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ABSTRACT 

MATEXP, a general purpose digital computer program, was 
written for solving systems of ordinary differential equations 
by the matrix exponential method. MATEXP has several advantages 
over standard numerical integration routines. It gives virtually 
exact solutions to constant-coefficient homogeneous ecl_l .. lRti ons 
and to nonhomogeneous equations for which the forcing functions 
are constant during the computation interval. The speed at which 
the equations are solved and the accuracy of the solution are 
es sentially unaffected either by the degree of cross-coupling 
of the equations or by whether or not the coefficient matrix is 
nonRingular or that its eigenvalues are distinct. 

The method has been extended to nonlinear equations and 
equations with time-varying coefficients; this use is very 
effective for engineering systems analysis problems. 
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1. INTRODUCTION 

The matrix exponential method of solving differential equations 

was first described to the authors by Prof~ Henry Paynter of MIT, 

who with his studentsl-3 developed this method into a practical 

engineering tool. The basic technique was derived many years ago, 4 

and even then it was an elegant method of obtaining exact solutions 

for a set of constant coefficient, homogeneous differential equations. 

'l'he matrix exponential technique is ideally suited to die;ital 

computation and is very si~ple to implement, especially when compared 

with most quadrature methods. 

Only two persons besides Prof. Paynter have done extensive work 

in this area. L. Pease5 of Atomic Energy of Canada, Ltd., in

dependently developed the method simultaneously with Paynter. The 

work of Paynter and Pease formed the basis for our implementation 

and, perhaps, refinement of the method, although the work of several 

researchers5-9 established the rigor of the central technique. 

1 J. Suez, Automated Programming for Analog Computers, M.S. 
thesis, MIT, Aug. 1962. 

'2 -
H.C.H. Lee, Same Finite Difference Models for Li;Qear and 

NuullHear Control ::itudies Using Digital Computation, M.S. thesis, 
MIT, Aug. 1962. 

~ 3H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling 
of Analog Computers," Trans. ISA, .3_, 55-64 (Jan. 1964). 

4E. Artin, from 0. Schreier and E. Sperner, Introduction to 
Modern Algebra and Matrix Theory (1935)j Translated from German, 
Chelsea Publ. Co,,. N.Y., 1951, PP· 319-320. 

Solving the First~Degree 
in Matrix Series, 

6E. G. Keller, ~thematics of Mn~ern Engineering; voL.II, 
Mathematical Engineering, Wiley, N.Y., 1942, pp. 234-246. 

7R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, N.Y., 
1960, pp. 165-173· 

~. ' 

) 
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More recently, M. L. Liou of Bell Telephone Laboratories made important 
. 10 ll 

contributions to the matrix exponentlal method. ' 

Because this method can give virtually exact12 solutions to systems 

of equations, it is of considerable interest to most engineers engaged 

in systems analysis, automatic control, and simulation. Also, systems 

engineers have long recognized that one essential difference between 

the analog computer and the digital computer is the awkward (at best) 

manner in which the digital machine can perform .. integration. The 

matrix exponential method, on the other hand, requires the digital 

computer to perform mainly matrix manipulations, which it can do in 

a very straightforward and efficient manner. -· 

The matrix exponential techniques have worked well for a large 

general class of simulation problems which constitute the bulk of the 

work in the systems analysis and automatic control fields. Indeed, 

by use of the methods described in Sect. 3.4-, certain types of non

linear equations can be solved as a natural extension of the basic 

matrix exponential method. 

8F. R. Gantmakher, A lications of the Theor 
Interscience, N.Y., 1959, pp. 135-9. translation 
original book: Theory of Matrices, 1954). 

of Matrices, 
of Russian 

9L. A. Pipes, Applied Mathematics for Engine·ers and Physicists, 
2d ed., McGraw-Hill, N~Y., 1958, pp. 101-4. 

10M. L. Liou, "A Novel Method of Evaluating Transient Responses," 
Proc. IEEE, 54 (1), 20s23 (Jan. 1966). 

1~. F. I{uo and J. F. Kaiser, eds., System Anaiysis by Digital 
Computer, Wiley, N.Y.,1966, pp. 99-129. 

12"Virtually exact" means that the solution can be calculated 
to as great a precision as is desired, consistent with the precision 
obtainable with a given computer word length. In other words, t.be 
precision of the method is not necessarily limited by the convergence 
of any approximate quadrature (integration) formula, simply because 
quadrature is not performed_. 
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The matrix exponential method has also been implemented and us~d 

extensively in Fourier analysis problems by simulating band-pass 

filters.l3,l4 Instead of calculating correlation functions (and 

subsequently their Fourier transforms) digital filtering can be used 

to obtain spectral density estimates and transfer functions from 

noise data. Calculations using filtering techniques are of comparable 

accuracy and typically more efficient than the conventional methods. 

MATEXP has also been used in a special technique to calculate thP. 

sensitivities of the time response of a system to chR.ngr.-s in parameter· 
15 values. A description of a subroutine which was written to 

implement time response sensitivity calculations is given in Sect. 

MATEXP has been developed and modified over a period of several 

years, and its present form reflects the considerable number of 

helpful suggestions we have had from many people. We are particularly 

grateful to Prof. H. M. Paynter for first introducing us to the 

method, and to Prof. T. W. Kerlin of the University of Tennessee, 

and J. V. Wilson of ORNL for their help and encouragement. 

2. DEVELOPMENT OF THE MATRTX F.XPONE.NTIJ\L METHOD 

2 .l For Homogeneous Equations 

Consider the first-order scala:r:, linear, homogeneous differential 

equation (with constant coefficient) 

dx 
dt I a.,.= 0 ' ( 1) 

13 ' P.. J. Bti.ll, A Di i tal l•'ilt~::r lr Efficient Fourier 
Transform Calculations, ORNL-TM-1778 

14
T. W. Kerlin and S. J. Ball, =Ex::.::::e~r.=.i=m:.::e:::n:.;t,;:a::l:.....:;:.L.:.:=:=..:::.......:;;:;:;:::=.z:-=s:..::i:..::s:......::o:.::..f 

the Molten-Salt Reactor Experiment, ORNL-TM-1647 

l5T. W. Kerlin, "Sensitivities by the State Variable Method," 
Simulation, ~(6), 337-345 (June 1967). 

. ( 

(1} 

' ) 



whose solution is 

7 

-at x = e (2) 

An interesting characteristic of the solution is that, for any 

time interval ~, the value of x at the end of the interval is a 
-a~ product of an exponential term E .and the value of x at the beginning 

of the interval, i.e. 

-a-r 
X = E X t+-r t • (3) 

This will be referred to as the "incremental solution." 

Naw because a system of homogeneous linear equations of any 

order can always be broken up into a set of first-order equations, 

consider the following set of equations · 

-- = dt 
( 4) 

This array can be expressed compactly in matrix form as a first

order, linear, homogeneous, matrix differential equation with constant 

coefficients, i.e. 

dX 
dt = AX ' (5) 

where X is the column vector of state variables x. 
J. 

X-



8 

and A represents the coefficient matrix 

all al2 ...... aln 

. A 
a21 a22 

- ...... a2n 

• • •. •. a nn 

This matrix equation has the solution 

(G) 

For a formal proof that Eq. (6) is the desired solution, the reader 

is referred to Bellman.7 However, the following si2ple proof is 

I d X dX somewhat less formal. First, if dX dt = AX, then -- = A dt = 
dt

2 

A A X A
2 X · · 1 ,, d

3
X = A3 X th t dilJc = Am· X = ; Slml ar~, , so a 

dt3 dtm 

If Xt is expanded about zero in a Taylor's series, 

X X t dX 
t = o + I! dt 

t=O 

+ •••• 

With Eq. (7) substituted for the derivativP. 1 

·····) xo 
or At 

Xt. = E x0 (Q.E.D.) 

The "incremental solution" is 

( 7) 

(R) 

(9) 

where EAT, the matrix exponential, is defined analogously to the 

scalar exponential as 

AT 
E + ••• (10) 
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in which I is the identity matrix 

1 00 0 

0 1 0 0 
I = 0 0 1 0 

0 .•....•. o 1 

2.2 For Nonhomogeneous Equations 

The matrix equation representing a system of first-order, constant 

coefficient differential equations with nonzero forcing functions is 

the nonhomogeneous equation 

dX 
AX+ z, (11) -= dt 

where Z is the distu~bance, or forcing function,vector. 

A general increme~tal solution of the nonhomogeneous equation 

as derived by Liou11 is 

(12) . 

An exact solution derived from Eq. (12) for the case where the 

forcing function Z is constant over the interval t to t+~ is 

.. '""" _A~X + ( A~ -I)A-lZ 
At+~ 1:: t € · t ( 13) 

It is important to note that the inverse of A need not be calculated 

to evaluate Eq. (13) since 

( €A~ -I)A -1 = ~+ A~+ {A~l2 {A~Lk -1 -1 
2! + ... 

k! 
A . 

.. 
2 . A.2.J . • k:-1 k 

A~ A. ;~ 
= I~ + + -· -~- + .... 

21 3~ k! 
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= 't" [r + 
A-r 
2! 

+ (A,)2 (A,)k-1] 
3~ + •• • k! 

oO 
(A't")k-l 

= 't" I (14) k! 
k=l 

Because this series is similar to that used to represent E A't" 

the computer program can calculate the two required matrices 

concurre11tly, slm:e the kth term of the (EA"-I)A-l ~eries equals 

the (k-l)th term of the-EA't" series times ('t"/k). In the MAT~P 
program, the EA't" matrix is called the "C" matrix and the (EA't" -I)A-l 

ll.latrix iS called the "HP;' ma.trix (in honor of H. Paynter). 

At this point, two essential features of the matr:i.x exponential 

method are emphasized: 

1. The exponential matrices can be computed by the series 

approximation to nearly any desired precision (typically, 

l part in 106 is specified for MATEXP calculations). Hence, 

for homogeneous equations and for nonhomogeneous equations 

in which the forcing functions remain constant over the 

computation time interval, the solutions are virtually exact 

solutions. 

2. The solution vector can be updated successively by a time 

increment 't" by two matrix multiplications: 

x2 '"'" ... c x't" + HP z T 

P.t. r. 

If it is assumed that just one time increment value 't" is 

required, the C and HP matrices need to be evaluated only once. 

An exact solution to the set of nonhomogeneous diff.erentj_aJ el]_uations 

can also be derived from Eq'; (j2.) for the case· where the forcing 

function Z v~ries linearly within the computation interval 't". 

In terms of the matrix exponential series approximations, the 
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trapezoid forcing function incremental solution is 

X = EA-r X + 
t+'t" t 

( 15) 

Liou
11 

has also developed a recursive formula for accurate 

approximations of continuous forcing functions which uses a Simpson's 

rule approximation of the nonhomogeneous solution, Eq. (12), within 

the time interval 1:: 

X € A't" [xt '1: z] 21: -A't"/2 't".z 
t+1: ~ + 'b t + 3 € zt+1:/2 + 'b t+1: • (16) 

As with the case of the step-wise varying forcing functions, the 

matrices required for Eqs. ( 15) and ( 16) need to be evaluated just 

once at the start. These features are not presen~ly included in the 

MATEXP code, but could readily be added as options·. ,, 

2.3 Miscellaneous Features of the Matrix Exponential 

Since the matrix exponential principle has been a part of the 

mathematical literature for many years, the matrix exponen~ial has 

had at ·leas~ two other names: the fundamental matrix, .and the 

transition matrix. Besides the series approximation method, an 

analytical method is often used to calculate. this matrix; 9 however, 

t~e eigenvalues of A and their eigenvectors must be calculated and 

the initial condition vector must be transformed by a matrix. 

