
RECEIVED 1957
OAK RIDGE NATIONAL LABORATORY

operated by
...... .

UNION CARBIDE CORPORATION
NUCLEAR DIVISION • for the

U.S. ATOMIC ENERGY COMMISSION

ORNL-TM- 1933

COPY NO. - 1_49

DATE- August 30, 1967

"MATEXP," A GENERAL PURPOSE DIGITAL COMPUTER PROGRAM FOR

SOLVING ORDINARY DIFFERENTIAL EQUATIONS

BY THE MATRIX EXPONENTIAL METHOD

S. J. Ball R. K. Adams

H. C.

ABSTRACT

MATEXP, a general purpose digital computer program, was
written for solving systems of ordinary differential equations
by the matrix exponential method. MATEXP has several advantages
over standard numerical integration routines. It gives virtually
exact solutions to constant-coefficient homogeneous ecl_l .. lRti ons
and to nonhomogeneous equations for which the forcing functions
are constant during the computation interval. The speed at which
the equations are solved and the accuracy of the solution are
es sentially unaffected either by the degree of cross-coupling
of the equations or by whether or not the coefficient matrix is
nonRingular or that its eigenvalues are distinct.

The method has been extended to nonlinear equations and
equations with time-varying coefficients; this use is very
effective for engineering systems analysis problems.

NOTICE This document contains information of a preliminary nature
and was pref>ureJ f'' ;,,adli for internal use at the Oo~ Riri(JP Notional
Laboratory. It is subject to revision or correction and therefore does
not represent o li no I report .

• f

"'

~WO.ti QE li:I1S. LlQ.QiMThii ~ UN :f
I

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

r--------------------------------LEGAL NOTICE----------------------------~

This report was prepared as an account of Government sponsored work. Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,

completeness, or usefulness of the information contained in this report, or that the use of

any informotinn, appnratus, method, or prooo:.s disclosed in this report rnay not infr inge

privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the us~ nf

any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employae

or contractor of the Commission, or employee of such contractor prepares, disseminates, or

provides access to, ony information pursuant to his employment or contract with the Commission,

or his employment with such contractor.

 1 2

3

CONTENTS

Page

1. Introduction. 4

2. Development of the Matrix Exponential Method 6

2.1 For Homogeneous Equations.................. 6
2 .2 For N.onhomogeneous Equations............... 9

2 -3 Miscellaneous Features of the Matrix

Exponential. • ll

3. Description of MATEXP Program and Options 13

3.1 Basic Input Information.................... 13

3.2 Alternative Methods. of Generating the

Coefficient Matrix A..................... 15

3.3 Alternative Methods of Generating the

Forcing lttmction Vecto:r· z................ 16

3.4 Methods for Solving Time-Varying-Parameter

• and Nonlinear Differential Equations..... 1.9
3.5 Special Forcing Function Subroutines....... 22

4. Summary and Conclusions......................... 27

5. Appendix 28
5.1 Problems in the Evaluation of Exponential

Functions • ·• • • • • • • • • • • • • • • •. • • • • • • • • • • • • • • • 2-8

).2 Detailed Description of Prngrams........... 30

5.3 Fortran Listing of Programs................ 43

\ ..

DISTRIBUTION OF THIS" DOCUMENT IS UNLIMITED

4

1. INTRODUCTION

The matrix exponential method of solving differential equations

was first described to the authors by Prof~ Henry Paynter of MIT,

who with his studentsl-3 developed this method into a practical

engineering tool. The basic technique was derived many years ago, 4

and even then it was an elegant method of obtaining exact solutions

for a set of constant coefficient, homogeneous differential equations.

'l'he matrix exponential technique is ideally suited to die;ital

computation and is very si~ple to implement, especially when compared

with most quadrature methods.

Only two persons besides Prof. Paynter have done extensive work

in this area. L. Pease5 of Atomic Energy of Canada, Ltd., in

dependently developed the method simultaneously with Paynter. The

work of Paynter and Pease formed the basis for our implementation

and, perhaps, refinement of the method, although the work of several

researchers5-9 established the rigor of the central technique.

1 J. Suez, Automated Programming for Analog Computers, M.S.
thesis, MIT, Aug. 1962.

'2 -
H.C.H. Lee, Same Finite Difference Models for Li;Qear and

NuullHear Control ::itudies Using Digital Computation, M.S. thesis,
MIT, Aug. 1962.

~ 3H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling
of Analog Computers," Trans. ISA, .3_, 55-64 (Jan. 1964).

4E. Artin, from 0. Schreier and E. Sperner, Introduction to
Modern Algebra and Matrix Theory (1935)j Translated from German,
Chelsea Publ. Co,,. N.Y., 1951, PP· 319-320.

Solving the First~Degree
in Matrix Series,

6E. G. Keller, ~thematics of Mn~ern Engineering; voL.II,
Mathematical Engineering, Wiley, N.Y., 1942, pp. 234-246.

7R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, N.Y.,
1960, pp. 165-173·

~. '

)

5

More recently, M. L. Liou of Bell Telephone Laboratories made important
. 10 ll

contributions to the matrix exponentlal method. '

Because this method can give virtually exact12 solutions to systems

of equations, it is of considerable interest to most engineers engaged

in systems analysis, automatic control, and simulation. Also, systems

engineers have long recognized that one essential difference between

the analog computer and the digital computer is the awkward (at best)

manner in which the digital machine can perform .. integration. The

matrix exponential method, on the other hand, requires the digital

computer to perform mainly matrix manipulations, which it can do in

a very straightforward and efficient manner. -·

The matrix exponential techniques have worked well for a large

general class of simulation problems which constitute the bulk of the

work in the systems analysis and automatic control fields. Indeed,

by use of the methods described in Sect. 3.4-, certain types of non

linear equations can be solved as a natural extension of the basic

matrix exponential method.

8F. R. Gantmakher, A lications of the Theor
Interscience, N.Y., 1959, pp. 135-9. translation
original book: Theory of Matrices, 1954).

of Matrices,
of Russian

9L. A. Pipes, Applied Mathematics for Engine·ers and Physicists,
2d ed., McGraw-Hill, N~Y., 1958, pp. 101-4.

10M. L. Liou, "A Novel Method of Evaluating Transient Responses,"
Proc. IEEE, 54 (1), 20s23 (Jan. 1966).

1~. F. I{uo and J. F. Kaiser, eds., System Anaiysis by Digital
Computer, Wiley, N.Y.,1966, pp. 99-129.

12"Virtually exact" means that the solution can be calculated
to as great a precision as is desired, consistent with the precision
obtainable with a given computer word length. In other words, t.be
precision of the method is not necessarily limited by the convergence
of any approximate quadrature (integration) formula, simply because
quadrature is not performed_.

6

The matrix exponential method has also been implemented and us~d

extensively in Fourier analysis problems by simulating band-pass

filters.l3,l4 Instead of calculating correlation functions (and

subsequently their Fourier transforms) digital filtering can be used

to obtain spectral density estimates and transfer functions from

noise data. Calculations using filtering techniques are of comparable

accuracy and typically more efficient than the conventional methods.

MATEXP has also been used in a special technique to calculate thP.

sensitivities of the time response of a system to chR.ngr.-s in parameter·
15 values. A description of a subroutine which was written to

implement time response sensitivity calculations is given in Sect.

MATEXP has been developed and modified over a period of several

years, and its present form reflects the considerable number of

helpful suggestions we have had from many people. We are particularly

grateful to Prof. H. M. Paynter for first introducing us to the

method, and to Prof. T. W. Kerlin of the University of Tennessee,

and J. V. Wilson of ORNL for their help and encouragement.

2. DEVELOPMENT OF THE MATRTX F.XPONE.NTIJ\L METHOD

2 .l For Homogeneous Equations

Consider the first-order scala:r:, linear, homogeneous differential

equation (with constant coefficient)

dx
dt I a.,.= 0 ' (1)

13 ' P.. J. Bti.ll, A Di i tal l•'ilt~::r lr Efficient Fourier
Transform Calculations, ORNL-TM-1778

14
T. W. Kerlin and S. J. Ball, =Ex::.::::e~r.=.i=m:.::e:::n:.;t,;:a::l:.....:;:.L.:.:=:=..:::.......:;;:;:;:::=.z:-=s:..::i:..::s:......::o:.::..f

the Molten-Salt Reactor Experiment, ORNL-TM-1647

l5T. W. Kerlin, "Sensitivities by the State Variable Method,"
Simulation, ~(6), 337-345 (June 1967).

. (

(1}

')

whose solution is

7

-at x = e (2)

An interesting characteristic of the solution is that, for any

time interval ~, the value of x at the end of the interval is a
-a~ product of an exponential term E .and the value of x at the beginning

of the interval, i.e.

-a-r
X = E X t+-r t • (3)

This will be referred to as the "incremental solution."

Naw because a system of homogeneous linear equations of any

order can always be broken up into a set of first-order equations,

consider the following set of equations ·

-- = dt
(4)

This array can be expressed compactly in matrix form as a first

order, linear, homogeneous, matrix differential equation with constant

coefficients, i.e.

dX
dt = AX ' (5)

where X is the column vector of state variables x.
J.

X-

8

and A represents the coefficient matrix

all al2 aln

. A
a21 a22

- a2n

• • •. •. a nn

This matrix equation has the solution

(G)

For a formal proof that Eq. (6) is the desired solution, the reader

is referred to Bellman.7 However, the following si2ple proof is

I d X dX somewhat less formal. First, if dX dt = AX, then -- = A dt =
dt

2

A A X A
2 X · · 1 ,, d

3
X = A3 X th t dilJc = Am· X = ; Slml ar~, , so a

dt3 dtm

If Xt is expanded about zero in a Taylor's series,

X X t dX
t = o + I! dt

t=O

+ ••••

With Eq. (7) substituted for the derivativP. 1

·····) xo
or At

Xt. = E x0 (Q.E.D.)

The "incremental solution" is

(7)

(R)

(9)

where EAT, the matrix exponential, is defined analogously to the

scalar exponential as

AT
E + ••• (10)

-.

9

in which I is the identity matrix

1 00 0

0 1 0 0
I = 0 0 1 0

0 .•....•. o 1

2.2 For Nonhomogeneous Equations

The matrix equation representing a system of first-order, constant

coefficient differential equations with nonzero forcing functions is

the nonhomogeneous equation

dX
AX+ z, (11) -= dt

where Z is the distu~bance, or forcing function,vector.

A general increme~tal solution of the nonhomogeneous equation

as derived by Liou11 is

(12) .

An exact solution derived from Eq. (12) for the case where the

forcing function Z is constant over the interval t to t+~ is

.. '""" _A~X + (A~ -I)A-lZ
At+~ 1:: t € · t (13)

It is important to note that the inverse of A need not be calculated

to evaluate Eq. (13) since

(€A~ -I)A -1 = ~+ A~+ {A~l2 {A~Lk -1 -1
2! + ...

k!
A .

..
2 . A.2.J . • k:-1 k

A~ A. ;~
= I~ + + -· -~- +

21 3~ k!

10

= 't" [r +
A-r
2!

