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THE PRODUCTION OF LiF SINGLE CRYSTALS WITH SELECTED
ISOTOPIC RATIOS OF LITHIUM

C. F. Weaver, R, G. Ross, B. J. Sturm,.
J. E. Eorgan,*R. E. Thoma

ABSTRACT

The purpose of this research was to develop the techniques
and apparatus necessary to produce single crystals of LiF with
selected ratios of the lithium isotopes containing not more than
a few parts per million impurities. The starting material was
prepared from purified aqueous solutions of LiOH and HF and was
dehydrated in the molten state with anhydrous HF. The dehydrated
LiF was then converted into a single crystal in a unique Stockbarger
furnace which has a window allowing visual monitoring of the crys-
tal growth and variable electrical shunts making possible the
application or removal of thermal gradients at will. Crystals
weighing several hundred grams and containing 99.99, 98.06, and
96.50 at. % lithium-7 have been produced as part of a sequence
which will include 87.60, 79.28, 69.24, 50.77, and 0.7 at. % .
lithium-7. These crystals do not display strain under polarized
light and do not show OH™ absorption of infrared radiation. The
purest crystals produced contain less than 1 ppm cationic impur-
ities according to the results of emission spectroscopy and

. neutron activation analysis.

INTRODUCTION

" Research programs within the U. S. Atomic Energy Commission frequently
require special materials which are unavailable from commercial suppliers.
Some of'the demand for such items is met by a Pure Materials Program at
ORNL, to which several laboratory divisions contribute and which is coordi-
nated by the staff of the Solid State Division of the laboratory. High-
purity single crystals of LiF with selected isotopic ratios of the lithium
isotopes ére among the materials in demand.

Lithium fluoride possesses physical properties which have long producedh
great interest in single crystals of this material. It transmits further

in the ultraviolet region than any other known solid material.l-7 Its -

*Present address: Kawecki Chemical Company, Boyertown, Pennsylvania.



1,8,9 In the infrared region .

dispersion in the visible spectrum is low.
from 2 to 5y, of special use for analysis of organics, it has a higher dis-
persion power than either NaCl or CaFg.lO These properties and the cubic
symmetry, stability in air,? hardness,* 1l (except for ultrapure material’)
and resistance to discoloration with use4 make the material of great value
in ultraviolet and infrared sPectroscopy.3 It can be used in conjunction
with quartz to make achromatic and apochromatic lenses for ultraviolet

use.3’6’8’9

Its high transmission in the vacuum ultraviolet range makes

it suitable for use in Cerenkov Counters.7 It was used in an ultraviolet
telescope in Ranger space vehicles.7 Lithium fluoride can be grown from

the melt in unusually perfect condition, can be cleaved with negligible dis-
tortion, and is easily etched. These properties allow studies of dislocation

12,13

origin, movement, and multiplication. Many of the physical properties

of LiF such as thermal conductivity,l4 refractive index,l5 infrared absorp-

16 unit cell size,l7 and neutron absorption cross section

tion and reflection,
depend on isotopic content. Neutron irradiation studies on IiF with natural
isotopic abundance are complicated by the generation of Hz,l8 He,18 F2,19:20
and colloidal Ii.1%-2l Thus it is desirable to produce single crystals of.

LiF with selected isotopic ratios.

HISTORY OF GROWTH TECHNIQUES

Several techniques have been described in the literature for growing

LiF crystals. Melts have been trozen trom both top11’22 and bottom.2?

In
both methods the freezing-point isotherm is moved through a stationary melt.
Two disadvantages of these methods are that, with large samples or high
thermal gradients, the melt becames hot enough to volatilize and the crys-
tal may crack under thermal stress.1s?3 The technique generally used

1-3,6,24,25
today

furnace within which the isotherms remain essentially stationary. This

involves moving an IiF melt and its container through a

procedure has the advantage of allowing temperature gradients which are
large near the liquid-solid interface and small elsewhere. Thus the melt
is not overheated and the solid ingot may be annealed under a small thermal

gradient. This procedure, devised by Bridgman for metals,26 was modified by



1,24,25
23

27

Stockbarger for application to ionic crystals. Stober,”™ Ramsperger

and Melvin, and Strong28 described the general conditions which must be
met to yield large flawless crystals, and these are satisfied by the Stock-

barger furnace. Briefly, these conditions are:

1. The crystallization.must start at a single point at the
bottom of the capsule.27:28 This point must have the
lowest temperature to avoid the formation of other

crystals.23

2. There must be a large vertical temperature gradient at

the liquid-solid interface<’s28
1,24

in order to enhance the
rejection of impurities and minimize the movement of

the isotherms.