~nmprised of the eigenvectors. It is emphasi4ed that the series 

method used in MATEXP does not require that the coefficient matrix 

be nonsingular (i.e., have a nonzero deteL'illil1ant) or that its 

eigenvalues be distinct (a case where the analytical solution has 

terms of the form tEbt and cannot be expressed as the sum of 

exponentials). The latter cond~t:i,on, which occurs in problems 

where two time constant::; i11; a decay ,chain are_ eq_11A.l, was one of 
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the problems that Pease encountered in reactor burnup calculations 

that prompted him to develop the matrix exponential method.5 

Another feature noted by Pease (but not included in MATEXP) is 

that the average solution vector X could be obtained directly from 

a matrix exponential type calculation. 

From the mean value theoremJ 

x = ~L\ dt, 

X l!an 'be obtained by integrating the equation for X in terms of C 

and HP: 
't" 't" 

X= l Jx dt = ~ J [ c X + (HP) z0 ] dt . ( 17) ... t 0 
0 0 

'l'erm by term integration of the series approximations for C and 

HP gives 
't" "'!'l 

L c dt = [I M + .(M)2 + (4~)3 + ... J ~ HP J ( 18) 't" + 2! 3! 

and 

2 I A-r A-r 't" [ 2 ~ BP dt = ., ~! + 3 ! + ~ + ] . ( 19) 

The latter seriesJ like the HP matriDC calculation, could easily 

be made concurrent with the other matrix exponential calculations. 

The accuracy of MATEXP solutions) both in absolute terms and 

compared with other methods) is difficult to estimate quantitative1y 

!'or the general case. Even for those cases that are solved "exactlyJ" 

the successive multiplications of the solution vector by the matrix 

exponential naturally tend to accumulate errors. HoweverJ with 

precise calculations of the C and HP matrices as recommended in the 

Appendix) Sect. 5.1J test cases have shown this error to be negligible 

for large systems (4o x 40), even after many thousands ·of updating 

calculations. Liou
11 

has developed an alternative method of evaluating 

the C and HP matrices to a prescribed accuracy. 

The nature of the matrix exponential method permits the use of 
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much larger computation time intervals ~ than would be feasible for 

most numerical integration solutions. For constant-coefficient 

equations and a given ~, it would be safe to assume that MATEXP would 

be inherently more accurate. As is usually the case, however, it 

would be unwise to generalize about nonlinear equations. Nonlinear 

solutions are discussed further in Sect. 3.4. 

Eq. (20) gives a rough estimate of MATEXP solution times on the 

IBM-7090 computer, assuming that a negligible time is spent 'in the 

peripheral subroutines: 

-6 2 . 
Solution time(min) ~ 3.0 x 10 (NE) NT , (20) 

where NE is the number of equations, and NT is the number of 

computation time intervals. For example, a 59 x 59 system run for 

1000 time steps took 10 min, and an 8 x 8 run for 10,000 steps took 

1.5 min. The solution time factor will vary from about 2 x l0-6 to 
-6 7 x 10 , depending on the amount of extra subroutine computation and 

printout, and will be approximately halved for homogeneous equations. 

The present "standard" version of the MATEXP program solves up 

to 60th-order equations and uses about 22,000 words of core storage. 

Iri·a 32,000 word computer, the extra 10,000 words can be used for 

special programming or storage, or the order of the equation· can be 

increased to about 80. Since, for larger ,problems, tape or other 

slower storage devices would be required to calcu~ate the matrix 

exponential functions, the overall efficiEmcy of the method would be 

1·educed. 

Two othe:r:· interesting, though perhaps purely academic, features 

of the matrix exponential technique are that the solution time 

increment can be negative (allowing one to go backwards) and that the 

A matrix can contain complex coefficients. 

3. DESCRIPI'ION OF MATEXP PROGRAM AND OPI'IONS 

3.1 Basic Input Information 

The MATEXP program was written with the intent that it should 

be easy to use f'or a wide variety of differential equation problems. 
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Unfortunately, as a program becomes more general, i.e. the more 

options and special features the program has, it becomes more difficult 

to explain the program and to use it for any given problem. 

Consequently, any apparent awkwardness and complications in the 

following discussion are due to a desire to.make it general, and any 

omissions are due to a desire to keep it simple. 

The basic parts of the code are: the main program, MATEXP; the 

utility subroutine used for outputting, OtJrPUT; and the subroutine 

for calculating forcing(or disturbance)functions, DISTRB. To solve 

linea!', constant -coefficient differential equations that rtrA 

homogeneous (i.e. have no forcing functions) or which have only fixed 

forcing functions, all the required data can be read in. and no extra 

programming is necessary. For equations of the form 

dX .. 
-=AX+Z 
dt ' 

the initial values of the X vector, the coefficient matrix A, and 

the (fixed) disturbance vector Z may be read in. other information 

required for each run is the following: 

1. number of equations, 

2. initial time (or other independent variable), 

3. computation time interval, 

4. final time, 

5· interval at which solution vector X and disturbance vector Z are 

to be printed. 

Since many elements of the coefficient matrix A are often zero, 

only the nonzero elements need to be read in. This makes it necessary 

to identify each coefficient with its row and collltnn m.unber. The 

nonzero values of the initial condi.ti.nn and fixed disturbance vectors, 

with their row numbers, are read in similarly. 

Since successive runs might require no changes (or on~y a few) 

in input data from the previous run, options are provided so that. 

only the altered data has to be read in. 

An option is also available whereby the last value of the X vector 

from one run can be used as the starting value of the succeeding run. 
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This option can be used if changes in the co~putation or printing 

interval are required in the middle of ·a solution or if certain 

iteration or successive approximation schemes are being used. 

A complete description of the inputs and options is. given in 

the Appendix, Sect .. 5. 

3.2 Alternative Methods of Generating the Coefficient.Matrix A 

Although the most straightforward method of inputting the 

coefficient matrix is to read it in, very often it is advantageous 

to have some or all of the elements calculated from system parameter 

values. One option of MATEXP provides for this to be done by special 

programming on the first call of DISTRB. An alternative is to use 

an "algebra table" routine developed by Kerlin and Lucius •16 This 

routine calculates the matrix elements from input parameter values 

without any special programming. The general expression used for 

calculating an element a .. in terms of parameters Pk and their 
l.J 

exponents ~2 is 

a .. 
l.J 

P 
Enl + C p El2 p E22 E32 En2 

n 2 1 2 p 3 • • .P n + ••• 

or n 

TI (21) 

k=l 

A complete description or' the program is given in reference 16. 

Beside the fact that it is sometimes convenient to have the 

coefficient matrix calculated by the computer, in some cases computer 

computation is almost necessary to obtain accurate solutions. This 

was the case for one reactor dynamics calculation where the coefficients 

were first carefully calculated on a 20-in. slide rule, then by the 

machine. The difference in the steady-state solution for neutron 

A Technique for Calculating 
Changes for Multi-
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level after a reactivity insertion was approximately a factor of 2. 

3.3 Alternative Methods of Generating the Forcing Function Vector Z 

When variable forcing functions are needed, a special program 

must usually be written and included in DISTRB. Two special forcing 

function subroutines have been written to simplify the programming: 

DFG, for approximating arbitrary fUnctions; and TRLG, for approximating 

variable transport lags. They are both described in Sect •. ~ .5. 

For cases where the fQ:r~ing function ia a aolut.j on t.n i'!.n nrni nA.ry 

differential equation, this equation can simply be added to the system 

matrix, and an exact solution can be obtained. As an example, assume 

that a sinusoidal forcing function is used to excite a damped spring

mass system. The quadratic equation that describes the displacement 

y of the mass with time is 
I') 

d'- d 
~ + a ft" + by = c sin· (OJt + ¢) , 
dt 

(22) 

where ill is the frequency of the sinusoidal input (radians/time). 

To arrange the equation in terms of first-order derivatives, let 

(2J) 

(24) 

Solving for d2y/dt
2 

(or dx
1
/dt), we obtain 

dx 
d~l = - ax1 - bx2 + c sin (OJt + rjJ), (25) 

and 

(26) 

The equation for a pure oscillator with frequency ill is 

(27) 
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ds 
If we let x

3 
= dt' and x4 = ms, then 

(28) 

(29) 

If the initial conditions of x
3 

and x4 are zero and -1, respectively, 

then 

(30) 

(31) 

Thus cx3 could be substituted for c sin (rut+.¢) in Eq.(2~. The 

required initial conditions of velocity x1(o) and displace~ent x2 (o) 

must also be specified. 

The coefficient matrix for this example is 

... b +c 0 

0 0 0 
A= 0 0 0 -m 

0 o· +m 0 

If the sinusoidal input were introduced as a forcing function, it 

would appear as a stair-step approximation of a sine wave, and the 

accuracy of the solution would depend on the accuracy of this 

approximation. A comparison of the approximate and exact solutions 

for a specific example is shown in. Fig. 1 •. In the app:r:·oximate 

solution, a first-order extrapolation was used to approximate the 

average value of the forcing function over the time interval. 

In this example, the system has a natural frequency of 1.0 

radian/sec and a damping factor of-0.25, and the driving sinusoid 

has a frequency of 2.0 radiano/sec:. The computation interval of 

0.5 sec for the approximate case gives about seven computations 

per cycle of the driving function. Figure l also sbows the response 

after a long time where the excellent stability and accuracy of both 



1.0 

.5 

Position 
x 2 0 

_j 
....... 

J 
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~ 
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> .. 

•rime (sec) 
·4..._ Maximum error in 

approximate solution = O.Ol4 

in initial transient 
solution = 0.020 

Exact ~ solution --
X Approximate sclution, 11t = 0.5 sec 

Fig. l Comparieon ef Exact MATEXP and Approximate: lWEXP 
Solutions for Sinusoidal Input to Damped 

Spring-Mass System 
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solutions can be seen. This type of calculation is, historically, 

very difficult to do with standard digital methods •17 . 

3.4 Methods for.Solving Time-Varying-Parameter and Nonlinear 
Differential Equations 

It was shown in Sect. 2 that the MATEXP method can provide exact 

solutions to sets of constant-coeffic~ent, homogeneous differential 

equatic;ms and to nonhomogeneous equations for which the forcing 

functions can be represented by stepwise-varying functions. Since 

forcing functions are usually smoothly varying,:.the accw::acy of the 

solution would naturally depend on the·accuracy of the stair-step 

approximations. 

Likewise, in the case of time-varying-parameter, or nonlinear, 

equations, the variations in the coefficient matrix A can be 

approximated by stepwise variations. For a variable A matrix, however, 

the matrix exponentials (C and HP) would both have to be re-evaluated 

at each· computation interval. Although this may·still be an efficient 

method for low-order equations (---10 or less), it could ·be quite 

time consuming for larger problems. 

