

Figure 15: Vee-Model Step Three HSI Methods

6.3.1 Unique Methods

6.3.1.1 Task Analysis for Knowledge Description (TAKD)

Method Objective: Define a set of abstracted functions (tasks) that take into account human
cognitive components to help facilitate functional architecture development.

Approach: Compile a list of system functions (usually already identified in the previous Vee-
model steps) into two separate lists: objects and actions. Abstract these terms into generic actions
and objects that are implementation-agnostic (i.e., not specific to any particular task
environment). Recast each original function using the abstracted terminology. Stammers, et al.
(1990) recommend created a “knowledge representation grammar sentence” for each function,
which is comprised of one generic action (function) and up to three generic objects, upon which
this action can act. A similar method, Task Action Grammar (TAG), may be used to help
develop a “dictionary” of simple functions including their components or features, helping to
describe interfaces between functions (Stammers, et al., 1990).

47

Inputs: System (high-level) functions, functional interfaces, system requirements, concept
documents.

Outputs: Abstracted functions, grammar sentences that describe functions (verbs) and the
objects (nouns) that they may act upon.

6.3.1.2 Functional Analysis

Method Objective: Develop the system’s functional architecture and evaluate architecture
alternatives.

Approach: Decompose high-level system functions into progressively lower level functions.
Functions are described by verb-noun phrases and may be instantaneous, prolonged, simple or
complex (Sanders and McCormick 1993, Ch. 22). While there are many different variations of
this method, the following three approaches, Functional Flow Block Diagrams, Flow Process
Charts, and Hierarchical Task Analysis, were the main methods identified from the HSI sources
and will be described in further detail below.

Functional Flow Block Diagrams, see §6.2.1.2.1 above for a basic description, are iteratively
carried out to additional levels of detail as may be necessary to at least determine significant
performance requirements. Although the system may be broken into functions, tasks and
subtasks to be performed, they are not allocated to any particular system component (e.g.,
hardware, software, humanware) (McKneely, et al. 2006). A detailed level FFBD is depicted in
Figure 16.

Figure 16: Third-level Functional Flow Block Diagram (DoD 1999, §8.3.5.2.3).

48

FFBDs may be modified for software-intensive systems where binary decisions are prevalent, in
which case, decision-action diagrams are typically used (DoD 1999, §8.3.8 and Chapanis 1996,
Ch. 4).

Flow Process Charts, also known as Job Process Charts, are basically plots of a sequence of
activities usually with a corresponding time scale (DoD 1999, §8.3.7). Flow chart type symbols
are used to represent the different task elements of a particular function (Stammers, et. al, 1990).
Flow Process Charts provide a means to represent and analyze a function at any hierarchical
level with added detail. Stammers, et al. and the DoD describe the advantages of using Flow
Process Charts to model human-computer interactions (e.g., operator station). Figure 17 shows a
segment of a Flow Process Chart.

Figure 17: Flow Process Chart (sample) (DoD 1999, §8.3.7.1).

Although Hierarchical Task Analysis shares the same objective as FFBDs and Flow Process
Charts, the main difference is that, unlike other charting methods, it does not necessarily show
the order in which functions are carried out. Rather, it portrays the relationships between
functions (DoD 1999, §8.3.11.1.4). In a hierarchical approach, a function is analyzed by breaking
it into sub-functions, which become increasingly detailed as the hierarchy progresses (Stammers,
et. al, 1990). Verb-noun phrases are used to describe each function and interfaces between
functions are identified and may be captured in what Stammers, et. al call “plans”, as shown in
Figure 18.

49

Figure 18: Example from a hierarchical task analysis (Stammers, et. al, 1990).

A more detailed version of this method has been formally defined as Integrated Definition for
Functional Modeling (IDEF0) (DoD 1999, §8.3.11.1). IDEF0 is a formally defined language for
modeling systems by creating a series of interrelated parent-child diagrams that describe the
functions and the relationships (e.g., inputs, outputs, controls, and mechanisms) between
functions. Figure 19 illustrates this functional decomposition through parent-child diagrams.

Figure 19: System decomposition using multiple IDEF0 graphs (DoD 1999, §8.3.11.1.4).

50

Inputs: System (high-level) functions, functional interfaces, system requirements, concept
documents, functions analyzed by TAKD, knowledge description grammar sentences.

Outputs: Functional architecture, derived/decomposed functions, system element (detailed)
requirements (including performance specifications), interface requirements.

6.3.1.3 Timeline Analysis

Method Objective: Verify that temporal relationships among functions are compatible, facilitate
workload evaluation, and provide early personnel estimates.

Approach: Plot sequences of functions and their respective durations on a timeline. The DoD
states that if time data from a previous system is not available, then using a predetermined time
standard is recommended (DoD 1999, §8.3.10.2). Charts and graphs are used to visually identify
potential sequencing problems or show overlapping activities (functions) (Chapanis 1996, Ch. 4).
Timeline analysis may also serve as a complement to Functional Analysis by mapping time
durations to functions, and Functional Analysis may also provide information on potential
conflicts as they relate to sequencing of functions (DoD 1999, §8.3.10.4). Figure 20 shows a
sample timeline plot.

Figure 20: Timeline plot (sample) (DoD 1999, §8.3.10.2).

Inputs: Data from task analyses including Functional Analysis (e.g., function durations,
sequencing of functions).

51

Outputs: Timeline plots, temporal relationships among functions, sequencing incompatibilities.

6.3.1.4 Simulation

Method Objective: Predict the performance of the system-of-interest, evaluate alternative
architectures, and generate requirements for system “-ilities”.

Approach: Prepare models or mockups that evaluate system functions and multiple functional
architectures against performance measures. Chapanis (1996) explains that during preliminary
design (architectural design), simulations may also be used to identify design requirements for
ease of maintenance, develop preliminary specifications (functions) for equipment operability
and maintainability, or allow users to experience and receive training on systems that are
complex, dangerous, or expensive. Simulations may also provide more detailed and accurate
estimates of task overlap or times needed for the execution of long sequences with multiple
subtasks, which may serve as inputs to Timeline Analysis (DoD 1999, 8.3.10.4).

Inputs: Functions, operating procedures, hardware and software to run simulations.

Outputs: Simulated predictions about performance, evaluations of alternative configurations,
and evaluations of operating procedures.

6.3.1.5 Action/Information Analysis

Method Objective: Elaborate the system functions to help facilitate functional allocation and
allocation trade studies.

Approach: Both Chapanis (1996) and the DoD (1999) indicate that this method should be
implemented after Functional Analysis, but prior to the allocation of functions, which occurs
during Physical Architecting (Vee-model Step Four). Using a tabular format, create a list of
functions and for each function identify and describe the specific actions necessary to perform
that function, information requirements, sources of information, potential problems, error-
inducing features and any other relevant commentary. Figure 21 depicts a sample table based on
Action/Information Analysis.

52

Figure 21: Example of an Action-Information Analysis: Filling an Automobile Gas Tank

(Chapanis, 1996, Ch. 4).

Additional columns may be added if more detail is desired for the preparation of allocation
trades (DoD 1999, §8.3.9.2). In particular, Action/Information Analysis may help highlight
requirements for operator-system interfaces, necessary personnel provisions, and support
requirements (Chapanis 1996, Ch. 4).

Inputs: Functions and data from Functional Analysis, comments and data from knowledgeable
experts.

Outputs: Detailed list of action and information requirements, personnel and support
requirements, potential problems, and probable solutions.