3. Isothermal surfaces‘within the capsule must be nearly

horizontal to prevent convection currents in the molten
salt.23’27’28

4. The melting temperature isotherm must be moved through
the melt slowly and uniformly so that the crystal formed
at this surface will be flawless.27’28

5. After the crystal has been formed and while it is still
plastic, the bottom and top of the crystal must be
brought to the same temperature to prevent streins intro-

duced by unequal contractions at room ‘(:em:perantu:c'e.23’28

6. The crystal, once formed, must be cooled very slowly to
room temperature to avoid thermal stress which increases
dislocation densities.12,23

One of the specific conditions emphasized in the earlier literature
for producing single crystals of IiF is the requirement of an inert atmos-
phere. As early as 1926 Slaterll reported difficulty in growing LiF
crystals in air. Schneider,5 and later Stock'barger,‘?'5 recommended the use
of vacuum to avoid chemical reactions with air. Vasiiyeva2 recomended
the use of vacuum not only to avoid reactions with atmosphere but also to

allow the escape of volatile impurities. Both Stockbarger and Vasilyeva



used furnaces capable of operating at a fraction of a micron pressure. More

recently Feuerstein and Parker29

reported growth of lithium fluoride crys-
tals under 25u pressure. Eckstein g}_g&.Bo have confirmed Vasilyeva's claim
that many impurities will evaporate easily from molten IiF in vacuum.

It has been reported that Pt,l:2:5:6:ll:23:25 Fe,2 Ni,2 Mo,2 w,2 Ta,2
and graphite2:25:29 do not react with LiF if suitable atmospheres are used.
Pt and Ta, however, stick to the LiF ingot. If these metals are used as
containers, the LiF will be strained during cooling unless very thin walled
capsu.].es,l:23:24 which will collapse as the crystal shrinks, are employed
or the sample is removed from the container at high temperature.6:25’28 of
the remaining materials, the ease of fabrication, strength at high tempera-
tures, and inertness to an Hp~HF-molten LiF environment make Ni the optimum
choice as the container material.

Crystal growth rates from 0.1 to 1.5 mm/hr,l:23:25:29 thermal gradients
at the solid-liquid interface from 5 to lO°C/cm,28 temperature control to
less than * 100,8’28’31 cooling periods up to 240 hr,6’23’28’29’32 and cone
angles of 120 to 13001’3’29 have been recommended. These conditions were

generally met with the exception that a cone angle of 60° was used in order
that a smaller number of seed crystals would be formed, thus facilitating

the formation of a single crystal.

MATERTALS PREPARATION

Unusually pure materials were needed for the starting chargvel’z’zz*’25
since several regrowths to eliminate impurities are time consuming, and ions
such as Mg2+ which fit in the ILiF lattice33'35 might not be removed at all.
Several methods are listed in the literature for preparing highly purified
LiF.5’6’24’3O:36’37 These were not used since the starting material was
high-purity LiOH-Hz0 (Teble l), available fram the Isotopes Division of
this ILaboratory. The LiOH-H20 was further purified by the following pro-
cedure, which is based on reports of Apple38 and Mills and Whetsel.3? The
LiOH-H20 was dissolved in water which had been distilled from a tin-lined
still, deionized with a mixed bed deionizer, and then redistilled from

quartz vgssels. Polyethylene was used to contain the aqueous solutions.



Table 1. Spectrographic Analysis® of Material Used for LiF nystals

Element (ppm)

Material Al Ca Cu Hg K Mg Mn Na  Si
L10H-H20 © ' 200 100 150 <200 200
Heat-lamp dried IiF 40 <5 100 - 5 <00
HF dehydrated LiF 20 100 10 10 <50

aAnal_ysis by J. A. Norris' group, Analytical Chemistry Division, ORNL.