A more efficient method of solution is to modify, or "fudge~·" 

"the forcing function vector so that it compensates for the variation 

in coefficients while the A, C, and HP matrices remain constant. 

This is shown schematically in Fig. 2. 

17 . 
R. A. Gaskill, "Fact and Fallacy in Digital Simulat"ion, 11 

Simulation,~ (5), 309-313 (Nov. 1965). 
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Nonlinear Equations 
A= f(t,X) 

• Ao. 

oA X ¢ .... 

!--.......;,...~ X( t) (Exact) 

.... X( t) (Approximate) 

Fig. 2. Approximate Solution Using Fudged Forcing Functions. 

Each component of the fudged forcing-function vector is calculated 

by adding all the coefficient perturbation quantities in the row. Fo1' 

example, assume one row of the matrix equation is 

where a
11 

.• a 131 and :r.1 a.re variableo and o.12 is a constant. 

Let 

and 

Then the equation can be rewritten 

Again, the forcing function zf would actually be smoothly varying, 

but in the MATEXP difference equations, it is approximated by a 
stair-step function. 
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For the case where the coefficients and/or the forcing functions 

are known fUnctions of time, much gr~ater accuracy· (for a given 

computation interval ~) results from using approximate mean values, 

rather than initial values, of the fUnctions in the computation 

interval. First-order approximations of the mean values can be· 

obtained by evaluating the time-varying forcing functions and matrix 

elements at (t + ~/2) instead of at (t). First-order extrapolations 

o~the mean values of the solution vector X should also be used 

where coefficients are functions of x, as shown in Fig. 3. 

z. 
1 

. I 

I 

x. 
1 

'---+---"--r-J~time · 
t t+'f 

'f . 
X. (t~2 ) :::; X. (t) 
.1 1 

t -'f 

x. ( t) -x. ( t-r} + 1. 1. . . 

2 

Straight-Line . j/ Approximation 

time 

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+~). 

The use of an auxiliary subroutine VARCO greatly simplifies the 

programming required to use first-order extrapolation calculations to 

firld. approximate mean values of the forcing function. VARCO is 

described in detail in Sect. 5.2. 

The only way of guar~nteeing that the solution is accurate is to 

reduce the computation interval ~ until further reductions make no 

significant differencE! in the solution. A simple_, intuitive estimation 
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of the accuracy, however, may be obtained by noting the maximum amount 

of change in the solution and coefficient values within a computation 

interval. If these changes are only a few percent of the values of 

the fUnctions at the start of the interval, then the first-order 

approximations will probably give very accurate answers. The true 

accuracy of the representation of a nonlinearity should also be 

considered when trying to "squeeze" too much accuracy out of a 

solution. 

The use of fudged forcing functions for the solutton of nonlinear 

differential equations is very effective when relatively few of the 

.matrix coefficients are variable. In this case one might consider 

the linear portion of the·system of equations as being solved by an 

extremely accurate analog computer, while the nonlinear portion is 

simulated by a not-quite-so-accurate computer. If most of the 

matrix coefficients·are variable, then the more conventional numerical 

solution methods might be more practical than MATEXP. 

More detailed discussions of the theory and use of fudged forcing 

functions have been found disguised in sophisticated mathematical 
18 1'9 treatises by Wolf . and Frazer et al. ~ 

~---. 

3.5 ·special Forcing Function Subroutines 

Since special programming is required in the DISTRB subroutine 

to generate variable forcing functions for the differential equations, 

two general purpose subroutines were written to facilitate this 

programming for some problems. 

3.5.1 Arbitrary Function Generation- DFG 

The arbitrary fUnction generation subroutine DFG prnvine8 a means 

of generating approximations of single-valued functions of one 

variable where the arbitrary function curve is represented by a 

18 . 
·A. A. Wolf, "Some Recent Advances in the Analysis and Synthesis 

of Nonlinear Systems", Am. Inst. Elec. Engrs~ transactions paper 
No. 61-713. 

19
R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary 

Matrices, Cambridge University Press, 1957, pp. 232-45. 
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series of linear segments (Fig. 4)·. The principle is identical to 

that of the diode function generator (hence DFG) used in analog 

computation. 

Output 

Approximate 

F:i.g. 4. Subroutine DFG Representation of an Arbitrary 
Function of One Variable. 

DFG in its standard form arbitrarily allows for up to 8 functions 

with up to 32 points (or 31 line segments) per function. Inputs 

required are the ordinate and abscissa values of the line-segment 

end points. If more functions or finer approximations are required, 

the dimensions coul~ be changed easily. More details on the program 

and a Fortran listing are given in the Appendix, Sect. 5. 

3. 5 .2 Vari~b·l~ Transport Lag· Generation - TRLG 

A transport lag (also known as a pure time delay, or dead time) 

actually represents a distributed parameter system; hence, its 

representation in a lumped-parameter solution will be only approximate. 

The OUtput Z from a pure delay device With an input X and a fixed 

delay time T is 

z(t) = ~ (t ---r). 

If -r is variable, then the .relationship between z and x is a function 

of the time history of :-r. 

The variable time-delay problem is :t>:est ilJ:ustrated ·by . 

fluid flow in a pipe where the inlet temperature and flow rate are 

bath variable. The assumptions required for a pure delay are: 

1. there is no heat transfer to the pipe; 

2. the fluid density is constant; 

3. plug flow exists, i.e., there is no mixing of the fluid in the 

direction of flow. 



24 

The technique used in TRLG is to ·sample the inlet temperature x 

and the flow rate W at each computation time interval T, thereby 

keeping an inventory on each slug of fluid in the pipe. The total 

weight of fluid in the pipe is computed from the initial transport 

time 1'.. and the flow rate W. : 
1 l 

ptotal (lb).= Wi (lb/sec) X 't'i (sec) • 

Similarly, the weight of fluid that enters during each time interval 

T is W(t) x T. Since the fluid. ·density is constant, the weight of 

fluid that leaves during that interval T is equal to the weight of 

the inlet slug. 

As an example, assume that the temperature profile in the pipe 

is as shown in Fig. 5 and the slug at the inlet of &
0 

lb is about 

to enter. The slug at the outlet is & at a temperature x , where n n 
&n > &

0
• When & 0 enters, the outlet slug temperature will be 

equal to x , and the whole profile will be shifted to the right n . . 
by &

0 
lb. The weight of the new slug just upstream of the exit 

is then (&n - & 0 ). 

If & 
0 

had been greater than ~ n' t.hP. nnt.let. sll.lg would have tolrcn 

as much of the upstream inventory (i.e., & 
1

, & 2 , etc.) as 
n- n-

required (up to ~00 samples) .• and the outJ P.t. Rlng. t.I'O'mperahlrQ :l. 

would be computed as the weighted avera·ge of the sl1Jg temperatures. 

For example 

if 

· · · & · X· + '0 .5 .6P X 
z _ n n _n~l n-1 

& + 0~5 & 1 n n-

then 

If the maximum delay time (minimum flow rate) would use up too 

many storage locations, the sampling would be done every other (or 

every third, etc.) computation interval. With a variable lag, a 

minimum expected flow rate must be specified to calculate how often 

to sample. 

The input variables supplied by the calling program for each call 

of TRLG are XT (e.g·., fluid temperatures) and the flow rates W (in 



:Fig. 5. Temperature Profile of' FlUid in Pipe • 
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terms of mass/time, unity for full flow, or some percentage of full 

scale). The lagged functions ZT are returned by TRLG. 

On the first call of TRLG, the flag NI should be zero, and the 

following input data are read in: 

NLAGS = number of functions used, 

TI = initial values of transport lag time for each function, 

WMIN = minimum expected values of flow W for each function. 

The initial values of fluid temperatures 'in the pipes are set 

equal to the initial values of inlet temperatures. If specific 

initial temperature profiles are required., they can be read in with 

only a minor change being required in the program. The standard 

version of TRLG provides for up to six lags with up to 300 samples 

per lag. If more or fewer lags or points are desired, the statements 

labeled DIMENS in the comment field can be changed accordingly. 

More details on TRLG and a Fortran iisting are in the Appendix, 

Sect. 5. 

There are two other techniques that are commonly used to represent 

transport delays: 

l. A series of n first-order lags, or '.'well-:stirred tanks, II with 

time constants ~/n; 

2. A Pad~ approximation;o which uses several terms of a series 
. . .. ffi 

approximation o±' €. · (the Laplacian representation of a pure 

delay), where S is the Laplacian argument • · 

.Both the series lag and Pad~ methods have accuracy and flexibility 

limitations that would be prohibitive for certain problems.21 

Since the digital computer is quite proficient at sampling data, 

. ··the sampled data approximation as used in the ·TRLG subroutine is 

recommended as the most efficient and accurate method, 

20 A. E. Rogers and T. W. Connolly, Analog Computation in 
Engineering Design, McGraw-Hill, N.Y., 1960, pp. 419~24. 

2ls. G. Margolis and J. J, O'Donnell, "Rigorous Treatment of 
Variable Time Delays", IEEE Trans. on Electronic Computers, Vol. 
EC-12, June 1963, pp 307-9· 
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4. SUMMARY AND CONCLUSIONS 

The matrix exponential method has a number of advantages over 

the more common integration schemes for a large and significant class 

of ordinary differential equation problems. The speed and accuracy 

of MATEXP have the potential of reducing computing costs for large 

problems and of making more "real-time" computations feasible for. 

on-line digital computation, control, and optimization calculations. 

The MATEXP program has been developed over a period of several 

years, mainly through use in simulation, problems. There are, however, 

at least three other areas in which the matrix exponential method 

might be effective: 

1. Automatic parameter estimation - where the parameters of the 

model differential equations are adjusted.to optimize the 

agreement between theoretical and experimental response curves. 

A computer program to implement this technique is currently 

under development; 

2. Solution of nonlinear algebraic equations by the method of 

steepest ascents; and 

3. Boundary value problems. 

Other refinements that have been used with the MATEXP code 

include the addition of an automatic plotting subroutine and a more 

efficient output routine which prints only specified variables. 

Forcing-function subroutines to solve implicit equations and 

generate functions of two variables are planned as additions to the 

"standard" package. 



28 

5. APPENDIX 

5.1 Problems in the Evaluation of Exponential Functions 

The Taylor series approximation for·a scalar exponential function 

is n 

L ~~ l i 
k=O k.~ - l + y + 2 ~ + 3 ~ + •••• + 

n 
L 

I • n. ( 5 .1) 

This approximation also holds true when the argument y is a matrixj 

hence, matrix exponential functions are amenable to digital computer 

calculation, since raising a matrix to a power is a straightforward 

operation. 

It is important to note that the HP matrix calculation 

( 5.2) 

does not require inversion of the A matrix, and can be calculated 

directly from the terms of the C matrix approximation as shown 

in Sect • 2 .2 • 

There are several numerical problems associated with the matrix 

exponential calculations. The approximations will be valid only if 

1. the series will converge, 

2. the numerical computation does not lose significance· due to 

overflow, roundoff~ or truncation errors. 