6.3.1.6 Operational Sequence Diagram (OSD)

Method Objective: Determine the functional relationships and interactions among system
elements (e.g., flow of materials/information, I/O, potential sources of human-system
difficulties).

Approach: Develop a graphic representation of operator tasks as they relate sequentially to both
equipment and other operators. According to Chapanis (1996), an OSD is a time-based chart
with special symbology that combines events, information, actions, decisions, and data. OSDs
retain the same basic attributes as Flow Process Charts, but additionally show the flow of
information/material through a system and the interactions among stakeholders and/or
subsystems that facilitate this flow (DoD 1999, §8.3.6.1). The DoD (1999, §8.3.6.4) also
references a similar method, Functional Sequence Diagram, that may be easier to construct, but
does not provide as much useful information as the OSD. Figure 22 depicts a sample OSD.

53

Figure 22: Operational Sequence Diagram (sample) (DoD 1999, §8.3.6.2).

Inputs: System (high-level) functions, functional interfaces, scenarios, timelines, and data from
task analyses including Functional Analysis (e.g., FFBDs, decision/action diagrams).

Outputs: Time-based chart (OSD) showing functional relationships, flow of
materials/information, physical and sequential distribution of operations, I/O, consequences of
alternative design configurations, and potential sources of human-system difficulties (Chapanis
1996, Ch. 4).

6.3.2 Unique Methods Summary

Although some aspects of these HSI methods are already identified in the SE process (e.g.,
FFBD, see §6.2.2), most of them have unique human factors considerations that should be
integrated within Architectural Design (Functional Architecting) step.

As Stammers, et al. (1990) point out, since systems have become increasingly complex and more
highly automated, the role of the human has moved away from the physical ‘hands on’ approach,
involving more and more complex cognitive processing. As a result, newer systems must take
into account the abstracted functions in order to adequately document the cognitive components
of tasks. Task Analysis for Knowledge Description provides a method for accomplishing this and

54

enables the systems engineer to build an architecture that is implementation-agnostic, or as
INCOSE terms it, a consistent logical architecture.1

Timeline Analysis does not appear to be captured within the SE process, but may useful in
supplementing Functional Analysis. Specifically, time durations could be added to functions and
through a timeline plot, potential sequencing problems may be identified.

Although according to the SE process each system architecture option should include a
description of the salient features and parameter values of the system elements, it does not go
into the level of detail described in the Action/Information Analysis method. As a subsequent
activity to Functional Analysis, this method could prove beneficial in allocating functions to a
physical architecture (Vee-model Step 4), by identifying the specific actions and related
information elements for functions.

The general principles and methods of Functional Analysis (as defined by these HSI methods)
are already captured by the SE process. For instance, INCOSE recognizes system hierarchy (i.e.,
HTA), FFBDs, and IDEF0 diagrams as relevant tools for constructing and evaluating system
architectures2 and identifies the Object-Oriented Systems Engineering Method (OOSEM) and
SysML (which may include forms of HTA, FFBDs, and Flow Process Charts) as useful
techniques for deriving a logical architecture. 3 However, there are some instances where the
author calls out how a method is useful in integrating human factors (e.g., Flow Process Charts
are used to model human-computer interactions). Similarly, Simulation is accounted for in the
SE process and is discussed at length in the INCOSE SE Handbook4, although it is highlighted
that it facilitates life-like training for users and helps to determine functions for equipment
operability and maintainability. Operational Sequence Diagrams is another example of a method
generally accounted for in the SE process (i.e., its use in OOSEM and SysML), but emphasized
through the lens of HSI.

The HSI methods mapped to this step in the Vee-model clearly have more potential impact for
enhancing the SE process, at least more so than the previous two steps, which may also indicate
an increased level of effort expended in this step. If this is the case, this may show that HSI
involvement and the corresponding effort to integrate human factors within the systems
development begins to increase as the project transitions from the Concept to Development
within the system lifecycle.

6.3.3 Models-Based Systems Engineering Support

6.3.3.1 MBSE Functional Architectures Summary

A key step in the system design process, functional (and, for object-oriented methods, logical)
architecting serve to define a “white box” view of the system (Beck, 2011). Specifically,

1 INCOSE SE Handbook v 3.2.2, §4.3.1.5
2 INCOSE SE Handbook v 3.2.2, §4.3.2.4
3 INCOSE SE Handbook v 3.2.2, §4.3.1.5
4 INCOSE SE Handbook v 3.2.2, §4.12.1

55

structured and object-oriented analyses are performed to identify and describe system functions,
how they relate to each other, and under what circumstances they must be performed, both
operational and environmental. Beck (2011) suggests that the best functional architectures are
technology agnostic (i.e., they do not address how functions will be performed), thereby leaving
physical architecture trade spaces unbiased.

Based on the elaborated context diagram, system scenarios, and system technical requirements
identified in the previous step, a functional hierarchy can be developed. In order to capture all
relevant functions, this activity is two-fold: 1) decompose system functions (a top-down
activity); and 2) compose system functions from sub-system scenarios (a bottom-up activity).

Decomposition typically begins by partitioning the top-level functions from the system ECD into
second-level functions, and repeated recursively to develop functions for the third-level, fourth-
level, etc. The level of granularity will depend on the amount of detail available from the
scenarios. In SysML, a functional hierarchy is captured using a block definition diagram (bdd) in
the form of an inverted “tree” structure. An example bdd are other SysML diagrams related to
this Vee-model step are provided in Appendix B and C and will be referenced when appropriate
throughout this section.

Beck (2011) notes that while the decomposition procedure is somewhat unguided, a partitioning
scheme1 can be applied as outline below. Functions should be identified to:

• interface with each external system
• receive (e.g., format) each system input
• produce each system output
• control the system
• provide required system support services (e.g., manage data, communications, faults)

It should also be noted that each function is identified with verb-noun pair and should be at the
same level of abstraction as its parent function.

Composition (bottom-up structuring) uses detailed scenarios (usually one that elaborates an
activity from the system scenarios) to identify functions. The traditional way to construct these
scenarios is through a network diagram, however current MBSE practices would capture these as
SysML activity diagrams (act), as shown in Appendix B. These functions are then organized into
higher-level functions based on their attributes and this process is repeated successively until a
hierarchy is formed from bottom to top. Beck (2011) strongly recommends composition when
the system is unprecedented or represents a radical departure from an existing system, although it
may be used to augment decomposition as a means to help assure completeness.

Once a functional hierarchy has been developed, the sequential relationships between functions
are identified, typically using a method such as FFBD or IDEF0. In SysML, functional flow
diagrams may also be represented in activity diagrams, as shown in Appendix B. After defining
the sequencing of functions, interfaces are then identified. N2 diagrams, similar to those depicted

1 Adapted from Hatley, D. J., and I. A. Pirbhai, Strategies for Real-Time System Specification,
Dorset House, New York, 1988.

56

in Figure 23, are used to record these interfaces and highlight where potential regroupings may
facilitate more effective system partitioning.

Figure 23: N2 diagram features (NASA, 1995).

Although the OMG SysML specification does not define any table or matrix modeling construct
similar to the N2 diagram, Beck (2011) recommends mimicking similar pair-wise queries on an
activity diagram, as shown in Figure 24.

Figure 24: Example SysML diagram comparable to N2 diagram (adapted from OMG, 2006).