+ (A,)2 (A,)k-1]
3~ + •• • k!

oO
(A't")k-l

= 't" I (14) k!
k=l

Because this series is similar to that used to represent E A't"

the computer program can calculate the two required matrices

concurre11tly, slm:e the kth term of the (EA"-I)A-l ~eries equals

the (k-l)th term of the-EA't" series times ('t"/k). In the MAT~P
program, the EA't" matrix is called the "C" matrix and the (EA't" -I)A-l

ll.latrix iS called the "HP;' ma.trix (in honor of H. Paynter).

At this point, two essential features of the matr:i.x exponential

method are emphasized:

1. The exponential matrices can be computed by the series

approximation to nearly any desired precision (typically,

l part in 106 is specified for MATEXP calculations). Hence,

for homogeneous equations and for nonhomogeneous equations

in which the forcing functions remain constant over the

computation time interval, the solutions are virtually exact

solutions.

2. The solution vector can be updated successively by a time

increment 't" by two matrix multiplications:

x2 '"'" ... c x't" + HP z T

P.t. r.

If it is assumed that just one time increment value 't" is

required, the C and HP matrices need to be evaluated only once.

An exact solution to the set of nonhomogeneous diff.erentj_aJ el]_uations

can also be derived from Eq'; (j2.) for the case· where the forcing

function Z v~ries linearly within the computation interval 't".

In terms of the matrix exponential series approximations, the

(~

ll

trapezoid forcing function incremental solution is

X = EA-r X +
t+'t" t

(15)

Liou
11

has also developed a recursive formula for accurate

approximations of continuous forcing functions which uses a Simpson's

rule approximation of the nonhomogeneous solution, Eq. (12), within

the time interval 1::

X € A't" [xt '1: z] 21: -A't"/2 't".z
t+1: ~ + 'b t + 3 € zt+1:/2 + 'b t+1: • (16)

As with the case of the step-wise varying forcing functions, the

matrices required for Eqs. (15) and (16) need to be evaluated just

once at the start. These features are not presen~ly included in the

MATEXP code, but could readily be added as options·. ,,

2.3 Miscellaneous Features of the Matrix Exponential

Since the matrix exponential principle has been a part of the

mathematical literature for many years, the matrix exponen~ial has

had at ·leas~ two other names: the fundamental matrix, .and the

transition matrix. Besides the series approximation method, an

analytical method is often used to calculate. this matrix; 9 however,

t~e eigenvalues of A and their eigenvectors must be calculated and

the initial condition vector must be transformed by a matrix.

~nmprised of the eigenvectors. It is emphasi4ed that the series

method used in MATEXP does not require that the coefficient matrix

be nonsingular (i.e., have a nonzero deteL'illil1ant) or that its

eigenvalues be distinct (a case where the analytical solution has

terms of the form tEbt and cannot be expressed as the sum of

exponentials). The latter cond~t:i,on, which occurs in problems

where two time constant::; i11; a decay ,chain are_ eq_11A.l, was one of

l2

the problems that Pease encountered in reactor burnup calculations

that prompted him to develop the matrix exponential method.5

Another feature noted by Pease (but not included in MATEXP) is

that the average solution vector X could be obtained directly from

a matrix exponential type calculation.

From the mean value theoremJ

x = ~L\ dt,

X l!an 'be obtained by integrating the equation for X in terms of C

and HP:
't" 't"

X= l Jx dt = ~ J [c X + (HP) z0] dt . (17) ... t 0
0 0

'l'erm by term integration of the series approximations for C and

HP gives
't" "'!'l

L c dt = [I M + .(M)2 + (4~)3 + ... J ~ HP J (18) 't" + 2! 3!

and

2 I A-r A-r 't" [2 ~ BP dt = ., ~! + 3 ! + ~ +] . (19)

The latter seriesJ like the HP matriDC calculation, could easily

be made concurrent with the other matrix exponential calculations.

The accuracy of MATEXP solutions) both in absolute terms and

compared with other methods) is difficult to estimate quantitative1y

!'or the general case. Even for those cases that are solved "exactlyJ"

the successive multiplications of the solution vector by the matrix

exponential naturally tend to accumulate errors. HoweverJ with

precise calculations of the C and HP matrices as recommended in the

Appendix) Sect. 5.1J test cases have shown this error to be negligible

for large systems (4o x 40), even after many thousands ·of updating

calculations. Liou
11

has developed an alternative method of evaluating

the C and HP matrices to a prescribed accuracy.

The nature of the matrix exponential method permits the use of

13

much larger computation time intervals ~ than would be feasible for

most numerical integration solutions. For constant-coefficient

equations and a given ~, it would be safe to assume that MATEXP would

be inherently more accurate. As is usually the case, however, it

would be unwise to generalize about nonlinear equations. Nonlinear

solutions are discussed further in Sect. 3.4.

Eq. (20) gives a rough estimate of MATEXP solution times on the

IBM-7090 computer, assuming that a negligible time is spent 'in the

peripheral subroutines:

-6 2 .
Solution time(min) ~ 3.0 x 10 (NE) NT , (20)

where NE is the number of equations, and NT is the number of

computation time intervals. For example, a 59 x 59 system run for

1000 time steps took 10 min, and an 8 x 8 run for 10,000 steps took

1.5 min. The solution time factor will vary from about 2 x l0-6 to
-6 7 x 10 , depending on the amount of extra subroutine computation and

printout, and will be approximately halved for homogeneous equations.

The present "standard" version of the MATEXP program solves up

to 60th-order equations and uses about 22,000 words of core storage.

Iri·a 32,000 word computer, the extra 10,000 words can be used for

special programming or storage, or the order of the equation· can be

increased to about 80. Since, for larger ,problems, tape or other

slower storage devices would be required to calcu~ate the matrix

exponential functions, the overall efficiEmcy of the method would be

1·educed.

Two othe:r:· interesting, though perhaps purely academic, features

of the matrix exponential technique are that the solution time

increment can be negative (allowing one to go backwards) and that the

A matrix can contain complex coefficients.

3. DESCRIPI'ION OF MATEXP PROGRAM AND OPI'IONS

3.1 Basic Input Information

The MATEXP program was written with the intent that it should

be easy to use f'or a wide variety of differential equation problems.

14

Unfortunately, as a program becomes more general, i.e. the more

options and special features the program has, it becomes more difficult

to explain the program and to use it for any given problem.

Consequently, any apparent awkwardness and complications in the

following discussion are due to a desire to.make it general, and any

omissions are due to a desire to keep it simple.

The basic parts of the code are: the main program, MATEXP; the

utility subroutine used for outputting, OtJrPUT; and the subroutine

for calculating forcing(or disturbance)functions, DISTRB. To solve

linea!', constant -coefficient differential equations that rtrA

homogeneous (i.e. have no forcing functions) or which have only fixed

forcing functions, all the required data can be read in. and no extra

programming is necessary. For equations of the form

dX ..
-=AX+Z
dt '

the initial values of the X vector, the coefficient matrix A, and

the (fixed) disturbance vector Z may be read in. other information

required for each run is the following:

1. number of equations,

2. initial time (or other independent variable),

3. computation time interval,

4. final time,

5· interval at which solution vector X and disturbance vector Z are

to be printed.

Since many elements of the coefficient matrix A are often zero,

only the nonzero elements need to be read in. This makes it necessary

to identify each coefficient with its row and collltnn m.unber. The

nonzero values of the initial condi.ti.nn and fixed disturbance vectors,

with their row numbers, are read in similarly.

Since successive runs might require no changes (or on~y a few)

in input data from the previous run, options are provided so that.

only the altered data has to be read in.

An option is also available whereby the last value of the X vector

from one run can be used as the starting value of the succeeding run.

15

This option can be used if changes in the co~putation or printing

interval are required in the middle of ·a solution or if certain

iteration or successive approximation schemes are being used.

A complete description of the inputs and options is. given in

the Appendix, Sect .. 5.

3.2 Alternative Methods of Generating the Coefficient.Matrix A

Although the most straightforward method of inputting the

coefficient matrix is to read it in, very often it is advantageous

to have some or all of the elements calculated from system parameter

values. One option of MATEXP provides for this to be done by special

programming on the first call of DISTRB. An alternative is to use

an "algebra table" routine developed by Kerlin and Lucius •16 This

routine calculates the matrix elements from input parameter values

without any special programming. The general expression used for

calculating an element a .. in terms of parameters Pk and their
l.J

exponents ~2 is

a ..
l.J

P
Enl + C p El2 p E22 E32 En2

n 2 1 2 p 3 • • .P n + •••

or n

TI (21)

k=l

A complete description or' the program is given in reference 16.

Beside the fact that it is sometimes convenient to have the

coefficient matrix calculated by the computer, in some cases computer

computation is almost necessary to obtain accurate solutions. This

was the case for one reactor dynamics calculation where the coefficients

were first carefully calculated on a 20-in. slide rule, then by the

machine. The difference in the steady-state solution for neutron

A Technique for Calculating
Changes for Multi-

16

level after a reactivity insertion was approximately a factor of 2.

3.3 Alternative Methods of Generating the Forcing Function Vector Z

When variable forcing functions are needed, a special program

must usually be written and included in DISTRB. Two special forcing

function subroutines have been written to simplify the programming:

DFG, for approximating arbitrary fUnctions; and TRLG, for approximating

variable transport lags. They are both described in Sect •. ~ .5.

For cases where the fQ:r~ing function ia a aolut.j on t.n i'!.n nrni nA.ry

differential equation, this equation can simply be added to the system

matrix, and an exact solution can be obtained. As an example, assume

that a sinusoidal forcing function is used to excite a damped spring

mass system. The quadratic equation that describes the displacement

y of the mass with time is
I')

d'- d
~ + a ft" + by = c sin· (OJt + ¢) ,
dt

(22)

where ill is the frequency of the sinusoidal input (radians/time).

To arrange the equation in terms of first-order derivatives, let

(2J)

(24)

Solving for d2y/dt
2

(or dx
1
/dt), we obtain

dx
d~l = - ax1 - bx2 + c sin (OJt + rjJ), (25)

and

(26)

The equation for a pure oscillator with frequency ill is

(27)

17

ds
If we let x

3
= dt' and x4 = ms, then

(28)

(29)

If the initial conditions of x
3

and x4 are zero and -1, respectively,

then

(30)

(31)

Thus cx3 could be substituted for c sin (rut+.¢) in Eq.(2~. The

required initial conditions of velocity x1(o) and displace~ent x2 (o)

must also be specified.

The coefficient matrix for this example is

... b +c 0

0 0 0
A= 0 0 0 -m

0 o· +m 0

If the sinusoidal input were introduced as a forcing function, it

would appear as a stair-step approximation of a sine wave, and the

accuracy of the solution would depend on the accuracy of this

approximation. A comparison of the approximate and exact solutions

for a specific example is shown in. Fig. 1 •. In the app:r:·oximate

solution, a first-order extrapolation was used to approximate the

average value of the forcing function over the time interval.

In this example, the system has a natural frequency of 1.0

radian/sec and a damping factor of-0.25, and the driving sinusoid

has a frequency of 2.0 radiano/sec:. The computation interval of

0.5 sec for the approximate case gives about seven computations

per cycle of the driving function. Figure l also sbows the response

after a long time where the excellent stability and accuracy of both

1.0

.5

Position
x 2 0

_j
.......

J
-/.0 ~~

~

_ ~<immn error
approximate

ORNL DWG. 67-10215

95 100

> ..