Polyvalent cationic impurities were removed from the solution by extraction
of their perfluoro-octanoic acid complexes with diethyl ether. Addition of
the purified -aqueous solution to an excess of aqueous HF caused the precipi-
tation, in an acid environment, of LiF, which was filtered using a polygthylene
Buchner funnel and acid-resistant filter paper. The aqueous HF was prepared
by dissolving gaseous HF in the purified water mentioned previously. The
anhydrous HF used for this purpose was purified by éllowing a portion to
escape from the tank at room temperature. Impurities containing silicon

and sulfur selectively escaped from the liquid HF. Approximately 1 hr of
free flow from a 100-1b tank was found to be sufficient for this purpose.

The direct use of HF gas to precipitate LiF was discarded because excess

heat (enough to discolor the plastic containers) was generated, and pre-
cipitation occurred in alkaline rather than in the recommended acid solu-
tion.l’25 The LiF was then dried in air with heat lamps. Contamination
by air-borne parﬁicles was minimized at first by preventing smoking in the
zamrea,zs’40 covering all solutions, and drying under a plastic tent. ILater,
the LiF preparation was performed in a plastic clean box with a filtered
atmosphere. The air-dried IiF powder was loaded into an Hp fired, grade-A
nickel container. The system was flushed with purified Hz and heated to
approximately 900°C. The molten LiF was then treated with an anhydrous HF

+ Hp mixture using an Hz to HF ratio of approximately 5 to remove any oxides,
hydroxides, or moisture which ﬁight be present. This method afforded real
advantages over the earlier procedure which was to flush the system with
purified He and melt the LiF under this He atmosphere. Under these condi-

tions, the moisture present in the air-dried charge caused a small amount

'



of corrosion which added the constituents of grade-A nickel%l (nickel,
copper, iron, manganese, silicon, carbon, and sulfur) to the melt. With
the addition of the HF + Hz mixture, most of these impurities were reduced
and precipitated as fine particles which settled out of the melt. An addi-
tional portion of these impurities was segregated by the freezing process
forming a browvmish central core of the ingot. The portion which was color-
less and free of specks was separated from the bulk by hand picking in a
vacuun dry box. The yield of usable material produced by this method was
approximately 65%. The substitution of Hp for He reduced considerably the
amount of corrosion by inhibiting such reactions as 2HF + Ni — NiFp; + Hp
which occur even before the addition of HF for dehydration purposes because
some of the moisture present in the LiF reacts to form HF (H20 + LiF —» ILiOH
+ HF). The presence of HF at temperatures below the maximm temperature
(~900°C) of the process is undesirable since the magnitudes of the free-
energy changes favoring the corrosion reactions increase with a decreasing
temperature.42 The yield of usable lithium flﬁoride was increased to about
90%. Both methods produced material of about the same purity. A typical
analysis is shown in Table 1. The principal advantages of the use of an
Hz atmosphere are a smaller loss of product and a considerable reduction
in the time consumed in hand picking.

The dehydrated LiF was removed from the nickel pot in a vacuum dry box
and stored in a polyethylenekcontainer. The He atmosphere in the box was
continuously circulated through an activated-charcoal trap, cooled to liquid- .
nitrogen temperature. The moisture content during this operation was ~10
ppm as determined by continuous monitoring of the atmosphere with a Model V
Electrolytic Water Analyzer (Manufacturers Engineering and Equipment Corpo-
ration, Hatboro, Pennsylvania). Kato*3 has shown that‘hydrolysis occurs on
LiF surfaces in contact with air slightly above room temperature. Patterson
and Vaughan44 have found a gradual decrease in the ultraviolet transmission
below 1600 A unless LiF is stored in vacuum or in dry gas. Thus protection
of the dehydrated IiF is desirable even at room temperature. At this stage
all material which is not.completely transparent or célorle;s was eliminated
from the charge. Transparency and léck of color is considered?,%,17,29,30
to be an excellent test of LiF purity (Table 1). The hand-picked charge
was loaded into an Hz fired capsule which was then sealed, inserted into
the Stockbarger furnace, and evacuated to 1072 to 10”4 mm.