After the functions and interfaces are identified, system technical requirements (e.g., functional,
performance, I/O) are allocated to the associated functions. Requirements allocated to the first
level of the hierarchy are decomposed and allocated to the appropriate sub-functions until all
functions are linked to required behavior (Beck, 2011). Once the system requirements have been

57

mapped to functions, they are analyzed through the use of various modeling or simulation
techniques. Beck (2011) suggests that at a minimum it is generally considered necessary to
define a functional timeline for the system in order to, for example, identify time-critical design
requirements. This type of information could also be captured in a SysML sequence diagram
(sd). Other types of evaluation methods may include the Petri net mathematical modeling
language (for systems with complex interactions), Business Process Modeling Notation (BPMN),
or Event-driven Process Chain (EPC). Most importantly, the results of these analyses must be
used to update the system requirements.

Although the functional architecture has been defined, there are some limitations to the
structured analysis described above. Specifically, it does not address the management of system
parameters (e.g., storage and passing or flow of data), nor does it account for the allocation of
non-functional requirements. Beck (2011) states that while this may not be an issue for systems
with a smaller functional hierarchy and simple flows, the problem can become unwieldy as
functional structure size and complexity grows – especially in understanding and managing the
impact of system requirements or design changes.

To alleviate this problem, object-oriented analysis (OOA) is used to develop a logical
architecture, which combines the system operations and attributes (i.e., parameter statements)
into “objects”, or logical components. Essentially, functions, flows, and controls are
repartitioned into a logical architecture that remains technology agnostic and therefore maintains
an appropriate level of abstraction. An example logical hierarchy is depicted in Figure 25.

Figure 25: Example logical hierarchy (INCOSE, 2006).

58

Estefan (2008, §3.2.1) states that developing a logical architecture mitigates requirements
changes on the system design and helps to manage technology changes. Another advantage to
using a logical architecture is that it helps to reduce the set of criteria to consider when
evaluating the physical solution space (e.g., physical architecture) by ruling out potential
physical architectural alternatives based on basic partitioning criteria applied to the logical
architecture.

Partitioning criteria used to help group functions together at some level in a logical hierarchy
include modularity (i.e., maximize cohesion and minimize coupling), similarity (i.e., related
functions), changeability (i.e., functions that have a high likelihood of changing), and constraints
(i.e., functions that share common constraints). Similar to the structured analysis, the logical
hierarchy may be developed via decomposition (i.e., allocating functions to logical components,
working from top down) and/or composition (i.e., assign a one-for-one logical element to each
leaf-level function, then group them based on the partitioning criteria). Interface diagrams are
updated by adding “swim lanes” that allocate functions to logical components, as shown in
Figure 26.

Figure 26: Example logical interface diagram (INCOSE, 2006).

Once these logical diagrams have been developed, requirements allocated to the functional
architecture are now allocated to the appropriate (function performing) logical components and
should include the following types: functional, performance, I/O, control, store, and design
constraints. (Beck, 2011). Logical flows are then analyzed through timeline analyses via
sequence diagrams and additional modeling and simulation may be used to evaluate system
parameters. The results of these analyses will then be used to update the system requirements.

6.3.3.2 Evaluation of HSI Methods Against MBSE

6.3.3.2.1 Task Analysis for Knowledge Description

59

Given that the architectures developed in this step, both functional and logical, should be
technology agnostic and therefore have a certain level of abstraction, TAKD would serve as an
excellent method for defining functions and/or logical components. The structure of the
knowledge representation grammar sentence closely resembles object-oriented analysis in that
functions (operations) are grouped with objects (attributes) upon which they can act. In fact,
these grammar sentences may even serve to define the components in the logical architecture.
Moreover, Task Action Grammar would be a useful starting point to N2 diagramming by
providing a list of functions and their associated features, helping to describe potential interfaces.

6.3.3.2.2 Functional Analysis

As stated previously, this method does not offer anything new to the SE process, nor does it
identify a method that is not already captured by MBSE. However, the strong similarities
between the activities within this HSI method and those described in this MBSE step indicate
that a models-based approach to systems development may more effectively take into account
human factors than the “classical” SE process. For example, Hierarchical Task Analysis,
FFBDs/IDEF0 diagrams, and Flow Process Charts are key activities within MBSE and can be
modeled using SysML diagrams (e.g., block definition diagram for HTA, activity diagram for
FFBDs/IDEF0 diagrams and Flow Process Charts). With these methods already incorporated to
MBSE, successful integration of human factors within this activity merely becomes a matter of
the level of HSI emphasis within the project.

6.3.3.2.3 Timeline Analysis

Although this method was not accounted for in the SE process, it is identified as one of the most
important analyses in the MBSE Functional Architectures Step. In addition to identifying time-
critical design requirements, Timeline Analysis helps to ensure that functional sequencing is
correct and, with regards to human factors, facilitates workload evaluation and provides early
personnel estimates.

6.3.3.2.4 Simulation

Like Functional Analysis, this method is already described within MBSE. For example,
simulation, through various tools, may be used to evaluate system parameters, which may help
identify or update performance requirements. Given its existing integration within MBSE,
simulations focused on operability and maintainability should be emphasized.

6.3.3.2.5 Action/Information Analysis

This method would be probably most useful in identifying how the functional architecture should
allocate to the logical architecture. Specifically, actions and information requirements identified
through this HSI method could be incorporated into the partitioning criteria used to group
functions within the logical hierarchy.

6.3.3.2.6 Operational Sequence Diagram

60

Although this method is described in this MBSE step as useful for diagramming timeline
analyses, its application in determining the functional relationships and interactions among
system elements is not adequately covered. Additional OSD-based analyses that include detailed
information about events, actions, and decisions related to operator-equipment or operator-
operator interactions would be beneficial in identifying functional relationships and interactions
among logical components. OSDs may also help define partitioning criteria, clarifying how
functions should be mapped to logical components.

6.3.4 Models-Based Systems Engineering Support Summary

While some of these HSI methods have been accounted for within MBSE, the majority offer
important enhancements:

1. Use TAKD to:
a. Define (abstracted) functions;
b. Use knowledge representation grammar sentences to define logical components;
c. Develop a list of functions via the TAG method to identify potential interfaces

within the N2 diagram.
2. Given the existing integration of Functional Analysis within MBSE, place additional

emphasis on human factors considerations.
3. Use Timeline Analysis to:

a. Identify time-critical design requirements;
b. Verify that the temporal relationships among functions are compatible;
c. Facilitate workload evaluation and provide early personnel estimates.

4. Focus on operability, maintainability, and other human factors non-functional
requirements during simulations.

5. Use Action/Information Analysis to help define partitioning criteria while allocating
functions to the logical architecture.

6. Use Operational Sequence Diagrams to:
a. Identify functional relationships and interactions among logical components;
b. Define partitioning criteria (i.e., how functions should be mapped to logical

components).

Based on the fact that the HSI methods identified use several of the modeling tools used in
MBSE, human factors can be more effectively integrated into systems development when MBSE
is implemented when compared to the “classical” SE process.

61

6.4. Architectural Design: Physical Architecting

As stated in the previous section, although Architectural Design has been decomposed into
Functional Architecting and Physical Architecting in this paper, it is summarized as one step to
maintain consistency with ISO/IEC 15288 and the INCOSE SE Handbook. For a summary of the
Architectural Design process, please refer to §6.3. A detailed description of Physical
Architecting is provided in the subsequent MBSE section.

Based on the mapping analysis, twenty-one methods were identified as applicable to Physical
Architecting (see Table 4 for a comparison matrix).