•rime (sec)
·4..._ Maximum error in

approximate solution = O.Ol4

in initial transient
solution = 0.020

Exact ~ solution --
X Approximate sclution, 11t = 0.5 sec

Fig. l Comparieon ef Exact MATEXP and Approximate: lWEXP
Solutions for Sinusoidal Input to Damped

Spring-Mass System

19

solutions can be seen. This type of calculation is, historically,

very difficult to do with standard digital methods •17 .

3.4 Methods for.Solving Time-Varying-Parameter and Nonlinear
Differential Equations

It was shown in Sect. 2 that the MATEXP method can provide exact

solutions to sets of constant-coeffic~ent, homogeneous differential

equatic;ms and to nonhomogeneous equations for which the forcing

functions can be represented by stepwise-varying functions. Since

forcing functions are usually smoothly varying,:.the accw::acy of the

solution would naturally depend on the·accuracy of the stair-step

approximations.

Likewise, in the case of time-varying-parameter, or nonlinear,

equations, the variations in the coefficient matrix A can be

approximated by stepwise variations. For a variable A matrix, however,

the matrix exponentials (C and HP) would both have to be re-evaluated

at each· computation interval. Although this may·still be an efficient

method for low-order equations (---10 or less), it could ·be quite

time consuming for larger problems.

A more efficient method of solution is to modify, or "fudge~·"

"the forcing function vector so that it compensates for the variation

in coefficients while the A, C, and HP matrices remain constant.

This is shown schematically in Fig. 2.

17 .
R. A. Gaskill, "Fact and Fallacy in Digital Simulat"ion, 11

Simulation,~ (5), 309-313 (Nov. 1965).

Z(t)_.._--..c

+
Z(t) r ,/

+•

20

Nonlinear Equations
A= f(t,X)

• Ao.

oA X ¢

!--.......;,...~ X(t) (Exact)

.... X(t) (Approximate)

Fig. 2. Approximate Solution Using Fudged Forcing Functions.

Each component of the fudged forcing-function vector is calculated

by adding all the coefficient perturbation quantities in the row. Fo1'

example, assume one row of the matrix equation is

where a
11

.• a 131 and :r.1 a.re variableo and o.12 is a constant.

Let

and

Then the equation can be rewritten

Again, the forcing function zf would actually be smoothly varying,

but in the MATEXP difference equations, it is approximated by a
stair-step function.

21

For the case where the coefficients and/or the forcing functions

are known fUnctions of time, much gr~ater accuracy· (for a given

computation interval ~) results from using approximate mean values,

rather than initial values, of the fUnctions in the computation

interval. First-order approximations of the mean values can be·

obtained by evaluating the time-varying forcing functions and matrix

elements at (t + ~/2) instead of at (t). First-order extrapolations

o~the mean values of the solution vector X should also be used

where coefficients are functions of x, as shown in Fig. 3.

z.
1

. I

I

x.
1

'---+---"--r-J~time ·
t t+'f

'f .
X. (t~2) :::; X. (t)
.1 1

t -'f

x. (t) -x. (t-r} + 1. 1. . .

2

Straight-Line . j/ Approximation

time

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+~).

The use of an auxiliary subroutine VARCO greatly simplifies the

programming required to use first-order extrapolation calculations to

firld. approximate mean values of the forcing function. VARCO is

described in detail in Sect. 5.2.

The only way of guar~nteeing that the solution is accurate is to

reduce the computation interval ~ until further reductions make no

significant differencE! in the solution. A simple_, intuitive estimation

22

of the accuracy, however, may be obtained by noting the maximum amount

of change in the solution and coefficient values within a computation

interval. If these changes are only a few percent of the values of

the fUnctions at the start of the interval, then the first-order

approximations will probably give very accurate answers. The true

accuracy of the representation of a nonlinearity should also be

considered when trying to "squeeze" too much accuracy out of a

solution.

The use of fudged forcing functions for the solutton of nonlinear

differential equations is very effective when relatively few of the

.matrix coefficients are variable. In this case one might consider

the linear portion of the·system of equations as being solved by an

extremely accurate analog computer, while the nonlinear portion is

simulated by a not-quite-so-accurate computer. If most of the

matrix coefficients·are variable, then the more conventional numerical

solution methods might be more practical than MATEXP.

More detailed discussions of the theory and use of fudged forcing

functions have been found disguised in sophisticated mathematical
18 1'9 treatises by Wolf . and Frazer et al. ~

~---.

3.5 ·special Forcing Function Subroutines

Since special programming is required in the DISTRB subroutine

to generate variable forcing functions for the differential equations,

two general purpose subroutines were written to facilitate this

programming for some problems.

3.5.1 Arbitrary Function Generation- DFG

The arbitrary fUnction generation subroutine DFG prnvine8 a means

of generating approximations of single-valued functions of one

variable where the arbitrary function curve is represented by a

18 .
·A. A. Wolf, "Some Recent Advances in the Analysis and Synthesis

of Nonlinear Systems", Am. Inst. Elec. Engrs~ transactions paper
No. 61-713.

19
R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary

Matrices, Cambridge University Press, 1957, pp. 232-45.

23

series of linear segments (Fig. 4)·. The principle is identical to

that of the diode function generator (hence DFG) used in analog

computation.

Output

Approximate

F:i.g. 4. Subroutine DFG Representation of an Arbitrary
Function of One Variable.

DFG in its standard form arbitrarily allows for up to 8 functions

with up to 32 points (or 31 line segments) per function. Inputs

required are the ordinate and abscissa values of the line-segment

end points. If more functions or finer approximations are required,

the dimensions coul~ be changed easily. More details on the program

and a Fortran listing are given in the Appendix, Sect. 5.

3. 5 .2 Vari~b·l~ Transport Lag· Generation - TRLG

A transport lag (also known as a pure time delay, or dead time)

actually represents a distributed parameter system; hence, its

representation in a lumped-parameter solution will be only approximate.

The OUtput Z from a pure delay device With an input X and a fixed

delay time T is

z(t) = ~ (t ---r).

If -r is variable, then the .relationship between z and x is a function

of the time history of :-r.

The variable time-delay problem is :t>:est ilJ:ustrated ·by .

fluid flow in a pipe where the inlet temperature and flow rate are

bath variable. The assumptions required for a pure delay are:

1. there is no heat transfer to the pipe;

2. the fluid density is constant;

3. plug flow exists, i.e., there is no mixing of the fluid in the

direction of flow.

24

The technique used in TRLG is to ·sample the inlet temperature x

and the flow rate W at each computation time interval T, thereby

keeping an inventory on each slug of fluid in the pipe. The total

weight of fluid in the pipe is computed from the initial transport

time 1'.. and the flow rate W. :
1 l

ptotal (lb).= Wi (lb/sec) X 't'i (sec) •

Similarly, the weight of fluid that enters during each time interval

T is W(t) x T. Since the fluid. ·density is constant, the weight of

fluid that leaves during that interval T is equal to the weight of

the inlet slug.

As an example, assume that the temperature profile in the pipe

is as shown in Fig. 5 and the slug at the inlet of &
0

lb is about

to enter. The slug at the outlet is & at a temperature x , where n n
&n > &

0
• When & 0 enters, the outlet slug temperature will be

equal to x , and the whole profile will be shifted to the right n . .
by &

0
lb. The weight of the new slug just upstream of the exit

is then (&n - & 0).

If &
0

had been greater than ~ n' t.hP. nnt.let. sll.lg would have tolrcn

as much of the upstream inventory (i.e., &
1

, & 2 , etc.) as
n- n-

required (up to ~00 samples) .• and the outJ P.t. Rlng. t.I'O'mperahlrQ :l.

would be computed as the weighted avera·ge of the sl1Jg temperatures.

For example

if

· · · & · X· + '0 .5 .6P X
z _ n n _n~l n-1

& + 0~5 & 1 n n-

then

If the maximum delay time (minimum flow rate) would use up too

many storage locations, the sampling would be done every other (or

every third, etc.) computation interval. With a variable lag, a

minimum expected flow rate must be specified to calculate how often

to sample.

The input variables supplied by the calling program for each call

of TRLG are XT (e.g·., fluid temperatures) and the flow rates W (in

:Fig. 5. Temperature Profile of' FlUid in Pipe •

26

terms of mass/time, unity for full flow, or some percentage of full

scale). The lagged functions ZT are returned by TRLG.

On the first call of TRLG, the flag NI should be zero, and the

following input data are read in:

NLAGS = number of functions used,

TI = initial values of transport lag time for each function,

WMIN = minimum expected values of flow W for each function.

The initial values of fluid temperatures 'in the pipes are set

equal to the initial values of inlet temperatures. If specific

initial temperature profiles are required., they can be read in with

only a minor change being required in the program. The standard

version of TRLG provides for up to six lags with up to 300 samples

per lag. If more or fewer lags or points are desired, the statements

labeled DIMENS in the comment field can be changed accordingly.

More details on TRLG and a Fortran iisting are in the Appendix,

Sect. 5.

There are two other techniques that are commonly used to represent

transport delays:

l. A series of n first-order lags, or '.'well-:stirred tanks, II with

time constants ~/n;

2. A Pad~ approximation;o which uses several terms of a series
. . .. ffi

approximation o±' €. · (the Laplacian representation of a pure

delay), where S is the Laplacian argument • ·

.Both the series lag and Pad~ methods have accuracy and flexibility

limitations that would be prohibitive for certain problems.21

Since the digital computer is quite proficient at sampling data,

. ··the sampled data approximation as used in the ·TRLG subroutine is

recommended as the most efficient and accurate method,

20 A. E. Rogers and T. W. Connolly, Analog Computation in
Engineering Design, McGraw-Hill, N.Y., 1960, pp. 419~24.

2ls. G. Margolis and J. J, O'Donnell, "Rigorous Treatment of
Variable Time Delays", IEEE Trans. on Electronic Computers, Vol.
EC-12, June 1963, pp 307-9·

27

4. SUMMARY AND CONCLUSIONS

The matrix exponential method has a number of advantages over

the more common integration schemes for a large and significant class

of ordinary differential equation problems. The speed and accuracy

of MATEXP have the potential of reducing computing costs for large

problems and of making more "real-time" computations feasible for.

on-line digital computation, control, and optimization calculations.

The MATEXP program has been developed over a period of several

years, mainly through use in simulation, problems. There are, however,

at least three other areas in which the matrix exponential method

might be effective:

1. Automatic parameter estimation - where the parameters of the

model differential equations are adjusted.to optimize the

agreement between theoretical and experimental response curves.

A computer program to implement this technique is currently

under development;

2. Solution of nonlinear algebraic equations by the method of

steepest ascents; and

3. Boundary value problems.

Other refinements that have been used with the MATEXP code

include the addition of an automatic plotting subroutine and a more

efficient output routine which prints only specified variables.

Forcing-function subroutines to solve implicit equations and

generate functions of two variables are planned as additions to the

"standard" package.

28

5. APPENDIX

5.1 Problems in the Evaluation of Exponential Functions

The Taylor series approximation for·a scalar exponential function

is n

L ~~ l i
k=O k.~ - l + y + 2 ~ + 3 ~ + •••• +

n
L

I • n. (5 .1)

This approximation also holds true when the argument y is a matrixj

hence, matrix exponential functions are amenable to digital computer

calculation, since raising a matrix to a power is a straightforward

operation.

