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VISCOELASTIC ANALYSIS OF IRRADIATED GRAPHITE
WITH VARTABLE CREEP COEFFICIENT

S. J. Chang, J. A. Carpenter,
and D. W. Altom

ABSTRACT

This report is an addendum to a previous reportl
concerning a method of stress analysis for irradiated
graphite which may be used for Molten Salt Breeder
Reactor (MSBR) core design. To provide a refined
analysis, the present method includes the effect of
a variable creep coefficient which is caused by the
nonuniform temperature distribution. To facilitate
a simple formulation, it is assumed that the tempera-
ture dependence of the elastic response of the material
is approximated to be inversely proportional to the
creep rate. It is shown that the problem reduces to the
solution of several associated (fictitious) elastic
problems which have a common elastic modulus inversely
proportional to the creep rate of the irradiated graphite.
Mumerical examples in the previous report were recalcu-
lated based on the present theory. It shows, for large
dose values, an improvement to the previous method. A
computer program is written for the purpose and can in-
clude the previous solution as a special case.

Keywords: stress analysis, graphite, neutron irradiation,
dimensional change, temperature, viscoelasticity, lifetime,
MSBR, creep coefficient.

INTRODUCTION

The graphite moderator located in a Molten Salt Breeder Reactor
(MSBR) is subjected to intense neutron irradiation and temperature
change. The irradiated graphite is known to exhibit the properties
of creep and dimensional change which depend significantly on tempera-

ture. A reportl was written to provide a method of stress analysis

lS. J. Chang, C. E. Pugh, and S. E. Moore, '"Viscoelastic Analysis of
Graphite Under Neutron Irradiation and Temperature Distribution,'" ORNL-
TM-2407 (October 1969); and Fifth Southeastern Conference on Theoretical
and Applied Mechanics, Raleigh, North Carolina, April 1970.



for the purpose of MSBR core design. It applied the theory of linear
viscoelasticity and reduced the problem to the stress analysis of
several fictitious elastic probléms. It was illustrated that the

method can analyze the effects of any two-dimensional geometry, boundary
tractions, temperature distribution, and neutron-induced dimensional

change by calculating several elastic problems.

The method, however, was based on the assumption that. the creep
rate K(T) was independent of temperature change throughout the cross
section. This assumption, as shown in the next sectidn,.will,lead to
some error according to the preliminary.analyses given in the previous
report.l It is the intention of the present report to provide a modi-
fied method so that the variation of K(T) with respect to temperature
is included in the formulation. The resulting analeis in the text
shows that the modified formulation can also reduce the problem to the
solution of several associated elastic prob;ems. But these associated
elastic problems have a common nonuniform elastic modulus, inversely

proportional to K(T).

The numerical examples of the previoﬁs repor£ were recélculated.
The results show an improvement of the method of analysis. The computer

program in the present case includes the previous one as a special case.

REVISED CONSTITUTIVE EQUATIONS

The purpose of this revision is to provide a reasonable concern
about the variation of the creep rate K(T) with temperature in the
creep function. The necessity of this modification is supported by

the numerical values shown below.

The preliminary analyses for the temperature‘profile of the Molten
Salt Breeder Reactor (MSBR) presented in a former reportl indicated
that the temperature ranges from 670°C to 760°C as shown in Fig. 4 of
that report. The resulting variation in K(T), as well as its consequence
in the range of large neutron dose, will provide us the obvious reason
why the modified analysis in the present report is necessary. In fact,

the formula shown in Eq. (55) of the earlier report shows a difference
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of 14% in K(T) for the temperature range from 670°C to 760°C. With a
neutron dose value of D = 3 X lO22 nvt this will lead to a difference

in creep function, shown in Eq. (19) of that report, of
AK(T)D = 8.4 x 107°

when K(T) is computed at T = 700°C. The value of liz in the creep func=-
tion is 8.8 x 107 . ;Ei is understood to be the sum of the instantaneous
and primary creeps. Therefore, the change in K(T) + D in the creep func-
tion because of the temperature difference is important as compared with
iﬁi. Furthermore, the term K(T) : D itself in the creep function for D =

3 X 10°% nvt has a higher order of magnitude as compared with ;EE in the
creep function. These facts indicate that, in creep analyses, the variation
of K(T) with temperature is not negligible and the variation of LEE is

of less importance. The latter fact will be used below as the approxi-
mation in our modified creep function as shown in the next paragraph.

This creep function will be used later.

With the above concern, it is therefore reasonable to approximate

the creep function in the following form

with

o
lw)
SN
1l

-A D
1 1 o)
st - e >+KO D . (2)

Ko is the creep coefficient K(T) computed at some average temperature
and AO is a large constant. Therefore, the initial response is repre-
sented approximately but the creep rate is exact. Hence the method is
more effective for large dose range, and for temperature sensitive K(T).
For lower dose range the method of the previous reportl is more accurate.
Since the present method will include the method developed previously

as a special case, the solution for small dose can be obtained readily
by assuming K(T) to be constant throughout the cross section in the

present method. The reason that this form of approximation is proposed



is that in Eq. (1), J(D) can be factored into two parts, one depending

on the space coordinates, the other on dose. This factorization still
can facilitate the inversion operation in a series of derivations shown
in the last section of this report. The constitutive equations based

on Eq. (1) for a three-dimensional body can therefore be derived similarly

to that in our previous report.

