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ABSTRACT

MATEXP, a general purpose digital computer program, was
written for solving systems of ordinary differential equations
by the matrix exponential method. MATEXP has several advantages
over standard numerical integration routines. It gives virtually
exact solutions to constant-coefficient homogeneous equations
and to nonhomogeneous equations for which the forcing functions
are constant during the computation interval. The speed at which
the equations are solved and the accuracy of the solution are
essentially unaffected either by the degree of cross-coupling
of the equations or by whether or not the coefficient matrix is
nonsingular or that its eigenvalues are distinct.

The method has been extended to nonlinear equations and
equations with time-varying coefficients; this use is very
effective for engineering systems analysis problems.
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1. INTRODUCTION

The matrix exponential method of solving differential equations
was first described to the authors by Prof. Henry Paynter of MIT,
who with his studentsl“3 developed this method into a practical
engineering tool. The basic technique was derived many years ago,
and even then it was an elegant method of obtaining exact solutions
for a set of constant coefficient, homogeneous differential equations.
The matrix exponential technique is ideally suited to digital
computation and is very simple to implement, especially when compared
with most quadrature methods. '

Only two persons besides Prof. Paynter have done extensive work

>

in this area. L. Pease” of Atomic Energy of Canada, Ltd., in-

dependently developed the method simultaneously with Paynter. The
work of Paynter and Pease formed the basis for our implementation

and, perhaps, refinement of the method, although the work of several

researcherss_9 established the rigor of the central technique.

lJ. Suez, Automated Programming for Analog Computers, M.S.
thesis, MIT, Aug. 1962.

2H C. H Lee, Some Finite Difference Models for Linear and
Nuullueuar Control Studies Using Digital Computation, M.S. thesis,
MIT, Aug. 1962.

“3u. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling
of Analog Computers," Trans. ISA, 3, 55-64 (Jan. 196L).
ME. Artin, from O. Schreier and E. Sperner, Introduction to
Modern Algebra and Matrix Theory (1935); Translated from German,
Chelsea Publ. Co,, N.Y., 1951, pp. 319=320

SL. Pease, DBHMS, A Fortran Program for Solving the First-Degree
Coupled Differential Equations by Expansion in Matrix Series,
AECL-1898 (Oct. 1963, reprinted Feb. 196L).

bE. G. Keller, Mathematics of Modern Engineering; vol.IT,
Mathematical Engineering, Wiley, N.Y., 1942, pp. 234-246.

7R Bellman, Introduction to Matrix Analy51s, McGraw-Hill, N.Y.,
1960, pp. 165-173.
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More recently, M. L Liou of Bell Telephone Laboratories made important
contributions to the matrix exponential method. 10,11

Because this method can give Virtually exact12 solutions to systems
of equations, it is of considerable interesﬁ to most engineers engaged
in systems analysis, automatic control, and simulation. Also, systems
engineers have long recognized that one essential difference between
the analog computer and the digital computer is the awkward (at best)
manner in which the digital machine can perform. integration. The
matrix exponential method, on thelother hand, requires the digital
computer to perform mainly mafrix manipulatioﬁs, which it can do in
a very straightforward and efficient manner.

The matrix exponential techniques have werked well for a large
general class of simulation problems which constitute the bulk of the
work in the systeme analysis and automatic control fields. Indeed,
by use of the méthods descriﬁed in Sect. 3.4, certain types of non-
linear equations can be solved as a natural extension of the basic

matrix exponential method.

8F. R. Gantmekher, Applications of the Theory of Matrices,

Interscience, N.Y., 1959, pp. 135-9. (translation of Russian
original book: Theory of Matrices, 195k4).

9L A. Pipes, Applied Mathematics for Engineers and Phy51c1sts,
2d ed., McGraw-Hill, N.Y., 1958, pp. 10l-i4.
Oy, 1. Liou, "A Novel Method of Evaluating Transient Responses,
Proc. IEEE, 54 (1), 20=23 (Jan. 1966).

llF F. Xuo and J. F. Kaiser, eds., System Analysis by Digital
Computer, Wiley, N.Y.,1966, pp. 99-129.

l‘e”Vir’(:uaLlly exact" means that the solution can be calculated
to as great a precision as is desired, consistent with the precision
obtainable with a given computer word length. In other words, the
precision of the method is not necessarily limited by the convergence
of any approximate quadrature (1ntegrat10n) formula, simply because
quadrature is not performed.



The matrix expohential metﬁod has also been implemented and used
extensively in Fourier analysis problems by simulating band-pass
filters.l3’lh Instead of calculating correlation functions (and
subsequently their Fourier transforms) digital filtering can be used
t0o obtain spectral density estimates and transfer functions from
noise data. Calculations using filtering techniques are of comparable
accuracy and typically more efficient than the conventional methods.

' MATEXP has also been used in a special technique to calculate the
sensitivities of the time response of a system to changes in parametcr
values.15 A desgription of a subroutine which was written to
implement time response sensitivity calculations is given in Sect.
5.2.3.

MATEXP has been developed and modified over a period of several
years, and its present form reflects the considerable number of
helpful suggestions we have had from many people. We are particularly
grateful to Prof. H. M. Paynter for first introducing us to the
method, and to Prof. T. W. Kerlin of the University of Tennessee,
and J. V. Wilson of ORNL for their help and encouragement.

2. DEVELOPMENT OF THE MATRTX FXPONENTIAL METHOD

2.1 For Homogeneous Eaquations

Consider the first-order scalar, linear, homogeneous differential

equation (with constant coefficient)

Il a2 = 0 , (1)

136, J. Ball, A Digital Vilterlug Technique for Efficient Fourier

Transform Calculations, ORNL-TM-1778 (July 1967).

lll'T. W. Kerlin and S. J. Ball, Experimental Dynamic Analysis of

the Molten-Salt Reactor Experiment, ORNL-TM-1647 (Oct, 1966).

Loy, w. Kerlin, "Sensitivities by the State Variable Method,"
Simulation, 8(6), 337-345 (June 1967).
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whose solution is at
X =€ X

0" (g)
An interesting characteristic of the solution is that, for any
time interval 1, the value of x at the end of the interval is a
product of an exponential term e-aT,and the value of x at the beginning

of the interval, i.e.

X =T x . (3)

This will be referred to as the "incremental solution."
Now because & system of homogeneous linear equations of any
order can always be broken up into a set of first-order equations,

consider the following set of equations

e X ta X+ eee.a x

dt 11 71 12 72 " "n “n?

dx;

d D %1 %1 T % Xp T oeeee By, Xy ()
dxn .

E—:anlxl+an2 X2+ ovoo- annxno

This array can be expressed compactly in matrix form as a first-
order, linear, homogeneous, matrix differential equation with constant

coefficients, i.e.

&, (5)

where X is the column vector of state variables xi

M oedee

n



and A represents the coefficient matrix

all 8.12 ceevane aln

a,, &,
21 22 J.ie0., 8n

anl an2 cesess ann

This matrix equation has the solution

At i
Xe =6 %y - (6)

For a formal proof that Eq. (6) is the desired solution, the reader

is referred to Bellman.7 However, the following sigple proof is

somewhat less formal. First, if dX/dt = AX, then g;g = A %% =
3 mX dt
AAX-= A? X; similarly, g;§-= A3 X, so that Q—E = A" x . (7)
dat dt

Ir Xt is expanded about zero in a Taylor's series,

' 2 2, n
X =g +8 & QL OX PR ¢
t 0 1! dat 2! dt2 m! at™
t=0 1=0 t=0
With Eq. (7) substituted for the derivative,
2.2
At ATt
Xt=(I+-:E-+ 51 + .....) XO
or
At
X, =€ X, (Q.E.D.) (R)
The "incremental solution' is
At
Xt+'r_€ Xt ) (9)

where eAT, the matrix exponential, is defined analogously to the
scalar exponential as

2 3 k
AR %?l + %\T) o LLﬁT (10)




in which I is the identity matrix

100 4eeea O
Olo .....0
0010 ... 0"

O -......-Ol

2.2 For Nonhomogeneous Equations

The matrix equation representing a system of first-order, constant
coefficient differential equations with nonzero forcing functions is

the nonhomogeneous equation

aX
at

where Z is the disturbance, or forcing function,vector.

= AX + 2, V | (11)

A general incremental solution of the nonhomogeneous equation

as derived by Lioul-l is.

At A(t+T) -At
Xy = € X * f - (12) .

An exact solution derived from Eq. (12) for the case where the

forcing function Z is constant over the interval t to t+7 is

. Ar
- [}

At -1
Xt+(€. -I)A L -

It is important to note that the inverse of A need not be calculated

to evaluate Eq. (13) since

(AT)at = +AT+£££2-' S%Lk/

p2¢3 o gk

._‘.
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2
T I+-12X—"r +£g—TL+

EAT)k-l
ki ?

o0 k-1
) Mol — (14)
k=1

AT

Because this series is similar to that used to represent ¢ ,

the computer program can calculate the'two required matrices
(eAT

concurrently, since the kth term of the -I)A_l series equals
the (k-1)th term of the AT series times (1/x). In the MATEXP
program, the eAT matrix is called the "C" matrix and the ((-:AT -I)A-l
matrix is called the "HP" matrix (in honor of H. Paynter).
At this point, two essential features of the matrix exponential
method are emphasized:
1l. The exponential matrices can be computed by the series
approximation to nearly any desired precision (typically,
1 part in 10° is specified for MATEXP calculations). Hence, F
for homogeneous equations and for nonhomogeneous equations Mﬁy
in which the forcing functions remain constant over the
computation time interval, the solutions are virtually exact

solutions.

Q)

The solution vector can be updated successively by a time

increment T by two matrix multiplications:

XT = C XO + HP LO

= +
X2T C XT HP Zr

etn
If it is assumed that just one time increment value 7 is
required, the C and HP matrices need to be evaluated only once.
An exact solution to the set of nonhomogeneous differential equations
can also be derived from Eq, (12) for the case where the forcing
function Z vq;ies linearly within the computation interval =.