Table 4: Vee-model Step Four: HSI Methods Comparison

Same 
Different 
McKneely, et al., 2006 
Stanton, et al., 2012 

62

Chapanis, 1996 
Sanders and McCormick,
1993 

DoD, 1999 

After comparative analysis, four unique methods were identified: 1) Function Allocation 2) Task
Description and Analysis; 3) Performance, Workload and Manning Level Estimation; and 3A)
Failure Analysis (a sub-method for determining performance impacts).

The methods in this step are sequential, beginning with the Function Allocation, then Task
Description and Analysis, and finally Performance, Workload, and Manning Level Estimation,
which includes Failure Analysis. As shown in Figure 27, these methods are also iterative
(Sanders and McCormick 1993, Ch.22) to the extent that the results of the latter three methods
necessitate a change in the allocation of functions.

Figure 27: Vee-Model Step Four HSI Methods

6.4.1 Unique Methods

6.4.1.1 Function Allocation

Method Objective: Assign each system function, action, and decision to hardware, software, or
humanware such that the resulting physical configuration maximizes total system performance
and effectiveness.

Approach: Allocate each system function to a physical component (e.g., hardware, software,
humanware). Although allocation decisions may be predetermined by constraints established
during Mission Analysis and Requirements Analysis (McNeely, et. al 2006), also known as
Mandatory Allocation (Sanders and McCormick 1993, Ch. 22) they are typically determined by
comparing alterative configurations in terms of their effectiveness in performing a given function
(Chapanis 1996, Ch. 4). There are many techniques for making allocation decisions. Sanders and
McCormick list a few (1993, Ch. 22, A Strategy for Allocating Functions), one of which defines
a “decision space” as an aid in making allocation decisions (see Figure 28).

63

Figure 28: Human-Machine Allocation Decision Space (Sanders and McCormick 1993, Ch.

22)

The DoD identifies other techniques including trial-and-error, Fitts lists, and design evaluation
matrix (DoD 1999, §8.3.12.1). Chapanis (1996, Ch. 4) recommends establishing weighting
criteria for comparing physical configurations and using a simple rating scheme for making
allocation decisions. While these techniques are helpful, they can be dated and must be used
judiciously (McNeely, et. al 2006). Sanders and McCormick (1993, Ch. 22) point out a number
of limitations in using such comparisons, such as the rapid evolution of machines relative to
humans, the inability to account for costs related to allocation decisions, and the lack of
consideration of social, cultural, or political issues. Dynamic allocation may also be used, in
which allocation decisions are made real-time by the operator (e.g., autopilot on aircraft and
cruise control in automobiles) (Sanders and McCormick 1993, Ch. 22). Finally, the impact of
allocation decisions on total system performance is assessed. For any allocations that have a
significant negative effect on performance, an alternative allocation should be determined
(Stanton, et. al, 2012). Likewise, results from the three subsequent methods of this step are used
to reallocate functions as necessary.

Inputs: Functional architecture, functional flow analyses, technical basis reports, known human
capabilities and limitations, task analysis results, and performance, workload and manning level
estimations.

Outputs: Physical architecture, and allocation justifications including evaluation matrices,
weighted comparisons, Fitts lists, etc.

6.4.1.2 Task Description and Analysis

Method Objective: Record and analyze how the human interacts with the system.

Approach: List and describe all tasks, subdividing tasks into subtasks, and record related
supplementary information. At a minimum details should be provided for: information
requirements; evaluations and decisions that must be made; task times; operator actions; and
environmental conditions (Chapanis 1996, Ch. 4). McNeely, et al. (2006) provide a similar list:
task cues, user decision/action, information required to support the decision/action, and

64

mechanisms to implement the results of the decision/action. The DoD (1999, §8.3.2.3)
recommends analyzing tasks that are: potentially hazardous; time consuming; difficult; show
potential for improvement; or required by the procuring activity. Human-machine interactions
are articulated (McNeely, et al., 2006) and are often reflected in an operational sequence
diagram1 (Sander and McCormick 1993, Ch. 22).

Inputs: Physical architecture, allocation justifications, and expert opinion from users of similar
systems.

Outputs: Ordered list of human-specific tasks including supplementary information.

6.4.1.3 Performance, Workload and Manning Level Estimation

Method Objective: Assess workloads and related manning and training requirements in order to
predict and optimize system performance.

Approach: Determine human performance requirements for each function/task if not previously
identified. These may include required accuracy, speed, or time necessary to develop
performance proficiency and user satisfaction (Sanders and McCormick 1993, Ch. 22). Next,
appraise operator task loadings. These are typically calculated by estimating the time required to
perform a task, divided by the time available or allotted to perform it (Chapanis 1996, Ch. 4). A
workload profile, as depicted in Figure 29, may be used to highlight unbalanced workload
distributions (DoD 1999, §8.3.13.1).

Figure 29: Workload analysis profile (sample) (DoD 1999, §8.3.13.1).

1 See §6.3.1.6 for an overview of Operational Sequence Diagram (OSD).

65

Estimates of manning (personnel) and training requirements are also determined, typically by
direct observation when a precedent system exists. Chapanis (1996, Ch. 4) refers to this as
Activity Analysis, which may yield other important information such as assessments of stress
levels and indications where changes in procedure would improve performance. Simulation and
controlled experimentation provide mechanisms for assessment of system performance with the
defined human role (McNeely, et al., 2006). Simulations may also help evaluate alternative
configurations, evaluate operating procedures, provide training, and identify mismatches
between personnel and equipment (Chapanis 1996, Ch. 4). Controlled experimentations help
define relationships or correlations between variables as well as differences between alternative
configurations, procedures, or environments (Chapanis 1996, Ch. 4). These estimates are then
evaluated against the performance requirements. If workload and manning estimates are within
acceptable performance limits, hardware and software detailed design may begin. If workload
overloads/underloads exist or if manning levels are disproportionate, reallocation of functions is
necessary to meet required performance levels.

Inputs: MOPs, task time/frequency/precision data, and expert opinion from users of similar
systems.

Outputs: Workload/manning/training estimates, workload profiles, performance evaluation data,
and areas that require reallocation.

6.4.1.3.1 Failure Analysis

Method Objective: Predict human errors and determine the resulting impacts to system
performance.

Approach: This method is comprised of two ‘sub-methods’, Fault Tree Analysis and Failure
Modes and Effects Analysis (FMEA). Although different in their respective approaches, they both
focus on anticipating operator/maintainer mistakes with the aim of designing against those
mistakes for the system-of-interest. Specifically, Fault Tree Analysis begins with an undesirable
event or failure and attempts to determine those combinations of events and circumstances that
could lead to it (Chapanis 1996, Ch. 4). As shown in Figure 30, probabilities of various
undesirable events and the sequences that would produce those undesirable events are depicted
in a tree-like structure.

66

Figure 30: Fault tree (sample) (Chapanis 1996, Ch. 4).

Conversely, FMEA begins with components (e.g., human operator) and deduces the
consequences of a failure in one or more of those components (Chapanis 1996, Ch. 4). A list of
human failures that have major impacts on system performance is produced along with the
probabilities of failure occurrence. Based on this information reallocation decisions are made to
reduce the probability of serious system failures.

Inputs: Results from task analyses, functional flow analyses, action/information analyses, and
human reliability data.

Outputs: Probabilities of undesirable events and system failures due to human errors and areas
that require reallocation.

6.4.2 Unique Methods Summary

While the general concepts of these HSI methods are touched upon within the SE process, it does
not go into the same level of detail necessary for integrating human factors within the systems
development.