With the understanding of the new form of J(D), the constitutive
equations for the transversely isotropic graphites, as possessed by

many kinds of graphite, are

e, = I ¥ (do'x - “xdcy) -wd, *do, + ol + wx(T,D) s (3)

 ° I ™ (dcy B uxdcx) B IJsz * do, * AT wx(T’D) 7 (4)

e, = JZ * (dgz - pdo_ - uzdoy) +oT + ¢Z(T,D) s (5)
Vg = 2L+ 1) I *ar o, (6) ;
7yz - sz * dTyz ’ (7) .
Tox = sz * dex ’ (6)

where z axis is assumed to be the axis of mechanical symmetry and both

Poisson ratios, Mo and pz, to be constant. The Poisson ratio My is

defined as the ratio of induced lateral strain to longitudinal strain

for a uniaxial test when both directions lie in the plane of isotropy

(x,y). Whereas, u, is the ratio of the lateral strain induced in a

direction in the plane of isotropy to the longitudinal strain in the

direction normal to the isotropic plane. When these ratios are dose

dependent, two creep functions, in addition to Jx’ JZ, and Jéx’ are

required for the stress-strain representation. The notation (*) is ‘

used to represent a convolution relation, e.g.,

D _
J % dog = j J(p-D") S—gr anp' . (9) @
: 0
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The terms &T and y(T,D) represent the strains due to thermal expansion
and dimensional changes resulting directly from neutron irradiation,

respectively.

The generalized plane-strain conditions are defined by the case

when the normal strain in a given direction, say the z direction, assumes

a constant value € all derivatives with respect to z vanish, such th
the net resultant force in the z direction vanishes. Under these cond
the system of equations, Egs. (3)-(8), reduces to an equivalent two-

dimensional case

2 2
= - * - *
€x (Jx Llsz) do, (“xe * “sz) dcy
* (O% ¥ “zOE) T+ Ve TG, m R,
e. = (J -, °7)*da - (ud +d7) % do
y X 2"z y X X z'z X
+ + T + + -
(Q& HZOE) wx uijz Ho8 2
= *
Y sy 2(1 + ) I, ar,,

For an isotropic graphite, the following simplifications can be

made in the generalized plain-strain formulation:

“Z = f—lx = K ,

J = J = J ,
X Z

aQ = o = a ,
X Z

and it follows that

at

itions

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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e, = (1-4°) g dcx-l_udoy)+(l+u)(OlT+\l‘)-ueo , (17)
e, = (1-2) 7% dcy-l—_ﬁ—udcx + (1 + u)(aT+ ) - e, , (18)
sy = 2 * .

Xy (1+u)d ar, (19)

Thus, it is seen from Egs. (17)-(19) that the viscoelastic stress analysis
of an isotropic graphite requires the determination of only one creep

function, J(D), and one Poisson ratio, u.

FORMUIATION AND SOLUTION

In this section, a method of viscoelastic stress analysis is made
to correspond to several equivalent elastic problems. These fictitious
elastic problems have the same moduli of elasticity, inversely propor=-
tional to the creep coefficient K(T). This differs from our previous
analysis. Congider an arbitrary two-dimensional cross section where the
neutron flux 1s assumed to be uniform over the entire section and the
creep function K(T)vdepends on the temperature distribution. As used

before,l the stress function, ¢, is introduced by

2

Q/

Cx = Sy—c;p P) ‘(20)
a
_ 9%

o, il (21)

Ty = -%‘5% ) (22)

which will satisfy the equations of equilibrium. After substituting

Egs. (20), (21), and (22) into the equation of compatibility

e Bzex 827
W & T Sy (23)
Ox V XOy




-y

the governing equation of ¢ is
3% x(m) [3° u o d° 3% k(1) [d°
Jo ¥ 4 (557 K_ (5§§ "1 -4 3§$ HEEAES §§$ T 8‘3

o 3 x(7) d° -
PTIU Sy K S&| = A Lo vam 0 (2)

where

+XD . (25)
After inversion, ¢ satisfies

_L)_(__‘f __H._%y.g

dx*2

2 3% k(1) 3%

- ] 2
T Sy K ody| - T-0 G, *adv Cy(p,T) + ] (26)
where GO is related to JO by2
D t 8 '
j'o Go(D = D') v 5 (D) @' = HD) (27)

and H(D) is the unit step function. The function GO which corresponds
to J_ given by Eg. (25) is

E [ kD k D]
G (D) = (k, + A 1V L (k_+ A 2
O e s A e (k, o)eJ
o] (o] O O
(28)
where
k, = -0.5 (E - K + 1.54) + 0.5 J(E - K, + 1.5A)% - 4E - X - A_ (29)

°E. H. Lee, "Viscoelastic Stress Analysis," Chap. 53, Handbook of Engi-
neering Mechanics, edited by W. Flugge, McGraw-Hill, New York, 1962.