It is important to note that the HP matrix calculation

(5.2)

does not require inversion of the A matrix, and can be calculated

directly from the terms of the C matrix approximation as shown

in Sect • 2 .2 •

There are several numerical problems associated with the matrix

exponential calculations. The approximations will be valid only if

1. the series will converge,

2. the numerical computation does not lose significance· due to

overflow, roundoff~ or truncation errors.

Since the evaluation of exp (A-r) requires calculating. powers of the

matrix A~, there is a practical limitation on the maximum value of

the largest element in the A~ matrix, and experience has shown that

it is most efficient to limit this value to about 1.0. Should the

desired~ make~~ 'Aij~~ > 1.0, then T is.ha~ved.up to 10 times
J.,J

for the exponential calculations: The original arguments are

restored by applying the following equations as many times as

required:

C(1:) :: exp (A1:)

= exp (~) exp (~)
. {5'.3)

HP(1:) _ [exp (A1:) -I] A-l

(5.4)

There are also provisions in the code to keep track of the roundoff

errors in the exponential calculations. The maximum values of the

largest elements in t·he QPi' matrices (A~t are monitored to make sure
. .

that they are not larger than the specified precision "P" times

108 (for an eight -decimal computer) • When the QPI' terms are summed,

the accuracy of the summation will be approximately P, since the

summation is carried out until the largest element in QPI' < P. If a
8 .

maximum value Of a QPI' element does exceed P X 10 J then 1: is halved,

.the exponential is calculated, and the original 1: is restored as before.

Users are cautioned that roundoff' errors· may become significant

if restoration of the original 1: requires very many applications of

the argument doubling Eqs. 5.3·and 5.4. We know of no general rules

for estimating this lfutitation; ho~·ever, checks made on sample problems

indicate a "safe" boundary probably exist~· at a precision P = l0-6 and

T halved 10 times~ With a larger P and more halvings, one should at

least be cautious about the results.

The fidelity of the results are also questionable .whenever the

ratio of the largest (absolute) matrix element to the smallest

(nonzero) element is~ 108 . This might be a manifestation of a very

wide range of time constants in a dynamics problem. With a range of 8
...... 10 ·' clearly the faster tim~ constants could. be considered

"instantaneous" with respect to t~e slower o~es, and the equations
..

could probably be rewritten to get around this·problem.

30.

5.2 Detailed Description of Programs

Hopefully the information given in this section is sufficient to

permit the reader to use and modify MATEXP. Since we have tried

going through this typically excruciating experience with programs

from others, we have tried making things as clear as possible. In

particular, we have used many comment cards in the program listings

as a running explanation of what we are doing~ Either author would

be glad to try to help out any potential MATEXP user, and would be

happy to receive any suggestions for improving the program.

5.2 .1 MATEXP Main Program

The MATEXP program consists of the main program and two sub

·routines OUTPUT and DISTR~ plus any other subroutines called by

DISTRB. Even if DISTRB is not used, a dummy must be included.

For each case run on MATEXP, the data will include (if appropriate):

l. MATEXP Control Card,

2. Coefficient matrix (A),

~. Initial Condition Vector (XIC),

4. Any data read in by subroutine DISTRB,

5. Fixed forcing function vector (Z).

Input Data Formats - MATEXP Main Program

l. Control Card

Column l-2 6-7 ll-20 21-30
- -

Format I2 3X I2 3X FlO~O FlO.O

Input NE LL p TZERO

Control Card- cont'd

·Column 63-6'+ 65-66 67-69 70

Format I2 I2 I3 Il

Input ICSS JFLAG ITMAX LASTCC

31-40
FlO.O

T

71-72

I2

IlZ

41-50 51-60 61-62

FlO.O FlO.O I2

TMAX PLTINC MATYF.S

73-71·1· 75-80

I2 F6.0

ICONTR VAR

:31

NE = number of equations

LL = coefficient matrix tag number
-6 P = precision of C and HP - recommend 10 or less

TZERO = zero time

T = computation time interval

TMAX = maximum time

PDTINC = printing time interval

MATYES = coefficient matrix (A) control flag

l = use previous A and T

2 = read new coefficients -.:to alter A

3 = read entire new A (nonzero values)

4 = DISTRB to calculate enti~e new A

5 = read some, DISTRB to calculate others

6 = DISTRB to alter some A elements

ICSS = initial condition vector (XIC) flag

l = read in all new nonzero values

2 = read new values to alter previous vector

3 = use previous vector

4 = vector = 0

5 = use last value of X vector from previous

JFLAG = forcing function (Z) flag

l thru 4 = same as for ICSS for constant Z

run

5 = call DISTRB at each time step for variable Z

IT.MAX = maximum number of terms in series approximation of exp (AT)

I,ASTCC = nonzero for last case

IlZ = -row of Z if only one nonzero, otherwise = 0-

ICONTR - for internal control options

0 = read new control card for next case

1 = go to 212 call DISTRB for new A or T

-1 = go to 215 call DISTRB for new initial conditions

VAR = maximum allowable value of largest coefficient matrix element * T
(Recommend VAR = 1.0)

3~

2. Coeff'icient Matrix A Format 4(213, El2 .3) - Include if MATYES =
2, 3, or 5·

Column 1-3 4-6 7-11:3

Format I3 I3 E 12.3 Repeat,

Input Row No. Col. No. COEFFICIENT . 4 per card

Notes: 1. All row and column number entries on a card must
be nonzero.

2. Insert blank card a:rter all coefficient matrix
data ls l'eau in.

3. Data can be entered in floating point (F)
format with decimal point.

3· Initial Condition Vector XIC Format (I2, 5(I3, E12.3))- Include

if ICSS = 1 or 2

Column 1-2 3-5 6-17

Format I2 I3 E 12.3 Repeat Cols. 3-17,

Input MM Row No. I.C. Value 5 per card

Notes: 1. All row number entries on a card must be nonzero.

2. Insert blank card a:rter all XIC data is read in.

3. Data can be entered in F format.

4. Disturbance Vector Z Format (I2, 5(13, El2.3))- Include if

JFLAG = 1 or 2

Column 1-2 3-5 6-17

Format I2 I3 E12.3 Repeat Cols. 3-17,

Input KK Row No. ·z Value 5 per card

Note: See notes under 3.

'l'wo figures are included to aid in understanding the MATEXP

program. Figure 5.1 summarizes the data arrangement, and Fig.

5.2 is a flow diagram of the main program. The symbols used in

MATEXP are also listed and identified.

ORNL OWG. 67-10216

Case 2

5, or 6

A COEFFICIENTS

Case i

Fig. 5.1 MATEXP Data Arrangement

34

ORNL DWG. 67-10217

FROM BOTTOM RIGHT
FlO. !I.Zc

t------oo{ A·

JJFLAO•O
QPTMP•P*fOI
PRINT c.NTI!fi. OATA
PI.TJNC • PLTINC*.Un
~Ptc•O

Fig. 5.2a. MATEXP Block Diagram - Read or Compute A Matrix and XIC Vector.

FROM BOTTOM
FIG. 5.2o

o-

FIND AMAX 6 AMIN
'RATliD • AMAX I AMIN
T HALVED ISTIDA TIMES
, .. TIIOI UNTIL
AMAX MT(VAA

IILM •. KL
ALL • TIAL
AL • AL+I
TAUL • T/AL
OPT • QPTMAM AU

35

PAINT KLM

ORNL DWG. 67-10218

TO STATEMENT 20
FI6.S.ZC

Fig. 5.2b. MATEXP Block Diagram- Compute C and·HP Matrices.

36

FROM RIGHT SID!
FIG. 5.2b

OINL DWG. 67·10219

21!1

TO ITA~MOIT I
FIG. &.Za

ro•T~~~.,
FIG.D.Ze

Fig. 5.2c. MATEXP Block Diagram- Compute Solution Vector.

37

MATEXP MAIN PROGRAM SYMBOL KEY

l. Control Card Inputs

See input data format list.

2 • Input Data

A(NE,NE) = coefficient matrix

MM = initial condition· vector tag number

XIC (NE) = initial condition vector

KK = disturbance vector tag number

Z(NE) = disturbance vector

3. Internal Variables

The following variables are listed in alphabetical order.

ADT = AMAX * T

AL = Floating point KLM for ALL calc, KLM+l for TALLL

ALL= T/AL withAL= KLM

AMAX ;;; Maximum (absolute) value of element in A matrix

AMIN = Minimum (absolute) value of nonzero element in A matrix

C(NE,NE) = Coefficient matrix exponential

HP(NE,NE) ~ Disturbance function matrix exponential

IMAX = Row location of AMAX

IMIN = Row location of AMIN

ISTOR = Number of times matrix eXponential argument T is
halved so that AMAX * T<VAR; later ISTOR = ISTOR + JFK

JFK = Number of times T is halved in order for matrix exponential
calculation precision to be P or better

JJFLAG = Flag to prevent double call of DISTRB during initial
time step calculation

JMAX = Column location of AMAX

JMIN = Column location of AMIN

K = Case number

KLM = Number of terms in series approximations of exponentials

NI = Printing flag: 0 on initial call of OUTPUT causing printout
of A, C, and HP matrices. OUTPUT sets NI = l on first call.

PE = Maximu.rn element :in (~ - l)th QPI'. term

PMK = Maximum element in E_th Q,PT term

QPT(NE,NE) ~ Term in series approximation of C matrix

QPT.MP = Maximum permissible value of element in QPT matrix.

RATIO = .AMAX/ AMIN. If RATIO less than 10
8

(for eight decimal

machine) there may be significant problems in

calculation of C and HP.

TALLL = T/AL with AL = KLM +1

TQP(NE) = Temporary storage for QPT terms

X(NE) = Solution vector

Y(NE) = Temporary storage for X

5.2.2 Subroutine OUTPUT

The first time MATEXP calls OUTPUT, the coefficient matrix (A)
and the exponential matrices C and HP are printed out, along with the

. initial solution (X) and disturbance (Z) vectors. OUTPUT also sets

the first call flag (NI) to 1, and on subsequent calls only the X

and Z vectors are printed. A possible means of saving computing

time at the expense of storage would be to store X (and Z) values

in arrays for a large number of time intervals, _ then. print the

arrays out in blocks. Additional savings could be achieved by

printing only selected variables.

).2.j Subroutine DISTRB

Subroutine DISTRB may be called by MATEXP either to compute

matrix coefficients (A) on the first call (i.e. when flag NI = 0)

and/or compute variable forcing-function vectors (Z).
Other special purpose subroutines, such as VARGO, DFG, TRLG,

and any others the user may want to supply, are usually called by

DISTRB.

Another specia~ purpose usc of DISTRB io to compute inputs

for _successive MATEXP cases without requiring a control card for

each case. This is done by means of the flag ICONTR (Cols. 73-4 on

the control card). After a ca~e is run, the first call flag NI is

reset to o, and case number K is increased by lj then if ICONTR

is positive, DISTRB will be called at statement 212, where a new

39

coefficient matrix A or time interval T may be calculated. If

ICONTR is negative, DISTRB is called at statement 215, permitting

new initial conditions to be used.

The program listing for DISTRB that was used in calculating the

sinusoidal forcing function for the example in Sect. 3.3 is given

in Sect. 5.3.