CRYSTAL GROWTH APPARATUS

The crystal growth apparatus shown in Figs. 1 and 2 is a unique Stock-
barger furnace which has a window allowing visual monitoring of the crystal
" growth and variable electrical shunts msking possible the application and
removal of thermal gradients at will. The heat source is a Marshall furnace
(manufactured by Marshall Products Company, Columbus, Ohio) which has the
advantages of being rugged, having high heat capacity useful to suppress

temperature fluctuations,9

and allowing the application and removal of
thermal gradients. To enhance the gradient at the melting-point isotherm,
a baffle consisting of 1 3/4-in. insulation brick and a silver reflector

is incorporated into the nickel liner of the furnace. This combination
allows the generation of thermal gradients in the 800 to 900°C range of 0O
to 12°C/cm. The gradient may be changed at any time by.simply altering
the variable resistance shunts shown in the left center of Fig. 2. The
rack of equipment to the far left of this figure contains controllers and
recorders. The temperature controller in the middle of this rack is a
series 60 Leeds and Northrup controller and will control the furnace tem-
perature to * 0.1°C. The recorder immediately above this controller is a
Minneapolis-Honeywell 16 point recorder which continuously monitors the
thermal gradients within the furnace. The controller at the top of the
rack is a Wheelco Model 401 controller and functions only if the precise
controller fails. This decreases the possibility of an extreme temperature
excursion. Since the growth-annealing cycle requires about 3 weeks, during
which the equipment is generally unattended, such protection is considered
advisable. The leeds and Northrup type K-3 Universal Poténtiometer, between
the shunt box and the furnace, makes possible the detection of temperature
fluctuations vwhich are too small to observe on the recorders at the far
left. The liner in the furnace serves the functions of supporting the cap-
sule and baffle, guiding the capsule movement, and containing the He
atmosphere which protects the capsule itself. Oxidation is not completely
prevented because of air leakage (see Fig. 1) at the baffle, drive entry,
and capsule entry. It is, however, reduced to tolerable levels. To the
right in Fig. 2 is an oil diffusion pump which is connected to the capswle
by a 2-in.-1D stainless steel flexible tube (manufactured by the Amefican

Hose Division of the American Brass Company, Waterbury, Connecticut)

.~
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which provides a path from the LiF charge to the inlet of the diffusion
pump completely free of constrictions. The pressure obtained in the cap-
sule at the ion gage shown in Fig. 1 is in the 1072 to 10™% mm range. The
capsule which contains the ILiF charge can be seen extending from the top

of the furnace in Fig. 2 and schematically in Fig. 1. The capsule in Fig. 2
represents an earlier version while that in Figs.l and 3 is the model in
current use. The capsule length was selected to allow the molten lithium
fluoride to exist in the bottom while the top (flange region) remained at
low temperature. Thus all flanges were relatively cool, allowing the use
of O-ring seals. The absence of constrictions inside the capsule, a neces-

45 allows the removal of the

sary condition in a highly evacuated system,
lithium fluoride crystal without destruction of the capsule. The portion
of the capsule which is in actual contact with the melt has a slightly
smaller inside diameter to further aid in the removal of the crystals.

The twist lock connector (Figs. 3 and A5) was so designed that, except
for the pin, only compressive and tensile forces were exerted on it. Far-
lier versions which developed shear stress failed after one or two runs.

A quartz window is included in the ecapsule header (Fige. 3 and 4),
allowing direct observation of the melt during high-temperature operations.
Distillation of the LiF sample, bubble formation, and interfaces in poly-
crystalline ingots were observed through this window. Corrective action
may thus be taken without cooling and opening the capsule. Completion of
growth was easily observed, and the annealing period started immediately
thereafter. This visual as well as thermal monitoring of the growth proce-
dure allowed a great saving of time. There has been no frosting or other
difficulties with the quartz window.

The drive mechanism consists of a variable-speed unit and a direct-
drive constant-speed unit. The first unit has the advantage of a very wide
continuous range of capsule movement rates (from a fraction of a millimeter
per hour to 10 cm/hr) but has the disadvantage of erratic motion in the
0.5 mm/hr range. It consists of a 1725-rpm, 1/6-hp, synchronous motor
which drives a 10E400R Zero-max variable-speed unit. This output drives
a gear train which is directly linked to the capsule. The direct-drive
unit operates at only one rate (0.5 mm/hr) but is steady. It consists of
a Boston Gear Ratiomotor Model MW121-2400-CT and drives the same gear train

which is connected to the Zero-max.



UNCLASSIFIED
PHOTO 60422

Fig. 3. LiF Growth Capsule with Header and Window Attached.
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UNCLASSIFIED
PHOTO 57655

Fig. 4. Growth Capsule Header with Window Attached.
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Detailed drawings of this apparatus are shown in the appendix (Figs.
Al through A8).