k, = -0.5(E+ K + 1.5A) - 0.5 J(E - K, + 1.5A )% - LE - K - A . (30)

Both k1 and k2 are seen to be negative. For prescribed boundary traction,

the boundary conditions are

)
59 = I T ds (31)
v c
and
s
2 =-I T ds (32)
C
where TX and Ty are the x and y components of the boundary traction
acting on the boundary, C, of the cross section of the body.
If the temperature-dependent neutron-induced dimensional change
is given by5
¢(,1) = A (1) D° +A(T)D , (33)
then the right-hand side of Eq. (26) reduces to
1 2 D
{G (D) avir+ v2a (1) I ¢(p-Dp") .20 - ap'
1l1-pn o} 2 0 e}
D ' L
+ V% (1) j G (D -D") ap'p , (34)
0

where the temperature distribution is assumed to be applied suddenly at

D = 0 and to be kept constant for D > 0. The left-hand side of Eq. (26)
is seen to be the same as that used in the elastic problem with nonuniform
elastic modulus. The solution to the present problem can therefore be

expressed by

5P. R. Kagten et %l., "Graphite Behavior angd Its Effects 8n MSBR Perfor-
mance, " Nuclear Engineering and Design 9?2 , 157-195 (1969).
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G
(P(X,vy)D) = CPa(X;.V) + (Pb(x)y) %’6; + (PC(X;.Y) FI(D) + CPd(ny) ° FE(D) P)

(35)

where qﬁ, qp, ¢F, and qg are elastic solutions, corresponding to boundary
tractions, thermal expansion, dimensional change Al(T), and dimensional

change Az(TL respectively, and

1 D ' '
Fl(D) = W J.o GO(D - D) 4D (36)
and
1 D ' t '
FE(D) = W Jo GO(D -D) 2D dp . (37)

The proof of the statement Eq. (35) can be carried out by a similar pro-
cedure as shown previousl;y.l The elastic solutions are understood to be

found from a nonuniform elastic medium with the common elastic modulus,
E-X

KTTYQ' From this consideration, the problem of irradiated graphite of
an arbitrary two-dimensional cross section can be found, provided that a

computer program is available to calculate the elastic thermal stress.

The displacement for the present problem due to the dimensional
change and the thermal loading is the same as that obtained from a cor-
responding elastic problem. This result is due to the faét that the

solution is independent of the creep function JO(D).

With the present formulation, a simple correspondence is made between
the viscoelastic solution and the elastic solutions. The effort to
solve the problem therefore reduces to the solutions @a, qp, qF, and
@d. The time-dependent solution is connected with them by FI(D) and Fe(D)

which can be calculated from Eq. (28).

NUMERICAL EXAMPLE

Based on the theoretical formulation of the last section, the
numerical examples of the previous report were recalculated. To compare

the results, the curves corresponding to Figs. 6, 7, 8, 11, and 12 of
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ORNL-TM-2L07 are drawn and labeled as Figs. 1, 2, 3, 4, and 5 in the
present report. The temperature distributions are the same as the former
ones and, therefore, will not be shown here. The material constants as
well as the thermal loading are the same as shown from page 13 to page 16
of the previous report. Therefore, to avoid repetition, we shall not

rewrite them here.

To solve the problem numerically, we have to solve the elastic
problems with the nonuniform elastic constants. Let Uy (i =1, 2, 3)
denote the radial displacements due to the volume expansions T, Al(T),
and AZ(T). We recall that o is the coefficient of the linear thermal
expansion shown in Eq. (15), and Al(T) and Az(T) are given by Eq. (33)
and more specifically by reference 3. The problem reduces mathematically
to the solution of a second-order linear ordinary differential equation

of the following form:

o ffea)®] araa® aead
ar E dr E r dr E r2
. ! i(l o A2t a gl o520 5) (38)
ot ola lE = & B i v T e

where F, = aT, F_ = A (T), and F, = A (T). In Eq. (38), e (i = 1,2,3)
correspond to the three axial strains because the problems are solved
under the assumption of the generalized plane strain. ) and p are re-

spectively defined by

K
il ey e B < o1 (39)
and
K
1
T - 2(1 + o) K(§ ) (10)

where K(T) is defined by Eq. (1) and K, and E are the values of K(T) and
Young's modulus when T is evaluated at the inner surface of the concentric
cylinder r = a. o is the Poisson's ratioc. Since T varies along r so do

A and u.
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The two integration constants for Eg. (38) and ei'are to be determined

by the boundary conditions

du,

o —=-(0r+2)F, = 0 (41)

at r = a and r = b and by the condition that the axial resultant force

is zero, that is

b

b du, u,
- (3)\ + 2p) F.]rdr + e, J (A+2u) rdr = 0 .(42)
a

J~ A _i.}._l
a

dr r

The problems are solved by the method of finite differences. An iterative
procedure is used to determine €, We first assume € = 0, then us is
calculated from Eq. (38) and the boundary conditions Eq. (41). With the
known value of Uss the first approximation of €, is calculated from Eqg.
(42). The process continues up to a difference of the two successive

ei's smaller than lO-s which is approximately equivalent to a relative

error of 0.1% in the present case.