Although the SE process describes allocating functions to a physical architecture and notes the
importance of taking human factors into account.1, it does not provide the same level of detail as
the Function Allocation method. Since allocation decisions made in this step will determine how
the human interacts with the system, this HSI method should be integrated into the SE process.
The HSI sources related to this method offer various approaches and tools that can help the
systems engineer make informed allocation decisions while providing supporting documentation
(e.g., decision space chart, evaluation matrix, ‘Fitts’ list) that may serve as a basis for selection
justification. These artifacts are also crucial in the feedback loops between these HSI methods,

1 ISO/IEC 15288:2002, §5.5.4.3 d)

67

which the SE process describes as necessary in order to ensure proper allocation, requirements
satisfaction, and manufacturing compliance (INCOSE SE Handbook v.3.2.2, §4.3.2.8).

The activities related to Task Description and Analysis are identified within the SE process,
although described more generally.1 The advantage of this HSI method is that it focuses on
human tasks and analyzes how the human interacts with the system. However, it should be noted
that INCOSE makes reference to task analyses and their importance in understanding human
capabilities.2 That being said, specific techniques, such as those described in Task Description
and Analysis provide needed detail about how to conduct these analyses.

While the SE process identifies3 key activities within Performance, Workload and Manning
Level Estimation, such as establishing performance requirements and evaluating design solutions
against these requirements, it does not offer a specific method for doing this. In addition, the HSI
method provides multiple ways for assessing humanware allocations to ensure workload and
manning levels are not disproportionate, whereas the SE process does not address this.

The sub-methods described in Failure Analysis are typically used by safety engineers for
evaluating system errors and therefore are described within the SE process. For example,
INCOSE dedicates a section to elaborating Failure Modes and Effects Analysis (FMEA).4
However, since the Failure Analysis method as described herein adapts these methods to deal
specifically with human errors, it would be beneficial to consider these sub-methods as defined
by HSI during system development.

The HSI methods mapped to Physical Architecting focus on one of the most important aspects to
HSI: defining and evaluating how the human interacts with the system. Similar to the previous
step, Functional Architecting, there is an increased level of effort in analyzing and evaluating
human factors within the system, especially due to the iterative nature of reallocating functions.
As the life cycle continues to progress through development, it is crucial to ensure that sufficient
human factors analyses are conducted and incorporated into the physical architecture prior to
Implementation activities in order to avoid failures across human-machine interfaces, resulting in
costly changes.

6.4.3 Models-Based Systems Engineering Support

6.4.3.1 MBSE Physical Architectures Summary

After structured and object-oriented analyses have been conducted to produce both functional
and logical architectures, the next step is to define one or more physical architectures to which
functions or logical components will be allocated. Based on technical screening criteria, physical
architecture alternatives are down-selected for further analysis. These alternatives should also
explore various component technologies, which will be used to conduct trade studies. Physics-

1 INCOSE SE Handbook v.3.2.2, §4.3.2.3
2 INCOSE SE Handbook v.3.2.2, §9.12.2.1
3 ISO/IEC 15288:2002, §5.5.4.3 f)
4 INCOSE SE Handbook v.3.2.2, §9.1.2.1

68

based models are then used to evaluate the remaining architectures and serve as a means to
conduct performance-based evaluations to help make a final selection.

Prior to allocating functions to the physical architecture, partitioning criteria, from which
functions will be grouped, must be defined (Beck, 2011). These may include:

• COTS, reuse, and other design constraints
• Physical or environmental
• Safety and security
• Subcontractor or development responsibility.

Once the portioning criteria have been established, a generic physical hierarchy (GPA) is
developed. Beck (2011) intends generic to mean that the partitioning is made without any
specification of the performance characteristics of the physical resources that comprise each
element. For every logical (or functional) architecture, a generic physical architecture is defined,
usually by decomposition or composition. Figure 31 shows an example GPA.

Figure 31: Generic physical architecture (sample) (Weirich, 1999).

With the GPA defined, all functions or logical components, including system design constraints,
are allocated to each element (node) within the GPA, producing one-to-one or one-to-many
relationships. For each leaf node within the hierarchy, different solutions that are likely to satisfy
the allocated requirements are generated. Beck (2011) notes that by identifying a relatively large,
creative number of options, there is a greater chance that the best alternatives will be considered
in the final analysis. These options are documented in Technical Basis Reports (TBRs).

The list of component alternatives and the GPA are then combined to form what Beck (2011)
calls instantiated physical architectures. These architecture instantiations identify how specific

69

technologies are used to implement the system, and are frequently represented using two
techniques: the morphological box and the trade tree.

A morphological analysis (MA) divides a problem into segments and identified at least two
solutions for each segment (Beck, 2011). This is typically portrayed as a table with the columns
representing the problem segments (e.g., components of the GPA) and the rows filled with the
alternate specific instantiations for each component, as shown in Table 5. The total number of
alternatives is given by multiplying the number of options in each column (e.g., using the table
below, there are 2x5x4x4x2=320 possible hammers defined).

Table 5: Morphological Box for Hammer (Beck, 2011).

Handle Size

Handle
Material

Striking
Element

Weight of
Hammer
Head

Nail Removal
Element

8 inches

Fiberglass

1-‐inch-‐

12 oz.

Steel claw at
 with rubber diameter flat nearly a
 grip steel straight angle

22 inches

Graphite with

1-‐inch-‐

16 oz.

Steel claw at a
 rubber grip diameter 60-‐degree
 grooved steel angle with
 handle

Steel with

1.25-‐inch-‐

20 oz.

 rubber grip diameter flat
 steel

Steel I-‐beam

1.25-‐inch-‐

24 oz.

 encased in diameter
 plastic with grooved steel
 rubber grip

Wood

A trade tree uses a hierarchy structure, in which each branch level represents a problem segment
and each node on that branch represents a proposed segment solution (Beck, 2011). Each line
through the root rode to leaf node represents an alternative, with the total number of alternatives
given by the number of leaf nodes, as shown in Figure 32.

70

Figure 32: Trade tree for NASA Manned Mars Mission (adapted from Guerra, 2008).

Once a set of alternatives has been identified, the next step is to begin the down-selection
process. Eliminating infeasible alternatives (e.g., those that have incompatible technologies)
should be the first activity in this process. Beck (2011) recommends conducting pairwise
comparisons between all component alternatives similar to those used in an upper triangular
matrix or a Quality Function Deployment correlation matrix. Within a trade tree, branches may
be “pruned” to eliminate non-workable solutions. In addition, a preliminary screening should be
conducted to help narrow down the set of alternatives even further before developing models,
which require extensive resources to generate and analyze. Examples of technical screening
criteria include: technical maturity, similarity of alternatives, flexibility, reliability, etc.

The output of these activities should be a small set of instantiated physical architectures. Each
alternative is formally documented in the form of either a Technical Description Document
(TDD) or model-based concept description, either of which should be used as living documents.
Beck (2011) explains that TDDs will usually include graphical representations of the physical
architectures they describe, as shown in Figure 33. In SysML, these diagrams may be captured in
block definition diagrams (bdd) that depict system hierarchy, internal block diagrams (ibd) that
depict interfaces, and sequence diagrams (sd) to depict scenarios. At this point, component-level
requirements should be documented and trace to the system-level requirements.

71

Figure 33: Physical architecture represented in a block diagram (Guerra, 2008).