Since the evaluation of exp (A-r) requires calculating. powers of the 

matrix A~, there is a practical limitation on the maximum value of 

the largest element in the A~ matrix, and experience has shown that 

it is most efficient to limit this value to about 1.0. Should the 

desired~ make~~ 'Aij~~ > 1.0, then T is.ha~ved.up to 10 times 
J.,J 

for the exponential calculations: The original arguments are 

restored by applying the following equations as many times as 

required: 



C(1:) :: exp (A1:) 

= exp (~) exp (~) 
. {5'.3) 

HP(1:) _ [exp (A1:) -I] A-l 

(5.4) 

There are also provisions in the code to keep track of the roundoff 

errors in the exponential calculations. The maximum values of the 

largest elements in t·he QPi' matrices (A~t are monitored to make sure 
. . 

that they are not larger than the specified precision "P" times 

108 (for an eight -decimal computer) • When the QPI' terms are summed, 

the accuracy of the summation will be approximately P, since the 

summation is carried out until the largest element in QPI' < P. If a 
8 . 

maximum value Of a QPI' element does exceed P X 10 J then 1: is halved, 

.the exponential is calculated, and the original 1: is restored as before. 

Users are cautioned that roundoff' errors· may become significant 

if restoration of the original 1: requires very many applications of 

the argument doubling Eqs. 5.3·and 5.4. We know of no general rules 

for estimating this lfutitation; ho~·ever, checks made on sample problems 

indicate a "safe" boundary probably exist~· at a precision P = l0-6 and 

T halved 10 times~ With a larger P and more halvings, one should at 

least be cautious about the results. 

The fidelity of the results are also questionable .whenever the 

ratio of the largest (absolute) matrix element to the smallest 

(nonzero) element is~ 108 . This might be a manifestation of a very 

wide range of time constants in a dynamics problem. With a range of 8 . .. . . 
...... 10 ·' clearly the faster tim~ constants could. be considered 

"instantaneous" with respect to t~e slower o~es, and the equations 
.. 

could probably be rewritten to get around this·problem. 
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5.2 Detailed Description of Programs 

Hopefully the information given in this section is sufficient to 

permit the reader to use and modify MATEXP. Since we have tried 

going through this typically excruciating experience with programs 

from others, we have tried making things as clear as possible. In 

particular, we have used many comment cards in the program listings 

as a running explanation of what we are doing~ Either author would 

be glad to try to help out any potential MATEXP user, and would be 

happy to receive any suggestions for improving the program. 

5.2 .1 MATEXP Main Program 

The MATEXP program consists of the main program and two sub

·routines OUTPUT and DISTR~ plus any other subroutines called by 

DISTRB. Even if DISTRB is not used, a dummy must be included. 

For each case run on MATEXP, the data will include (if appropriate): 

l. MATEXP Control Card, 

2. Coefficient matrix (A), 

~. Initial Condition Vector (XIC), 

4. Any data read in by subroutine DISTRB, 

5. Fixed forcing function vector (Z). 

Input Data Formats - MATEXP Main Program 

l. Control Card 

Column l-2 6-7 ll-20 21-30 
- -

Format I2 3X I2 3X FlO~O FlO.O 

Input NE LL p TZERO 

Control Card- cont'd 

·Column 63-6'+ 65-66 67-69 70 

Format I2 I2 I3 Il 

Input ICSS JFLAG ITMAX LASTCC 

31-40 
FlO.O 

T 

71-72 

I2 

IlZ 

41-50 51-60 61-62 

FlO.O FlO.O I2 

TMAX PLTINC MATYF.S 

73-71·1· 75-80 

I2 F6.0 

ICONTR VAR 
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NE = number of equations 

LL = coefficient matrix tag number 
-6 P = precision of C and HP - recommend 10 or less 

TZERO = zero time 

T = computation time interval 

TMAX = maximum time 

PDTINC = printing time interval 

MATYES = coefficient matrix (A) control flag 

l = use previous A and T 

2 = read new coefficients -.:to alter A 

3 = read entire new A (nonzero values) 

4 = DISTRB to calculate enti~e new A 

5 = read some, DISTRB to calculate others 

6 = DISTRB to alter some A elements 

ICSS = initial condition vector (XIC) flag 

l = read in all new nonzero values 

2 = read new values to alter previous vector 

3 = use previous vector 

4 = vector = 0 

5 = use last value of X vector from previous 

JFLAG = forcing function (Z) flag 

l thru 4 = same as for ICSS for constant Z 

run 

5 = call DISTRB at each time step for variable Z 

IT.MAX = maximum number of terms in series approximation of exp (AT) 

I,ASTCC = nonzero for last case 

IlZ = -row of Z if only one nonzero, otherwise = 0-

ICONTR - for internal control options 

0 = read new control card for next case 

1 = go to 212 call DISTRB for new A or T 

-1 = go to 215 call DISTRB for new initial conditions 

VAR = maximum allowable value of largest coefficient matrix element * T 
(Recommend VAR = 1.0) 
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2. Coeff'icient Matrix A Format 4(213, El2 .3) - Include if MATYES = 
2, 3, or 5· 

Column 1-3 4-6 7-11:3 

Format I3 I3 E 12.3 Repeat, 

Input Row No. Col. No. COEFFICIENT . 4 per card 

Notes: 1. All row and column number entries on a card must 
be nonzero. 

2. Insert blank card a:rter all coefficient matrix 
data ls l'eau in. 

3. Data can be entered in floating point (F) 
format with decimal point. 

3· Initial Condition Vector XIC Format (I2, 5(I3, E12.3))- Include 

if ICSS = 1 or 2 

Column 1-2 3-5 6-17 

Format I2 I3 E 12.3 Repeat Cols. 3-17, 

Input MM Row No. I.C. Value 5 per card 

Notes: 1. All row number entries on a card must be nonzero. 

2. Insert blank card a:rter all XIC data is read in. 

3. Data can be entered in F format. 

4. Disturbance Vector Z Format (I2, 5(13, El2.3))- Include if 

JFLAG = 1 or 2 

Column 1-2 3-5 6-17 

Format I2 I3 E12.3 Repeat Cols. 3-17, 

Input KK Row No. ·z Value 5 per card 

Note: See notes under 3. 

'l'wo figures are included to aid in understanding the MATEXP 

program. Figure 5.1 summarizes the data arrangement, and Fig. 

5.2 is a flow diagram of the main program. The symbols used in 

MATEXP are also listed and identified. 



ORNL OWG. 67-10216 

Case 2 

5, or 6 

A COEFFICIENTS 

Case i 

Fig. 5.1 MATEXP Data Arrangement 
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ORNL DWG. 67-10217 

FROM BOTTOM RIGHT 
FlO. !I.Zc 

t------oo{ A· 

JJFLAO•O 
QPTMP•P*fOI 
PRINT c.NTI!fi. OATA 
PI.TJNC • PLTINC*.Un 
~Ptc•O 

Fig. 5.2a. MATEXP Block Diagram - Read or Compute A Matrix and XIC Vector. 



FROM BOTTOM 
FIG. 5.2o 
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FIND AMAX 6 AMIN 
'RATliD • AMAX I AMIN 
T HALVED ISTIDA TIMES 
, .. TIIOI UNTIL 
AMAX MT(VAA 

IILM •. KL 
ALL • TIAL 
AL • AL+I 
TAUL • T/AL 
OPT • QPTMAM AU 
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PAINT KLM 

ORNL DWG. 67-10218 

TO STATEMENT 20 
FI6.S.ZC 

Fig. 5.2b. MATEXP Block Diagram- Compute C and·HP Matrices. 
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FROM RIGHT SID! 
FIG. 5.2b 

OINL DWG. 67·10219 

21!1 

TO ITA~MOIT I 
FIG. &.Za 

ro•T~~~., 
FIG.D.Ze 

Fig. 5.2c. MATEXP Block Diagram- Compute Solution Vector. 
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MATEXP MAIN PROGRAM SYMBOL KEY 

l. Control Card Inputs 

See input data format list. 

2 • Input Data 

A(NE,NE) = coefficient matrix 

MM = initial condition· vector tag number 

XIC (NE) = initial condition vector 

KK = disturbance vector tag number 

Z(NE) = disturbance vector 

3. Internal Variables 

The following variables are listed in alphabetical order. 

ADT = AMAX * T 

AL = Floating point KLM for ALL calc, KLM+l for TALLL 

ALL= T/AL withAL= KLM 

AMAX ;;; Maximum (absolute) value of element in A matrix 

AMIN = Minimum (absolute) value of nonzero element in A matrix 

C(NE,NE) = Coefficient matrix exponential 

HP(NE,NE) ~ Disturbance function matrix exponential 

IMAX = Row location of AMAX 

IMIN = Row location of AMIN 

ISTOR = Number of times matrix eXponential argument T is 
halved so that AMAX * T<VAR; later ISTOR = ISTOR + JFK 

JFK = Number of times T is halved in order for matrix exponential 
calculation precision to be P or better 

JJFLAG = Flag to prevent double call of DISTRB during initial 
time step calculation 

JMAX = Column location of AMAX 

JMIN = Column location of AMIN 

K = Case number 

KLM = Number of terms in series approximations of exponentials 

NI = Printing flag: 0 on initial call of OUTPUT causing printout 
of A, C, and HP matrices. OUTPUT sets NI = l on first call. 

PE = Maximu.rn element :in (~ - l)th QPI'. term 

PMK = Maximum element in E_th Q,PT term 



QPT(NE,NE) ~ Term in series approximation of C matrix 

QPT.MP = Maximum permissible value of element in QPT matrix. 

RATIO = .AMAX/ AMIN. If RATIO less than 10
8 

(for eight decimal 

machine) there may be significant problems in 

calculation of C and HP. 

TALLL = T/AL with AL = KLM +1 

TQP(NE) = Temporary storage for QPT terms 

X(NE) = Solution vector 

Y(NE) = Temporary storage for X 

5.2.2 Subroutine OUTPUT 

The first time MATEXP calls OUTPUT, the coefficient matrix (A) 
and the exponential matrices C and HP are printed out, along with the 

. initial solution (X) and disturbance (Z) vectors. OUTPUT also sets 

the first call flag (NI) to 1, and on subsequent calls only the X 

and Z vectors are printed. A possible means of saving computing 

time at the expense of storage would be to store X (and Z) values 

in arrays for a large number of time intervals, _ then. print the 

arrays out in blocks. Additional savings could be achieved by 

printing only selected variables. 

).2.j Subroutine DISTRB 

Subroutine DISTRB may be called by MATEXP either to compute 

matrix coefficients (A) on the first call (i.e. when flag NI = 0) 

and/or compute variable forcing-function vectors (Z). 
Other special purpose subroutines, such as VARGO, DFG, TRLG, 

and any others the user may want to supply, are usually called by 

DISTRB. 

Another specia~ purpose usc of DISTRB io to compute inputs 

for _successive MATEXP cases without requiring a control card for 

each case. This is done by means of the flag ICONTR (Cols. 73-4 on 

the control card). After a ca~e is run, the first call flag NI is 

reset to o, and case number K is increased by lj then if ICONTR 

is positive, DISTRB will be called at statement 212, where a new 
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coefficient matrix A or time interval T may be calculated. If 

ICONTR is negative, DISTRB is called at statement 215, permitting 

new initial conditions to be used. 