After u, (i = 1,2,3) as well as CH (i = 1,2,3) are solved, the corre-

sponding elastic stress components are calculated by the constitutive

equations
5 dui ui dui
o. = A I + - + €; + 2u 3 (5>\ + 2p) Fi
i duy Yy Uy
= — o — — +
09 A dr r + ei +oen r (BX QU) Fi
i du; ug
= = t = + . - + .
cz A dr r * €5 2H €4 (5K 2u) Fl

and the final dose-dependent stress components are calculated by

1 GgD} 2 3
cr(D,r) = o, to, Fl(D) + 0, Fé(D)

1 G(D 2 3
Ge(D,r) S 'é?l * oy FI(D) * oy FQ(D)
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_1.6(D) 2 3
cZ(D,r) = 0, 3L +o, Fl(D)+o FE(D)

The final solution of the displacement and the strain components are

calculated according to

2
= +
u u, %D+1%D B
e o Qu
r dr °’
= 2
ee T’
2
€ = ¢ +eD+¢eD
Z 1 2 3

The numerical values of temperature T; displacement u; strain com-

ponents €. €g and €5 stress components 0. O and o, are calculated

e)
at 41 points along the radial directions of the cylinders of b = 4,5,6 cm.
The above values are calculated at each cross section of Z/L 0.1, 0.2, ...,

0.9 for the neutron dose level D (10°% nvt) = 0.0, 0.2, ..., 4.0. The

total computation time for an IBM 360 Model 91 machine is on the order
of 4 minutes. The computing time can be reduced considerably if we

reduce the error bound of €5 in the iterative process.

To indicate the numerical results, typical curves are presented
in Figs. 1-5 which indicate the difference from Figs. 6, 7, 8, 11, and
12 of ORNL-TM-2407. We superimposed the corresponding plots for the
purpose of comparison. The reason for the difference is certainly because
of a modification of J(D). The detailed explanation has been written
in the paragraph following Eq. (2). The improvement is shown in Fig. 3
where c, at D=3 X lO22 nvt is 13,200 psi, an increase of 6b of the

previous value. This confirms our prediction.

CONCLUSION

The modified method shown in the present report has considered
the effect of temperature on the creep coefficient. A difference of 6%

between the components was obtained for a neutron dose level of
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3 x 10°% nvt. The method is therefore important in cases when the

creep coefficient is more sensitive to temperature and when the tempera-
ture gradient within the cross section is steep. The difference caused
by this modification becomes more significant with increasing dose values.
As the trend of the development in reactor technology is toward the

higher operating temperature and the larger neutron dose level, the method
presented here is therefore compatible to the need in the future. How-
ever, the instantaneous elasticity and the primary creep have an inaccurate
temperature dependence imposed by the method. Therefore, the resulting
solutions can be considered accurate only above some small dose value
(less than 1/2 x lO22 nvt). Below this dose value, use should be made

of the previous methodl which can be calculated by assuming a constant

K(T) in the present method.

As can be seen from the derivation if the creep coefficient X(T) is
taken to be constant, then the analysis will reduce to the case of our
previous one. Therefore, the present computer program includes the

previous one as a special case.
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APPENDIX

Date: 23 June 1970

Name of Program: VATCRP

Programmers: 3. J. Chang, J. A. Carpenter, D. W. Altom

Description: VATCRP is a double-precision Fortran program which calcu-
lates the stress and the displacement fields for a Molten Salt Breeder
Reactor graphite core under neutron irradiation and temperature distri-
bution. VATCRP treats the creep coefficient as a function of temperature.
The program is based upon the theoretical derivations and is intended to

follow the proposed numerical scheme in the main text.

Three concentric cylinders are used to simulate the design study.
The radius of the outer cylinder is designated B and is input to the

program. The radius A of the inner cylinder is given by B/A = 6.667.

Input: The user must provide four data cards to VATCRP in the following

order:
VARTABLE NAMES CARD FORMAT
Card 1: BIN, DB, NB (2p10. 3, 110)
BIN - initial value of the radius B of the
outer cylinder (in centimeters)
DB - increment in the value of B (in centi-
meters)
NB - total number of B-values, i.e., BIN <
B < BIN + (NB-1)DB
Card 2: 7LIN,DZL, NZL (2D10. 3, I10)
ZLIN - initial value of Z/L where L is the
length of the cylinders and Z is the
distance measured from the bottom of the
cylinders to the point of interest, i.e.,
0. <2/L < 1.
DZL - increment in the value of Z/L
NZL -  total number of Z/L-values, i.e.,

ZLIN < Z/L < ZLIN + (NZL-1)DZL
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Card 3: DIN, DD, ND (2p10.3, 110)
DIN - initial value of the dose D (in :
1022 nvt)
DD - increment in the value of D -
ND - total number of D-values, i.e., DIN <

D < DIN + (ND-1)DD

Card b: NMAX, CRIT (110, D10. 3)

NMAX -  number of subintervals taken on [A,B].
NMAX nominally 40. NMAX < 47.