The final step in developing physical architectures is to generate physics-based models that
measure the effectiveness of the alternatives. Beck (2011) asserts that these models form the
“backbone” for assessing each physical architectures performance against system requirements
after suitable component-level models are developed (completed in later steps of the Vee-
model).

6.4.3.2 Evaluation of HSI Methods Against MBSE

6.4.3.2.1 Function Allocation

Although this MBSE step describes allocation as a necessary activity in developing physical
architectures, it does not provide the level of detail elaborated in the Function Allocation method.
Specifically, by integrating this HSI method into MBSE, the systems engineer would have
multiple approaches available for allocating functions or logical components to the physical
architecture. For example, Fitts lists, design evaluation matrices, and decision space diagrams
may be used to supplement partitioning criteria in making allocation decisions. Dynamic
allocation may also be used, which increases architecture flexibility although may introduce
added complexity. Moreover, since Function Allocation is clearly focused on ensuring that
functions are appropriately allocated to the human element, integrating this HSI method into
MBSE helps to resolve allocation decisions where, for example, a function could be performed
by either a human or by a machine necessitating further analysis to make the proper
determination.

72

6.4.3.2.2 Task Description and Analysis

A key activity in the MBSE method is the identification of component alternatives from which
instantiated physical architectures are developed. However, it is important to first understand, in
detail, the allocated functions prior to exploring differing solutions that will execute those
functions. Task Description and Analysis provides this level of detail for human-related tasks,
which can help guide the identification of technologies with which the human must interact. This
information should also be used to identify infeasible physical architecture alternatives (i.e.,
those that use technologies incompatible or difficult to use by humans).

6.4.3.2.3 Performance, Workload and Manning Level Estimation

With the potential of generating millions of possible combinations1, it becomes necessary to
screen out physical architectures based on a set of screening criteria. Performance, Workload
and Manning Level Estimation can be used to help define criteria based on the human-specific
performance requirements (e.g., accuracy, speed) and constraints (e.g., task loadings, personnel
levels), thereby ensuring that only those physical architectures “optimized” for human interaction
make it through the screening process. The performance evaluation data generated by this HSI
method should also be used to inform the system physical models in evaluating alternatives.

6.4.3.2.4 Failure Analysis

This HSI method is particularly useful when one or more physical architectures under
consideration are based on a precedent system. Since Failure Analysis is concerned with failure
occurrence in current physical systems, the results should be used to throughout this MBSE step.
When identifying component alternatives, technologies known to have a high probability of
failure could be precluded from list. Likewise, physical configurations that lead to circumstances
or events that cause errors can be eliminated as an infeasible alternative. Finally, screening
criteria should take into account reliability data (i.e., probability of failure) generated by this HSI
method.

6.4.4 Models-Based Systems Engineering Support Summary

While there are some similarities between the HSI methods described in this step and MBSE,
they offer distinct enhancements that should be taken into account:

1. Use Function Allocation to:
a. Supplement partitioning criteria to make allocation decisions;
b. Conduct human-machine comparisons (e.g., Fitts list, decision space diagram) to

determine proper allocations;
c. Consider dynamic allocation, which increases architecture flexibility.

2. Use Task Description and Analysis to:
a. Provide details for human-related tasks, which can help identify component

alternatives;

1 “For real systems there are usually millions of possible combinations, evaluation of which is
likely intractable, making a preliminary screening necessary” (Beck, 2011).

73

b. Identify which physical architectures are infeasible due human-machine
incompatibilities.

3. Use Performance, Workload and Manning Level Estimation to:
a. Define criteria to “screen out” physical architectures that do not meet human-

specific performance requirements and constraints;
b. Generate performance evaluation data that should inform physics-based models.

4. If one or more candidate physical architectures are based on a precedent system, use
Failure Analysis data when:

a. Identifying component technologies;
b. Assessing infeasible alternatives;
c. Generating preliminary screening criteria.

Generating, synthesizing, and down-selecting physical architectures could potentially be onerous
depending on the number of alternatives, saying nothing of attempting to incorporate human
factors. In such cases, these HSI methods provide valuable information to help inform the
activities of this MBSE step and ensure optimal integration of the human within the system.

74

75

7. CONCLUSIONS

The incorporation of human factors within systems development continues to face several
challenges within the systems engineering domain: 1) the human factors body of knowledge
itself is currently fragmented; 2) there is a lack of formal integration of human factors methods
within the SE process as defined by established standards; and 3) as MBSE continues to become
more pervasive within the SE discipline, human factors are at risk of being left behind if MBSE
support for human factors is not identified and implemented.

Human Systems Integration aims to address these problems. To accomplish this goal, the human
factors domain must first be organized and consolidated in preparation for effective analysis and
evaluation within the context of systems engineering. In order for human factors to be
successfully incorporated within the systems development life cycle, HSI methods must be
evaluated against the SE process to define what potential enhancements they offer and determine
how they could be integrated to maximize the impact of those enhancements. Moreover, the
same kind of evaluation must be conducted for MBSE to identify how models could be
leveraged to represent the human element and, likewise, how HSI methods could be used to
enhance the MBSE methodology.

The goal of this paper is to accomplish these tasks by providing a framework within which HSI
methods could be assimilated into the SE process and identify how these methods could enhance
the MBSE methodology. The results show that, while there are some HSI methods that do not
introduce anything unique to the SE process or MBSE, there are some that, when integrated,
enhance both. In general, most of these enhancements pertain to architectural activities of the SE
process: Functional Architecting and Physical Architecting. Overall, whether defining
stakeholder requirements or defining the physical architecture, the chief point is that when
applying any method, there should be a focused effort to incorporate human factors within the
development activities. Using the results from this paper as a starting point, the systems engineer
can identify which HSI methods should be applied to a project, whether using an established SE
process only or in conjunction with the MBSE methodology. In that regard, there are strong
similarities between the HSI methods and the MBSE methodology, such as commonality of
approaches and tools, which would potentially lead to more effective integration.

While this research may provide a stepping-stone to reaching a more complete integration of
human factors within systems engineering and MBSE, there are several possible research
opportunities going forward. Due to the limited scope of this paper, evaluation of the HSI
methods mapped to the remaining Vee-model steps, Implementation through Validation, is
needed to offer a more comprehensive approach to the integration of human factors within
systems development. In addition, although many HSI methods were identified for this paper,
there are still a significant number of sources within the human factors domain that remain
untapped. Identifying the methods within these sources, organizing, and consolidating them will
be key to enable a more effective integration within the systems engineering process. Finally,
MBSE offers significant advantages through the use of modeling and simulation methods and
related tools. The correlation between the human factors domain and MBSE requires further
investigation to determine additional enhancements that HSI methods may provide to the MBSE
methodology, with the intent of more accurately capturing the human element within systems.

76

77

8. REFERENCES

Booher, Harold R. 2003. Handbook of Human Systems Integration. John Wiley & Sons.
Boy, Guy A. 1998. “Cognitive Function Analysis for Human-Centered Automation of Safety-

Critical Systems.”
Bruseberg, Anne. 2008. The HFI Case Concept: Guidance on Specifying, Tracking and

Documenting Human Factors Integration Requirements, Acceptance Criteria and
Evidence. Human Factors Integration Defence Technology Centre.

Human Factors Integration Defence Technology Centre. 2009. Cost-Benefit Analysis for Human
Factors Integration: A Practical Guide.

Beck, David F. 2013. "Models-based Systems Engineering Process Methods" (in preparation),
Sandia National Laboratories, Albuquerque, NM.