The program listing for DISTRB that was used in calculating the 

sinusoidal forcing function for the example in Sect. 3.3 is given 

in Sect. 5.3. 

Another version of DISTRB. is used to calculate the sensitivity 

of a system's time response to changes in the system's coefficient 

matrix elements 

ax 
~ 

l.J 

DISTRB controls the solution of the system equations and stores 

those values of the solution vector which are to be used subsequently 

as forcing functions for the sensitivity calculations. To compute 

the sensitivity to a .. , the jth row of the system solution vector 
.l.J 

is stored and is lat~r used as a forcing function to the ith row of 

the same system equations.15 
After solving the system equations and storing the required 

elements of the response vector, the arithmetic average values of 

the X's in each time interval are calculated and stored (XT). 

Durfng each sensitivity run, DISTRB feeds the forcing function 

into the system equations, and the resulting print0uts of the X 

vectors are the desired sensitivities. 

For the sample program shown in the Fortran listing, Sect. 5 .3, 

the system is forced by a unit 'step input in row IlZ ( speci!'ied on 

the control card). Other control card inputs are: 

JFLAG = 5 

ICONTR = l 

Special input data read in by DISTRB are the row (IS) and column 

(JS) numbers of the matrix elements for which sensitivities are to 

be calculated, the number of time points (NTS), and the number of 

sensHivity runs (NSENS), as follows: 
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l ll 51 
IIs(l) JS( l) I (.4X) IS(2) JS(2) 

I3 I3 I3 I3 
( 4X) I' ... thru JS( 5) I NTI I NSENS] 

I3 "!3 

5.2.4 Subroutine VARCO 

The VARCO (VARiable COefficient) subroutine can be used with 

DISTRB to simplify the programming of problems with variable coefficient 

matrix elements. In general, these elements are functions of both 

time and the values of the solution vector X. VARCO is designed to be 

called by DISTRB at the start of each computation interval and to 

return the mean values of time (TX), and X, (XTR),. for that interval. 

The Jnean values of X are predicted 'by a first ord.er extrapolation 

scheme, as shown in Fig. 3. VARCO ,.,ill also cause the initial time 

step to be repeated, using the first try at calculating X(T) to 

estimate the mean value at ~· DISTRB can then calculate the 

coefficient values using TX and XTR. Use of this first-order 

extrapolation scheme results in significant improvement in accuracy 

over using no extrapolation. 

5.2.5 Subroutine DFG 

DFG uses the principle of the analog computer's Qiode !Unction 

Qenerator (see Fig. 4) and uses linear interpolation to approximate 

arbitrary, single-valued functions of a variable. Data for DFG is 

read in the first time it is called by DISTRB (i.e., when NI = 0). 
The standard program provides for up to 8 fUnctions with up to 32 

coordinates each. 

On each successive call, DFG returns the functions ZD for 

varying inputs XD. If an input XD(I) goes outside the specified 

limits, the output is a straight-line approximation of ZD(I) based 

on the slope of the function at the boundary, and an error message 

"DFG(I) RANGE EXCEEDED" is printed. 

Tln~ luJ:!uL::; l't=C!.ll lu lJy DFG Cl.re: 

NDFGS Number of functions used 

NPTS(8) Number of points in approximation for each function 
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XP(32,8) Independent variable points 

ZP(32,8) Dependent variable points 

The input format is as follows: 

Card No. 1 (I2, 8x, 8I3) 

Column 1-2 11-13 

Format I2 8X I3 
R~p~at,· CoJ,s a l),,..,J.) 

7 more times for 
Variable NDFGS NPTS(l) NPTS(2) to ( 7) 

Card No.2, 3 •••• etc. (8El0.3) 

Column 1-10 11-20 21-30 31-40 Repeat as required .. 

Format El0.3 El0.3 El0.3 El0.3 for DFG( 1); Max. 

Variable XP( 1, 1) ZP(l,l) XP(2,1) ZP(2,.1 8 numbers per card 

NOTES: 1. When all data for DFG(l) has been entered, start 
DFG(2) data on new card; etc. 

2. Enter independent variable points XP in order, 
progressing from most negative to most positive 
values. 

3. F Format entries (with decimal point) may be used. 

5.2.6 Subroutine .TRLG 

TRLG (TRansport ~aQ) is described in some detail in Sect. 3.5. 

The input functions XT (e.g. fluid temperature) and the mass flowrates 

W (in terms of either mass/time, unity for full flow, or some 

percentage of full scale) are supplied by the calling program DISTRB, 

and the lagged functions ZT are returned by TRLG. On the first call 

of. TBLG (when NI :::; 0), the following input data is .r.ead in: 

NLAGS Number of functions used 

TI(6) Initial value of transport lag time for each function 

WMIN(6) Minimum expected value of mass flow W for each.function 

The program is set up assuming that subroutine VARCO is also 

called by DISTRB. VARCO has a restart feature which repeats the 

initial time step calculation; thus the TRLG functions will not be 

u:ptlatetl on 'Llle ::;e<.:ontl <.:all. If VARCO 1::; not usetl, tlli::; ::;e<.:outl <.:all 
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omission may be deleted by removing statement 33 in the TRLG program. 

The input format for TRLG is: 

Card No. l (I2) 

Column l-2 

Format I2 

Variable NLAGS 

Card No. 2 (6El0.3) 

Column l-lO Repeat 5 more 
Format El0.3 times for 

Variable TI(l) TI(2) - ( 6) 
···------- --·· 

Card No. 3 (6El0.3) 

Column l-lO Repeat 5 more 
Format El0.3 times for 

Variable WMIN(l) WMIN(.2) · -. ( 6) 

/ 
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5•3 FORTRAN LISTING OF PROGRAMS 

$IBFTC MAIN DECK 
MATEXP C PROGRAM FOR THE 7090 - FORTRAN 4 

c 
c 
c 
c 
c 

THIS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST 
ORD~R, SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTA~T COEFFICIENTS 
OF THE FORM DX/DT # AX + Zc 

C THE METHOD IS PAYNTER-S MATRIX EXPONENTIAL METHOD 
c 
' C THE SOLUTION IS GIVEN FOR INCREMENTS OF THE INDEPENDENT 
C VARIABLE (Tl FROM TZERO THROUGH TMAX 
c 
C COMPUTES MATRICES C # EXP(A*Tl AND 
C HP H (C-Ii*A INVERSE 
C SOLUTION X(N*Tl # C*X( (N-1 l*Tl+HP*Z( (N-Il*Tl 
C SERIES CALCULATION OF C AND HP MONITORED TO 
C ASSURE SPECIFIED SIGNIFICANCE. 
C IF T IS REDUCED FOR C AND HP CALCS., 
C ORIGINAL AR~UtMENTS~ARE RESTORED BY-
C ·C(2*Tl#C(Tl*C(T·l 
C HP(2*Tl#HP(T)+C(T)*HP(Tl 
c 
c 

. c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
l 
c 

OUTPUT F~OM THE PROGRAM IS PRINTED AT INTERVALS PLTINC. 
THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT 

INPUT FOR THE PROGRAM CONSISTS OF. 
"ONE CONTROL CARD 

THE COEFFICIENT MATRIX A (UP TO 60 X 60l 
THE INITIAL CONDITION VECTOR X 
A FIXED DISTURBANCE VECTOR Z 

A VARYING Z CAN BE GENERATED BY DISTRB 
VARiABLE COEFF-ICIENT EQUATIONS MAY BE ~DLVED BY APPROPRIATE 
FU~GING OF THE DISTURBANCE ~UNCTION SUBROUTINE. 

C CONTROL CARD INPUT INFORMATION 
C NEHNO. OF EQUATIONS (J2L 
C LLHCOEFF. MATRIX TAG NO. (12l 
C PHPRECISION OF C AND HP (FIO•Dl - RECOMMEND I·OE-6 OR LESS 
C TZEROHZERO TIME (FIO.Ol 
C THCOMPUTATION TIME INTERVAL (FIO.Ol 
C TMAXHMAXIMUM TIME (FIO.Ol 
C PLTINCHPRINTING TIME INTERVAL !FIO.O) 
C MATYES#COEFF. MATRIX (Al CONTROL FLAG ( 12l 
C IHUSE PREVIOUS A AND T 
C 2HREAD NEW COEFF.S TO ALTER A 

" r 3HREAD ENTIRE NEW A (NON-ZERO VALUES! 
4HDISTRB TO CALC. ENTIRE NEW A 

l. 5HREAD SOME t D I·s TRB T 0 CALC • OTHERS 
C 6HDISTRB TO ALTER SOME A ELEMENTS 
C ICSSHINIT)AL CONDITION VECTOR (XICl -FLAG (J2l 
C lhREAD IN ALL NEW NON-ZERO VALUES 
C 2.HREAD NEW VALUES TO ALTER PREVIOUS VECTOR 
C 3HUSE PREVIOUS VECtOR 
C 4HVEtTO~#O 

DIM 
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C ~#USE LAST VALUE OF X VECTOR FROM PREVIOUS RUN 
C JFLAG11FORCING FUNCTION !ZJ FLAG !I2J 
C I THRU 4NSAME AS FOR ICSS FOR CONSTANT Z 
C 5#CALL DISTRB AT EACH TIME STEP FOR VARIABLE Z 
C ITMAX N MAX. NCa QF TERMS IN SERIES APPROX. 
C OF EXP!ATJ. !131 
C LASTCC 11 NON-ZERO FOR LAST CASE II I I 
C liZ 11 ROW NO. OF Z IF ONLY ONE NON-ZERO, 
C OTHERWISE 11D II2l 
C ICONTR- FOR INTERNAL CONTROL OPTIONS !121 
C D#READ NEW CONTROL CARD FOR NEXT CASE 
C I#GO TO 212 CALL DISTRB FOR N~W A OR T 
C -I#GO TO 215 CALL DISTRB FCR NEW I.C.-S 
C VAR 11 MAX~ ALLOWABLE VALUE OF LARGEST CCEFFe MATRIX ELEMENT * T 
C !RECOMMEND VAR11I.Ol !F6.0) 
c 

c 

DIMENSION A!6D,6DJ,C!6D,6Dl•HP!60,60l ,QPT!6D,6Dlt 
I X I 6 D I , Y I '6 D l , Z I 6 D I , X I C I 6 D l , T Q P I 6 D l 

COMMON CtHP,A,QPT,x,z,y,ITMAX,KK,LL,MM, 
IJJFLAG,XIC,NitTIME,TMAX,TZERO,NE,TQP,T, 
2I I z, ICONTR,PLTINC,MATYES, ICSS,JFLAG,PLT 

C K11CASE NUMBER 
C NI110 ON 1-ST PASS. SET TO I ON 1-ST CALL OF OUTPUT. 