CRIT

convergence criterion of the iteration
scheme outlines in the main text. CRIT
nominglly 10-8

Output: Output is as described in the main text.
Language: ORNL Fortran, Fortran IV

Approximate Length:

Compiler
ORNL 50,000 .
Fortran IV OPT=0 48,0004 bytes
Fortran IV OPI=2 45,000
Approximate CPU Execution Timings: Data obtained using following input:
BIN = 4.0, DB = 1.0, NB = 2; ZLIN = 0.1, DZL = 0.1, NZL = 2; DIN = 1.0,
DD = 0.2, ND = 2; NMAX = 4O, CRIT = 10 °.
Compiler 360/91 360/75
ORNL 50 sec 100 sec

Fortran IV OPT=0 23 sec 78 sec
Fortran IV OPT=2 12 sec 4o gec

Computer: IBM 360 Models 75 and 91.
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* PROGRAM VATCRP
*

VISCOELASTIC ANALYSIS OF IRRADIATED GRAPHITE WITH VARIABLE CREEP COEF-
FICIENTS: SeJ.CHANGy, DeW.ALTOM, J.A.CARPENTER JUNE 1970

IMPLICIT REAL*8(A-H,K-M,0-4)
COMMON/VECT/T(50)4A1(5C)4A2(50) 4K(50)+FF(50) LANM(5C),
1 MU(501,U(50)DURR(50)

COMMON/SINGL/B A K1 ¢K2,KLEKO ¢K2EKCyTT,S5SQP yDR ¢ZL +BALEPS DX,

1 NMAX¢NPLl,NP3
COMMCN/FCND/ELE24E34E4
DIMENSION SIGR{50¢3)¢SIGT(5043)SIGZ(5043),USCL(50,3),
1 SGR{5014SGT(50)9SGZ{5C) EPSRIS0IEPST(50),EP(3),
2 R{S50),2(50)

DIMENSION F(5043)sDUDR(50¢3)EPT(50})
DATA E/1.7D06/

DATA SIGMA/0.2700/

DATA ALPHA/6.20~6/

DATA AC/1.0D2/

BA=6.66700

* READ INPUT PARAMETERS

READ 1001,BiN,08,N8

READ 1001, ZLINDZLINZL

READ 1001,DIN.DDyND
FORMAT(2010.3,1101)

READ 1CC2,NMAX,CRIT
FORMAT(110,D10.3)

NP Ll=NMAX+1

NP3=NMAX+3

* LGCAD INITIAL OUTER RADIUS B
B=BIN

DO 22 [=1yNB

* DETERMINE INNER RADIUS A
A=B/BA

RO=8-A

* DETERMINE INCREMENT DR
DR=RC/DFLOAT(NMAX)
El=2.0D0#*DR*CR

E2=2.0D0 %DR*A

E3=2.,0D0%*DR*8

E4=DR+DR

R(1l)=A

DO 1 Nl=1,NP1

“RIN1+1)=R{NL1)+DR

* LOAD INITIAL Z/L

ZL=ZLIN

DO 21 J=14NIL o

* CALL TMPT FOR TEMPERATURE DISTRIBUTION

CALL TMPT o

% COMPUTE ARRAY CONSTANTS
KO=(5.3D0-1.450-2%T(2)#1.4D-5%T(2)%T(2))*1.D-5
DO 2 11=1,NP3
T1=0.33233333333333300%(C,11D0-7.0D-5%T(I1))
T2=5,7D0-6.,C0-3%T(11)

T3=T1/(T2%T2)
AL(I1)=T3%2,0D0*(6.G0-3%T(11)~5,7D0)

A2(11)=T3
K{I11=(54300-14450-2%T(11)+1.4D=-5%T(IL}*T(I1))*1.D-5
T1=KO/K(11)
LAM{T1)=(SIGMA/({1.0DC+SIGMA)*(1,0D0-SIGMA-SIGMA) )} *T1
MUCT1)=(1,0DC/{2.CDC+SIGMA+SIGMA) )*T1

CONTINUE

* COMPUTE CONSTANTS

TT=A0/(E*KO)

T2=1,0D041.500%TT

SQP=DSQRT(T2#T2-4,00DG*TT)
K1EKG==0.5DC*T 2+C. 5D00%SQP

K 2EKO==-C .5D0%T 2-C, 5D00%5QP

K1=E*KO*K1EKC

K2= E*KO®K2EK?

