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The problem posed f o r  t h i s  t h e s i s  was the determination of the 

admittance and t ransfer  f'unctions of large,  solid-core electromagnets. 

The .effects.  of eddy currents .and hyste.resis were consider,ed fn deriving 

the functions'. Specifically,  , t@e study was concerned with the type of 

'niagnet employed , i n  nuclear physics research which requires  very precise 

regulation ( O . l $  , to 0.001$) of the magnetic f i e l d .  . . 

Although a number .of 'papers . . hive been wri t ten on eddy currents  

and hysteresis  i n  transformers, inductors, and rotat ing machinery, the 

r e s u l t s  are not d i r ec t ly  applfcable t o  a magnet which i.s .a par t  .of 'a 

closed-loop system. Most of the papers have been concerned with core 

losses  i n  e l e c t r i c a l  equipment. Therefore, the purpose of t h i s  paper 

i s  t o  consolidate and simplify the previous r e su l t s  f o r  the special  

case of 'a ,magnet i n  which the  var ia t ions  i n  f lux  density .are very wll. 

Eddy currents external of the i ron ( i n  c o i l  support and cooling p la t e s )  

were a l s o  considered i n  deriving the admittance and t ransfer  functions.  

There are ,  of course, other fac tors  besides eddy currents  which 

influence the dynamics of 'an electromagnet. One of these has been 

termed a "dewy-line" e f f ec t  by D r .  Bob Smith of the University of 

Californfa since, i n  some cases, the leakage inductance of the magnet 

winding combines with the winding capacitance t o  produce a "transport  

lag." According t o  D r .  Smith t h i s  e f f ec t  occurs primarily i n  high- 

voltage, low-current .magnet s which employ a . large number of ' turns i n  
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t he  winding. This paper, however, w i l l  be l imited t o  the study of 

eddy current and hys teres is  e f fec ts .  

This study originated during the design of an analyzing magnet 

regulator  for  the ORNL 63-inch cyclotron. The admittance of t h i s  

pa r t i cu la r  magnet was modified considerably by external eddy currents 

i n  the c o i l  support p l a t e s  (see Figure 18). Although consideration of 

only the  external eddy currents seemed t o  provide quite accurate 

ana ly t i ca l  resu l t s ,  it was known t h a t  in te rna l  eddy currents and 

hys te res i s  could a l so  a f f e c t  the admittance. Therefore, t h i s  study 

w a s  i n i t i a t e d  t o  determine the magnitude of these e f fec ts .  

The r e su l t s  of t h i s  paper should be of considerable importance 

t o  the designer of magnet control systems since eddy currents can 

modify great ly  the magnet admittance from tha t  usually assumed. Since 

t h i s  function i s  always "inside" the regulator loop, it has a large 

influence on the  design of the regulating system. In  Chapter IV it 

w i l l  be demonstrated t h a t  neglect of eddy current coupling can r e su l t  

i n  an unstable regulator .  The magnet t ransfer  function i s  "outside" 

the  loop of a current regulator a.nd does not affect  the s t a b i l i t y  of 

such a system. If eddy currents ex is t ,  however, t h i s  function assumes 

the charac ter i s t ics  of a rather  peculiar low-pass f i l t e r  and thus a ids  

i n  removing high-frequency variat ions from the magnetic f i e l d .  

I n  developing the admittance and t ransfer  functions the frequency 

response method has been employed rather  than the Laplace Transform 

since the r e su l t s  a re  somewhat simpler although l e s s  general. In k a p -  

t e r  I1 the  functions a re  derived fo r  various cross-sectional shapes of 



i ron.  Chapter I11 pre'sents some experimental r e s u l t s  from a cyl indri-  

ca l  core t e s t  magnet and from the analyzing magnet. In Chapter IV 

the  possible e f f ec t s  of eddy currents on the regulating system are  

cqnsidered . 
Most of the 'symbols employed i n  the 'analysis a re  more-or l e s s  

standard i n  the f i e l d  of e l e c t r i c a l  engineering. Where necessary, 

. . .  . 
.symbols -are defined i n  the  t e x t .  . . 

The rationalized MKS szstem ,of 'lqit.s.-i-s. used throughout tkie. . .  . . , . .  . . . 