RESULTS AND DISCUSSION

Apparatus and techniques were developed for production of large (300
to 400 g) IiF single crystals of selected isotopic concentration with no
more than a few parts per million impurities. Three crystals, containing
99.99, 98.06, and 96.50% 1i-7 respectively, have been produced. It is
anticipated that crystals containing 87.60, 79.28, 69.24, 50.77, and 0.7%
Ii-7 will be grown.

It was found that visual as well as thermal monitoring is necessary
for the growth of flawless crystals, and that close attention must be paid
to the pressure-thermal cycle to allow outgassing while avoiding excessive
distillation and bubble formation. To explain the necessity for such re-
quirements, a chronological description of the growth experiments is given
below.

In the first attempt to produce a crystal, pressures in the range of
1073 to 10~% mm were employed throughout the entire procedure. The melt
was totally distilled and formed a polycrystalline mass near the top of
the capsule. This charge was recovered quantitatively after opening the
capsule, indicating that little if any of the LiF was distilled past the
top. Since no window was present at this time, the difficulty was not
detected until after the run was completed, and hence the rate of distil-
lation was not known.

In order to obtain an estimate of the distillation rate under crystal
growth conditions, several experiments were conducted in closed nickel con-
tainers. Il was ascertained that total distillation of liquid ILiF occurred
in approximately 16 hr at mechanical pump pressure (100 u), but only a
trace of LiF distilled over a 10-day period if 1 atm of He was used. While
conducting these distillation studies, it was found that small single crys-
tals of LiF displaying very well formed 100 faces could be grown from the
gas phase. These crystals are shown in place in Fig. 5, and a selected
crystal may be seen in Fig. 6. Typical conditions for their growth were:



Fig. 5.

LiF Crystals Grown from Vapor (in 2lace).
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UNCLASSIFIED
PHOTO 56589

125 mm

Fig. 6. LiF Crystal Grown from Vapor (Showing 100 Planes).
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(1) LiF temperature: 900°C
(2) He pressure: 1 to 1.5 atm
(3) Time: 2 to 4 weeks

The LiF needles were found on the nickel surfaces which were at tem-
peratures slightly less than the LiF melting point (848°C). Surfaces with
temperatures much below the ILiF melting point or pressures much less than
1 atm produced a polycrystalline mass of LiF with particle sizes in the 1
to 100 p range.

In the second attempt to produce an LiF crystal from the melt, the
charge was outgassed at 10”2 to 1074 m only at room temperature. A posi-
tive pressure (1 to 1.5 atm He) was maintained within the capsule during
the entire thermal cycle. A usable ingot (Fig. 7) was produced under these
conditions, but it consisted of two crystals. Again this failure to pro-
duce only a single crystal was undetected until the entire procedure was
terminated.

Both failures to produce a large single crystal were related to an
inability to observe the charge during the experiment. Therefore, the
vacuum-~-gas header was modified to include a quartz window as shown in
Figs. 3 and 4.

The third attempt to produce a crystal involved outgassing at 1073
to 10=% mm both at room temperature and through the thermal cycle until
distillation was observed. This procedure tested both the window and
time-pressure requirements to avoid a troublesome amount of distillation.
Figure 8 is a photograph, taken through the quartz window, of the partly
sublimed LiF charge at 830°C. The entire charge was remelted under 1 to
1.5 atm of He and grown into a single crystal and again photographed
(Fig. 9) at 830°C. Helium bubbles appear as dark spots in the photograph,
and surface markings on the nickel crucible show up as lines. The LiF is
transparent under these conditions. After removal (Fig. 10) it was found
that the He bubbles were entirely on the surface. This experiment showed
that:

1. The LiF could be melted under 10~2 to 10~% mm pressure and
kept in a molten state for an hour or two without signifi-

cant loss by distillation.
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UNCLASSIFIED
PHOTO 56514

Fig. 7. 300-g LiF Bicrystal (99.99 at. 4% Li-7).
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UNCL ASSIFIED
PHOTO 57244

Fig. 8. Partly Sublimed LiF Charge at 830°C.
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UNCLASSIFIED
PHOTO 57245

Fig. Y. Crystal at 830°C Viewed Through Quartz Window.
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UNCL ASSIFIED
PHOTO 57266

Fig. 10. 200-g LiF Crystal (Showing Extensive Bubble Formation)
(99.99 at. 9 Li-7).
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2. Some outgassing occurred. Pressure fluctuations were too
small to be detected, but the required frequency of degas-
sing the ion gage indicated outgassing of the melt. This
observation, along with the absence of any cloudy region
(the first ingot shown in Fig. 8 contained a cloudy region
about 3 mm thick at the top of the ingot), indicates that
vacuum melting is desirable as recommended frequently in

the literature.