3902

500

550

630
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* COMPUTE F
DO 3 12=1,NP3
FUI2,1)=ALPHA®RT(12)
FUI2,2)=A1012)

FU12,3)=A2(12)

CUNT INUE

*

* ITERATION SCHEME

x

DO 11 [1=1,3

EPS=0,0D0

* LOAD FF WITH CORRECT F ARKAY
DO 4 JT7=1,NP3

FRIJTI=F(JT,01)

[H=0

D0 38 14=1,10

IH=[H+1

* FINITE DIFFERENCE SCHEME
CALL FDIFF

DO 5 I5=14NP1

[T=15+1

ZUIS)I=RUISI*EXLAMULIT)*DURRITIS)I+EXLAMITI*U(IS)

~3.0DPRFFCIT )RR ISI*EXLAM(ITI -2, 000%EXMUCTITI*R{ISI*FF(LIT)

CONTINUE

* NUMERICAL INTEGRATION

CALL DQTFE(DRy<LyZ4NPL)

T1l=4(NP1)

DO 6 I6=14NP1

IT=16+1

ZO16)=RITOI*EX(LAMULIT) +2.000%MUCLTH)

CALL DUTFE(DRyZ,ZyNP1)}

T2=Z{(NP1)

EPN=-T1/T2

* CONVERGENCE CHECK

IF(DABS{EPS-EPNI-CRIT)IF+G,7

EPS=EPN

CCNT INUE

* CONVERGENCE CRITERIUN MET - STORE U AND OCERIVATIVES
EP(IT)=EPN

DO 1C I7=1sNPL

USCL L7y I1=UL1T7)

DUDR( 17, I1)=CURR(1T)

CONT INUE

*

DO 13 I8=1,3

00 12 [9=1,NP1L

IT=19+]1

Tl=E*L AMUIT )% (DUDK( [9, I8} 4USOLUIS,18)/R(IGI+EP(18)}
T2=E*(3.000%LAMUIT ) +2, 0DC*MULT)I*F(IT,18)
T3=2.00C*E*MU(CIT)
SIGR(I9,41R)=T14T3%xDUDR(IG,IB)~-T2
SIGT{I9,18)=T1+F3xuS0OL(IS,I8)/R(I9)-T2
SIGZII9I8)=T1+T3%tP(I8)-T2

CONT INUE

CONT INUE

* LOAD INITIAL DOSE

D=DIN

* COSE LOOP

DO 20 [3=1,ND

* PREVENT EXPUNENTIAL UNDERFLOW GN I8BM 360
[F(K2%D+173.000) 14y 14,15

0X=0,.C00

GO TO 16

DX=DEXP(K2%¥D)

T1=G(D)

T2=F1(0)

T3=F2(D)

DO 17 J1=1,NP1
SGREJLI=SIGRIJLy LI %TL+SIGRIJIL92)%T2+ SIGR(JL3)%T3
SGT{IL)=SIGTEIL, 1) *TL+SIGTEIL,2)%T2+SE6GT(J1,3)%T3
SGLIJL)=SIGZ(ILy L) *#TLI+SIGL(IL2)%T24SIGZ(J1+3)%T3
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NM=NMAX
DO 3 N=2,NM
Gl= LAM{N J+MU(N I+MUIN )
G2= LAMIN+1)+MU(N+]1)+MU(N+]1)
G3= LAM(N#+#2)+MU(N+ZI+MU(N+2)
RN=A+(N-1)*0DR
RN1=(RN+RN)*DR
AMINsN=-11=(G2+¢G1)/EL-G2/RN]
AMININ)I=-(G3+G2+G2+G1)/EL-G2/(RN*RN)
1 +(LAMUN+2)-LAM(N)} )/RN1
AM(NyN+1)=(G3+462)/EL+G2/RN1
U (N)=1.000/E4%{ (LAM{N+2) +LAM(N+2)¢G3)%F (N2}
1 ~(LAM(N}+LAM(N)+G1)I*F(N))
2 -(EPS/E4)*{(LAM(N+2)-LAM(N))

3 CONT INUE

C* * FINITE DIFFERENCE EQS. AT R = 8
N=NP1
Gl= LAM(N J+MU(N ) +MUIN )

G2= LAM(N+1 )+MU(N+1 J+MU(N+1 )
G3= LAM{N+2 )+MU(N+2 J+MU(N+2 ) .
AMINsN=11={G2+G1)/EL-G2/(B*DR)
1 +{G3+G2)/EL+G2/(B*DR)
AMINyNI==(G3+G2+¢G2+G1)/EL
1 -G2/(B*B )+ (LAM(N+2)}-LAM(N)}/E3
2 ~((LAMIN+1)+LAM(IN+1)})/G2)*(DR/BI*((G2+G3)/EL
3 +G2/E3)
U (N)=1.0DO/E4%{ LLAM{IN®2)+LAMIN+2)+G3)*F (N+2)
“(LAMIN)+LAMINDI+GL)I*F(N))
“( ({4 CON®LAMIN®L))}/G2+42.000) %DR*F (N+1)~EPS*LANM(N+1)*E4/G2)
*{(G3+¢G2)/E1+4G2/E3)
—(EPS/E4)*(LAMIN+2)-LAMIN))
C* * SCALE
DO 5 I=1l.NP1
U{I1=0.C10C * Ul
DO 4 J=1,NP1
4 AMU T d)=AM(L,J) * C.01D0
5 CONTINUE
C* * CALL MATQ TO UBTAIN SULUTICN VECTOR U
CALL MATQD(AM,UsNPLlylsDET,50,52)
C* * COMPUTE DERIVATIVES OF U WITH RESPECT TC R
DO 6 J=2,NMAX
6 DUDREJI=(ULJ+1)~UlJ-1})/E4
DUDR(L1)I=(U(2)-Ul1)) /DR
DUDR(NPL)I=(U(NPL)I=U(NPL1=-1}}/DR
RETURN
END

o N -

SUBROUTINE TMPT
CALCULATES TEMPERATURE DISTRIBUTION
IMPLICIT REAL*8({A-H,K-L,0-2)