c 

c 
c 

c 
( 

c 

c 
c 

c 
c 

K#l 
NIHD 

RFAD (S,IOOl NF~II .P~T7F,Rn,TpTMAX,,PI.<TINr,MA.TYE.SdC.S.s, 
IJFLAG,ITMAX,LASTCC,IIZ,ICONTR,VAR 

I D D FORMAT ( 2 I I 2 , 3 X I , 5 F I 0. D, 3 I 2 ,I 3 ,I I , 2 I 2 , F 6 • C l 

2 

90 

99 

I 0 I 

92 

91 

3 
4 

93 
I2D 

95 

COEFFICIFNT MATRIX INPUT 
GO TO !3,99t2t2•2,3l,MATYES 
DO 9D I#.l ,NE 
DO 90 J#l ,NE 
A!I,Jl11D•O 
IF!MATYES-4199,1.99 
DO 91 I/11,1.379 
MATRIX ELEMENTS 5!RQW, COLUMN, VALUE! 
All I AND J ENTRIES ON CARD MUST BE NON-ZERO. 
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN. 
READ !5,1Dil II,JI,DI,I2,J2,D2,I3,J3,D3d4,J4,D4 
I or..:r·1A I I 4 ( 2 I 3 , E I 2. 3 l ) 
IF!Iil3,3,92 
A ( I I , J I ! #D I 
AI I29J2l11D2 
A!I3,J3J#D3 
A( 14,J4)#D4 

INITIAL CONDITION VECTOR XIC INPUT 
GO T0!4, 12Dt6,5,61 ,Icss 
DO 93 I#I,NE 
XIC! I !#DaD 
DO 94 I 11 I , I 5 
ALL ROW III ENTRIES MUST BE NON-ZERO 
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN. 
R E AD ( 5 , 9 5 ) ~~ ~1 , I I I , D I I , I I 2 , D I 2 , I I 3 , D I 3 , I I 4 , D I 4 , I I 5 , D I 5 
F 0 R ~1 A T I I 2 , 5 ( I 3 , E I 2 • 3 ) I 

D I fviENS 
Dlf'"ENS 



c 

c 
c 
c 
c 

c 

c 

c 

c 

c 

IF (III)6,6,96 
96 X I C (I I I l tiD I I 

X I C ( I I 2 ) tiD I 2 
X I C ( I I 3 l tiD I :3 
XIC( I 14ltiDI4 

94 

5 

7 
6 

81 
82 

214 
212 
213 

X I C ( I I 5 l tiD I 5 

MMtiO 
D07Itii,NE 
XIC(IltiO.o 
IF( ICSS-5l81 ,214,81 
DO 82 Itll ,NE 
X( I itiXIC( I l 
IF(MATYES-3)213,213,212 
CALL DISTRB 
JJFLAGtiO 
QPTMP tl MAX. PERMISSIBLE ELEMENT OF OPT FOR 8 DECIMAL COMPUTER 
MATRIX CALC. LOSES SIGNIFICANCE IF LARGEST 

ELEMENT IN SERIES APPROX. MATRIX OPT IS 
GREATER THAN P*I.DE8 

QPTMPtiP*I .QEB 

WRITE (6,21 I l K,NE,P,T, 
I P L T I N C , MAT YES , I C S S , J FLAG , I C 0 NT R , IT MAX , I I Z , VA R , Q P H~ P 

211QFORMAT(12HIMATEXP CASEd3/17H NO. OF EQUATIONS, 

806 

402 

401 

407 
408 

II3/2QH SPECIFIED PRECISION,FI2.8/6H TIME , 
.28HINTERVAL,F18.8/15H PLOT INCREMENT,FI7e8// 
316H CONTROL FLAGS -/IH ,5X,6HMATYES,I4/IH , 
45X,4HICSS,I6/IH ,5X,5HJFLAG,l5/IH ,5x·,6HICONTR,I4/ 
534HOMAX. TERMS IN EXPONENTIAL APPROX.,I5/ 
613H SINGLE Z ROW,I4/20H MAX. ALLOWABLE A*DT,F9.3/ 
7 2 7 I-I ~-1 A X o A L L 0 W A B L E Q P T E L E r-.1 EN T , F I I • 3 l 

PLTINCtiPLTINC*0.9999 

JFKtiO 
IF(MATYES-1 l2Q,2Q,806 
SCAN MATRIX FOR MAXq AND MIN. NON7ZERO ELEMENTS. 
IMAXtll 
JMAXtll 
AMAXtiABS (A ( I , I l l 
DO 401 Itll ,NE 
DO 401 Jtll ,NE 
IF ( M.1AX-ABS (A( I ,J l l J402 ,40 I ,40 I 
AMAXtiABS (A(I,J)) 
lMAXtii 
JMAXtiJ 
CONTINUE 
IMINtllMAX 
Jt~ I Nt1JMAX 
MJ! I NtiAMAX 
DO 4C19 1#1 ,NE 
DO 409 Jtll ,NE 
IF(A(I,Jll 407,409,407 

; : .· .. 

I F ( A B .S ( A ( I , J l l -AM I N l '1 0 8 , '1 0 9 , 11 0 9 
AM I NtiABS (A (I ,J l l 
IMINtii 
JMINtiJ 



409 

c 

CONTINUE 
RATIO#AMAX/AMIN 
AMIN II MINIMUM NON-ZERO ELEMENT 
ISTOR#O 
ADTIIAMAX*T 
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413 
403 
404 

c 

DO 403 I#l,ll 
IF(VAR-ADTJ 413,4049404 
ISTOR#ISTOR+I 
ADT#ADT·)(·O. 5 
T#ADT/AMAX 
COMPUTATION INTERVAL T IS HALVED ISTOR 

TIMES ( IO#MAX.l SO MAX~ E~EMENT IN A*T 
IS LESS THAN VAR. 

c 
c 

c 

405 

WRITE (6,405) IMAX,JMAXtA-(IMAX,JMAXJ,ADT,T, 
I I MIN, J !vJ IN, A ( I MIN, J~1 IN l ,RAT I 0 

FORMAT (31HOMAX.COEFF. MATRIX ELEMENT II A(,I2,1H,~I2t3Hl #, 
I EI5.4/13H MAX. A*DT II 9 F12.8,2X,I4HWITH DELTA T #,FIS.B/ 
23DHOMINIMUM NON-ZERO ELEMENT# A(,I2.1H,,I?.~H) ti,EI~.4/ 
318H RAtiO AMAX/AMIN ti•EI5.4) 

IF(ISTOR-IOJ8,4I0,410 
410 WRITE (6,41 ll 
41 I QFORMAT ( 34HOA*DT STILL GREATER THAN ALLOWABLE, 

11.9H AFTER 10 HALVING$.) 
GO TO 37 

C CALCULATION OF MATRIX EXPONENTIALS C AND HP 
8 DO 9 I#ltNE 

DO 9 J# I 'NE 
9 CCI9Jl#O. 

c 
DO IO I II I , NE 

1n C!ItT)#I. 
c 
c SKIP Hp CALCS. FOR HOMOGENEOUS EQUATIONS 

IF !JF'LAG-4)48,51 ,48 
48 DO 49 I II I , NE 

DO 49 J#l tNE 
49 HP!I,JJ#O. 

c 
DO 50 I 1ii-l , NE 

50 l-IP! I ,I JilT 
c 

"'>! PF#O·D 
c 

DO I I I II I , NE 
DO I I J# I , NE 

I I QPT (I, J l #C (I, J l 
(, 

c NOW FORM THE MATRIX EXPONENTIALS C#EXP(A*Tl AND HP#!(C-Il*A INVERSE) 
c 

AU/: I .o 
c 

12 DO 16 KL#I,ITMAX 
c 

KLM#KL 
ALL#T/AL 
AL#AL +I. 0 
TALLL#T/AL 

c 



c 
c 

c 

c 

DO 18 !til tNE 

DO 13 Jtil ,NE 
TOP(Jlt/0•0 
DO 13 KXtil ,NE 

13 TOP(JJtiTOP(Jl+OPT(J,KXl*A(KX,Jl 

DO I 8 Jti I , NE 
18 OPT(J,JltiTOP(Jl*ALL 
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C OPTtiMATRIX TERM IN SERIES APPROX• ti( (A*Tl**Kl/K FACTORIAL 
c 

c 

c 

c 
c 

DO 44 I ti I , NE 
DO 44 Jtil ,NE 

44 C(l,J)t;!((J,J)+QPT(ltJ) 

IF (JFLAG-4)45,47,45 

45 IF(ITMAX-KL)47,47,145 
145 DO 46 Itil ,NE 

DO 46 Jtil ,NE 
46 HP(!,J)tiHP(J,J)+OPT(ItJl*TALLL 

C FIND MAX ABS ELEMENT IN OPT AND CALL IT PMK 
c 
c 

47 
LARGEST OPT ELEMENT USUALLY IN ROW IMAXt COLUMN JMAX 
PMKtiABS !OPT( IMAX,JMAXll 
IF(OPTMP-PMK) 83,83t502 

502 
c 

406 

IF(PMK-P) 406t406,16 
SCAN OTHER OPT ELEMENTS ONLY WHEN OPT!IMAX, JMAXl IS LESS THAN P 
DO I 4 I 1i I , NE 

14 

c 

DO 14 Jtil ,NE 
PMKtiAMAXI !PMKtABS (0PT(I,Jl)) 
I F ( P ~1 K- P l I 7 , I 7 , I 6 

C PRESENT MAX. OrT ELEMENT S~OULD BE LESS THAN 
C HALF PREVIOUS MAX• TO INSURE CONVERGENCE 

c 

c 

c 

c 

17 IF!PE-2.*P!v1K) 16t21 ,21 
16 PEtiP~~K 

21 WRITE (6t200) KLM 

200 FORMAT!44HONO. OF TERMS IN SERIES APPROX. OF MATEXP ti ,I2l 

I F ( I H1 A X- I ) 2 0 , 2 0 , 5 3 8 
538 IF(KLM-ITMAX) 414,83,83 

83 TtiT*0•5 
JFKtiJFK+I 
IF(JFK-7l303t304t304 

304 WRITE (6,305) PMK 
30~ OFORMAT(32H07 TRIES AT HALVING T N.G., PMKti,FI2.6) 

GO TO 37 
303 WRITE (6,210) KLM,PMK,T 
210 FORMAT!21HOMAX. ELEMENT IN TERM,I3,8HOF OPT ti,EIIe3/ 

I 35H TRY HALVED TIME INTERVAL DELTA T ti,FI5.Bl 
GO TO 8 
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414 ISTOR#ISTOR+JFK 
C ORIGINAL ARGUMENTS OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN 0 

IF(ISTORl 20,20,416 
416 WRITE (69415) ISTOR 
415 FORMAT(26HOTOTAL NO. OFT HALVING$ #,I3l 

DO 417 KR#I ,ISTOR 
IF(JFLAG-4) 419,418,419 

C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS 

c 

c 
c 
c 
c 
c 

c 

c 
c 

c 

c 
c 

419 DO 420 IHI ,NE 
DO 421 J#I,NE 
TQP(Jl#O.o 
DO 421 KX#I ,NE 

421 TQP(JlHTOP(Jl+HP(I,KXY*C(KX,Jl 
D0.420JHI,NE 

420 HP(I,J)#TQP(Jl+HP(I,Jl 

418 DO 430 I~J,NE 
DO 430 Jtf I ,NE. 

430 OPT(I,JlHO.O 

431 

432 
417 

DO 431 I#l ,NE 
DO 43 I Jt,i-1 ,NE 
DO 4;31 KXttl ,NE 
QPT(I,JltfOPT(I,Jl+C(I,KXl*C(KX,Jl 
DO 432 Ull ,NE 
DO 432 Jill ,NE 
C ( I , J l #QP T ( I , J l 
TH2.o-r.-T 

C( I,Jl IS THE MATRIX EXPONENTIAL C#EXP(A*Tl 
AND HP(I,Jl IS THE ( (C-Il*A INVERSE> MATRIX 

NOW 

20 

55 
215 

26 
97 

12 I 

78 

98 

25 

28 

27 

WE READ (OR CALL SUBROUTINE FOR! DISTURBANCE VECTOR 

T I r,1EfiTZERO 
rL T/10 • 
GO TO (26,12J,27,25,55l,JFLAG 
IF(MATYES-3i215,2J5,27 
CALL DISTRB 
IIZ#IIZ 
L:.U l 0 2 l 

DO 97 Ilf:l ,NE 
Z ( I ) #0. 0 
DO 98 I tf 1·, I 5 
ALL ROW (Il ENTRI!S MUST BE NON-ZERO 
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN• 
READ (5,95) KKd21 ,D21 ,I22,D22,I23,D23,I24,D24,I25,D25 
IF(l21)27927,78 
Z ( I 2 I l #D2 I 
Z(I22)#D22 
l( I23l#D23 
Z(I24l#D24 
Z(I25lt1D25 

KKHO 
DO 20 li'/I,NE 
Z(IlttQ. 