In terms of the matrix exponential series approximations, the 3



1 4]

11
N :

trapezoid forcing function incremental solution is

o0
At ‘ 1 1 k-1
Xigg = € §f+T§:(k1'(m1h)(Aﬂ "
| k=1
o0

+ 1 ar)< 7. . | (15)
K1) “tT
K

=1

.11 . s
Liou ™ has also developed a recursive formula for accurate
approximations of continuous forcing functions which uses a Simpson's

rule approximation of the nonhomogeheous solution, Eq. (12), within

.the time interval T:

. AT T 21 .At/2 ' T,
+ . + .
Xppr ® € [xt s zt] € z%+T/2 g Zy o o (16)
As with the case of the stép-wise varying forcing functions, the
matrices required for Egs. (15) and (16) need to be evaluated just
once at the start. These features are not presently included in the

MATEXP code, but could readily be -added as options. .

2.3 Miscellaneous Features of the Matrix Exponential

Since the matrix exponential priﬂciple has been a part of the
mathematical literature for many years, the matrix exponential has
had at -least two other names: the fundamental matrix, .and the
trensition matrix. Besides the series appfoximation method,‘an _
analytical method is often used to calculate this matrix;9 however,
the eigenvalues of A and their eigenvectors must be calculated and
the initial condition vector must be transformed by a matrix
comprised of the eigenvectors. It is emphasizéd that the series
method used in MATEXP does not require that the coefficient matrix
be nonsingular (i.e., have a nonzero determinant ) or that its
eigenvalues be distinct (a case where the analytical solution has
terms of the form tebt and cannot be expressed as the sum of
exponentials). The latter condition, which occurs in problems

where two time constants in a decay chain are equal, was one of
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the problems that Pease encountered in reactor burnup calculations
that prompted him to develop the matrix exponential method.5

Another feature noted by Pease (but not included in MATEXP) is
that the average solution vector X could be obtained directly from
a matrix exponential type calculation.

From the mean value theorem,
T

z_1 '
X—T‘I;Xtd’q,

X can be obtained by integrating the equation for X in terms of C

and HP: .

i:%fx at = = f[cx +(HP)Z}dt. (17)

Term by term integration of the series approximations for C and

HP gives
T

’ -
e 3
} At , (A7)® , (A1) =
det—-T 1+2!+3£ + +...J—HP, (18)
0

: 2
fHPdt="L'2 -I— -g— '(KELJ’ . (19)
0 ) i

The latter series, like the HP matrix calculation, could easily
be made concurrent with the other matrix exponential calculations,

The accuracy of MATEXP solutions, both in absolute terms and
compared with other methods, is difficult to estimate quantitatively
tor the general case. Even for those cases that are solved "exactly, "
the successive multiplications of the solution vector by the matrix
exponential naturally tend to accumulate errors. However, with
precise calculations of the C and HP matrices as recommended in the
Appendix, Sect. 5.1, test cases have shown this error to be negligible
for large systems (4O x 40), even after many thousands of updating
calculations. Lioull has developed an alternative method of evaluating
the C and HP matrices to a pfescribed accuracy .

The nature of the matrix exponential method permits the use of

"
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much larger'computation time intervals T than would be feasible for
most numerical integration solutions. For constant-coefficient
equations and a given 1, it would be safe to assume that MATEXP would
be inherently more accurate. As is usually the case, however, it
would be unwise to generalize about nonlinear equations. Nonlinear
solutions are discussed further in Sect. 3.k4.

Eq. (20) gives a rough estimate of MATEXP solPtion times on the
IBM-T090 computer, assuming that alnegligible time is spent in the

peripheral subroutines:

Solution time(min) # 3.0 x 100 (NE)2 NT , (20)
where NE is the number of equations, and NT is the number of
computation time intervals. For example, a 59 x 59 system run for

1000 time steps took 10 min, and an 8 x 8 run for 10,000 steps took
1.5 min. The solution time factor will vary from about 2 x 10-6 t
-6

7 x 10 7, depending on the amount of extra subroutine computation and

o}

printout, and will be approximately halved for homogeneous equations.

The present "standard" version of the MATEXP program solves up
to 60th-order equations and uses about 22,000 words of core storage.
In-a 32,000 word computer, the extra i0,000 words can be used for
special programming or storage, or the order of the equation‘can be
increased to about 80. Since; for larger problems, tape or Other
slower storage devices would be required to caiéulate the matrix
exponential functions, the overall efficieﬁcy of the method would be
reduced.

Two other interesting, though perhaps purely academic, features
of the matrix exponential technique are that the solution time
increment can be negative (allowing one to go backwards) and that the

A matrix can contain complex coefficients.
3. DESCRIPFTION OF MATEXP PROGRAM AND OPTIONS

3.1 Basic Input Information

The MATEXP program was written with the intent that it should

be easy to use for a wide variely of differential cquation problems.
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Unfortunately, as a program becomes more general, i.e. the more ~
options and special features the program has, it becomes more difficult
to explain the program and to use it for any given problem.
Consequently, any apparent awkwardness and complications in the
following discussion are due to a desire to make it general, and any
omissions are due to a desire to keep it simple.

The basic parts of the ccde are: the main program, MATEXP; the
utility subroutine used for outputting, OUTPUT; and the subroutine
for calculating forcing(or disturbance)functions, DISTRB. To solve
linear, constant-COefficient differential equations that are
homogeneous (i.e. have no forcing functions) or which have only fixed
forcing functions, all the required data can be read in and no extra
programming is necessary. For equations of the form

ax -

E=AX+Z,

the initial values of the'X vector, the coefficient matrix A, and
the (fixed) disturbance vector Z may be read in.- Other information
required for each run is the following:
1. number of equations,
2. initial time (or other independent variable),
3. computation time interval,
4., final time,
5. dinterval at which solution vector X and disturbance vector Z are
to be printed.

Since many elements of the coefficient matrix A are often zero,
only the nonzero elements need to be read in. This makes it necessary
to identify each coefficient with its row and column number. The
nonzero values of the initial condition and fixed disturbancec vectors,
with theif row numbers, are read in similarly. _ -

Since successive runs might require no changes (or only a few)
in input data from the previous run, options are provided so that
only the altered data has to be read in.

An option is also available whereby the last value of the X vector

from one run can be used as the starting value of the succeeding run.
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This option can be used if changes in the computation or printing
interval are required in the middle of a solution or if certain
iteration or successive approximation schemes are being used.

A complete description of the inputs and options is. given in

the Appendix, Sect. 5.

3.2 Alternative Methods of Generating the Coefficient Matrix A

Although the most straightforward method of inputting the
coefficient matrix is to read it in, very often it is advantageous
to have some or all of the elements calculated from system parameter
values. One option of MATEXP provides for this to be done by special
programming on the first call of DISTRB. An alternative is to use
an "algebra table" routine developed by Kerlin and Lucius.16 This
routiné calculates the matrix elements frombinput parameter values
without any special programming. The general expression used for
calculating an element aij in terms of parameters Pk and their
exponents Ekﬂ is
BBy E5 B Bo e [ M2 o

3

aij = ClPl P2 P3 cee Pn + CEPl P2 ...Pn + ...

B

or m

aij =Z CQ

g=1 k=1

P (21)

=

A complete description of the program is given in reference 16.
Beside the fact that it is sometimes convenient to have the
coefficient matrix calculated by the computer, in some cases computer

computation is almost necessary to obtain accurate solutions. This

was the case for one reactor dynamics calculation where the coefficients

were first carefully calculated on a EO;in. slide rule, then by the

machine. The difference in the steady-state solution for neutron

16T. W. Kerlin and J. L. Lucius, A Teéhnique for Calculating
Frequency Response and its Sensitivity to Parameter Changes for Multi-
Variable Systems, ORNL-TM-1189 (June 1965).
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level after a reactivity insertion was approximately a factor of 2.

3.3 Alternative Methods of Generating the Forcing Function Vector 2

When variable forcing functions are needed, a special program
must usually be written and included in DISTRB. Two special forcing
function subroutines have been written to simplify the programming:
DFG, for approximating arbitrary functions; and TRLG, for approximating
variable transport lags. They are both described in Sect. 3.5.

For cases where the forcing function is a seolution tn an ardinary
differential equation, this equation can simply be added to the system
matrix, and an exact solution can be obtained. As an example, assume
that a sinusoidal forcing function is used to excite a damped spring-
mass system. The quadratic equation that describes the displacement

y of the mass with time is

2
N AU A by = ¢ sin-(wt + ¢) , (22)
dt2 dt

where w is the frequency of the sinusoidal input (radians/time).

To arrange the equation in terms of first-order derivatives, let

4.
xl = -&% } (23)
X, E2Y - (2k)

Solving for d2y/dt2 (or dxl/dt), we obtain

dx,
el bx, + c sin (wt + ¢), (25)
and
u
2
R (26)

d—z +afs =0- (27)
dt
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ds .
If we let x3 = and x), = ws, then
9
R R (28)
Codx ,
L
If the initial conditions of x3 and X) 'are zero and -1, respectively,
then '
x3(t) = sin wt , (30)
xu(t) = -cos wt . (31)

. Thus cxg could be substituted for c sin (wt + @) in Eq.(EQ. The
required initial conditions of velocity xl(O) and displacement xg(O)
must also be specified.

The coefficient matrix for this example is

-a =b +c 0
+1 o .0 -0
A= ‘ 0 =

o 0" 4w 0

If the sinusoidél input ﬁere introduced as_a'forcing function, it
would appear as a stair-step approximatioﬁ of a sine Wave, and the
accuracy of the solution would depend on the accuracy of this
approximation. A comparison of the approximate and exact solutions
for a specific example is shown in Fig. 1.  In the approximate
solufion, a first-order extrapclétion was uséd to approximate the
average value of the foréing'function over the time interval.