. paper. . . 
. . . . 



-DEVELOPMENT OF 'MAGNET ADMI'ITAWCE AEJD TRANSFER F'UNC'I'IONS 

It ha's been common prac t ice  t o  assume t h a t  the  admittance of a 

'magnet winding was 

However, as w i l l  be shown, t h i s  i s  a very poor approxipation f o r  so l id  

core  magnets having low leakage inductance. 

I n  deriving the  admittance and t r ans fe r  functions i n  t h i s  chapter, 

t he  following conditions have been assumed: 

1. .The incremental permeability of the  magnet 'bore i s  constant 

f o r  s m a l l  v a r i a t i ons  i n  f lux.&ensi ty  ( B ) .  

2 .  The hysterests loop fo r  t h e > i r o n  core i s  e l l i p t i c a l  i n  shape 

( 1 )  f o r  small va r i a t i ons  i n  B . 

3 .  Flux i n  t he  magnet a i r  gap i s  uniformly distributed,and there  

i s  no f r ing ing  f lux .  

I n  order t o  determine the e f f ec t s  of eddy current coupling and 

hys t e re s i s ,  consider the  equivalent c i r c u i t  shown i n  Figure 1 i n  which 

t h e  subscr ipt  m r e f e r s  t o  the  magnet winding, and subscript  s r e f e r s  t o  

t he  shor t  c i r c u i t  winding o r  "shorted-turn." L1 and L2 a r e  the  leakage 
I 

Figure 1. Equivalent Circui t  of a Magnqt 
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. inductances of the .magnet %inding :and shorted turn, respectively, and' . . . . . . . . . .  . . . .  : . . .  - - .  . :. 
. . 

Pi. i:s the flux li,&q&$b&;~i"qm.. .%~dd..;:;N . . 
. .... . z.. s " . . 

The, equations describing'this circuit may be written as 

. . . . 
. .  . 'V,:=:I~(R, +jd1,) +jfi...P.:*.. . . . .  . . .  m .= %, . . .  '. . 

(1). O =  -j&P s i + .I,(R,. + jd2) . . . .  . 
. . 

. ' j  . . h = 1 1 : .  - NSIs) -. 
(where & is the reluctance of the magnetic circuit) or by eliminating 

Pi 9 

: , . .  V m =  &[%..+ ~~u(L~:+N~/R)] . m . . .  -juISNmNs/6? ' . .  , . 
. . 

' 2  ' . ' "  . . . .  . . .  . . 
, ' . 0 = -jGNiN,/~, : +  [R, + J U ( L ~  + N,/R )] ,,: , , '  , . . .  . . . . . . 

. . . . . . 
. . . . . . .  Let m = R,/Q . ,. 

. . . .  . . . , . . . . 

where R..; is' the iero frequency reluctance and Q, is a f4ction which, . . . . 

as will be .shown,. involves the effect of' internal eddy currents and 

hysteresis. ' . . .  . . 

If Q is set equal to one, Equation 3 will be recbgnized as the input 
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admittance of a transformer with a shorted second.ary, i .e., 

and i f  k < < 0.5 

It w i l l  be shown t h a t  se t t ing  Q = 1 is equivalent t o  neglecting in terna l  

eddy currents; therefore,  Equation 4- i . s .  the input admittance of a magnet 

considering only external  eddy currents i n  the c o i l  support and cooling 

.p la tes .  The normalized admittance of the 63-1 nch cyclotron analyzi ng 

magnet .(shown f n  Figure 18) was found. t o  be i n  very good agreement with 

Equation 4. 

The t ransfer  function of a magnet .may a lso  be obtained from 

Equation 1 with. the following resu l t :  

where B 
g Pg, and A are ,  respectively, the ai: gap flux density, t o t a l  

€5 

f l u x  and cross-sectional area.  Under the assumed conditions fig = pi. 

I f  i n t e rna l  eddy currents and hysteresis  a re  again neglected ( Q  ,= l), 

Thus, the external eddy currents i n  a shorted turn attenuate the e f fec t  

of var iat ions i n  -I, f o r  .ds =- > 1/(1 .+ k)  . 
In order t o  determine the e f fec t  of in te rna l  eddy currents and 

hys teres is  on the dynarriics of a magnet consider the magnetic c i r cu i t  



in Figure 2. It is assumed that the pole tips are,covered with a 'very . . .  . . 
. . . . . . .  . :. . .. . 