Burns, John, and Jerry Gordon. 2005. “Human Systems Integration” June 9, Orlando, FL.
Burns, John, Jerry Gordon, Matt Wilson, Milt Stretton, and Dan Bowdler. 2005. “A Framework

for Applying HSI Tools in Systems Acquisition.” Paper No. 2281:11. Orlando, FL.
Chapanis, Alphonse. 1996. Human Factors in Systems Engineering. Wiley.
Cunio, Phillip, and M.L. Cummings. 2009. A Framework for an HSI Downselection Tool.

Technical. Massachusetts Institute of Technology.
Defense Science Board. 2005. Report of the Defense Science Board Task Force on Patriot

System Performance. OUSD for Acquisition, Technology,and
Logistics,Washington,DC,20301-3140.

Directorate of Human Performance Integration | Human Performance Optimization Division.
2009. Air Force Human Systems Integration Handbook: Planning and Execution of
Human Systems Integration. http://www.wpafb.af.mil/shared/media/document/AFD-
090121-054.pdf.

Endsley, Mica. 2000. “Situation Models: An Avenue to the Modeling of Mental Models.” In
Proceedings of 14th Triennial Congress of the International Ergonomics Association and
He 44th Annual Meeting of the Human Factors and Ergonomics Society.

Estefan, Jeff A. 2008. Survey of Model-Based Systems Engineering (MBSE) Methodologies.
International Council on Systems Engineering (INCOSE).

Flickinger, Don. 1957. “Man - The Essential Factor in Systems.” In Proceedings of the National
Symposium on Human Factors in Systems Engineering. Philadelphia, PA: Human Factors
Society of America and Institute of Radio Engineers and IRE Professional Group on
Military Electronics.

Human Factors Society of America. 1957. “Man - The Essential Factor in Systems.” In
Proceedings of the National Symposium on Human Factors in Systems Engineering.
Philadelphia, PA: Human Factors Society of America and Institute of Radio Engineers
and IRE Professional Group on Military Electronics.

Friedenthal, Sanford. 2012. A Practical Guide to SysML: The Systems Modeling Language. 2nd
ed. Waltham, MA: Morgan Kaufmann.

Gabbar, Hossam. 2007. “Design of Virtual Plant Environment for Future Generation Green
Production Systems.” Systems Engineering 10 (2) (February 14): 155–166.
doi:10.1002/sys.20068.

Giachetti, Ronald, Veronica Marcelli, Jose Cifuentes, and Jose Rojas. 2012. “An Agent-Based
Simulation Model of Human-Robot Team Performance in Military Environments.”
Systems Engineering 16 (1) (February 15): 15–28. doi:10.1002/sys.21216.

78

Grady, Jeffrey O. 2010. System Requirements Analysis. Academic Press.
Guerra, Lisa. 2008. Space Systems Engineering. NASA, Exploration Systems Mission

Directorate. http://spacese.spacegrant.org .
Handley, Holly. 2011. “Incorporating the NATO Human View in the DoDAF 2.0 Meta Model.”

Systems Engineering 15 (1) (June 1): 108–117. doi:10.1002/sys.20206.
Hardman, Nicholas, and John Colombi. 2011. “An Empirical Methodology for Human

Integration in the SE Technical Processes.” Systems Engineering 15 (2) (July 1): 172–
190. doi:10.1002/sys.20201.

Harris, Steven, and Jennifer Narkevicious. 2013. “First Principles in the Analysis of Human-
System Dynamics” presented at the INCOSE 2013 International Workshop, January 27,
Jacksonville, FL.

Hause, Matthew, and Francis Thom. 2007. “HCI Aspects of SysML and Architectural
Frameworks.” In Systems Engineering: Key to Intelligence Enterprises. INCOSE.

Hebeler, Emily, Jennifer McKneely, and Sarah Rigsbee. 2012. “The Application of Human-
Systems Integration: Designing the Next Generation of Military Global Positioning
System Handheld Devices.” Johns Hopkins APL Technical Digest 31 (1): 66–75.

The Institute of Electrical and Electronics Engineers, Inc. 2005. “Adoption of ISO/IEC
15288:2002 Systems Engineering—System Life Cycle Processes”.

The Institute of Electrical and Electronics Engineers, Inc. 2005. “IEEE Standard for Application
and Management of the Systems Engineering Process (IEEE Std 1220-2005)”.

International Council on Systems Engineering (INCOSE). 2006. Version 02.42.00. Object-
Oriented System Engineering Method (OOSEM), April.

International Council on Systems Engineering. 2007. Version 3.2.2. INCOSE Systems
Engineering Handbook: A Guide for System Life Cycle Processes and Activities.

International Council on Systems Engineering. 2008. “Integrating the Human in Every System:
Special Feature.” INSIGHT: Publication of the International Council on Systems
Engineering 11 (2) (April): 1–68.

Karwowski, Waldemar. 2006. International Encyclopedia Of Ergonomics And Human Factors.
CRC Press.

Kossiakoff, Alexander, and William N Sweet. 2003. Systems Engineering Principles and
Practice. Wiley Series in Systems Engineering and Management. Hoboken, N.J.: J.
Wiley.

Lane, Jo Ann, and Tim Bohn. 2012. “Using SysML Modeling To Understand and Evolve
Systems of Systems.” Systems Engineering 16 (1) (November 28): 87–98.
doi:10.1002/sys.21221.

Linsell, Mark, and Chris Vance. 2008. Modelling Human Factors Using the Systems Modelling
Language. Human Factors Integration Defence Technology Centre.

Madni, Azad. 2009. “Integrating Humans with Software and Systems: Technical Challenges and
a Research Agenda.” Wiley InterScience (April 17). doi:10.1002/sys.20145.

Madni, Azad. 2010. “Towards a Generalizable Aiding-Training Continuum for Human
Performance Enhancement.” System Engineering 14 (2) (April 22): 129–140.
doi:10.1002/sys.20166.

Madni, Azad, and Michael Sievers. 2012. “Systems Integration: Key Perspectives, Experiences,
and Challenges.” Systems Engineering (September 29): 1–15. doi:10.1002/sys.21249.

McGovern Narkevicius, Jennifer, John Winters, and Nicholas Hardman. 2008. “Talking the
Talk: Cross-Discipline Terminology Challenges.” Incose Insight 11 (2) (April): 25–27.

http://spacese.spacegrant.org/

79

McKneely, J.A.B., D.F. Wallace, A.A. Perry, and J.J. Winters. 2006. “Human Systems
Engineering Process and Methods.” In International Encyclopedia of Ergonomics and
Human Factors. 2nd ed. Boca Raton, FL: Taylor & Francis Group, LLC.

Militello, Laura G., and Robert J. B. Hutton. “Applied Cognitive Task Analysis (ACTA): a
Practitioner’s Toolkit for Under Standing Cognitive Task Demands.” Ergonomics 41
(11): 1618–1641.

Muralidhar, Ajoy. 2008. “How Human Systems Integration and Systems Engineering Can Work
Together.” Incose Insight 11 (2) (April): 11–14.

National Aeronautics and Space Administration (NASA). 1995. NASA Systems Engineering
Handbook, SP-610S, June.

Narkevicius, Jen. “Human Systems Integration: Railway Systems: Applications HSI Beyond
DoD.”

Nemeth, Christopher P. 2004. Human Factors Methods for Design: Making Systems Human-
Centered. Taylor & Francis.