In this example, the system has a natural frequency of 1.0
radian/sec and a damping factor of.0.25, and the driving sinusoid
has a frequency of 2.0 radians/sec. The computation interval of
0.5 sec for the approximate case gives about seven computations
per cycle Qf the driving function. Figure 1 also shows the response

after a long time where the excellent stability and accuracy of both
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St
Position
Xg 0
-5
—10%

\
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2

VAR ERE -
| ' ' | L Maximum error in
_ Time (sec) : approximate solution = 0.014

Maximum errcr in initial transient

. Exact MATEXP solution
approximate solution = 0.020

X Approximate sclution, At = 0.5 sec

Fig. 1 Comparison e¢f Exact MATEXP and Approximate MATEXP
Solutions for Sinusoidal Input to Demped
Spring-Mass System
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solutions can be seen. This type of calculation is, historically,

very difficult to do with standard digital methods.l7

3.4 Methods for Solving Time-Varying-Parameter and Nonlinear
Differential Equations

It was shown in Sect. 2 that the MATEXP method can provide exact
solutions to sets of constant-coefficient, homogeneous differential
equations and to nonhomogeneous equations for which the forcing
functions can be represented by stepwise-varying functions. Since
forcing functions are usually smoothly vérying,;the accuracy of the
solution ﬁould naturally depend on the-accuracy of the stair-step
approximations. o

Likewise, in the case of time~varying-parameter, or nonlinear,
‘equations, the variations in the coefficient matrix A can be
approximated by stépwise variations. For a variable A matfix, however,
the matrix exponentials (C and HP) would both have to be re-evaluated
at each’ computation interval. Although this may-still be an efficient
method for low-order equations (~10 or less), it.could-be quite
time consuming for larger problems. =

A more efficient method of solution is to modify, or "fudge;"
‘the forcing function vector so that it compensates for the variation
in coefficients while the A, C; and HP matrices remain constant.

This is shown schematically in Fig. 2.

: 1R, a. Gaskill, "Fact and Fallacy in Digital Simulation,"
Simulation, 5 (5), 309-313 (Nov. 1965).
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-Nonlinear Equations ,
Z(t )= A = £(t,X) ——» X(t) (Exact)
7(t) Ay # X(t) (Approximate)
+ .
8A X 9$

Fig. 2. Approximate Solution Using Fudged Forcing Functions,

Each component of the fudged forcing-function vector is calculated
by adding all the coefficient perturbation quantities in the row. For
example, assume one row of the matrix equation is

axy

= 8y, (t) X +ag, X e (t) X3 *+ 2y (t) ,

where 8yq2 alS, end 7, are variables and 8,5, is a constant .
Let _ 1

8y (8) = (ayy)g *+afy
and

215 (t) = (al3)0 + ai3 .

Then the equation can be rewritten

ax

—1_ - ' .

gt = (eap)o Xy *egp X ¥ (a5)g xg + 29 (8) +agy x) 48y xg
L ,

E}?(t;x)

Again; the forcing function z_ would actually be smoothly varying,

f
but in the MATEXP difference equations, it is approximated by a

stair-step function.
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For the case where the coefficients and/or the forcing fuﬁétions
are known functions of time, muéh gréater accuracy (for a given
computation interval T) resuits from using approximate‘mean values,
rather than initial values, of the functions‘in the computation
interval. First-order approximations of the mean values can be
obtained by evaluating the time-varying forcing functions and matrix
elements at (t + 1/2) instead of at (t) First-order extrapolations
of. the mean values of the solution vector X should also be used

where coefficients are functions of X, as shown in Fig. 3.

Straight-Line

Approximation
. ﬁé;ﬁﬁL—‘.

—> time

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+%).

The use of an auxiliary subroutine VARCO greatly simplifies the
programming required to use first-order extrapolation calculations to
find approximate mean values of the foreing function. VARCOQ is
described in detail in Sect. 5.2.

The only way of guaranteeing that the solution is accurate is to
reduce the computation interval T until further reductions make no

significant difference jin the solution., A simple, intuitive estimation
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of the accuracy, however, may be obtained by noting the maximum amount
of change in the solution and coefficient values within arcomputation
interval. If these changes are only a few pefcent'of the values of
the functions at the start of the inﬁerval, then the first-order
approximations will probably give Qery accurate answers. The true
accuracy of the representation of a nonlinearity should also be
considered when trying to "squeeze'" too much accuracy out of a
solution.

The use of fudged forcing functions for the solution of nonlinear
differential equations is very effective when relatively few of the
matrix coefficients are variable. In this case one ﬁight consider
the linear portion of the system of equations as being solved by an
extremely accurate analog computer, while the nonlinear portion is
simulated by a not-quite-so-accurate computer. If most of the
matrix coefficients-are variable, then the more conventional numerical
solution methods might be more practical than MATEXP.

More detailed discussions of the theory and use of fudged forcing
functions have been found disguised in sophisticated mathematical

19

treatises by Wolfi8 and Frazer et al.

3.5 Special Forcing Function Subroutines

Since special programming is required in the DISTRB subroutine
to generate variablé forcing functions for the differential equations,
two general purpose subroutines were written to facilitate this

programming for some problems.

3.5.1 Arbitrary Function Generation - DFG

The arbitrary function generstion subroutine DFG provides a means
of generating approximations of single-valuéd functions of one

variable where the arbitrary function curve is represented by a

18 . R
"A. A. Wolf, "Some Recent Advances in the Analysis and Synthesis

of Nonlinear Systems", Am. Inst. Elec. Engrs. transactions paper
No. 61-T713. ‘
19
R. A, Frazer, W. J. Duncan, and A. R. Collar, Elementary
Matrices, Cambridge University Press, 1957, pp. 232-45.
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series of linear segments (Fig. 4). The principle is identical to
that of the diode function generator (hence DFG) used in analog
computation. '

Output
ﬁ Actual

Approximate

;p,Input

Fig. 4. Subroutine DFG Representation of an Arbitrary
Function of One Variable.

DFG in its standard form arbitrarily allows for up to 8 functions
with up to 32 points (or 31 line éegments) per function. Inputs
‘required are the ordinate and abscissa vaiues of the line-ségment
end points. If more functions or finer approximations'ére required,
the dimensions could be changed easily. More details on the program

and a Fortran listing are given in the Appendix, Sect. 5.

3.5.2 VariabiéxTransport Lag'Geheration - TRLG

A transport lag (also known as & pure time delay, or dead time)
actually represents a distributed parameter systcm, hence, its
representation in a lumped-parameter solution will be only approximate.
The output z from a pure delay device with an input x and a fixed
delay time T is '

z(t) = x (t -1).

If 1 is varlable, then the relatlonshlp between z and x is a function
of the tlme hlstory of T.
The variable tlme-delay problem is best illustrated'by
both variable. The assumptions required for a pure delay are:
1. there is no heat transfer to the pipe;
2. the fluid density is constant;
3. plug flow exists, i.e., there is no mixing of the fluid in the

direction of flow.
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The technique used in TRIG is to 'sample the inlet temperature x
and the flow rate W at each computation time interval T, thereby
keeping an inventory on each slug of fluid in the pipe. The total
weight of fluid in the pipe is éomputed from the initial transport
time 7, and the flow rate W,: ‘

Py otal (1b) = Wi4(lb/sec) x T (sec) .
Similarly, the weight of fluid that enters during each time interval
T is W(t) x T. Since the fluid density is consfant, the weight of
fluid that leaves during that interval T is equal to the weight of
the inlet slug. o

As an example, assume that the temperature profile in the pipe
is as shown in Fig. 5 and the slug at the inlet of APO 1b is about
to enter. The slug at the outlet is APn at a temperature xn, where
APn > APO. When APO enters, the outlet slug temperature will be
equal to X and the whole profile will be shifted to the right
by APO lb. The weight of the new slug just upstream of the exit
is then (APn - APO).

If APO had been greater than APh, the antlet slug would have talkcn
as much of the upstream inventory (i.e., AP

n=-17

required (UP to 300 samples), and the outlet s1ng'temperature 2

AP s etc.) as

would be computed as the weighted average of the slug temperatures.

For example

if _
APO = APn + 0.5 APn-J. ,
then £ ;‘APﬂ X, + 0.5 APnrl xn-l

AEL + 05 APn-l

If the maximum delay time (minimum flow rate) would use up too
many storage locations, the sampling would bé done every other (or
every third, etc.) computation interval. With a variable lag, a
minimum expected fldw rate must be specified to calculate how often
to sample.
The input variables supplied by the calling program for each call
of TRIG are XT (e.g., fluid temperatures) and the flow rates W (in
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Fig. 5, Temperature Profile of Fluid in Pipe.
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terms of mass/time, unity for full flow, or some percentage of full
scale). The lagged functions ZT are returned by TRIG.
On the first call of TRLG, the flag NI should be zero, and the
following input data are read in:
| NLAGS = number of functions used,
TI
WMIN

The initial values of fluid temperatures in the pipes are set

initial values of transport lag time for each function,

minimum expected values of flow W for each function.

equal to the initial values of inlet temperatures. If specific
initial temperature profiles are required, they can be read in with
only a minor change being required in the program. The standard
version of TRLG provides for up to six lags Vith up to 300 samples
per lag. If more or fewer lags or points are desired, the statements
labeled DIMENS in the comment field can be changed accordingly.

More details on TRLG and a Fortran listing are in the Appendix,
Sect. 5. ‘

There are two other techniques that are commonly used to represent
transport delays:
1. A series of n first-order lags, or 'well-stirred tanks," with

time constants T/n; ’ '
2. A Padé approximatiopfo which uses several terms of a series

a . . s
T (the Laplacian representation of a pure

approximation ot €
delay), where S is the Laplacian argument.
Both the series lag and Padé methods have éccuracy and flexibility
limitations that would be prohibitive for certain problems.21
Since the digital computer is quite proficient at sampling data,
-‘the sampled data approximation as used in the TRLG subroutine is

recommended as the most efficient and accurate method.,

2OA. E. Rogers and T. W. Connolly, Analog Computation in

Engineering Design, McGraw-Hill, N.Y., 1960, pp. 419-24.

‘ 218. G. Margolis and J. J. O'Donnell, "Rigorous Treatment of
Variable Time Delays', IEEE Trans. on Electronic Computers, Vol.
EC-12, June 1963, pp 307-9.
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L4, SUMMARY AND CONCLUSIONS

The matrix exponential method has a numbef-of advantages over
the more common integration schemes for a large and significant class
of ordinary differential éQuation problems. . The speed and accuracy
of MATEXP have.the pbtential of reducing computing costs for large
problems and of making more "real-time" computations feasible for.
on-line digital computation, control, and optimization calculations.