COMMON/VECT/TUS50 14 AL{50)4A2(5C) +K(50) 4F(50),LAM(50),
1 MUISN)U(50) ,DUDR(50)

CUMMON/S INGL/ByAgK1 )K2yKLIEKG yK2EKQy TT,SGP9DR9ZL yBAYEPSyDXy
1 NMAX NPLyNP3

T1=DLOG(RA)

T2=1.00C-BA*BA

TVR=(B-A)/DFLOAT(NPL-1)/A
TSAT=625.000-75.000%DCOS(3,141592653589800%ZL)
H=({1.444D-3)%TSAT=-0,228CDC) /A*% (0. 2)
CK500=0,358D0

SAT=TSAT

DO 1 I=1,190

CK=CK500*%({ TSAT+273,0D0)/7773,0D0C)%%(=-0,7)
HK=H/CK
R=1,200+9.0DC*DSIN(3,1415926535898D0%ZL)
Q=Q*8%A/ (4. CCO*CK)
TBA=-T2/T1*Q*0,50C*(BA+1.C000) /8B

1 -Q*(BA+BA%*BA}/H
TB8A=TBA/(HK+1,GD0O/T1*(BA+1.000)/8)

FOIF
FDIF
FDIF
FOIF
FOLF
FDIF
FOIF
FDIF
FOIF
FDIF
FOIF
FOIF
FDIF
FDIF
FDIF
FDIF
FOIF
FOIF
FDIF
FOIF
FDIF
FOIF
FOIF
FOIF
FOILF
FOIF
FDIF
FDIF
FDIF
FOIF
FDIF
FOIF
FOIF
FOIF
FDIF
FOIF
FDIF
FOIF
FOIF
FOIF
FOIF
FOIF
FOIF
FDIF
FDIF
FOIF

TMPT
TMPT
TMPT
TMPT
TMPT
T™PT
TMPT
T™MPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT

230
240
250
260
270
280
290
300
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311
320
330

332
340
350
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390
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420
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423
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440
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460
470
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490
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510
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530
540
550
560
570
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20
30
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TAB=-T2/T1%Q%*0,50C*(BA-1,000)/B/HK
+SAT-Q*(BA-BA*BA) /8 /HK
TAB=TAB-TBA%*{BA-1.000)/7{(B%T]12*HK)

TA=TAB+TBA
TB8=TAB-THBA
TSAT=TA

CO=(TA-TB+T2%Q)/T1

DO 2 I=1.NP3

Tl=1.0D0+TVR*OFLOAT(1~2)
T(I)=TA-CO*DLOG(TII-Q*(T1*T1-1.000)

CONTINUE
RETURN
END

DOUBLE PRECISIUN FUNCTION G(O)
IMPLICIT REAL*B{A-H,K-M,0-2}

CCMMON/SINGL/B9AsK1 K29 KLEKQ ¢K2EKOQ )y TT ySGP 9DR 4 ZL +BAWEPS DX,y

NMAX,NPLl.NP3
G=(1.000/5uP)*{
RETURN
END

(KLEKO#+TT)I*DEXP{K1*D) - (K2EKQ+TT)*0X)

DOUBLE PRECISION FUNCTION F1(D)
IMPLICIT REAL*8{A-H,K=-M,0-2)

CCMMON/S INGL/ByAsKL 4K2 4 KL1EKO+K2ZEKOy TTySCPyDRyZL+EASEPS DX,y

NMAXyNPL,NP 3

Fl={1.,0D0/SQP)1*(-(KLEKC+TT)*(1.QDO-DEXP{KL1*D} ) /K]
+{K2EKO+TT)*(1.0D00-DX)/K2)

RETURN
END

DOUBLE PRECISICN FUNCTICON F2(D)
IMPLICIT REAL®8{A-H,K=-M,0-2)

COMMON/S INGL/ByA 3Kl 4K2 4 KLEKD 4K2EKQ, TT,SCP DR+ ZL +BAYEPS,DX,y

NMAXyNP1,NP3

F2=(2.0D0/SCPI*{-(KLEKO+TT)* (1. 0DO+K1*D-DEXP(K1#D) )}/ (K1*K1)

+(K2EKD+TT) (1. COC#K2%D-DX) /(K2%K2) )

RETURN
ENC
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SUBROUT INE CQTFE

PURPOSE

TO CCMPUTE THE VECTOR UF INTEGRAL VALUES FCR A GIVEN

EQUIDISTANT TABLE OF FUNCTION VALUES.