Another version of DISTRB. is used to calculate the sensitivity

of a system's time response to changes in the system's coefficient

matrix elements

ax
~

l.J

DISTRB controls the solution of the system equations and stores

those values of the solution vector which are to be used subsequently

as forcing functions for the sensitivity calculations. To compute

the sensitivity to a .. , the jth row of the system solution vector
.l.J

is stored and is lat~r used as a forcing function to the ith row of

the same system equations.15
After solving the system equations and storing the required

elements of the response vector, the arithmetic average values of

the X's in each time interval are calculated and stored (XT).

Durfng each sensitivity run, DISTRB feeds the forcing function

into the system equations, and the resulting print0uts of the X

vectors are the desired sensitivities.

For the sample program shown in the Fortran listing, Sect. 5 .3,

the system is forced by a unit 'step input in row IlZ (speci!'ied on

the control card). Other control card inputs are:

JFLAG = 5

ICONTR = l

Special input data read in by DISTRB are the row (IS) and column

(JS) numbers of the matrix elements for which sensitivities are to

be calculated, the number of time points (NTS), and the number of

sensHivity runs (NSENS), as follows:

4o

l ll 51
IIs(l) JS(l) I (.4X) IS(2) JS(2)

I3 I3 I3 I3
(4X) I' ... thru JS(5) I NTI I NSENS]

I3 "!3

5.2.4 Subroutine VARCO

The VARCO (VARiable COefficient) subroutine can be used with

DISTRB to simplify the programming of problems with variable coefficient

matrix elements. In general, these elements are functions of both

time and the values of the solution vector X. VARCO is designed to be

called by DISTRB at the start of each computation interval and to

return the mean values of time (TX), and X, (XTR),. for that interval.

The Jnean values of X are predicted 'by a first ord.er extrapolation

scheme, as shown in Fig. 3. VARCO ,.,ill also cause the initial time

step to be repeated, using the first try at calculating X(T) to

estimate the mean value at ~· DISTRB can then calculate the

coefficient values using TX and XTR. Use of this first-order

extrapolation scheme results in significant improvement in accuracy

over using no extrapolation.

5.2.5 Subroutine DFG

DFG uses the principle of the analog computer's Qiode !Unction

Qenerator (see Fig. 4) and uses linear interpolation to approximate

arbitrary, single-valued functions of a variable. Data for DFG is

read in the first time it is called by DISTRB (i.e., when NI = 0).
The standard program provides for up to 8 fUnctions with up to 32

coordinates each.

On each successive call, DFG returns the functions ZD for

varying inputs XD. If an input XD(I) goes outside the specified

limits, the output is a straight-line approximation of ZD(I) based

on the slope of the function at the boundary, and an error message

"DFG(I) RANGE EXCEEDED" is printed.

Tln~ luJ:!uL::; l't=C!.ll lu lJy DFG Cl.re:

NDFGS Number of functions used

NPTS(8) Number of points in approximation for each function

.'

41

XP(32,8) Independent variable points

ZP(32,8) Dependent variable points

The input format is as follows:

Card No. 1 (I2, 8x, 8I3)

Column 1-2 11-13

Format I2 8X I3
R~p~at,· CoJ,s a l),,..,J.)

7 more times for
Variable NDFGS NPTS(l) NPTS(2) to (7)

Card No.2, 3 •••• etc. (8El0.3)

Column 1-10 11-20 21-30 31-40 Repeat as required ..

Format El0.3 El0.3 El0.3 El0.3 for DFG(1); Max.

Variable XP(1, 1) ZP(l,l) XP(2,1) ZP(2,.1 8 numbers per card

NOTES: 1. When all data for DFG(l) has been entered, start
DFG(2) data on new card; etc.

2. Enter independent variable points XP in order,
progressing from most negative to most positive
values.

3. F Format entries (with decimal point) may be used.

5.2.6 Subroutine .TRLG

TRLG (TRansport ~aQ) is described in some detail in Sect. 3.5.

The input functions XT (e.g. fluid temperature) and the mass flowrates

W (in terms of either mass/time, unity for full flow, or some

percentage of full scale) are supplied by the calling program DISTRB,

and the lagged functions ZT are returned by TRLG. On the first call

of. TBLG (when NI :::; 0), the following input data is .r.ead in:

NLAGS Number of functions used

TI(6) Initial value of transport lag time for each function

WMIN(6) Minimum expected value of mass flow W for each.function

The program is set up assuming that subroutine VARCO is also

called by DISTRB. VARCO has a restart feature which repeats the

initial time step calculation; thus the TRLG functions will not be

u:ptlatetl on 'Llle ::;e<.:ontl <.:all. If VARCO 1::; not usetl, tlli::; ::;e<.:outl <.:all

42

omission may be deleted by removing statement 33 in the TRLG program.

The input format for TRLG is:

Card No. l (I2)

Column l-2

Format I2

Variable NLAGS

Card No. 2 (6El0.3)

Column l-lO Repeat 5 more
Format El0.3 times for

Variable TI(l) TI(2) - (6)
···------- --··

Card No. 3 (6El0.3)

Column l-lO Repeat 5 more
Format El0.3 times for

Variable WMIN(l) WMIN(.2) · -. (6)

/

-43-

5•3 FORTRAN LISTING OF PROGRAMS

$IBFTC MAIN DECK
MATEXP C PROGRAM FOR THE 7090 - FORTRAN 4

c
c
c
c
c

THIS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST
ORD~R, SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTA~T COEFFICIENTS
OF THE FORM DX/DT # AX + Zc

C THE METHOD IS PAYNTER-S MATRIX EXPONENTIAL METHOD
c
' C THE SOLUTION IS GIVEN FOR INCREMENTS OF THE INDEPENDENT
C VARIABLE (Tl FROM TZERO THROUGH TMAX
c
C COMPUTES MATRICES C # EXP(A*Tl AND
C HP H (C-Ii*A INVERSE
C SOLUTION X(N*Tl # C*X((N-1 l*Tl+HP*Z((N-Il*Tl
C SERIES CALCULATION OF C AND HP MONITORED TO
C ASSURE SPECIFIED SIGNIFICANCE.
C IF T IS REDUCED FOR C AND HP CALCS.,
C ORIGINAL AR~UtMENTS~ARE RESTORED BY-
C ·C(2*Tl#C(Tl*C(T·l
C HP(2*Tl#HP(T)+C(T)*HP(Tl
c
c

. c
c
c
c
c
c
c
c
c
c
l
c

OUTPUT F~OM THE PROGRAM IS PRINTED AT INTERVALS PLTINC.
THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT

INPUT FOR THE PROGRAM CONSISTS OF.
"ONE CONTROL CARD

THE COEFFICIENT MATRIX A (UP TO 60 X 60l
THE INITIAL CONDITION VECTOR X
A FIXED DISTURBANCE VECTOR Z

A VARYING Z CAN BE GENERATED BY DISTRB
VARiABLE COEFF-ICIENT EQUATIONS MAY BE ~DLVED BY APPROPRIATE
FU~GING OF THE DISTURBANCE ~UNCTION SUBROUTINE.

C CONTROL CARD INPUT INFORMATION
C NEHNO. OF EQUATIONS (J2L
C LLHCOEFF. MATRIX TAG NO. (12l
C PHPRECISION OF C AND HP (FIO•Dl - RECOMMEND I·OE-6 OR LESS
C TZEROHZERO TIME (FIO.Ol
C THCOMPUTATION TIME INTERVAL (FIO.Ol
C TMAXHMAXIMUM TIME (FIO.Ol
C PLTINCHPRINTING TIME INTERVAL !FIO.O)
C MATYES#COEFF. MATRIX (Al CONTROL FLAG (12l
C IHUSE PREVIOUS A AND T
C 2HREAD NEW COEFF.S TO ALTER A

" r 3HREAD ENTIRE NEW A (NON-ZERO VALUES!
4HDISTRB TO CALC. ENTIRE NEW A

l. 5HREAD SOME t D I·s TRB T 0 CALC • OTHERS
C 6HDISTRB TO ALTER SOME A ELEMENTS
C ICSSHINIT)AL CONDITION VECTOR (XICl -FLAG (J2l
C lhREAD IN ALL NEW NON-ZERO VALUES
C 2.HREAD NEW VALUES TO ALTER PREVIOUS VECTOR
C 3HUSE PREVIOUS VECtOR
C 4HVEtTO~#O

DIM

-44-

C ~#USE LAST VALUE OF X VECTOR FROM PREVIOUS RUN
C JFLAG11FORCING FUNCTION !ZJ FLAG !I2J
C I THRU 4NSAME AS FOR ICSS FOR CONSTANT Z
C 5#CALL DISTRB AT EACH TIME STEP FOR VARIABLE Z
C ITMAX N MAX. NCa QF TERMS IN SERIES APPROX.
C OF EXP!ATJ. !131
C LASTCC 11 NON-ZERO FOR LAST CASE II I I
C liZ 11 ROW NO. OF Z IF ONLY ONE NON-ZERO,
C OTHERWISE 11D II2l
C ICONTR- FOR INTERNAL CONTROL OPTIONS !121
C D#READ NEW CONTROL CARD FOR NEXT CASE
C I#GO TO 212 CALL DISTRB FOR N~W A OR T
C -I#GO TO 215 CALL DISTRB FCR NEW I.C.-S
C VAR 11 MAX~ ALLOWABLE VALUE OF LARGEST CCEFFe MATRIX ELEMENT * T
C !RECOMMEND VAR11I.Ol !F6.0)
c

c

DIMENSION A!6D,6DJ,C!6D,6Dl•HP!60,60l ,QPT!6D,6Dlt
I X I 6 D I , Y I '6 D l , Z I 6 D I , X I C I 6 D l , T Q P I 6 D l

COMMON CtHP,A,QPT,x,z,y,ITMAX,KK,LL,MM,
IJJFLAG,XIC,NitTIME,TMAX,TZERO,NE,TQP,T,
2I I z, ICONTR,PLTINC,MATYES, ICSS,JFLAG,PLT

C K11CASE NUMBER
C NI110 ON 1-ST PASS. SET TO I ON 1-ST CALL OF OUTPUT.

c

c
c

c
(

c

c
c

c
c

K#l
NIHD

RFAD (S,IOOl NF~II .P~T7F,Rn,TpTMAX,,PI.<TINr,MA.TYE.SdC.S.s,
IJFLAG,ITMAX,LASTCC,IIZ,ICONTR,VAR

I D D FORMAT (2 I I 2 , 3 X I , 5 F I 0. D, 3 I 2 ,I 3 ,I I , 2 I 2 , F 6 • C l

2

90

99

I 0 I

92

91

3
4

93
I2D

95

COEFFICIFNT MATRIX INPUT
GO TO !3,99t2t2•2,3l,MATYES
DO 9D I#.l ,NE
DO 90 J#l ,NE
A!I,Jl11D•O
IF!MATYES-4199,1.99
DO 91 I/11,1.379
MATRIX ELEMENTS 5!RQW, COLUMN, VALUE!
All I AND J ENTRIES ON CARD MUST BE NON-ZERO.
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN.
READ !5,1Dil II,JI,DI,I2,J2,D2,I3,J3,D3d4,J4,D4
I or..:r·1A I I 4 (2 I 3 , E I 2. 3 l)
IF!Iil3,3,92
A (I I , J I ! #D I
AI I29J2l11D2
A!I3,J3J#D3
A(14,J4)#D4