The MATEXP program has been'developed over a period of several
years, mainly through use in simulation;problems. There are, however,
at least three other areas in which the matrix exponential method
might be effective:

1., Automatic parameter estimation - where the parameters of the
model differential equations are adjusted to optimize the
agreement between theoretical and experimental response curves.
A computer program to implement this technique is éurrently
under development;

2. Solution of nonlinear algebraic equations by the methbd of
steepest ascents; and '

3. Boundary value problems.

Other refinements that have been used with the MATEXP code
include the addition of an automatic plotting subroutine and a more
efficient output routine which prints only specified variables.
Forcing-function subroutines to solve implicit equations and
generate functions of two variables are planned as additions to the

"standard" package.
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5. APPENDIX

5.1 Problems in the Evaluation of Exbonential Functions

The Taylor series approximation for-a scalar exponential function
is n k

y =
€' k=0 "k =1+y+

o
[

il
+ Foaees b 0T (5.1)A

no

1 1
. .

w

This approximation also holds true when the argument y is a matrix;

hence, matrix exponential functions are amenable to digital computer
calculation, since raising a matrix to a power is a straightforward

operation. |

It is important to note that the HP matrix calculation
HP = [exp (Ac) - I]A‘l (5.2)

does not require inversion of the A matrix, and can be calculated
directly from the terms of the C matrix approximation as shown
in Sect. 2.2.

There are several numerical problems associated with the matrix
exponential calculations. The approximations will be valid only if
l. the series will converge,

2. the numerical computation does not lose significance due to
overflow, roundoff, or truncation errors.

Since the evaluation of exp (AT) requires calculating powers of the

matrix At, there is a practical limitation on the maximum value of

the largest element in the At matrix, and experiénce has shown that

it is most efficient to limit this value to'about_l.O. Should the

desired T make max AiJT > 1.0, then 7 is halved up to 10 times
i, T

for theé exponential calculations. The original arguments are

restored by applying the following equations as many times as

required:
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c(1)

exp (At) L
(5.3)

exp (42) exp (43)

HP(t) = [exp (A7) -I] At

{lem 0D 1] a1+ e D] (5

There are also provisions in the code to keep track of the roundoff
errors in the exponential calculations. The maximum values of the

largest elements in the QPT matrices Lé%%— are monitored to make sure

that they are not larger than the specified précision "P" times

108 (for an eéight-decimal computer). When the QPT terms are summed;
the accuracy of the'Summation will be approximately P, since thé
summation is carried out until the largest element in QPT < P. If a’
maximum value of a QPT element does exceed P 'x 108, then 7 is halved,
.the exponential is calculated, and the original,f is restored as before.

Users are cautioned that roundoff'error§~may become significant
ifArestbration of the.original T requires very many applications of
thé argument doubling Eqs.l5.3'and 5.4, ‘We know of no general rules
for estimating this limitation; however, checkslmade on sampleAproblems
indicate a "safe" boundary probably existé'at a precision P = 10 - and
T halved 10 times. With a larger P and moré halvings,Aone should at
least be cautious about the results. .

The fidelity of the'reéults are also questionable whenever the
ratio of the largest (absélute) matrix element to the smallest
(nonzero) element is > 108. This might bg ajmanifestatibn of a very
wide range of time constants in a dynamic$ prbblem. With.a range of
~ 107, clearly the fasfer time constants could be considered |
"instantaneous" with respect to the slower'oqés,_and the equations

could probably be rewriftén to get aroundlthis‘problem.
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5.2 Detailed Description of Programs

Hopefully the information given in this section is sufficient to
permit the reader to use and modify MATEXP. Since we have tried
going through this typically excruciating experience with programs
from others, we have tried making things as clear as possible. In
particular, we have used many comment cards in the program listings
as a running explanation of what we are doihg; Either author would
be glad to try to help out any potential MATEXP user, and would be

hapby to receive any suggestions for improving the program.

5.2.1 MATEXP Main Program

The MATEXP program consists of the main program and two sub-
‘routines OUTPUT and DISTRB plus any other subroutines called by
DISTRB. Even if DISTRB is not used, a dummy must be included.

For each case run on MATEXP, the data will include (if appropriate):

1. MATEXP Control Card,

2. Coefficient matrix (A),

3. Initial Condition Vector (XIC),

4. Any data read in by subroutine DISTRB,
>

. Fixed forcing function vector (Z).

Input Date Formats - MATEXP Main Program

1. Control Card

Column | 1-2 6-T7 11-20| 21-30] 31-k0 | Li-50| s51-60 | 61-62

Format | 12 |3X | I2 |3X| F10.0 | F10.0 | F10.0 | F10.0| F10.0 12

Input | NE 1L P TZERO T TMAX PLTINC | MATYES
Control Card - cont'd

Column [ 63-64k| 65-66 | 6T7-69 70 T1-721 73-7h 75-80

Format | 1I2 12 13 I1 12 12 F6.0

Input | ICSS JFLAG | ITMAX LASTCC T17 | ICONTR VAR
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NE
LL
P = precision of C and HP - recommend lO-6 or less

TZERO = zero time

number of equations

coefficient matrix tag number

i

T = computation time interval

TMAX = maximum time

PITINC = printing time intervai

MATYES = coefficient matrix (A) control flag
1l = use previous A and T

=-read new coefficients.-to alter A

= read entire new A (nonzéro values)

DISTRB to calculate entire new A

= read some, DISTRB to calculate others

= DISTRB to alter some A elements

ICSS = initial condition vector (XIC) flag

A = Ww D
]

1l = read in all new nonzero values ‘
2 = read new values to alter previous vector
3 = use previous vector
4 = vector = 0
"5 = use last value of X vector from previous run
JFLAG = forcing function (Z) flag ‘
"1 thru 4 = same as for ICSS for constant Z
5 = call DISTRB at each time step for variable Z
ITMAX = maximum number of terms in series approximation of exp (AT)
IASTCC = nonzero for last case R '
I1Z = row of Z if only one nonzefo, otherwise = O .
ICONTR - for internal control options .

read new control card for next case

0 =
1= go to 212 cull DI3TRB for new A or T
-1 = go to 215 call DISTRB for new initial conditions

VAR = maximum allowable value of largest coefficient matrix element * T
" (Recommend VAR = 1.0)
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2. Coefficient Matrix A Format h(213, E12r3) - Include if MATYES =

2, 3, or 5.
Column 1-3 L-6 7-18
Format I3 I3 E 12.3 Repeat,
Input Row No. Col. No. COEFFICIENT 4 per card

Notes: 1. All row and column number entries on a card must
be nonzero.

2. Insert blank card after all coefficient matrix
data 1s read 1n.

3. Data can be entered in floating point (F)
format with decimal point.

3. Initial Condition Vector XIC Format (I2, 5(I3, E12.3))- Include
if ICSS = 1 or 2 '

Column 1-2 3=5 6-17
Format I2 13 E 12.3 Repeat Cols. 3-17,
Input MM Row No. I.C. Value o 5 per card

Notes: 1. All row number entries on a card must be nonzero.
2. Insert blank card after all XIC data is read in.

3. Data can be entered in F format.

L. Disturbance Vector Z Format (I2, 5(13, E12.3))- Include if
JFLAG = 1 or 2

Column 1-2 | 3-5 ' 6-17
Format 12 I3 El12.3 Repeat Cols. 3-17,
Input KK Row No. ‘Z Value 5 per card

Note: See notes under 3.

Iwo figures are included to aid in understanding the MATEXP
program. Figure 5.1 summarizes the data arrangement, and Fig.
5.2 is a flow diagram'of the main program. The symbols used in
MATEXP are also listed and identified.



ORNL DWG. 67-10216

2 @c'

o

( MATEXP CONTROL CARD -

BLANK Case 2

Include if
JFLAG = 1 or 2

XIC COEFFICIENTS

Include if
ICSS = 1 or 2 ‘

MONITOR
CONTROL CARDS

Fig. 5.1 MATEXP Data Arrangement
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ORNL DWG. 47-10217

K=|
NI=O FROM BOTTOM RIGHT
Fig.8.2¢

{_reap controL carp ]

69 TO
MATYE

JUFLAGEO Y0 ToP
GPTNP « P2 108 F19.5.28
PRINT CONTROL DATA
PLTINC = PLTING #.9999
JFKe0

Fig. 5.2a. MATEXP Block Diagram — Read or Compute A Matrix and XIC Vector.
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FROM BOTTO
FiG.9.2¢

35

FIND AMAX 8 AMIN
"RATIO » AMAX / AMIN
T MALVED ISTOR TIMES
(UP T®10) UNTIL
AMAX % T { VAR

PESO

—>1 D06 KL: 1, 1TMAX |
i

KLM ». KL

ALL * T/AL

AL » AL+

TALLL » T/AL

QPT = QPT¥* A 3% ALL
CC+0OPT

1F
JFLAG
-a

+-
48

PRy p—

[ W« WP +aPTaTALLL

TO STATEMENT 37
PG, 3.2¢C

ORNL DWG. 67-10218

TO STATEMENT 20
Fig.2.2C

<

4“7

C(2T) = C(TIHC(T)

48

[ wp2mt « wem+cimimner) |

Fig. 5.2b. MATEXP Block Diagram — Compute C and HP Matrices.

a7 .
JFK s JFK+1
{ Pux=ass (aPT(max, smaxn | TeT%0.5
I o=
(ormp-m:)/ = 83
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ORNL DWG. 67-10219

FROM RIGHT SIDE
FiG.5.2b

20

TIME:TZER®
PLT=0

CALL DISTRB
1 ST CALL

CALL OUTPUT
t ST CALL
(NT SETa )

[ Yeonx | +

CALL DISTR®

{ + 1F
SE nz

ho~

| Yo Y4HPHE(1IZ) |

Yo CHXrHPHT

SOLUTION
"

i

JUFLAG =} TEMEMT
12
TIME « TINE4T m:m:g::m R ?:l. Py ey 2

PLT=PLT+T
1 | ®

- 1F
(PLT- PLTING) w\
ICONTR
CALL OUTPUT
PLT+0
KK+l
NI:O
FROM BOTTOM
FiG. 5.2b
7

Fig. 5.2c. MATEXP Block Diagram — Compute Solution Vector.
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MATEXP MAJN PROGRAM SYMBOL KEY

1.

‘Control Card Inputs

See input data format list.

Input Data
A(NE NE) = coefficient matrix

MM = initial condition vector tag number
XIC (NE) = initial condition vector
KK = disturbance vector tag number

Z(NE) = disturbance vector

Internal Variables

The following variables are listed in alphabetical order.