Newman, Richard. 1999. “Issues in Defining Human Roles and Interactions in Systems.”
Systems Engineering 2 (3) (June 15): 143–155. doi:10.1002/(SICI)1520.

Object Management Group (OMG). 2006. OMG SysML Specification, May.
Royce, Winston W. 1970. “Managing the Development of Large Software Systems.” In , 9. The

Institute of Electrical and Electronics Engineers.
Rushby, John. 2001. “Modeling the Human in Human Factors.” In , 2187:86–91. Budapest,

Hungary: Springer-Verlag.
Salvendy, Gavriel. 2012. Handbook of Human Factors and Ergonomics. John Wiley & Sons.
Sanders, Mark S., and Ernest J. McCormick. 1993. Human Factors in Engineering and Design.

McGraw-Hill.
Sanders, Mary, and Elisabeth Fitzhugh. 2005. Cognitive Systems Engineering Tool Survey - A

Subtask in Support of Commander’s Decision Aids for Predictive Battle-Space
Awareness (CDA4PBA). Human Effectiveness Directorate: Warfighter Interface
Division: Cognitive Systems Branch. http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA452155.

Stammers, Rob B., Michael S. Carey, and Jane A. Astley. 1990. “Task Analysis.” In Evaluation
of Human Work. Bristol, PA: Taylor & Francis, Ltd.

Stanton, Neville A., Paul M. Salmon, Guy H. Walker, Chris Baber and Daniel P. Jenkins. 2012.
Human Factors Methods: A Practical Guide for Engineering and Design. Ashgate
Publishing, Ltd.

Stanton, Neville Anthony, Alan Hedge, Karel Brookhuis, Eduardo Salas, and Hal W. Hendrick.
2004. Handbook of Human Factors and Ergonomics Methods. CRC Press.

Thryft, Ann. 2013. “Crowdsourcing App Helps Space Agency Improve Robots.” Design News,
May.

United States of America Department of Defense. 1999. “Human Engineering Program Process
and Procedures (MIL-HDBK-46855A)”.

United States of America Department of Defense. 2012. “Human Engineering Design Criteria
Standard (MIL-STD-1472G)”.

U.S. Coast Guard Research and Development Center. 2009. Survey of Human Systems
Integration (HSI) Tools for USCG Acquisitions.

Usability Partners. “ISO Standards: Standards in Usability and User-centred Design.” Usability
Partners. http://www.usabilitypartners.se/about-usability/iso-standards.

80

Weimer, Jon. 1995. Research Techniques in Human Engineering. Prentice Hall.
Weirich, Jim. 1999. OOAD Design Problem: The Coffee Maker.
Wickens, Christopher D., Anne S. Mavor, and James P. McGee. 1997. Flight to the Future:

Human Factors in Air Traffic Control. National Academies Press.
Wilson, John R. 1990. “A Framework and a Context for Ergonomics Methodology.” In

Evaluation of Human Work. Bristol, PA: Taylor & Francis, Ltd.
Wilson, John R., and NIGEL CORLETT. 1990. Evaluation of Human Work. CRC Press.

81

APPENDIX A: MAPPING ANALYSIS DIAGRAMS

82

83

84

85

86

87

APPENDIX B: MBSE STAKEHOLDER REQUIREMENTS DEFINITION

The following set of diagrams represents some of the activities from the first step in the MBSE
method by using SysML to model an automobile system (Friedenthal, et al., Chapter 4, 2011).

Figure 34: Use Case Diagram (uc) of a human operating a vehicle.

88

Figure 35: High-level human-system interaction captured using a Sequence Diagram (sd).

89

Figure 36: Detailed model of human-system interaction captured using a sequence

diagram (sd).

90

Figure 37: The Drive Vehicle use case elaborated using a State Machine (stm) diagram.

91

Figure 38: An Activity Diagram (act) with "swim lanes" distinguishes the actions

performed by the human and those performed by the vehicle.

92

Figure 39: A contextual depiction of the vehicle's environment is captured using an
Internal Block Definition Diagram (ibd).

93

APPENDIX C: MBSE FUNCTIONAL ARCHITECTURES

Figure 40: Block definition diagram (bdd) of the Automobile Domain (Friedenthal, et al.,

Chapter 4, 2011).

94

95

DISTRIBUTION

1 MS0933 Joselyne O. Gallegos Org. 9500

1 MS0899 Technical Library 9536 (electronic copy)

96

97

98

	Integrating the Human Element into the Systems Engineering Process and MBSE Methodology
	Integrating the Human Element into the Systems Engineering Process and MBSE Methodology
	Acknowledgments
	Contents
	Figures
	Tables
	Nomenclature
	1. Introduction
	2. Methods
	2.1 Data Collection
	2.2 Data Analysis
	2.3 Standards and Tools

	3. Literature Review
	4. Vee-model process
	5. Mapping Analysis
	5.1. Scoping the Vee-model
	5.2. HSI Methods Mapped to the Vee-model

	6. Discussion
	6.1. Stakeholder Requirements Definition
	6.1.1 Unique Methods
	6.1.1.1 Interviewing
	6.1.1.1.1 Critical Incident Study
	6.1.1.2 Reviewing
	6.1.1.3 Mission Analysis

	6.1.2 Unique Methods Summary
	6.1.3 Models-Based Systems Engineering Support
	6.1.3.1 MBSE Stakeholder Requirements Definition Summary
	6.1.3.2 Evaluation of HSI Methods Against MBSE

	6.1.4 Models-Based Systems Engineering Support Summary

	6.2. Requirements Analysis
	6.2.1 Unique Methods
	6.2.1.1 Analysis of Similar Systems
	6.2.1.2 Requirements Analysis
	6.2.1.2.1 Functional Flow Block Diagramming

	6.2.2 Unique Methods Summary
	6.2.3 Models-Based Systems Engineering Support
	6.2.3.1 MBSE System Technical Requirements Summary
	6.2.3.2 Evaluation of HSI Methods Against MBSE

	6.2.4 Models-Based Systems Engineering Support Summary

	6.3. Architectural Design: Functional Architecting
	6.3.1 Unique Methods
	6.3.1.1 Task Analysis for Knowledge Description (TAKD)
	6.3.1.2 Functional Analysis
	6.3.1.3 Timeline Analysis
	6.3.1.4 Simulation
	6.3.1.5 Action/Information Analysis
	6.3.1.6 Operational Sequence Diagram (OSD)

	6.3.2 Unique Methods Summary
	6.3.3 Models-Based Systems Engineering Support
	6.3.3.1 MBSE Functional Architectures Summary
	6.3.3.2 Evaluation of HSI Methods Against MBSE

	6.3.4 Models-Based Systems Engineering Support Summary

	6.4. Architectural Design: Physical Architecting
	6.4.1 Unique Methods
	6.4.1.1 Function Allocation
	6.4.1.2 Task Description and Analysis
	6.4.1.3 Performance, Workload and Manning Level Estimation
	6.4.1.3.1 Failure Analysis

	6.4.2 Unique Methods Summary
	6.4.3 Models-Based Systems Engineering Support
	6.4.3.1 MBSE Physical Architectures Summary
	6.4.3.2 Evaluation of HSI Methods Against MBSE

	6.4.4 Models-Based Systems Engineering Support Summary

	7. Conclusions
	8. References
	Appendix A: Mapping Analysis Diagrams
	Appendix B: MBSE Stakeholder Requirements Definition
	Appendix C: MBSE Functional Architectures
	Distribution