INITIAL CONDITION VECTOR XIC INPUT
GO T0!4, 12Dt6,5,61 ,Icss
DO 93 I#I,NE
XIC! I !#DaD
DO 94 I 11 I , I 5
ALL ROW III ENTRIES MUST BE NON-ZERO
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN.
R E AD (5 , 9 5) ~~ ~1 , I I I , D I I , I I 2 , D I 2 , I I 3 , D I 3 , I I 4 , D I 4 , I I 5 , D I 5
F 0 R ~1 A T I I 2 , 5 (I 3 , E I 2 • 3) I

D I fviENS
Dlf'"ENS

c

c
c
c
c

c

c

c

c

c

IF (III)6,6,96
96 X I C (I I I l tiD I I

X I C (I I 2) tiD I 2
X I C (I I 3 l tiD I :3
XIC(I 14ltiDI4

94

5

7
6

81
82

214
212
213

X I C (I I 5 l tiD I 5

MMtiO
D07Itii,NE
XIC(IltiO.o
IF(ICSS-5l81 ,214,81
DO 82 Itll ,NE
X(I itiXIC(I l
IF(MATYES-3)213,213,212
CALL DISTRB
JJFLAGtiO
QPTMP tl MAX. PERMISSIBLE ELEMENT OF OPT FOR 8 DECIMAL COMPUTER
MATRIX CALC. LOSES SIGNIFICANCE IF LARGEST

ELEMENT IN SERIES APPROX. MATRIX OPT IS
GREATER THAN P*I.DE8

QPTMPtiP*I .QEB

WRITE (6,21 I l K,NE,P,T,
I P L T I N C , MAT YES , I C S S , J FLAG , I C 0 NT R , IT MAX , I I Z , VA R , Q P H~ P

211QFORMAT(12HIMATEXP CASEd3/17H NO. OF EQUATIONS,

806

402

401

407
408

II3/2QH SPECIFIED PRECISION,FI2.8/6H TIME ,
.28HINTERVAL,F18.8/15H PLOT INCREMENT,FI7e8//
316H CONTROL FLAGS -/IH ,5X,6HMATYES,I4/IH ,
45X,4HICSS,I6/IH ,5X,5HJFLAG,l5/IH ,5x·,6HICONTR,I4/
534HOMAX. TERMS IN EXPONENTIAL APPROX.,I5/
613H SINGLE Z ROW,I4/20H MAX. ALLOWABLE A*DT,F9.3/
7 2 7 I-I ~-1 A X o A L L 0 W A B L E Q P T E L E r-.1 EN T , F I I • 3 l

PLTINCtiPLTINC*0.9999

JFKtiO
IF(MATYES-1 l2Q,2Q,806
SCAN MATRIX FOR MAXq AND MIN. NON7ZERO ELEMENTS.
IMAXtll
JMAXtll
AMAXtiABS (A (I , I l l
DO 401 Itll ,NE
DO 401 Jtll ,NE
IF (M.1AX-ABS (A(I ,J l l J402 ,40 I ,40 I
AMAXtiABS (A(I,J))
lMAXtii
JMAXtiJ
CONTINUE
IMINtllMAX
Jt~ I Nt1JMAX
MJ! I NtiAMAX
DO 4C19 1#1 ,NE
DO 409 Jtll ,NE
IF(A(I,Jll 407,409,407

; : .· ..

I F (A B .S (A (I , J l l -AM I N l '1 0 8 , '1 0 9 , 11 0 9
AM I NtiABS (A (I ,J l l
IMINtii
JMINtiJ

409

c

CONTINUE
RATIO#AMAX/AMIN
AMIN II MINIMUM NON-ZERO ELEMENT
ISTOR#O
ADTIIAMAX*T

-46-

413
403
404

c

DO 403 I#l,ll
IF(VAR-ADTJ 413,4049404
ISTOR#ISTOR+I
ADT#ADT·)(·O. 5
T#ADT/AMAX
COMPUTATION INTERVAL T IS HALVED ISTOR

TIMES (IO#MAX.l SO MAX~ E~EMENT IN A*T
IS LESS THAN VAR.

c
c

c

405

WRITE (6,405) IMAX,JMAXtA-(IMAX,JMAXJ,ADT,T,
I I MIN, J !vJ IN, A (I MIN, J~1 IN l ,RAT I 0

FORMAT (31HOMAX.COEFF. MATRIX ELEMENT II A(,I2,1H,~I2t3Hl #,
I EI5.4/13H MAX. A*DT II 9 F12.8,2X,I4HWITH DELTA T #,FIS.B/
23DHOMINIMUM NON-ZERO ELEMENT# A(,I2.1H,,I?.~H) ti,EI~.4/
318H RAtiO AMAX/AMIN ti•EI5.4)

IF(ISTOR-IOJ8,4I0,410
410 WRITE (6,41 ll
41 I QFORMAT (34HOA*DT STILL GREATER THAN ALLOWABLE,

11.9H AFTER 10 HALVING$.)
GO TO 37

C CALCULATION OF MATRIX EXPONENTIALS C AND HP
8 DO 9 I#ltNE

DO 9 J# I 'NE
9 CCI9Jl#O.

c
DO IO I II I , NE

1n C!ItT)#I.
c
c SKIP Hp CALCS. FOR HOMOGENEOUS EQUATIONS

IF !JF'LAG-4)48,51 ,48
48 DO 49 I II I , NE

DO 49 J#l tNE
49 HP!I,JJ#O.

c
DO 50 I 1ii-l , NE

50 l-IP! I ,I JilT
c

"'>! PF#O·D
c

DO I I I II I , NE
DO I I J# I , NE

I I QPT (I, J l #C (I, J l
(,

c NOW FORM THE MATRIX EXPONENTIALS C#EXP(A*Tl AND HP#!(C-Il*A INVERSE)
c

AU/: I .o
c

12 DO 16 KL#I,ITMAX
c

KLM#KL
ALL#T/AL
AL#AL +I. 0
TALLL#T/AL

c

c
c

c

c

DO 18 !til tNE

DO 13 Jtil ,NE
TOP(Jlt/0•0
DO 13 KXtil ,NE

13 TOP(JJtiTOP(Jl+OPT(J,KXl*A(KX,Jl

DO I 8 Jti I , NE
18 OPT(J,JltiTOP(Jl*ALL

-47-

C OPTtiMATRIX TERM IN SERIES APPROX• ti((A*Tl**Kl/K FACTORIAL
c

c

c

c
c

DO 44 I ti I , NE
DO 44 Jtil ,NE

44 C(l,J)t;!((J,J)+QPT(ltJ)

IF (JFLAG-4)45,47,45

45 IF(ITMAX-KL)47,47,145
145 DO 46 Itil ,NE

DO 46 Jtil ,NE
46 HP(!,J)tiHP(J,J)+OPT(ItJl*TALLL

C FIND MAX ABS ELEMENT IN OPT AND CALL IT PMK
c
c

47
LARGEST OPT ELEMENT USUALLY IN ROW IMAXt COLUMN JMAX
PMKtiABS !OPT(IMAX,JMAXll
IF(OPTMP-PMK) 83,83t502

502
c

406

IF(PMK-P) 406t406,16
SCAN OTHER OPT ELEMENTS ONLY WHEN OPT!IMAX, JMAXl IS LESS THAN P
DO I 4 I 1i I , NE

14

c

DO 14 Jtil ,NE
PMKtiAMAXI !PMKtABS (0PT(I,Jl))
I F (P ~1 K- P l I 7 , I 7 , I 6

C PRESENT MAX. OrT ELEMENT S~OULD BE LESS THAN
C HALF PREVIOUS MAX• TO INSURE CONVERGENCE

c

c

c

c

17 IF!PE-2.*P!v1K) 16t21 ,21
16 PEtiP~~K

21 WRITE (6t200) KLM

200 FORMAT!44HONO. OF TERMS IN SERIES APPROX. OF MATEXP ti ,I2l

I F (I H1 A X- I) 2 0 , 2 0 , 5 3 8
538 IF(KLM-ITMAX) 414,83,83

83 TtiT*0•5
JFKtiJFK+I
IF(JFK-7l303t304t304

304 WRITE (6,305) PMK
30~ OFORMAT(32H07 TRIES AT HALVING T N.G., PMKti,FI2.6)

GO TO 37
303 WRITE (6,210) KLM,PMK,T
210 FORMAT!21HOMAX. ELEMENT IN TERM,I3,8HOF OPT ti,EIIe3/

I 35H TRY HALVED TIME INTERVAL DELTA T ti,FI5.Bl
GO TO 8

-48-

414 ISTOR#ISTOR+JFK
C ORIGINAL ARGUMENTS OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN 0

IF(ISTORl 20,20,416
416 WRITE (69415) ISTOR
415 FORMAT(26HOTOTAL NO. OFT HALVING$ #,I3l

DO 417 KR#I ,ISTOR
IF(JFLAG-4) 419,418,419

C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS

c

c
c
c
c
c

c

c
c

c

c
c

419 DO 420 IHI ,NE
DO 421 J#I,NE
TQP(Jl#O.o
DO 421 KX#I ,NE

421 TQP(JlHTOP(Jl+HP(I,KXY*C(KX,Jl
D0.420JHI,NE

420 HP(I,J)#TQP(Jl+HP(I,Jl

418 DO 430 I~J,NE
DO 430 Jtf I ,NE.

430 OPT(I,JlHO.O

431

432
417

DO 431 I#l ,NE
DO 43 I Jt,i-1 ,NE
DO 4;31 KXttl ,NE
QPT(I,JltfOPT(I,Jl+C(I,KXl*C(KX,Jl
DO 432 Ull ,NE
DO 432 Jill ,NE
C (I , J l #QP T (I , J l
TH2.o-r.-T

C(I,Jl IS THE MATRIX EXPONENTIAL C#EXP(A*Tl
AND HP(I,Jl IS THE ((C-Il*A INVERSE> MATRIX

NOW

20

55
215

26
97

12 I

78

98

25

28

27

WE READ (OR CALL SUBROUTINE FOR! DISTURBANCE VECTOR

T I r,1EfiTZERO
rL T/10 •
GO TO (26,12J,27,25,55l,JFLAG
IF(MATYES-3i215,2J5,27
CALL DISTRB
IIZ#IIZ
L:.U l 0 2 l

DO 97 Ilf:l ,NE
Z (I) #0. 0
DO 98 I tf 1·, I 5
ALL ROW (Il ENTRI!S MUST BE NON-ZERO
A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN•
READ (5,95) KKd21 ,D21 ,I22,D22,I23,D23,I24,D24,I25,D25
IF(l21)27927,78
Z (I 2 I l #D2 I
Z(I22)#D22
l(I23l#D23
Z(I24l#D24
Z(I25lt1D25

KKHO
DO 20 li'/I,NE
Z(IlttQ.