3. Remelting an ingot under an He atmosphere introduced bub-
bles. These are seen in Figs. 7, 9, and 10. Few bubbles
were observed in the first crystal (Fig. 7) produced fraom
a charge which was melted under an He atmosphere but was
not remelted. During the first melt the LiF charge was
present as large chunks with numerous channels for gas to
escape. Remelting occurred from a solid ingot without
these channels, thus decreasing the possibility of He

escape.

The fourth attempt to produce a crystal involved outgassing at g2
to 10™% mm until melting occurred. After 1 hr an He pressure of 1 to
1.5 atm was introduced into the capsule. While sublimation was negligible,
it was still observable under these conditions. About halfway through the
growth a few bubbles occurred, and an attempt was made to remove these bub-
bles by evacuating. When the pressure was reduced, gas was vigorously
evolved from the melt. The outgassing appeared to be successful, but after
completion of growth the ingot was found to be polycrystalline. It was
then remelted and the crystal shown in Fig. 11 was grown.

The fifth attempt failed because of a capsule rupture. The sixth and
seventh attempts produced the ingots shown in Figs. 12 and 13. The charge,
melted under a vacuum of 1073 to 10™% mm, was exposed to 1 to 1.5 atm of
helium after L hr. The crystal was grown and annealed under this pressure.
Before annealing, the thermal gradient (curves 1 and 2 of Fig. 14) was
eliminated (curve 3 of Fig. 14) by manipulating the external furnace shunts
(Figs. 2, Al, and A8). The annealing time was about 7 days with a low ini-
tial rate of cooling in order to make use of the high-temperature plasticity
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UNCLASSIFIED
PHOTO 58035

Fig. 11. 278-g LiF Crystal (98.06 at. % Li-7).
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UNCLASSIFIED
PHOTO 59697

g

Fig. 12. 349-g Lil Crystal (99.99 at. % Li-7).



UNCLASSIFIED
PHOTO 60721

Fig. 13. 290-g LiF Crystal (96.50 at. % Li-7).
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of the 1LiF. The programmed cooling curve is showvn in Fig. 15 in contrast
to the cooling curve obtained by'shnply shutting off the furnace power.

No internal strains were detected when the crystals were examined under
polarized light. Their infrared adsorption spectra were free of selective
absorption, thus indicating that the dehydration step was successful. The
results of the analyses of the first four crystals are given in Tables 2
and 3.

Table 2. Activation Analysis® of IiF

Element (ppm)

Material o ” He Ve Ve ™
Heat-lamp dried ILiF 2.7 73.1 . 0.1
First crystal-middle® | 3d b
Second crystal-bottom 1.5
Third crystal-bottom 1.4
Fourth crystal-interior 0.2 0.13-0.35 U.Ul

aAnalyses performed by E. I. Wyatt's group, except where stated
otherwise. .

bAnalyses performed at Cornell University - R. L. Sproull,
personal communication.

Distinctly higher concentrations of impurities were found near the
top of each crystal as was expected.31 Also, a higher concentration of
Mn was found near the Ni-LiF interface, indicating that some leachihg
occurred there. This suggests that future crystal-growth experiments
might produce a purer product if higher purity nickel, pyrolytic graphite,
or copper liners are used. Preliminary experiments indicate that copper
under an Hp atmosphere will not contaminate molten LiF contained in it.

To withstand the hydrogen atmosphere at high temperature, the copper con-
tainers, including their welds, must be oxygen free.45 46

The strong dependence of purity on position in the crystals indicates

that zone melting should purify considerably the LiF. Work has been ini-

tiated in this direction.