ON 1-ST CALL 
CALL OUTPUT 

OF OUTPUT NI SET TO I 



c 
c 
c 
c 

c 

c 
c 
c 
c 

NOW 

24 
54 

53 

56 
30 
29 

702 
703 

700 

32 
52 
31 

ONE 
N·ow 
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COMES THE EQUATION SOLUTION BASED ON 
X!NTJ§M*X!NT-1 l+!(M-IlA INVol*Z!NT-1 r 

IF !JFLAG-4129,54,56 
DO 53 I§I,NE 
Y ! I l §C ! I , I l *X ! I l 
DO 53 J§2,NE 
Y ! I l § Y ! I l +C ( I , J l *X ! J l 
IF! l1ZJ52,52t702 
IFiJJFLAGl30,29,30 
CALL DISTRB 
IF! I IZ)700t700,54 
ONLY ONE Z-TERM CALC. IF I IZ IS GREATER THAN ZERO 
DO 703 I§l ,NE 
Y! I l §Y! I l +HP! I, I I Z l *Z (I I Z) 
GO To 52 
DO 32 I§f·,NE 
Y! IJ§C( I,l l*X( I l+HP!Itl l*Z( ll 
DO 32 J§2,NE 
Y! I )§Y( I J+C! I ,JJ*X!.J)+HP! I ,JJ*Z!J) 
DO 31 I§l tNE 
X ( I l §Y ( I l 

TIME INCREMENT ·oF THE SOLUTION HAS JUST BEEN FOUND 
PLOT AND PRINT IF PLTINC JNTERVAL HAS ELAPSED 

JJFLAG§I 
TIME§TIME+T 
PL TIIPL T.+ T 
IF!PLT-PLTINCJ35,33t33 

33 CALL OUTPUT 
PLT§O• 

35 IF!TIME-TMAXl24,37t37 
37 IF!LASTCC)40t34,40 

34 KIIK+I 
NI§O 
PLT§O•O 
IF! I CONTR l 2 15, I , 2 I 2 

40 stoP 
END 



~ 

' ·· .. 

-50-

$IBFTC OUT DECK 

c 
c 

c 

c 

c 

c 

c 

c 

200 

I I 

10 

201 

'?I 

20 

202 

31 

2 
203 

SUBROUTINE OUTPUT 

DIMENSION AI60,60J,((6Q,60l,HPI60,6Dl,QPTI60,6Dl, 
IXI6Dl ,Y(6Q) ,Z(60l ,XICI6Dl ,TQP(60l 

COMMON c,HP~A,QPT,x,z,y,ITMAX,KK,L~,MM, 
IJJFLAG,XIC,NI,TIME,TMAX,TZERO,NE,TQP,T, 
2I IZtiCONTR,PLTINC,f'I,ATYESdCSS,JFLAG,PLT 

IFINil2tl,2 
Nit! I 
NCIIIO 
DO II N01HJ,5I,IO 
WRITE ( 6, 2 DOl LL , ( (A I I 'Jl , JHNCM, NC l , I 111 , NE l 
FORt··1AT 12HOAd2/( JH ,IPIDEI le3l) 

.IFINE-NCl IOtiO,JI 
NCIINC+IO 

NCIIIO 
DO 2 I NCMIII ,5 I , I 0 
WRITEI6,20I l ( ICI I ,J) ,JfiNCtv'l,NCl dill ,NEl 
FORMAT 12HOC/IIH 9 IPIOEII.3)l 
IFINE-NCl 20,20,21 
N()IN\+! n 

NCIIIO 
DO 31 NLMWI tSI.IO 
WRITEI6,202l ( IHPI I·,Jl ,JIINCM,NC) ,1111 ,NEl 
FORMAT 13HOHP/IJH ,IPIOEI 1.3ll 
IFINE-NCl 2,2,31 
NCIINC+ID 

WRITE ( 6, 2 0 3 l TIME, (X ( I l ,I Ill , N E l 
FORMAT(4H T 11tiPEID·3,4H X 1/, 
IFIJFLAG.NE.5) GO TO 30 

"fRITEI6,204l" (Z( I l ,It~·l tNEl 

/( IH ,sx, I.DEIIe3l l 

204 FORMAT16HOZ 11 dPIDEII.3/(IH 95)(,10EII.3ll 
30 RE"I URN 

END 

DIMENS 
DIMENS 
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IBFTC SUBZ DECK 
SUBROUTINE DISTRB 

c 
C DISTRB FOR REPORT EXA~PLE 
c 

c 

DIMENSION A(60t60ltC!60,6DJ;HP<60;6Dl ,QPT!60,60), 
IX(60l ,y(60l ,Z(60l ,XIC(60l ,TQP(60l 
COMMON C,Hp,A,QPT,XtZtY,ITMAX,KKtLL,MM, 

IJJFLAG,XIC,NI,TIMEtTMAX,TZERO,NEtTOP,T, 
21 I z,ICONTR,PLTINC,MATYEStiCSS,JFLAG,PLT 

T X 11 t I f'-.1 E + 0 • 5 * T 
Z( I )#SIN <2.0*TXl 
RETURN 
END 

$IBFTC DSENS DECK 
SUBROUTINE DISTRB 

C DISTRB FOR TIME RESPONSE SENSITIVITY CALCS. 
DIMENS10N A<60t60)tC(60,60l,MP<60t60ltOPT(60,60), 

IX<60l tY<60l ,Z(60l ,XICI60l ,TQP<60l 
COMMON c,Hp,A,QPT,XtZtY,ITMAX,KKtLL,MM, 

IJJFLAG,XIC,NI,TIME,TMAX,TZERO,NE,TQP;T, 
2I IZ,ICONTR,PLTINC,MATYEStiCSS,JFLAG,PLT 

D I MENS I ON I R ( 5 l ,IS < I 5 l , J S < I 5 l , I Q ( 3 0 l , X T ( 5 , I 0 0 0 l , 
I XSEN ( 15 '30) ,XPSI ( 301 
IF<Nili,l,2 

I IF< ICONTR+2)5,4,3 
2 IF<ICONTR+2)7,6t6 

C INITIAL INPUTS AND CALCS. 
3 READ<5,100l<IS!IJ,JS(l),I111t5),NTI,NSENS 
100 FORMAT(6!2I3,4Xl l 

NDT111 
ICONTRtl-2 
I'HIM011NTI-1 
DO 8 1111 'NE 

8 Z<Il110.0 
C DURING SOLUTION OF SYSTEM EQUATIONS 

c 

6 DO 20 1111 tNSENS 
I C011JS ( I l 

20 XT(I,NDTltiX(ICOl 
NDTtiNDT+I 
GO TO 30 

C JUST AFTER SYSTEM SOLUTION IS COMPLETED 
4 IST1IO 

ICONTR11-3 
DO 21 I111 ,NSENS 
DO 21 J111 tNTIMO 

21 XT<I,J)II0.5*1XT<I,Jl+XT<I,J+I)) . 
C XT 11 AVG VALUES OF SENSITIVITY EON INPUTS 

WRITE< 6' I 0 2 l I (X T ( I , J l , J# I , NT I l , I# I , NSENS l 
102 FOR~~AT<3HOXT/( IH ,IOEI1.3)) 

DIMENS 
DIMENS 

29880105 
29880107 
29880108 

29880113 
29880115 
29880117 

29880123 

29880201 
?98Fl021? 

29880203 
29880205 

29880209 
298802 I I 
29880213 

c 29880214 
C AFTER COMPLETING EACH SENSITIVITY RUN -

5 I ST#IST+ I. 
IF< IST-NSENSl31 t31 t32 

29880215 
29880217 
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c GO TO NEXT CASt: 
32 ICONTRHO 

PL T I NCIHMAX 
TMAXHO.O 
NIH I 
GO TO 30 

31 IIZHIS(!ST) 29880219 
c COL • I IZ OF HP MATRIX MULT. BY Z 29880221 

WRITE(6,10il IS( ISTl ,JS( 1ST) 
I 0 I FORMAT( 18HOSENSITIVITY TO A(ti3,1Httl3t1Hll 29880301 

TIMEHTZERO 29880303 
NIJTHI 
DO 41 IHI,NE 29880305 
X(l)fiO.O 

41 Z(lltiO.O 29880309 
JJFLAGHO 

c DURING EACH SENSITIVITY RUN -
7 Z( I IZltiXT( IST,NDTl 

f\lfiTHf\lfH+ I 
30 RETURN 29880315 

END 29880317 
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$IBF1C SUBV DECK 
SUBROUTINE VARCO!XTR,TX) 

C FO~ USE WITH DIStRB AND MATEXP FOR 
C VARIABLE Z-S. GIVES 1-ST ORDER EXTRAP. 
C FOR AVG. X AND TIMEt PLUS RESTART 
C ON 1-ST INTERVAL. DISTRB FORM H 
C CALC. MATRIX COEFF.-s, ETC. IF NIHO 
C CALL VARCOIXTRtTX) 
C CALC. Z-S USING XTRII)-S AND TX !TIME). 
c 

c 

DIMENSION Al60t60ltC!60t60ltHPI60t60)tQPTl60•60lt 
I XI60l tYI60l tZI60l tXICI60l ,TQP 160) 
COMMON CtHP,A,QPT,XtZtYtiTMAX,KK,LL,MM, 

IJJFLAG,XIC,NI,TIMEtTMAX,TZERO,NEtTOP,Tt 
21 I ZtiCONTR,PL TINCtMATYESt ICSS,JFLAG,PLT 

DIMENSION XTRI60ltXL!60l 

IF!Nilltlt2 
C FIRST ENTRY 

NVHI 
· TXHTZER0+0.5*T 

DO IO l111,NE 
IO XTR!IliiXIt!Il 

GO TO 30 
2 IF!N\/l3t3t4 

C SECOND ENTRY 
4 NVIIO 

TIMEIITZERO 
PLTIIQ.Q 
DO I I I II I , NE 
XL!lliiXICIIl 
XTRI I l110~5*1XL! I l+XI Ill 

II X{I)IIXICII) 
GO To 30 

C ENTRIES AFTE~ SECOND 
3 TXIITIME+0.5*T 

DO I 2 I II I , N E 
XTRI I )/IX( I l+0.5*(XI I )-XLI Ill 

12 XLIIliiX<Il 
30 RETURN 

END 

29880101 
29880103 
29880105 
29880107 
29880109 
29880111 
29880113 
29880115 
29880117 
DIMENS 
DIMENS 

29880118 

29880120 
2 988 o i 2· i 
29880122 
2988Lll24 
298802tl2 
2988d2tl4 
29880206 
29880208 
29880210 
29880212 
29880214 

29880216 
29880218 
29880220 
29880222 
29880224 
29880301 
29880303 
29880305 
29880307 
29880309 
2988031 I 
29880313 
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$IBFTC FGEN DECK 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
·c 
c 

c 
c 

c 
c 

c 

c 
c 

SUBROUTINE DFG<XD,ZDl 

EQUIVALENT TO 8 DFG-S WITH UP TO 32 
POINTS EACH. CALLED BY DISTRB. 