ON 1-ST CALL
CALL OUTPUT

OF OUTPUT NI SET TO I

c
c
c
c

c

c
c
c
c

NOW

24
54

53

56
30
29

702
703

700

32
52
31

ONE
N·ow

-49-

COMES THE EQUATION SOLUTION BASED ON
X!NTJ§M*X!NT-1 l+!(M-IlA INVol*Z!NT-1 r

IF !JFLAG-4129,54,56
DO 53 I§I,NE
Y ! I l §C ! I , I l *X ! I l
DO 53 J§2,NE
Y ! I l § Y ! I l +C (I , J l *X ! J l
IF! l1ZJ52,52t702
IFiJJFLAGl30,29,30
CALL DISTRB
IF! I IZ)700t700,54
ONLY ONE Z-TERM CALC. IF I IZ IS GREATER THAN ZERO
DO 703 I§l ,NE
Y! I l §Y! I l +HP! I, I I Z l *Z (I I Z)
GO To 52
DO 32 I§f·,NE
Y! IJ§C(I,l l*X(I l+HP!Itl l*Z(ll
DO 32 J§2,NE
Y! I)§Y(I J+C! I ,JJ*X!.J)+HP! I ,JJ*Z!J)
DO 31 I§l tNE
X (I l §Y (I l

TIME INCREMENT ·oF THE SOLUTION HAS JUST BEEN FOUND
PLOT AND PRINT IF PLTINC JNTERVAL HAS ELAPSED

JJFLAG§I
TIME§TIME+T
PL TIIPL T.+ T
IF!PLT-PLTINCJ35,33t33

33 CALL OUTPUT
PLT§O•

35 IF!TIME-TMAXl24,37t37
37 IF!LASTCC)40t34,40

34 KIIK+I
NI§O
PLT§O•O
IF! I CONTR l 2 15, I , 2 I 2

40 stoP
END

~

' ·· ..

-50-

$IBFTC OUT DECK

c
c

c

c

c

c

c

c

200

I I

10

201

'?I

20

202

31

2
203

SUBROUTINE OUTPUT

DIMENSION AI60,60J,((6Q,60l,HPI60,6Dl,QPTI60,6Dl,
IXI6Dl ,Y(6Q) ,Z(60l ,XICI6Dl ,TQP(60l

COMMON c,HP~A,QPT,x,z,y,ITMAX,KK,L~,MM,
IJJFLAG,XIC,NI,TIME,TMAX,TZERO,NE,TQP,T,
2I IZtiCONTR,PLTINC,f'I,ATYESdCSS,JFLAG,PLT

IFINil2tl,2
Nit! I
NCIIIO
DO II N01HJ,5I,IO
WRITE (6, 2 DOl LL , ((A I I 'Jl , JHNCM, NC l , I 111 , NE l
FORt··1AT 12HOAd2/(JH ,IPIDEI le3l)

.IFINE-NCl IOtiO,JI
NCIINC+IO

NCIIIO
DO 2 I NCMIII ,5 I , I 0
WRITEI6,20I l (ICI I ,J) ,JfiNCtv'l,NCl dill ,NEl
FORMAT 12HOC/IIH 9 IPIOEII.3)l
IFINE-NCl 20,20,21
N()IN\+! n

NCIIIO
DO 31 NLMWI tSI.IO
WRITEI6,202l (IHPI I·,Jl ,JIINCM,NC) ,1111 ,NEl
FORMAT 13HOHP/IJH ,IPIOEI 1.3ll
IFINE-NCl 2,2,31
NCIINC+ID

WRITE (6, 2 0 3 l TIME, (X (I l ,I Ill , N E l
FORMAT(4H T 11tiPEID·3,4H X 1/,
IFIJFLAG.NE.5) GO TO 30

"fRITEI6,204l" (Z(I l ,It~·l tNEl

/(IH ,sx, I.DEIIe3l l

204 FORMAT16HOZ 11 dPIDEII.3/(IH 95)(,10EII.3ll
30 RE"I URN

END

DIMENS
DIMENS

-51-

IBFTC SUBZ DECK
SUBROUTINE DISTRB

c
C DISTRB FOR REPORT EXA~PLE
c

c

DIMENSION A(60t60ltC!60,6DJ;HP<60;6Dl ,QPT!60,60),
IX(60l ,y(60l ,Z(60l ,XIC(60l ,TQP(60l
COMMON C,Hp,A,QPT,XtZtY,ITMAX,KKtLL,MM,

IJJFLAG,XIC,NI,TIMEtTMAX,TZERO,NEtTOP,T,
21 I z,ICONTR,PLTINC,MATYEStiCSS,JFLAG,PLT

T X 11 t I f'-.1 E + 0 • 5 * T
Z(I)#SIN <2.0*TXl
RETURN
END

$IBFTC DSENS DECK
SUBROUTINE DISTRB

C DISTRB FOR TIME RESPONSE SENSITIVITY CALCS.
DIMENS10N A<60t60)tC(60,60l,MP<60t60ltOPT(60,60),

IX<60l tY<60l ,Z(60l ,XICI60l ,TQP<60l
COMMON c,Hp,A,QPT,XtZtY,ITMAX,KKtLL,MM,

IJJFLAG,XIC,NI,TIME,TMAX,TZERO,NE,TQP;T,
2I IZ,ICONTR,PLTINC,MATYEStiCSS,JFLAG,PLT

D I MENS I ON I R (5 l ,IS < I 5 l , J S < I 5 l , I Q (3 0 l , X T (5 , I 0 0 0 l ,
I XSEN (15 '30) ,XPSI (301
IF<Nili,l,2

I IF< ICONTR+2)5,4,3
2 IF<ICONTR+2)7,6t6

C INITIAL INPUTS AND CALCS.
3 READ<5,100l<IS!IJ,JS(l),I111t5),NTI,NSENS
100 FORMAT(6!2I3,4Xl l

NDT111
ICONTRtl-2
I'HIM011NTI-1
DO 8 1111 'NE

8 Z<Il110.0
C DURING SOLUTION OF SYSTEM EQUATIONS

c

6 DO 20 1111 tNSENS
I C011JS (I l

20 XT(I,NDTltiX(ICOl
NDTtiNDT+I
GO TO 30

C JUST AFTER SYSTEM SOLUTION IS COMPLETED
4 IST1IO

ICONTR11-3
DO 21 I111 ,NSENS
DO 21 J111 tNTIMO

21 XT<I,J)II0.5*1XT<I,Jl+XT<I,J+I)) .
C XT 11 AVG VALUES OF SENSITIVITY EON INPUTS

WRITE< 6' I 0 2 l I (X T (I , J l , J# I , NT I l , I# I , NSENS l
102 FOR~~AT<3HOXT/(IH ,IOEI1.3))

DIMENS
DIMENS

29880105
29880107
29880108

29880113
29880115
29880117

29880123

29880201
?98Fl021?

29880203
29880205

29880209
298802 I I
29880213

c 29880214
C AFTER COMPLETING EACH SENSITIVITY RUN -

5 I ST#IST+ I.
IF< IST-NSENSl31 t31 t32

29880215
29880217

-52-

c GO TO NEXT CASt:
32 ICONTRHO

PL T I NCIHMAX
TMAXHO.O
NIH I
GO TO 30

31 IIZHIS(!ST) 29880219
c COL • I IZ OF HP MATRIX MULT. BY Z 29880221

WRITE(6,10il IS(ISTl ,JS(1ST)
I 0 I FORMAT(18HOSENSITIVITY TO A(ti3,1Httl3t1Hll 29880301

TIMEHTZERO 29880303
NIJTHI
DO 41 IHI,NE 29880305
X(l)fiO.O

41 Z(lltiO.O 29880309
JJFLAGHO

c DURING EACH SENSITIVITY RUN -
7 Z(I IZltiXT(IST,NDTl

f\lfiTHf\lfH+ I
30 RETURN 29880315

END 29880317

-53-

$IBF1C SUBV DECK
SUBROUTINE VARCO!XTR,TX)

C FO~ USE WITH DIStRB AND MATEXP FOR
C VARIABLE Z-S. GIVES 1-ST ORDER EXTRAP.
C FOR AVG. X AND TIMEt PLUS RESTART
C ON 1-ST INTERVAL. DISTRB FORM H
C CALC. MATRIX COEFF.-s, ETC. IF NIHO
C CALL VARCOIXTRtTX)
C CALC. Z-S USING XTRII)-S AND TX !TIME).
c

c

DIMENSION Al60t60ltC!60t60ltHPI60t60)tQPTl60•60lt
I XI60l tYI60l tZI60l tXICI60l ,TQP 160)
COMMON CtHP,A,QPT,XtZtYtiTMAX,KK,LL,MM,

IJJFLAG,XIC,NI,TIMEtTMAX,TZERO,NEtTOP,Tt
21 I ZtiCONTR,PL TINCtMATYESt ICSS,JFLAG,PLT

DIMENSION XTRI60ltXL!60l

IF!Nilltlt2
C FIRST ENTRY

NVHI
· TXHTZER0+0.5*T

DO IO l111,NE
IO XTR!IliiXIt!Il

GO TO 30
2 IF!N\/l3t3t4

C SECOND ENTRY
4 NVIIO

TIMEIITZERO
PLTIIQ.Q
DO I I I II I , NE
XL!lliiXICIIl
XTRI I l110~5*1XL! I l+XI Ill

II X{I)IIXICII)
GO To 30

C ENTRIES AFTE~ SECOND
3 TXIITIME+0.5*T

DO I 2 I II I , N E
XTRI I)/IX(I l+0.5*(XI I)-XLI Ill

12 XLIIliiX<Il
30 RETURN

END

29880101
29880103
29880105
29880107
29880109
29880111
29880113
29880115
29880117
DIMENS
DIMENS

29880118

29880120
2 988 o i 2· i
29880122
2988Lll24
298802tl2
2988d2tl4
29880206
29880208
29880210
29880212
29880214

29880216
29880218
29880220
29880222
29880224
29880301
29880303
29880305
29880307
29880309
2988031 I
29880313

'-54-

$IBFTC FGEN DECK

c
c
c
c
c
c
c
c
c
c
·c
c

c
c

c
c

c

c
c

SUBROUTINE DFG<XD,ZDl

EQUIVALENT TO 8 DFG-S WITH UP TO 32
POINTS EACH. CALLED BY DISTRB.

INPUTS ARE
NDFGS NO. OF DFG-S USED
NPTS NO. OF POINTS IN EACH DFG
XP INDEPENDENT VARIABLE DFG POINTS
ZP DEPENDENT VARIABLE DFG POINTS

XD IS THE INPUT VARIABLE AND ZD THE OUTPUT

DIMENSION A<60t60ltC(60,60ltHP<60,60l ,QPT<60t60),
I X < 6 0 l 'Y < 6 0 l 'Z (6 0 l , X I C < 6 0 l , TQP (6 0 l
COMMON CtHP,A,QPT,x,z,y,JTMAX,~K'LL,MM,

IJJFLAG,XIC,NitTIME,TMAX,TZERO,NEtTQP,T,
2I IZtiCONTR,PLTINC,MATYEStiCSS,JFLAG,PLT

DIMENSION XP<32t8l tZP(32,8l ,SL(32,8l t·NPTS<8l,
IJP<Bl tZD<8l ,XD<8l

IF<Nill,2,1
FIRST CALL COMP.