ADT = AMAX x T

AL = Floating point KIM for ALL calc, KIM+l for TALLL

ALL = T/AL with AL = KIM

AMAX = Maximum (absolute) value of element in A matrix

AMIN = Minimum (absélute) value of nonzero element in A matrix
C(NE,NE) = Coefficient matrix exponéntial

HP(NE,NE) = Disturbance fuﬁction matrix exponential

IMAX = Row location of AMAX '

IMIN = Row location of AMIN

ISTOR = Number of times matrix- ekxponential argument T is
halved so that AMAX x T¢VAR; later ISTOR = ISTOR + JFK

JFK = Number of times T is halved in order for matrix exponential
calculation precision to be P or better

JJFLAG = Flag to prevent double call of DISTRB during initial
time step calculation

JMAX = Column location of AMAX

JMIN = Column location of AMIN

K = Case number _

KIM = Number of terms in series approximations of exponentials
NI

Printing flag: O on initial call of OUTPUT causing printout
of A, C, and HP matrices, OUTPUT sets NI = 1 on first call.

PE = Maximum element in (n - 1)th QPT term
PMK = Maximum element in ch QPT term
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QPT(NE,NE) = Term in series approximation of C matrix

QPTMP = Maximum permissible value of element in QPT matrix.

BATIO = AMAX/AMIN. If RATIO less than 108 (for eight decimal
machine) there may be significant problems in
calculation of C and HP. ‘

TALLL = T/AL with AL = KIM +1

TQP(NE) = Temporary storage for QPT terms

X(NE) = Solution vector .

Y(NE)

Temporary storage for X

5e2.2 Subroutine QUTPUT

The first time MATEXP calls OUTPUT, the coefficient matrix (A)
and the exponential matrices C and HP are printed out, along with the
_initial solution (X) and disturbance (Z) vectors. OUTPUT also sets
the first call flag (NI) to 1, and on subsequent calls only the X
and Z vectors are printed. A possible means of saving computing
time at the expense of storage would be to store X (and Z) values
in arrays for a large number of time intervals,.then print the
arrays out in blocks. Additional savings could be achieved by

printing only selected variables.

He2.3 Subroutine DISTRB

Subroutine DISTRB may be called by MATEXP either to compute
matrix coefficients (A) on the first call (i.e. when flag NI = 0O)
and/or compute variable forcing-function vectors (2).

Other special purpose subroutines, such as VARCO, DFG, TRIG,
and any others the user may want to supply, are usually called by
DISTRE.

Ancther special purposc usc of DISTRB is to compute inputs
for successive MATEXP cases without requiring a control card for
each case. This is done by means of the flag ICONTR (Cols. 73-4 on
the control card). After a case is run, the first call flag NI is
reset to O, and case number K is increased by 1; then if ICONTR

is positive, DISTRB will be called at statement 212, where a new
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coefficient matrix A or time interval T may be calculated. If
ICONTR is negative, DISTRB is called ‘at statement 215, permlttlng
new initial conditions to be used.

The program listing for DISTRB that was used in calculating the
sinusoidal forcing function for the example in Sect. 3.3 is given
in Sect. 5.3. '

Another version of DISTRB.is used to calculate the sensitivity
of a system's time response to changes in the system's coefficient :
- matrix elements

aX L

da, .
1J

DISTRB controls the solution of the system equations and stores
those values of the solution vector whicﬁ are to be used subsequently
as forcing functions for the sensitivity calculations. To campute
the sensitivity to éij’ the jth row of the system solutioniiector
is stored and is later used as a forcing function to the i row of
the same system equations.15
After solving the system equations and étoring the i‘equired '

- elements of the response vector, the arithmetic average values of
the X's in each time interval'are calculated and stored (XT).

During each sensitivity run, DISTRB feeds the forcing function
into the system equations, and the resulting prlntouts of the X
vectors are the desired sensitivities.

For the sample program shown in the Forfrén listiﬁg, Sect. 5.3,
the system is forced by a unit ‘step input in row 117 (specitied on

the control card). Other control card inputs are:

JFLAG

]

>

ICONTIR = 1

Special input data read in by DISTRB are the row (IS) and column
(JS) numbers of the matrix elements for which sensitivities are to
be calculated, the number of time points (NTS), and the number of

sensitivity runs (NSENS), as follows:



1 11 51
Es@ [ s [ &x) | 15(2) [ 58(2) | (4x)F...thru J5(5) | wrr | neens|

I3 I3 I3 13 13 13

5.2.4 Subroutine VARCO

The VARCO (VARiable COefficient) subroutine can be used with
DISTRB to simplify the programming of problems with variable coefficient
matrix elements. In general, these elements are functions of both
time and the values of the solution vector X. VARCO is designed to be
called by DISTRB at the start of each computation interval and to
return the mean values of time (TX), and X, (XTR), for that interval.
The mean values of X are predicted by a first order extrapolation
scheme, as shown in Fig. 3. VARCO will also cause the initial time
step to be repeated, using the first try at calculating X(T) to
estimate the mean value at g. -DISTRB can then calculate the
coefficient values using TX and XTR. Use of this first-order

extrapolation scheme results in significant improvement in accuracy

over using no extrapolation.

5.2.5 Subroutine DFG

DFG uses the principle of the analog computer's Diode Iunction
Generator (see Fig. 4) and uses linear interpolation to approximate
arbitrary, single-valued functions of a variable. Data for DFG is
read in the first time it is called by DISTRB (i.e., when NI = 0).
The standard program provides for up to 8 functions with up to 32
coordinates each. ‘

On each successive call, DFG returns the functions ZD for
varying inputs XD. If an input XD(i) goes outside the specified
limits, the output ié a straight-line approximation of ZD(I) based
on the slope of the function at the boundary, and an error message
"DFG(I) RANGE EXCEEDED" is printed.

The iunpuls read lo by DFG are:

NDFGS Number of functions used

NPTS(8) Number of points in approximation for each function
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XP(32,8) Independent variable points
7ZP(32,8) Dependent variable points

The input format is as follows:

'Card No. 1 (I2, 8X, 8I3)

Column 1-2 11-13
T Repeat; Cols, 11-13
Format I2 8X I3 : . ‘
: T more times for
Variable | NDFGS | NPTS(1) NPTS(2) to (7)

Card No. 2, 3....etc. (8E10.3)

Column 1-10 11-20 21-30 31-L0 .

: - Repeat as required
Format E10.3 E10.3 E10.3 E10.3 | for DFG(1); Max.
Variable | X0(1L,1) | z8(L,1) | x0(2,1) | zp(2,1| & mumbers per card

NOTES: 1. When all data for DFG(1l) has been entered, start
DFG(2) data on new card; etc.

2. Enter independent variable points XP in order,
progressing from most negative to most positive
values.

3. F Format entries (with decimal point) may be used.

5.2.6 Subroutine TRLG

TRLG (TRansport LaG) is described in some detail in Sect. 3.5.
The input functions XT (e.g. fluid temperature) and the mass flowrates
W (in terms of either mass/time, unity for full flow, or some
percentage of full scale) are supplied by the calling program DISTRB,
and the lagged functions ZT are returned by TRLG. On the first call
of . TRLG (when NI = O), the following input data is read in:

NLAGS Number of functions used

TI(6) Initial value of transport lag time for each function

WMIN(6) Minimum expected value of mass flow W for each .function

The program is set up assuming that subroutine VARCO is also
called by DISTRB. VARCO has a restart feature which repeats the
initial time step calculation; thus the TRLG functions will not'be
updated on Lhe second call., I VARCO 1s not used, thils second call
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omission may be deleted by removing statement 33 in the TRLG program.
The input format for TRIG is:

Card No. 1 (I2)

Column 1-2

Format I2

Variable NLAGS

Card No. 2 (6E10.3)

Column 1-10 Repeat 5 more

Format £10.3 times for

Variable TI(1) '”?I(?inim(é).

Card No. 3 (6E10.3)

Col 1-10 Repeat 5 more

rFormat ElO.3' times for

Variable WMIN(1) WMIN(2)7'~(6)
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5e3 FORTRAN LISTING OF PROGRAMS

$IBFTC MAIN DECK

NV OO O C

TOOCON OO OO OO OO O OO OO NN OO N0 NN OO0 N

PROGRAM MATEXP FOR THE 7090 - FORTRAN 4

THIS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST
ORDERs SIMULTANEOUS DIFFERENTIAL EQUATIONS W/ CONSTANT COEFFICIENTS

OF THE FORM DX/DT # AX + Z«
THE METHOD IS PAYNTER-S MATRIX EXPONENTIAL METHOD

THE SOLUTION IS GIVEN FOR INCREMENTS OF THE INDEPENDENT
VARIABLE (T) FROM TZERO THROUGH TMAX

COMPUTES MATRICES C # EXP(A%*T) AND
HP # (C-1)*A INVERSE
SOLUTION X(N*¥T) # CH*X((N—=|)*¥T)+HP*Z((N—-1)*T)
SERIES CALCULATION OF C AND HP MONITORED TO
ASSURE SPECIFIED SIGNIFICANCE.
IF T 1S REDUCED FOR -C AND HP. CALCS.s
ORIGINAL ARGUEMENTS® ARE RESTORED BY -
CU2¥T)#C(Ty*C (T
HP (2% T)#HP( T)+C(T)*HP(T)

OUTPUT FROM THE PROGRAM IS PRINTED AT INTERVALS PLTINC.

~THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT

INPUT FOR THE PROGRAM CONSISTS OF °
'~ " ONE CONTRCL CARD :
THE COEFFICIENT MATRIX A (UP TO 60 X 60) . DIM
THE INIT1AL CONDITION VECTOR X
A FIXED DISTURBANCE VECTOR Z

A VARYING Z CAN BE GENERATED BY DISTRB
VARIABLE COEFFICIENT EQUATIONS MAY BE SOLVED BY APPROPRIATE
FUDGING OF THE DISTURBANCE FUNCTION SUBROUTINE.