Table 3. Spectroscopic Analysisa of LiF Crystals

Element (gpm)

Material Y ) B Ta  TFe K Mg Im N 51 01
First crystal-top <100 ' 20-50 - 50 70 100 <100 <100
First crystal-top riddle <100 20:50 100 50 | 100 <100
First crystal-bottcm middle <100 20-50 50 100
First crystal-bottom . 20-50 100 50
Second? crystal-top <10-300 nd®-500 30 20 20-50 <100-300 30 nd-200
Second erystal-bottom nd-<100 - _ <10;20 - 20 10 nd-300% 100
Third crystal-top <20. ) <10 20 <50 <0
Third crystal-bottom < : S a <0 2 5
Fourth crystai-interior ) ~ : 0.5-1

aAnalyses performed by J. A. Norris' group.

bEleven analys=s were performed on each portion of the second crystal. The range of results is
shown in this table.

CNot detected. o . -

dOf the eleven analyses, eight did not show Si, one gave <100 ppm, one 10C ppm, and one 300 ppm.

Le
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Current oxygen analyses,47 while relatively insensitive below 400 ppm
in fluorides, indicate that the crystals produced thus far may contain 100
to 400 ppm of oxygen. Extent of oxygen removal is controlled by the equi-
librium reaction, 2HF + Li0 = H0 + 2LiF, and is therefore limited by the
H20 content of the HF, which is commonly estimated to be as high as 800 ppm
in the "anhydrous" commercial product. From extrapolation of published
vapor-phase data48’49 far the HF-Hp0 system, liquid HF containing 800 ppm
H20 yields a vapor with only about 30 ppm Hz20. From the free-energy data42
for the dehydration reaction, the calculated 1Liz0 content of the equilibrium
product of the reaction with this vapor is only 10~7 ppm as compared to the
‘analyzed concentration of 100 to 400 ppm. The oxygen values of 100 to 400
ppm mey be due either to the difficulty in accurately analyzing at this
concentration, introduction of oxygen after dehydration, or the inability
to reach equilibrium readily. Consequently, further dehydration of LiF
even with completely anhydrous HF may be very difficult. There are indica-
tions,2 however, that repeated melting and freezing under vacuum will
-reduce the oxygen content of LiF. Consequently, the zone melting suggested
above for removal of cationic impurities also may redice the oxygen con-
centration. However, the proper evaluation of these procedures with respect
to oxygen removal depends on a more sensitive oxXygen anelysis than is
currently available.

Analytical results indicate that many impurities are selectively trans-
ferred during sublimation. It is clear, fram the difficulties mentioned
earlier with respect to sublimation, that moving large quantities of IiF
by this means will be experimentally simple. An investigation of the fea-
sibility of producing high-purity LiF by this method is in progress.

The problem of bubble formation, as mentioned earlier, depends on the
inert-atmosphere pressures used but also seems to depend somewhat on the
number of times that a particular capsule has been used. This may be a
result of crystal growth of the Ni and the associated changes in the char-
acter of the surface of the capsule. The use of new capsule liners and
of different materials should help to eliminate this problem.

The mosaic structure of these crystals is more pronounced than that
of commercial material. This may be related to either epitaxial surface

or vibration effects or to both effects. The epitaxial effects may be
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cleared up by the changes in liner mentioned above. Reduction of capsule
vibration during growth will be given attention.

The low-temperature thermal conductivity of these cryétals is under
study at the Materials Science Center at Cornell University. The high-
temperature thermal conductivity is being studied at Oak Ridge National
Iaboratory.

The bottom portions of these crystals are being used to produce im-
proved standards for spectroscopic analysis of LiF. In Tables 2 and 3 it
can be seen that concentrations of impurities seem to decrease in order
from the first to the fourth crystals. The first two crystals are now
being reanalyzed using the new standards to determine if the trend in
Table 3 reflects improved purity in the crystals or improved analysis.
The calcium analysis in particular is noteworthy. Earlier analyses of
the first and second crystals (Table 3) show 20 to 50 ppm calcium. Spec-
troscopic analysis at Cornell University, however, detected no calcium
in the first crystal. The earlier reports of calcium impurity at ORNL
are thought to have resulted from analytical problems which have been
solved with the new standards. Spectroscopic analysis of crystals three

and four do not show calcium.
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Quartz Window Assembly and Details.
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LiF Crystal Growing Apparatus:

Crystal Capsule

and Evacuation Line Assembly and Details.
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LiF Crystal Growing Apparatus:

Schematic Wiring Diagram and Apparatus Details.
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