2 READ <5tiOOl NDFGStNPTS
100 FORMAT< I2t8Xt813l

DO 86 I~I,NDFGS
NP#NPTS(Il

7 READ (5,101) <XP<Jti),ZP<Jtil,J~I,NP)
101 FORMAT<8EI0.3)

86 WRITE (6,200l I,(XP<Jd),L.P<Jd),Jtii,NPl
2000FORMAT<4HODFG,I3,17H XP AND ZP INPUTS/

I< IH0,4<2EI2.4t4Xil l
DO 3 1 ~I , NDFGS
M~NPTS(Il-l
D03J~ItM

3 SL(J,I l~<ZP<J+I ,I)-ZP<J,I l)/(XP<J+I ti l-XP<J,I ll

DO 5 If/:1 tNDFGS
DO 4 J~2,32
lr tX[Jt ll-XPiJtl l 15,5,4

4 CONTINUE
5 JP<Il#J

CALCS. MADE EACH TIME
DO 6 I~l tNDFGS
J#JP<Il

I 8 IF (XD (I l -XP (J, I l) I 0, I I , I 2
IO IF<XD<Il-XP(J-I,Illl3,14tl5
13 j~J-1

IF (J- I l I 6, I 6, I 0
16 J~2

GO To 19
14 ZD<IltiZP<J Itll

GO To 6
i2 J~J+I

IF<NPTS< I)-Jll7, 18t 18

29880105
29880106
29880107
29880108
29880109
29880112
29880113
29880110

29880114
29880115
29880116
DIMENS
DIMFNS

29880117
29880118
29880119
29880121
29880122
29880123
29880124

29880125
29880201
29880202

29880204
29880205

L9880201
29880208
29880209
29880210
2988021 I
29880212
2S1880LI::3
29880214
2988021"' -
2988021

29880218
29880219
29880220

c

I 7 ·J II N P T S (I l
GO TO 19

II ZD(Il#ZP(J,ll
GO TO 6

19 WRITE (6,1021 I

-55-

102 FORMAT(4HODFG,I3,16H RANGE EXCEEDED.)

15 ZD(I liiZP(J-1, I l+SL (J-1 ii l*(XD (I'l-XP(J-1 ,Ill
C JP{Il STORES VALUE. OF XD LOCATION
C TO USE AS FIRST TRY NEXT TIME.

c
6 JP (I l IIJ

RETURN
END

29880222
29880223

29880224
29.880225

29880301
29880302
29880303
29880304

-56-

$IBFTC TRLAG DECK
SUBROUTINE TRLG(XTtW,ZT)

c
C VARIABLE TRANSPORT LAG GENERATOR - FORTRAN IV
c
c
c
c
c
c
c
c
c
c
c
(

c

USES UP TO 300 POINT APPROXIMATION FOR
UP TO 6 VARIABLES. USES INVENTORY CALC.

INPUTS FOR EACH LAG (TOTAL ~ NLAGS)
I. INPUT FUNCTION XT(Il
2. MASS FLOWRATE W(I)
3. INITIAL VALUE OF LAG TIME Titil
4. MINIMUM EXPECTED VALUE OF MASS FLOW: WMIN(I)

OUTPUTS ARE LAGGED FUNCTIONS ZT(Il

DIMENSION Al60,60l ,C(6rJ,60l ,HPC60t60l ,QPTt60,60l,
IX(60l tYC60) ,ZC60l ,XIC(60) ,TQP(60)
COMMON CtHP,A,QPT,x,z,y,ITMAXtKKtLL•MM,

IJJFLAG,XIC,NI,TIME•TMAX,TZERO,NE,TQP,T,
2 I I Z, I CONT R, PL T INC, MA TY ES, I CS S, JFLAG, P L T

DIMENSION XTC6l tW(6) ,TI C6j tWMINC6) tZTC6l ,XSl300,6),
tPSC300t6l tKT(6l ,JT(6ltXJMPC6),JMPC6),NJMPC6l

C NI ~ 1-ST CALL FLAG C~ 0 ON 1-ST CALL)
C T ~ COMPUTATION TIME INTERVAL
c

IFCNI l2Q,21 t20
C FIRST CALL COMP.

c

21 READC5,100l NLAGS,TI,WMIN
100 FORMATe I2/C6EI0.3l)

WRITE (6 , I 0 I) T I , WM IN
101 FORMATC26HOTRLG INPUTS- TI AND WMIN/(IH0,6E18.5l l

DO 22 1~1 tNLAGS
X JMP C I l Ill • 0
X S (I , I l It X T C I l
PSC I ,I)~WCil*TI(Il
XNSP~PS (I·, I l I (WM INC I l *T l
DO 23 M~I,IO
PI ~XJMP C Ll *XNSP
IFC300·0-PI)23 9 24 9 21-l-

23 XJMPCI)~XJMPCil+I.O

2 4 J.MP (I) ~IF I X (X JMP (I) l
.KTCil~2

JJ C I l ~I
22. NJMPCI)~I

NVH-1

29880105
29880106

29880108
29880109
29880110
29880 II I
29880112

29880114

DIMENS
DlMENS

DIMENS
DIMENS

29880121-
29880123

DIMENS

DIMENS

29880202
29880203
29880204

29880206

DIMENS
29880209

29880212
29880213
·2 9!38 02 1 4

C CALCS. MADE EACH TIME 29880216
20 NV~NV+I

C ****** NOTE - IF A RESTART FEATURE IS USED CWHERE THE INITIAL TIME
C STEP CALCULATION IS REPEATED), THE FLAG NV AND STATEMENT 33 WILL
C OMIT THE TRLG CALC• THIS 1-ST CALL OMISSION MAY BE DELETED BY
C REMOVING STATEMENT 33•

33 IFCNVl31 •32,31
31 DO 17 1~1 tNLAGS

IF(NJMP(II-JMPI1l)26,27,27 29880218
26 NJMPCil#NJMPC 11+1 29880219

GO TO 17
27 NJHP!Iltll

KtiKT!Il
JtiJT! I l
XS(Kd ltiXT! I l
P S! K, I J t!X JMP! I l *W! I l * T

-57-

C JtiNO. OF ELEMENT AT EXIT. Kt/NO. AT ENTRANCE
IF!PS(J,Il-PS!K,Il l I ,2,3

c

c

c

c

c

l

c

c

2 ZT!Il/tXS!Jdl
IF!J-300!6,7,7

7 JT!Iltll
GO TO 30

6 JT!IJtiJ+I
Go ro 3o

COLLTtiXSIJ,Il
COLLPtiPS!J,lJ
D 0 I 5 ~~ tl I ' 3 0 0
IF(J-300)8,9,9

9 JtiO
8 JtiJ+ I

PQtiCOLLP+PS!J,Il

IF!PQ-PSIK,Ill I I ,12,13
I I COLLTti!COLLT*COLLP+XSIJ,Il*PS!J,I)l/PQ

15 COLLPtiCOLLP+PS!J~Il

I~ ZTIIJtiiCOLLT*COLLP+XS!J,Il*PS!J,I)l/PQ

IFIJ-300! 14, 16,16
16 JTIIJtll

GO TO 30
14 JT!IltiJ+I

GO TO 30

13 PS!J,IJtiPQ-PS!K,Il
ZT!IJtl!tOLLT*COLLP+XSIJ,.IJ*PS!J,Il l/ICOLLP+PS!J,Ill
JT!IltiJ
GO TO 30

3 ZT!IJtiXSIJ,Il
PSI J, I l tiPS I J, I l ...,. P S (K ,-1 J

30 IF!K-300l4,5,5
5 KT!Iltll

GO TO 17-
4 KT!IliiK+I

17 CONTI NUC

32 RETURN
END

29880220
29880221
2988Cl222
29880223
29880224

29880301
29880302
29880.303
D I MENS-
29880305
29880306
29880307
29880308
29880309
29880310
298803il
D I ~-1EN$
D IlviENS

29880316

29880319
29880320

DIMENS

29880401
29880402
29880403
29880404
29880405

298'80407
29880400
29880409
29880410

29880412
29080413

DIMENS
29880416
298801~ 17
29880418
29880419

THIS PAGE

WAS INTENTIONALLY

· LEFT BLANK

59

ORNL-TM-1933

INTERNAL DISTRIBUTION

l-30. R. K. Adains 97· c. w. Nestor
31. L. L. Anthony (K-25) 98. c. H. Nowlin

32-61. s. J. Ball 99· H. G. O'Brien
62. T. V. Blalock 100. J. s. Olsen
63. c. J. Borkowski 101. c. L. Partain
64. J. B. Bullock 102. B. c. Patten
65. 0. w. Burke 103. R. W. Peele
66. F. H. Clark 104. A. M. Perry
67. R. A. Dandl 105. P. H. Pitkanen
68. H. P. Danforth 106. B. E. Prince
69. J. B. Davidson 107. D. P. Roux
70. s. J. Ditto 108. G. S. Sadowski
71. B. C. Duggins 109. W. K. Sartory
72 •. J. R. Engel 110. A. N. Smith
73. K. P. Eple.r lll. o. L. Smith
74. G. J. Farris ll2 •. B. Squires
75-~. A. H. Fowler' (Y-12) 113. R. S. Stone
76: T:. B. Fowler 114. J. R. Tallackson
77· ·-n·. N. Fry 115. M. L. Tobias

-: 78'~ E'. w. Hagen 116. J • R •. Trinko
'(9. c:. s. Harrill 117. T. C. Tucker
80~ R. F. Hyland 118. c. s. Walker
81. G. R. Jamieson 119. j. s.' Watson
82. vr. H. Jordan 120. M. E. Whatley
83 ~ s. v. Kaye 121. R. E. Whitt

. 84. R. J. Kedl · 122. R. P. Wichner
85~ T-. S. Kress 123. J. v. Wilson

·'86. R. C. Kryter 124. M. M. Yarosh
87~ c·. G. Lawson 125..;126. Central Research Library
88.· J .• L. Lucius 127. Document Reference Section
89. J. B. Mankin, Jr •. (K-25) 128-132. Laboratory Records Department
90. G. D. Martin 133· Laboratory RecordG, ORNL R.C.
91. w. J. McClain (K-25) 134. ORNL Patent Office
92. H~ A •. McLain 135-149. Division of Techrrlcal Infor-
93. H. J. Metz mat ion Ext.
94. R. V. Miskell (Y-12) 150. Research and Development
95. R. L. Moore Division ORO
96. C. A. Mossman

151.
152.
153.

154.
155 .·
156~
157·
158.
159!
160.
161.
162.
163.
164~
165.
166.·
167.
168.
169.
170.
171.
172.

. 6o

ORNL-TM-1933

EXTERNAL DISTRIBUTION

S. G. Bloom, Battelle Memorial Institute, Columbus, Ohio
Neal Carter; Battelle Northwest Labs., Richland, Washington
E. H. Cocke-Yarborough, Electronics Division, AERE,

Harwell, England
S. J. Gage, University of Texas·
R. P. Gardner, North Carolina State University
B. E. Gilliland, Clemson University
S. H. Hanau,er .• University of TennAssee
T. H. M. Hung, Deere & Company, Moline, Illinois
J', M. Jansen, .rr ., llni.ve:rsity of Illinoio
T~ W ~ Kerlin, University o:t' Tennessee
L. B. Koppel, Purdue University
J. B. H. Kuper, Brookhaven National Laboratory
Rufus Oldenburger, Purdue University
H. M. Paynter, Massachusetts Institute of Technology
J. W. Prados, Univ~~$ity of TennP.RRP.A
J. C. Robinson, University of Tennessee
R. F. Saxe, North Carolina State University
E. Siddall, AECL, Chalk River, Ontario
s. E. Stephenson, University of Arkansas
Otis Updike, University of Virginia
T. J. Williams, Purdue University
W. C. Wright, University of Tennessee