USAGE

CALL OQTFE

DESCRIPTION
H -
Y -
Z -

ND IM -

REMARKS

NO ACT {ON

(HyYsZsNDIM)

OF PARAMETERS

bOuBLE PRECISION
DOUBLE PRECISION
RESULTING DOUBLE

IN CASE NCIM LESS THAN [.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIREC

NONE

INCREMENT OF ARGUMENT VALUES.
INPUT VECTOR GF FUNCTICN VALUES.
PRECISICN VECTGR OF INTEGRAL
VALUES. Z MAY BE IDENTICAL WITH Y.
THE DIMENSION OF VECTORS Y AND Z.

TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT
TMPT

200
201
210
220
230
240
250
260
270
280
290
300
310

DQTFEOCL

002

DQTFEDO3
UDQTFEOC4
VQTFEQGS
DQTFEO%6
DQTFECCT
DUTFEOQOS
DQTFEQOQS
DQTFEO1O
DOTFECLL
DQTFEQL2
CQTFEOL3
DQTFEC14
DQTFEQ1S
DQTFEQL6
DQTFEC LT
DQTFEC 18
DQTFEOL9
DQTFEC 20
DOTFEO?21
DQTFEQCZ2
DQTFEC23
DQTFEC24
DQTFEC25
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METHOC
BEGINNING WITH 2(1)=0, EVALUATIUON OF VECTCR Z IS DONE BY
MEANS OF TRAPEZOIDAL RULE (SECOND GRDER FCRMULA),
FOR REFERENCE,s SEE
FeB.HILDEBRAND, INTRUDUCTIUN TO NUMERICAL ANALYSIS,
MCGRAW-HILL, NEW YORK/TORONTO/LONDON, 1956, PP.75.

DQTFEC26
DQTFEQ 27
DQTFEOZ8
DQTFEO 29
DQTFEN3D
DQTFEC3L
DQTFED 32

--ooon.ln-noon-c-.uoo.tn..aoo.cooo.o-oo.--o..-o.o.o.o.uuo-oo.o!oo-DQ]FEc33

SUBROUTINE DOTFE(H.YsZ4NDIM)

DIMENSION Y(1)s2(1)
DOUBLE PRECISIUN YyeZeyHyHH,SUML,SUM2

SUM2=0,00
EFONDIM=-1)4,y 3,1
HH=.500%F

INTEGRAT ION LOQP

DO 2 1=2,NDIM

SUM1I=SUM?2
SUM2=SUMZ2+HH®(Y(1)+Y(I1-1))
Z(I-1)=SumMi

ZINCIM)=SUM2

RETURN

END

THIS IS ORNL FO4C13 OF 1167
SUBROUTINE MATQD (Ay Xy NRyNV,DETyNAJNX)
IMPLICIT REAL*8(A-H,U-1)
DIMENSION A(961)+X(31)
DET=1.0

NR1=NR-1

00 12 K=1,NR1
IR1=K+1

PIVOT=C.0

DG 2 [=KyNR
IK={K=-1)*=NA+]
Z=DABS(A(IK)})
[F(Z-PIVCT)2+2,1
PIVOT=2Z

[PR=]

CUONT INUE

IF{PIVOT 144344
DET=0,C

RETURN
[F{IPR-K15,8,5

DU 6 J=KNR
IPRI=(J-1)%NA+[PR
Z=A(IPRJ)
KJd={J=1)%NA+K
A(IPRI)I=A(KI}
AlKJI=Z

DO 7 J=14NV
[PRI=(J-1)ENX+IPR
L=X{IPRJ)
KJd=0Jd=1)ANX+K
XCIPRJIDI=X(KI)
X{KJI=Z

DET==-DET
KK=(K=1)%NA+K
DET=RET*A(KK)

DO 9 J=IR14NR
KJ=(Jd=1)%NA+K
A(KJ)I=A(KJI)/A(KK)
DO 9 1I=IR1,4NR
[1J=(J=1)*NA+I]
IK=(K=-1)*NA+1]

DQTFEC 34
350
DQTFEQ 36
DQTFEO37
380
390
DQTFEC 40
410
420
430
DQTFEC 44
DQTFEO 45
460
470
480
490
500
510
520

MATQDOO1L

200

250

410
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11
12
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14

15

AtLJI=AC T )-ALIKI*AIKY)
DO 12 J=1.NV
KJd=0J=1)*NX+K

IF(X(KJ)} 10,12.10
X{KJI=X{KII/A(KK)

DO 11 [=1IR1sNR
IJ=(J-1)%NX+I
IK={K=-1)*NA+I
XCIJ)1=XUIJ)=ALIK)*X(KJ)
CONTINUE
NRNR={NR-1}®=NA+NR
ITFCAINRNRY) 1343413
DET=DET*A(NRNR )

DO 15 J=1lynV

"NRJI={J=1 PENX+NR

XINRJI=XINRJI/ALNRNR)
00 15 K=1,NR1
I=NR-K

SUM=0,0

DO 14 L=1yNR1
IL=L*NA+]
Ld=(J~-1)=NXe{L +1)
SUM=SUM+ALTL I*X(LJ)
[Jd=0J-1)%NXe]
X(IJI1=X(1J)=-SUM
RETURN

END

27
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