INPUTS ARE 
NDFGS NO. OF DFG-S USED 
NPTS NO. OF POINTS IN EACH DFG 
XP INDEPENDENT VARIABLE DFG POINTS 
ZP DEPENDENT VARIABLE DFG POINTS 

XD IS THE INPUT VARIABLE AND ZD THE OUTPUT 

DIMENSION A<60t60ltC(60,60ltHP<60,60l ,QPT<60t60), 
I X < 6 0 l 'Y < 6 0 l 'Z ( 6 0 l , X I C < 6 0 l , TQP ( 6 0 l 
COMMON CtHP,A,QPT,x,z,y,JTMAX,~K'LL,MM, 

IJJFLAG,XIC,NitTIME,TMAX,TZERO,NEtTQP,T, 
2I IZtiCONTR,PLTINC,MATYEStiCSS,JFLAG,PLT 

DIMENSION XP<32t8l tZP(32,8l ,SL(32,8l t·NPTS<8l, 
IJP<Bl tZD<8l ,XD<8l 

IF<Nill,2,1 
FIRST CALL COMP. 

2 READ <5tiOOl NDFGStNPTS 
100 FORMAT< I2t8Xt813l 

DO 86 I~I,NDFGS 
NP#NPTS( Il 

7 READ (5,101) <XP<Jti),ZP<Jtil,J~I,NP) 
101 FORMAT<8EI0.3) 

86 WRITE (6,200l I,(XP<Jd),L.P<Jd),Jtii,NPl 
2000FORMAT<4HODFG,I3,17H XP AND ZP INPUTS/ 

I< IH0,4<2EI2.4t4Xil l 
DO 3 1 ~I , NDFGS 
M~NPTS( Il-l 
D03J~ItM 

3 SL(J,I l~<ZP<J+I ,I )-ZP<J,I l )/(XP<J+I ti l-XP<J,I ll 

DO 5 If/:1 tNDFGS 
DO 4 J~2,32 
lr tX[Jt ll-XPiJtl l 15,5,4 

4 CONTINUE 
5 JP<Il#J 

CALCS. MADE EACH TIME 
DO 6 I~l tNDFGS 
J#JP<Il 

I 8 IF ( XD ( I l -XP ( J, I l ) I 0, I I , I 2 
IO IF<XD<Il-XP(J-I,Illl3,14tl5 
13 j~J-1 

IF ( J- I l I 6, I 6, I 0 
16 J~2 

GO To 19 
14 ZD<IltiZP<J .... Itll 

GO To 6 
i2 J~J+I 

IF<NPTS< I )-Jll7, 18t 18 

29880105 
29880106 
29880107 
29880108 
29880109 
29880112 
29880113 
29880110 

29880114 
29880115 
29880116 
DIMENS 
DIMFNS 

29880117 
29880118 
29880119 
29880121 
29880122 
29880123 
29880124 

29880125 
29880201 
29880202 

29880204 
29880205 

L9880201 
29880208 
29880209 
29880210 
2988021 I 
29880212 
2S1880LI::3 
29880214 
2988021"' -
2988021 

29880218 
29880219 
29880220 



c 

I 7 ·J II N P T S ( I l 
GO TO 19 

II ZD(Il#ZP(J,ll 
GO TO 6 

19 WRITE (6,1021 I 
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102 FORMAT(4HODFG,I3,16H RANGE EXCEEDED.) 

15 ZD( I liiZP(J-1, I l+SL (J-1 ii l*(XD ( I'l-XP(J-1 ,Ill 
C JP{Il STORES VALUE. OF XD LOCATION 
C TO USE AS FIRST TRY NEXT TIME. 

c 
6 JP ( I l IIJ 

RETURN 
END 

29880222 
29880223 

29880224 
29.880225 

29880301 
29880302 
29880303 
29880304 
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$IBFTC TRLAG DECK 
SUBROUTINE TRLG(XTtW,ZT) 

c 
C VARIABLE TRANSPORT LAG GENERATOR - FORTRAN IV 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 

USES UP TO 300 POINT APPROXIMATION FOR 
UP TO 6 VARIABLES. USES INVENTORY CALC. 

INPUTS FOR EACH LAG (TOTAL ~ NLAGS) 
I. INPUT FUNCTION XT(Il 
2. MASS FLOWRATE W(I) 
3. INITIAL VALUE OF LAG TIME Titil 
4. MINIMUM EXPECTED VALUE OF MASS FLOW: WMIN( I) 

OUTPUTS ARE LAGGED FUNCTIONS ZT(Il 

DIMENSION Al60,60l ,C(6rJ,60l ,HPC60t60l ,QPTt60,60l, 
IX(60l tYC60) ,ZC60l ,XIC(60) ,TQP(60) 
COMMON CtHP,A,QPT,x,z,y,ITMAXtKKtLL•MM, 

IJJFLAG,XIC,NI,TIME•TMAX,TZERO,NE,TQP,T, 
2 I I Z, I CONT R, PL T INC, MA TY ES, I CS S, JFLAG, P L T 

DIMENSION XTC6l tW(6) ,TI C6j tWMINC6) tZTC6l ,XSl300,6), 
tPSC300t6l tKT(6l ,JT(6ltXJMPC6),JMPC6),NJMPC6l 

C NI ~ 1-ST CALL FLAG C~ 0 ON 1-ST CALL) 
C T ~ COMPUTATION TIME INTERVAL 
c 

IFCNI l2Q,21 t20 
C FIRST CALL COMP. 

c 

21 READC5,100l NLAGS,TI,WMIN 
100 FORMATe I2/C6EI0.3l) 

WRITE ( 6 , I 0 I ) T I , WM IN 
101 FORMATC26HOTRLG INPUTS- TI AND WMIN/( IH0,6E18.5l l 

DO 22 1~1 tNLAGS 
X JMP C I l Ill • 0 
X S ( I , I l It X T C I l 
PSC I ,I)~WCil*TI(Il 
XNSP~PS ( I·, I l I ( WM INC I l *T l 
DO 23 M~I,IO 
PI ~XJMP C Ll *XNSP 
IFC300·0-PI )23 9 24 9 21-l-

23 XJMPCI)~XJMPCil+I.O 

2 4 J.MP ( I ) ~IF I X ( X JMP ( I ) l 
.KTCil~2 

JJ C I l ~I 
22. NJMPCI)~I 

NVH-1 

29880105 
29880106 

29880108 
29880109 
29880110 
29880 II I 
29880112 

29880114 

DIMENS 
DlMENS 

DIMENS 
DIMENS 

29880121-
29880123 

DIMENS 

DIMENS 

29880202 
29880203 
29880204 

29880206 

DIMENS 
29880209 

29880212 
29880213 
·2 9!38 02 1 4 

C CALCS. MADE EACH TIME 29880216 
20 NV~NV+I 

C ****** NOTE - IF A RESTART FEATURE IS USED CWHERE THE INITIAL TIME 
C STEP CALCULATION IS REPEATED), THE FLAG NV AND STATEMENT 33 WILL 
C OMIT THE TRLG CALC• THIS 1-ST CALL OMISSION MAY BE DELETED BY 
C REMOVING STATEMENT 33• 

33 IFCNVl31 •32,31 
31 DO 17 1~1 tNLAGS 

IF(NJMP(II-JMPI1l)26,27,27 29880218 
26 NJMPCil#NJMPC 11+1 29880219 



GO TO 17 
27 NJHP!Iltll 

KtiKT!Il 
JtiJT! I l 
XS(Kd ltiXT! I l 
P S! K, I J t!X JMP! I l *W! I l * T 
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C JtiNO. OF ELEMENT AT EXIT. Kt/NO. AT ENTRANCE 
IF!PS(J,Il-PS!K,Il l I ,2,3 

c 

c 

c 

c 

c 

l 

c 

c 

2 ZT!Il/tXS!Jdl 
IF!J-300!6,7,7 

7 JT!Iltll 
GO TO 30 

6 JT!IJtiJ+I 
Go ro 3o 

COLLTtiXSIJ,Il 
COLLPtiPS!J,lJ 
D 0 I 5 ~~ tl I ' 3 0 0 
IF(J-300)8,9,9 

9 JtiO 
8 JtiJ+ I 

PQtiCOLLP+PS!J,Il 

IF!PQ-PSIK,Ill I I ,12,13 
I I COLLTti!COLLT*COLLP+XSIJ,Il*PS!J,I)l/PQ 

15 COLLPtiCOLLP+PS!J~Il 

I~ ZTIIJtiiCOLLT*COLLP+XS!J,Il*PS!J,I)l/PQ 

IFIJ-300! 14, 16,16 
16 JTIIJtll 

GO TO 30 
14 JT!IltiJ+I 

GO TO 30 

13 PS!J,IJtiPQ-PS!K,Il 
ZT!IJtl!tOLLT*COLLP+XSIJ,.IJ*PS!J,Il l/ICOLLP+PS!J,Ill 
JT!IltiJ 
GO TO 30 

3 ZT!IJtiXSIJ,Il 
PSI J, I l tiPS I J, I l ...,. P S ( K ,-1 J 

30 IF!K-300l4,5,5 
5 KT!Iltll 

GO TO 17-
4 KT!IliiK+I 

17 CONTI NUC 

32 RETURN 
END 

29880220 
29880221 
2988Cl222 
29880223 
29880224 

29880301 
29880302 
29880.303 
D I MENS-
29880305 
29880306 
29880307 
29880308 
29880309 
29880310 
298803il 
D I ~-1EN$ 
D IlviENS 

29880316 

29880319 
29880320 

DIMENS 

29880401 
29880402 
29880403 
29880404 
29880405 

298'80407 
29880400 
29880409 
29880410 

29880412 
29080413 

DIMENS 
29880416 
298801~ 17 
29880418 
29880419 
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