:CONTROL CARD INPUT INFORMATION

NE#NO. OF EQUATIONS (I2)
LL#COEFFe« MATRIX TAG NCe (12)
P#PRECISION OF C AND HP (F|0+0) - RECOMMEND |«0E-6 OR LESS
TZERO#ZERO TIME (FIQ.0)
T#COMPUTATION TIME INTERVAL (FI10.0)
TMAX#MAXIMUM TIME (F1D0.0)
PLTINCH#PRINTING TIME INTERVAL (FI0.0)
MATYES#COEFF. MATRIX (A) CONTROL FLAG (I2)
I#USE PREVIOUS A AND T
2H#READ NEW COEFF.S TO ALTER A
3#READ ENTIRE NEwW A (NON-ZERO VALUES)
4#DISTRB TC CALCe. ENTIRE NEW A
5#READ SOMEs DI'STRB TO CALCe OTHERS
6#DISTRB TO ALTER SOME A ELEMENTS
ICSS#INITIAL CONDITION VECTOR (XIC) FLAG (12)
[#READ IN ALL NEwW NON-ZERO VALUES
2#READ NEW VALUES TO ALTER PREVICUS VECTOR
3¥USE PREVIOUS VECTOR
CLHEVECTORHD
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10

101

9

95

0

2

Ll

E#USE LAST VALUE OF X VECTOR FROM PREVIOUS RUN
JFLAGH#FORCING FUNCTION (Z) FLAG (12)
| THRU 4#SAME AS FOR I1CSS FOR CONSTANT 2
S#CALL DISTRB AT EACH TIME STEP FOR VARIABLE Z
I TMAX # MAX. NCe OF TERMS IN SERIES APPROX.
OF EXP(AT)s (13)
LASTCC # NON-ZERD FCR LAST CASE (I1)
112 # ROW NOe OF Z IF ONLY CNE NON-ZERO,
OTHERWISE #0 (12)
ICONTR - FOR INTERNAL CONTROL CPTIONS (12)
O#READ NEW CONTROL CARD FOR NEXT CASE
I#GO TO 212 CALL DISTRB FCR NEW A OR T
~1#G0 TO 215 CALL DISTRB FCR MEW I.Ce-5
VAR # MAX. ALLOWABLE VALUE OF LARGEST CCEFF. MATRIX ELEMENT * T
(RECOMMEND VAR#! +0) (F6a0)

DIMENSION A(60+60)9sC(60+60)9sHP(60s60) sQPT(60+60) DIMENS
I X(60)sY(60)92(60)sXICI60),TQP(60) CIMENS

COMMON CsHP sAsQPToX9ZsY s ITMAX 3sKKsLL 9y MMy
FJJFLAGIXICoNI s TIMEsTMAX s TZEROZNESTQP 4Ty
21 1ZsICONTRSPLTINCIMATYES Y ICSSyJFLAGHPLT

K#CASE NUMBER

NI#0 ON 1-ST PASS. SET TO | ON I-ST CALL OF OUTPUT.
K# 1

NI#0O

READ (5.100) NF sl | sPoaTZFERO T s TMAX sPLTINC ¢MATYES» ICSSy
| JFLAGs ITMAXsLASTCCs11ZsICONTRsVAR
FORMAT(2(123s3X)95F 1003312913911 5212sF64C)

COEFFICIFENT MATRIX INPUT

GO TO (339932523243 )sMATTES

DO 90 1#1 4NE

DO 90 J#I| sNE

A(IsJ)#0eN

IF(MATYES=-4)99+3499

DO 91 1411379

MATRIX ELEMENTS 5(RCWs COLUMN, VALUE)

ALL I AND J ENTRIES ON CARD MUST BE NON-ZEROC.

A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ INe.
READ (5,101) Il sJl oDl 9129 J29D25139J3sD39149J4,4,D4
I ORMAT (4(213sE12631)

IF(I1)3+3492

ALT!J1i#DI

A(T12,J2)V#D2

A(I34J3)#D3

AlI4,J4)#D4

INITIAL CCNDITION VECTOR XIC INPUT

GO TO(4s120969556)191CSS

DO 93 I#!4NE

XIC(IV#0.0

DO 94 I#1,15

ALL ROW (I) ENTRIES MUST BE NON-ZERO

A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN.

READ (5,95} MMsT 11 oDl i1s112sD125113,013531149D14,115sD15
FORMAT(I2s5(134E12e3))
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IF (111)696496
96 XIC(III)#DI|
XICUII2V#D12
XIC(II13V#D13
XIC(I14)#D 14
94 XIC(IIB)#DIS

5 MM#0
DO 7 I1#I1 sNE
7 XIC(I)#0.0
6 IFL{ICSS-5)815214,81
81 DO 82 I#!4NE
82 X(Ij#XIC(I)
214 IF(MATYES-3)2134,2139212
212 CALL DISTRB
213 JJFLAGH#0D
QPTMP # MAXe. PERMISSIBLE ELEMENT OF QPT FCR 8 DECIMAL COMPUTER
MATRIX CALCe LOSES SIGNIFIGANCE IF LARGEST
ELEMENT IN SERIES APPROX. MATRIX QPT IS
GREATER THAN P*|.0F8
QPTMP#P* | «0ES8

WRITE (6s211) KsNEsPsTs
IPLTINCsMATYESsICSSsJFLAGsICONTR s ITMAX I I1ZsVARSQPTMP

21 1 gFORMAT ( I 2ZHIMATEXP CASE,I3/17H NOe OF EQUATIONS,
113720H SPECIFIED PRECISIONsFI1248/6H TIME »-
28HINTERVAL,F|1848/15H PLOT INCREMENTsF!7e8//
316H CONTRCL FLAGS =/1H 35Xs6HMATYES,14/1H &
45X s4HICSS 16/ 1H s5Xs5HIFLAG 15/ 1H $5X36HICONTR, 14/
534HOMAX e TERMS IN EXPONENTIAL APPROX.sI15/
613H SINGLE Z ROWsI14/20H MAXe. ALLCWABLE A#DTsF943/
727H MAX. ALLOWABLE QPT ELEMENTsF!l143)

PLTINCHPLTINC#0.9999

JFK#0

IF(MATYES-1)20,20,806

SCAN MATRIX FOR MAXe AND MIN. NON-ZERQO ELEMENTS.
806 IMAX#I

JMAX# |

AMAX#ABS (A( 1))

DO 40! I#14NE

DO 40! J#I| sNE’
. IE(AMAX~ABS (A(I14+J)))4025401 540!
402 AMAX#ABS (A(1sJ))

IMAX#I
, JMAX#J
401 CONTINUE

IMIN#IMAX

JMIN#IMAX

AMIN#AMAX

DO 4109 1#1 4NE

DO 409 J#I1 sNE ,

IF(A(IsJ)) 407+409+407
407 IF(ABS (A(I+J))=-AMIN) /108,40%9409
408 AMIN#ABS (A(I,J))

IMIN#I

IJMIN#J



409 CONTINUE
RATIO#AMAX/AMIN
C AMIN # MINIMUM NON-ZERO ELEMENT
I STOR#D
ADT#AMAX*T
DO 403 I#1411
IF(VAR-ADT) 41354045404
413 ISTOR#ISTOR+I
403 ADTHADT*De5
404 THADT/AMAX
COMPUTATION INTERVAL T 1S HALVED ISTOR
TIMES (10#MAXe) SO MAXe ELEMENT IN A%*T
IS LESS THAN VAR, :
WRITE (69405) IMAX s UMAX s ALTMAX s JMAX) s ADT 5T s
I IMINSUMINSA(CIMINGJMIN) 4RATIO
405 FORMAT (3 1HOMAXeCOEFFe MATRIX ELEMENT # A(sI2s1Hs5I12s3H) #»
I. E15e4/13H MAXs AXDT # ,F12e8s2Xs | 4HWITH DELTA T #4F154.8/
230HOMINIMUM NON-ZERO ELEMENT # Als12+s1HesI?2+3H) #sEI1544/
318H RATIO AMAX/AMIN #9E15.4)

[aNaXs)

IF(ISTOR-10)8s410,5410
410 WRITE (69411)
41 |QFORMAT (34HOA*DT STILL GREATER THAN ALLOWABLE,
119H AFTER 10 HALVINGS.)
GO TO 37 .
C CALCULATION OF MATRIX EXPCNENTIALS C AND HP
8 DO 9 I#I1»NE
DO 9 J#1sNE
g C(IsJ)#Do

DO 10 I#I1sNE
IN CtIeTI#!a

C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS
IF (JFLAG-4)48,51,48
48 DO 49 I#1sNE
DO 49 J#I1sNE
49 HP(IsJ)#Do

DO 50 I#IsNE
50 HP(IsI)#T

p]

51 PF#Qa.0

DO 11 I#I4NE
DO Il J#IsNE
1l QPT(IsJ)I#CIIsJ)

[aNaRe!
=
o}
=

AL#140

N

12 DO 16 KL#I| s ITMAX

KLM#KL
ALL#T/AL
AL#AL+1.0
TALLL#T/AL

FORM THE MATRIX EXPONENTIALS CHEXP(A%¥T) AND HP#((C-1)*A INVERSE)



ity 8

CO 18 I#!,,NE

C
C
DO 13 J#!14NE
TQP(J)Y#0e0
DC 13 KX#! 4NE
13 TQPIL#TAP(JY+QPT (I sKX)*A (KX s J)
C
DO 18 J#I sNE
18 GPT(IsJI)#TQP{J)*ALL
C
- QPT#MATRIX TERM IN SERIES APPROXe #((A*T)¥%K)/K FACTORIAL
C ’ o 4
DO 44 I#1sNE
DO 44 J#I oNE
G4 CUIsIIHCIT» DI+QPT (T d) -
C
IF (JUFLAG-4)454547445
C

45 TF(ITMAX-KL)&47 474145
145 DO 46 I1#| sNE
DO 46 J#|sNE
46 HP(IsJ)#HP (1 J)+QPT(IsJ)*TALLL

FIND MAX ABS ELEMENT IN QPT AND CALL IT PMK

[aNaNaEaNA

LARGEST QPT ELEMENT USUALLY IN ROW IMAXs COLUMN JMAX
47 PMK#ABS (QPT(IMAXsJMAX)) o

IF(QPTMP-PMK) 83,583,502
502 IF(PMK-P) 406406416 :
C SCAN OTHER QPT ELEMENTS ONLY WHEN QPT(IMAXs JMAX) 1S LESS THAN P
406 DO 14 I#IsNE ‘

DO 14 JU#IsNE

I 4 PMK#AMAXIT (PMKsABS (QPT(1sJ)))
[F(PMK=P) 17517516

C .
C PRESENT MAX. QPT ELEMENT SHOULD BE LESS THAN
C HALF PREVIOQUS MAXe. TO INSURE CONVERGENCE
|7 IF(PE-2+%PMK) 1621921
6 PE#PMK
C :
21 WRITE (6+200) KLM
C

200 FORMAT(44HONO. OF TERMS IN SERIES APPROXe OF MATEXP # ,12)

IF(ITMAX-1)20+20,538
538 IF(KLM=ITMAX) 414,83,83

C

83 T#T*[Qe5
JFK#JFK+1
IF(JFK=71303+304+304

304 WRITE (65,305) PMK

305 OFORMAT(32HO7 TRIES AT HALVING T NeGes PMK#sF12.6)
GO TO 37

303 WRITE (6s210) KLMsPMK T

210 FORMAT(2IHOMAXe. ELEMENT IN TERM,13,8HOF QPT #sEl 1 e3/
| 35H TRY HALVED TIME INTERVAL DELTA T #sFi5.8)}
GO TO 8
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ISTOR#ISTOR+JFK

ORIGINAL ARGUMENTS OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN O

IF(ISTOR) 205205416

WRITE (6s5415) ISTCR
FCRMAT(26HJTOTAL NCe OF T HALVINGS #,13)
DO 417 KR#1,1STOR

[FIJFLAG=4) 41954189419

SKIP HP CALCS. FCR HCOMOGENECUS EQUATIONS
DO 420 1#1sNE

DO 421 J#¥I1,HNE

TQP(J)#0e0

DO 421 KX#]NE
TQP(J)#TOP(J)+HP(I,KX)*C(KX9J)

DC 420 J#I1LNE

HP (I s J)#¥TQP(UIY+HP({IsJ)

DO 430 I#!1,NE
DO 430 J¥#I14NE
QPT(IsJ)#0.0
DC 431 I#I1,4NE
DO 431 J#1 4NE
DC 431 KX#|sNE
QPT(IsJI#QPT(I9J)+CLIsKX)*¥C(KXsJ)
DO 432 I1#1sNE
DO 432 J#I4NE
CiIsJI#QPT(1,4J)
T#2e0%T

C{IsJ) IS THE MATRIX EXPONENTIAL CHEXP(A*T)
AND HP(IsJ) IS THE ((C-I)*A INVERSE) MATRIX
WE READ (OR CALL SUBROUTINE FOR) DISTURBANCE VECTOR

TIMEX#TZEROD

MLTHD .

GO TO (2649121327 +25955)43JFLAG
IF(MATYES-3)2153215427

CALL DISTRB

11 Z2#112

GO T0 27

DO 97 I#I 4NE

Z{1)Y#0.0

DO 98 I#I1415

ALL ROW (1) ENTRIES MUST BE NON-ZEROD

A BLARK CARD 1S REQUIRED AFTER ALL ELEMENTS ARE READ INs
READ (5495} KKeI219D219122s022+1239D239124sD2441254D25
IF(I121)27527,78

Z(121)y#D21

20122V#D22

2(123)#D23

Z(124)#D24

Z(125)#LC25

KK#0
CO 28 I#!sNE
Z{1)1#0.

ON 1-ST CALL OF OUTPUT NI SET TO |
CALL OUTPUT
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COMES THE EQUATICN SOLUTION BASED ON
XCNT)YEMEX(NT=1)+((M=T)A INVe)*¥Z(NT-|)

IF (JFLAG=4)29454,56

DO 53 1#!NE

YOI)HC(I sl )%X( 1)

DO 53 J#2sNE

YOIYAY(I)+C (Tl #X(J)

IF(I12)52452,702

IF(JJFLAG)30929930

CALL DISTRB

IF(IIZ)700+700s54 ‘
ONLY ONE Z~-TERM CALC. IF 1i1Z IS GREATER THAN
DO 703 I#I1 sNE

Y(I)#Y(I)+HP(191IZ)*Z(IIZ)

GO To 52

DO 32 I#IsNE

YCOIIHC(I o L) RXCII+HP (I 1) %2 (1)

DO 32 J#24NE
Y(I)#Y(I)+C(I,J)*X(J)+HP(I,J)*Z(J)

DO 31 I#IsNE

XCIY#Y (1)

TIME INCREMENT OF THE SOLUTION HAS JUST BEEN
PLOT AND PRINT IF PLTINC INTERVAL HAS ELAPSED

JIFLAG# |

TIME#TIME+T

PLT#PLT+T
IF(PLT-PLTINC) 35433533
CALL OUTPUT

"PLT#0Oo

IF(TIME-TMAX) 2453737
IF(LASTCC) 40534540
K#K+ |

NI#0

PLT#0e0
IF(ICONTR)ZIS,I92I2
sTopP

END

ZERO

FOUND
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SUBROUTINE OUTPUT

DIMENSION A(60+60)9C(60+60)sHP(60s60)sQPT(60,60)
IX{60)sY(60)sZ2(60)sXICLEO)sTQP (60)

COMMON CsHPsAsQPTsX9ZsYs ITMAX sKKsLL sMM>
I JJFLAGYXICHNIsTIME s TMAX s TZEROSNEsTQP T
211ZsICONTRsPLTINCsMATYES»ICSSsJFLAGSPLT

IF(NI)I2s1 42
I NI#I

NC#!Q

DO || NCM#1+51,410

WRITE(Es200) LLs ((A(I9sJ) s JENCMSNC) s 1#| sNE)
200 FORMAT (2HOA»I2/(1H S IPI0E!I1e3))

IF(NE=NC) 10s10s1]
11 NCHENC+1D

I0 NC#Ip

DO 21 NCM#1+51,10

WRITE(69201) ((C(I9sJ) s J¥NCMeNC) 9sI#! 4NE)
201 FORMAT (2HQOC/(IH 4I1PIQEl143))

IF(NE-NC) 20520421
21 NCE#NC+ 1IN

20 NC#I0
DO 31 NUMEL«SI1410
WRITE(69202) ((HP(I'9sJ) sJHNCMINC)sI#I sNE)
202 FORMAT (3HOHP/(IH $IPIQEl143))"
IF(NE-NC) 292531
31 NC#NC+I10

2 WRITE(65203) TIMEs(X(1)sI#1sNE) |
203 FORMAT(4H T #,IPEIDe3s4H X #, JUIH 55Xs 1DE1143))
IF(JFLAG.NE.5) GO TO 3Q

WRITE(65204) (Z(1)sI#lsNE)
204 FORMAT(6HOZ # sI1PIOEI143/(IH 35XsI0Ell43))
30 RETURN
END

DIMENS
DIMENS
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SUBROUTINE DISTRB
DISTRB FOR REPCRT EXAMPLE

DIMENSION A(60960)9C(6D’6U),HP(60960)QOPT(60960)9
IX{60) sY(6D)sZ(60)sXICLE0)sTQAP(6D)

COMMON CsHP sAsQPTsXsZsY» ITMAX sKKsLL sMM,

f JUFLAGoXICoNI sTIMEs TMAX 9 TZEROSNE s TQP Ty
21|Z9ICONTR,PLTINC;MATYESoICSS,JFLAG;PLT‘

TX#TIME+Qe5%T
Z(1Y#SIN (240%TX)
RETURN

END

$IBFTC DSENS DECK

C

20

[a XA

[aNa

21

102

SUBROQUTINE DISTRB

DISTRB FOR TIME RESPONSE SENSITIVITY CALCS.
DIMENSION A(60s60)sC(60+60)sHP(60s60)»QPT(60s60)
IX(60)sY(60)92(60)sXIC(60)sTQP(6D)

COMMON Cs>HP sAsQPTsX9Z9Y s ITMAX sKKsLL s MM

| JJFLAG s XICoNI s TIME s TMAXsTZEROSNEsTQP s T
2112sICONTRsPLTINCYyMATYES»ICSSsJFLAGSPLT
DIMENSION IR(5)s1S5(15)sJS(15),IQ(30)4XT (51000
IXSEN(15530) sXPSI(30)

IF(NI)Isls2 4

IF(ICONTR+2)5 9443

IF(ICONTR+2)7 66

INITIAL INPUTS AND CALCS.

READ (54 100)(IS(I)sJS(I)sI#I1s5)sNTIsNSENS
FORMAT(6(213s4X))

NDT#1

ICONTR#=-2

NTIMO#NTI -1

DO 8 I#IsNE

Z(I1)#0.0

DURING SOLUTION OF SYSTEM EQUATIONS

DO 20 I#1sNSENS

ICO#JS(1)

XT(IsNDTI#X(1CO)

NDTH#NDT+ |

GO TO 30

JUST AFTER SYSTEM SOLUTION IS COMPLETED
1ST#0

ICONTR#-3

DO 21 I#!1,NSENS

DO 21 J#|4NTIMO

XTI s J)#DeS%¥ (XTI J)+XT(LsJ+11))

XT # AVG VALUES OF SENSITIVITY EQN INPUTS
WRITE(69102) ‘
FORMAT(3HOXT/Z(1H 4I10E!143))

AFTER COMPLETING EACH SENSITIVITY RUN -

ISTHIST+1
IF (IST-NSENS) 31,3132

((XTCTIoJd) o J#I sNTI) 9 I#1sNSENS)

DIMENS
DIMENS

29880105
29880107
29880108

29880113
29880115

29880117

29880123

29880201
298802172

29880203
29880205

29880209
29880211

29880213
29880214

29880215
29880217
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31
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41

30
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GO TO NEXT CASE

[CONTR#0D

PLTINC#TMAX

TMAX#0.0

NI#I

GO TO 30

LIZ#IS(LIST) :
COLe 11Z OF HP MATRIX MULT. BY 2
WRITE(6s101) : IS(IST) $JS(IST)
FORMAT ( IBHOSENSITIVITY TO A(9139IH99139|H))
TIME#TZERO

NDT#|

DO 41 I#I14NE

X(I)#0.0

Z(1)#0.0

JJIFLAG#Q

DURING EACH SENSITIVITY RUN -
Z(IIZ)#XT(ISTyNDT)

NDT#NNT + |

RETURN

END

29880219
2988022 |

29880301
29880303

29880305

29880309

29880315
2988U317
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12
30

SUBROUTINE VARCO (XTRsTX)

FOR USE WITH DISTRB AND MATEXP FOR
VARIABLE Z-Se. GIVES I-ST ORDER EXTRAP.

FOR AVGe X AND TIMEs PLUS RESTART
ON |-ST INTERVAL. DISTRB FORM #.

CALCe MATRIX COEFFe-S,
CALL VARCO(XTRsTX)

CALCs Z-S USING XTR{I)-S AND TX

DIMENSION A(60+60)sC(60+60)sHP(60,60)sQPT(60560)
IX(60)sY(60)9Z2(60)sXIC(60),TQP(60)

ETC.

IF NI#D

COMMON C,HP9A9QPT,X’Z,Y,ITMAX,KK;LL,MM,
I JUFLAGs XICoNI s TIME s TMAX s TZEROZNE9sTQP s Ty

DIMENSION XTR(60)sXL(60)

IFINI)Isls2
FIRST ENTRY
NV#I

" TXHTZERO+0 65T

DO 10 I#I|4NE

XTREII#XIC()

GO To 30

IFINV)3s354

SECOND ENTRY

NV#0

TIME#TZERO

PLT#0.0

DO || I1#I|eNE

XLIT)Y#XIC(])

XTRUID#HDaB#* (XLIT)+X(1))
X{TY#XIC(I)

GO To 30

ENTRIES AFTER SECOND
TX#TIME+0e5#T

DO 12 T1#I|sNE ’
XTROD)#XCI)+0e 5% (X(1)=XL(I))
XLOTY#X(1)

RETURN

END

21 1Z5sICONTR, PLTINC;MATYESoICSSoJFLAG;PLT

(TIME) .

26880101
29880103
29880105
29880107
29880109
298801 | |
29880113
29880115
29880117
DIMENS

DIMENS

29880118

29880120
29880121
29880122
29880124
29880202
29880204
29880206
29880208
29880210
29880212
2988021 4

29880216
29880218
29880220
29880222
29880224
29880301
29880303
29880305
29880307
29880309
2988031 I
29880313
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100

7
101
86

SUBROUTINE DFG(XDs2ZD)

EQUIVALENT 70 8 DFG-S WITH UP TO 32
POINTS EACHe CALLED BY DISTRB.

INPUTS ARE
NDFGS NO. OF DFG-S USED
NPTS NO. OF POINTS IN EACH DFG
XP INDEPENDENT VARIABLE DFG POINTS
ZP DEPENDENT VARIABLE DFG POINTS

XD IS THE INPUT VARIABLE AND 2D THE QUTPUT

DIMENSION A(60+60)sC(60+60)9HP(60+60) sQPT(60560)
IX(60)sY(60)+2(60)sXICI60)sTAP(60)

COMMON CoHP sAsQPTsX9ZsY s ITMAX KK sLL 9y MM,
FJJFLAGsXICsNI s TIME s TMAX s TZEROSNEsTQP 4T
211 ZsICONTRsPLTINCsMATYES» ICSS9yJFLAGSPLT

DIMENSION XP(32+8)9ZP(3298)3sSL(32+,8)sNPTS(8)»
1JP(8)+ZD(8)sXD(8)

IFINI) 19241
FIRST CALL COMP.

READ (5,100) NDFGSsNPTS
FORMAT(12s8X5813)

DO 86 I#I,NDFGS

NP#NPTS (1)

READ (5s101) (XP(JsI)eZP{Js1)sJ#] sNP)

FORMAT(8E1De3)
WRITE (6.:200)

2000FORMAT (4HQODFGs 13,1 7H XP AND ZP INPUTS/

FOITHD s 4(2E12e494X)) )

DO 3 1#] sNDFGS

MENPTS(I)~1

DO 3 J#I oM
SLIJsINVA(ZP(J+1 s 1)=ZP(Js 1))/ (XP(J+]1 s )=XP(JsI))

DO 5 I#I1 ¢NDFGS

DO 4 J#2+32
LEACXDUL)I=XP{Jsl) 15544
CONTINUE

JPUI)Y#J

CALCSe MADE EACH TIME

DO 6 I#1 sNDFGS

J#IP(1)
IF(XD(I)=XP(JsI))IDs!!ls12
IF(XDOI)=XP(J=1s1)) 13514415
S J#J—|

IF(J=1)16s16s10

J#2

GO TO 19

ZDCIYH#ZP(J=141)

Go To 6

JH#I+ |

IF(NPTS(I)=J) 17518418

[s (XP(JsI)sZP(Js1)sJ#I4NP)

29880105
29880106
29880107
29880108
29880109
29880112
29880113
29880110

298801 i 4
29880115
29880116
DIMENS
DIMENS

29880117
29880118
29880119
29880121
29880122
29880123
29880124

29880125
29880201
29880202

29880204
29880205

29880207
29880208
29880209
29880210
2988021 |
29880212
298802173
29880214
29880215
2988021

29880218
29880219
29880220



JENPTS( 1)

GO TO 19
ZD(IYHZPU U, 1)
GO TO 6
WRITE (69102)

FORMAT (4HODFGs 13,41 6H RANGE EXCEEDED )

ZD(I)#ZP(J—I,I)+SL(J—lyI)*(XD(IW—XP(JjI)I))

I
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JP(I) STORES VALUE. OF XD LOCATION

TO USE AS FIRST TRY NEXT

JPOI)#J

RETURN
END

TIME.

29880222
29880223

29880224
29880225

2988030
29880302
29880303
29880304
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$IBFTC TRLAG DECK

hYeEaNaNaNaNaEANANa NS A NARA]

aNaNaXa)

@l

DN

N OO0

21
100

101

23

24

22

20

®¥uxux NOTE - IF A RESTART FEATURE IS USED (WHERE THE INITIAL TIME
STeEP CALCULATION 1S REPEATED)s THE FLAG NV AND STATEMENT 33 WILL
OMIT THE TRLG CALCe THIS I-ST CALL OMISSION MAY BE DELETED BY

33
31

26

SUBROUTINE TRLG(XTsWs2ZT)
VARIABLE TRANSPORT LAG GENERATOR - FORTRAN 1V

USES UP TO 300 POINT APPROXIMATION FOR
UP TO 6 VARIABLES. USES INVENTORY CALC.

INPUTS FOR EACH LAG (TOTAL # NLAGS)
le INPUT FUNCTION XT(I)
2e¢ MASS FLOWRATE W(I)
3¢ INITIAL VALUE OF LAG TIME TI(I) .
4o MINIMUM EXPECTED VALUE OF MASS FLOW WMIN(I)

OUTPUTS ARE LAGGED FUNCTIONS zT(I)

DIMENSION A(60560) sC(6N+6N)sHP(60+60) sQPT(60:60)
IX{60)sY(60)sZ(60)sXIC(60)sTQP(60)

COMMON CsHP sAsQPT9X3ZsY s ITMAX sKKsLL +MM,

| JUFLAG o XICoNI s TIME s TMAX s TZEROSNE»TQP T
21lZsICONTR;PLTINC,MATYES9ICSS;JFLAG,PLT

DIMENSION XT(6),W(6)9TI(6)9WMIN(6)9ZT(6);X$(300:6)9
IPS{300s6) sKT(6) 9 JT(6) s XIMP(6) s IMP(6) s NUMP (8)

NI # |-ST CALL FLAG (# 0 ON |=-ST CALL)
T # COMPUTATION TIME INTERVAL

IFINII20s21420

FIRST CALL COMP.
READ(5+100) NLAGS,TI,WMIN
FORMAT(I12/(6E10e3))
WRITE(6s101) TIsWMIN
FORMAT (26HOTRLG INPUTS - TI AND WMIN/(1HOs6E1845))
DO 22 I#1 sNLAGS
XIMP{I)#1 .0

XSO I)AXT(I)
PS(HsI)AW(II*TI(])
XNSP#PS(1sI)/(WMIN(I)*T)
DO 23 M#1410
PI#XJMP (1) ¥XNSP
IF(300.0-P1)23424,424
XIMPLIY#XIMP(I)+1.0

JMP (I)#IFIX(XJIMP (1))
CKT(I)#2
JTCI)#1

NJMP (1) #1
NV#—1

CALCS+ MADC EACH TIME
NVH#NV+ |

REMOVING STATEMENT 33.
ITF(NV)I3]+324+3]1

DO |7 I#IsNLAGS
IF(NJMP(I)—JMP(I))26;27927
NIMP (1) #NJIMP (1) +1

29880105
29880106
29880108
29880109
298801 10
298801 | |
29880112
29880114
DIMENS
DIMENS
DIMENS
DIMENS

29880121 .

29880123
DIMENS
DIMENS
29880202
29880203
29880204
29880206
DIMENS
29880209

29880212
29880213
29880214

29880216

29880218
29880219



27
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. GO TO 17

NIMP(T)#I

KEKT(I)

JE#IT(I)

XS(KsT)y#XT(I)
PSIKsI)#XIMP (L) #W(I)%T
J#NOe OF ELEMENT AT EXITe K#NO. AT ENTRANCE
IF(PS{Js1)=-PS(KsI))1e2s3
ZTOIYAXS(Js 1
IF(JU=-30016s797

JT IV #1

GO To 30°

JTUI #J+]

GO TO 30

COLLT#XS(Js1)
COLLP#PS(J,s1)

DO 15M#1300
IF(J-300185+95S
J#0

JEI+I
PQ#COLLP+PS(Js1)

IF(PQ-PS(KsI)) 11512913
COLLT#(COLLT*#COLLP+XS(Js1)%¥PS(Js1))/PQ

COLLPH#COLLP+PS(Jy1)
ZTCI)#(COLLT#COLLP+XS(Js 1) *¥PS(J,1))/PQ
IF(J-300) 14516516

JTCL)#] -

GO TC 30

JTCD#J+1

GO TO 30

PS(JsI)VH#PQ-PS(Ks 1)

ZTCI)#(COLLT*COLLP+XS(JsTI*¥PS(Js1) )/ (COLLP+PS(Js1))

JTLT)I#J)
GO To 30

ZTCIY#XS(Ys 1)
PS(JyINV#PS(Js 1)=PS(K,yI)

IF(K~300)4+555
KT(I)#1

GO TO 17.
KT(L)#K+|
CCNTINUL

RETURN
END

29880220
29880221
29880222
29880223
29880224

29880301
29881302
29880303
DIMENS.

25880305
29880306
25880307
29880308
29880309
29880310
258803 |
DIMENS

DIMENS

29880316

29880319
29880320

DIMENS

29880401

29880402
29880403

29880404
29880405

29880407
29880408

29880409

29880410

29880412
25880413

DIMENS

29880416
2988041t 7
25880418
29880419
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