'thin .sheet of the hypothetical material .having infinite permeability . . ..... . . .  . . . . .  . . . .  

and zero conductivity( '). ' Thj.:s as,s$tion permits the no*-unif o m  flux 
. . 

in the core to have a uniform distribution in the air gap. If'a rigor- 

ous solution is. attempted.without the :ab.ove.assumption, the .solution 

involves a series of Bessel functions, and even if the resulting - 

boundary value problem cpuld be solved, it would be of doubtf'ul practical 

value due to its. complexity. . . 

Figure 2. A Cylindrical Core Magnet. 

Under the above conditions' it cap be shown that the axial flux 

,( 3); density in the cylindrical. iron poles is .given .by 



where Bi = f lux  density a t  radius r, Ba = f lux  density a t  the surface 

of the  cy l indr ica l  pole, y = JG , and J0( yr ) i s  the zero -th order 

Bessel function of the  f i r s k  kind. In the a i r  gap 

where F = mmf. act ing on the magnetic c i r cu i t ,  

and 

where 

Therefore 2 Pg = Bi = na B 
g 

and 



The zero-freduency reluctance of the  magnetic c i r c u i t  i s  

Therefore, from Equation 2 

R i  1 + -  
R o  - Q'= - -  pr k g  
CR L J ~ ( Y ~ )  (8) 

1 + 
p x  2 qx 

f o r  a cyl indr ical  core. 

A s  s ta ted  previously, assuming Q = 1 i s  equivalent t o  neglecting 

in t e rna l  eddy currents  since y = 0 fo r  a = O'and 

If hys te res i s  i s  neglected the Bessel functions involved i n  

Equation 8 w i l l  be recognized a s  the ber'and be i  functions; however, fo r  

the,purposes of t h i s  paper it w i l l  be advantageous' t o  employ the polar ' - 

where = a Jwipi 

Then 
2 5 7 - 9  Z M 1  

A graph of No and Q0 i s  shown i n  Figure 3 p lo t ted  a s  a function of 

4% where. 





2 
0. U \ l%=(@/2)  

The general shape of ' the No and €lo curves implies t h a t  a good approx- 

imation t o  the ~ m c t i o n  'Mo /go would be - 

This approximation has been checked.'in the range 0.0025 1 a/% 5 100 

and i s  indeed a very good approximation for,engineering purposes. The 

maximum e r r o r  i n  magnitude .i,s approximately three percent and i n  phase 

i s  about three degrees, both occuring ,a t  -cu/* --,. 3. . 

With No - = d l  + jcu/% ,, Equatioh 8 becomes 

/. . . ._ 
< . .  

$ .. 
F O ~  most large magnets 1 i/ir 1 c c 1 since ! i,/pr ig i s  the r a t i o  

g 

of core reluctance t o  a i r  gap reluctance, and t h i s  r a t i o  must be small . . 
i f  ,the magnet i s  t o  be e f f i c i en t .  Under t h i s  condition then 

1 For in t e rna l  eddy currents t o  a f fec t ,  appreciably,. the magnet dynamics, 

Q must be considerably l e s s  than one. A rough approximatkon of' the 

frequency a t  which in t e rna l  eady currents become important may then be 

obtained by assuming 

where % i s  the approximate frequency. I f  1 i/pr f c c 1 then 

must be much greater  than one f o r  the above t o  be t rue .  Then 



It i s  of some importance t o  note tha t  % i s  d i rec t ly  proportional t o  

pr, provided, of course, tha t  1 i/pr [ F c 1, while 4 i s  inversely 

proportional t o  pr. . . 
. . . . .  

It i s  not possible, i n  general, t o  simplify Equations 3 and 5 

i f  both in te rna l  and external eddy currents a re  considered. However, 

f o r  the  cyl indrical  core magnet with no external eddy currents (T, = 0)  

and ti /pr f c c 1 the following asymptotic expressions can be derived. 

and 

for  J Q ~  6 k.. 

It should- be emphasized tha t  the .  above. ge suIts,~,+re::ve.ry :''rough" I. 

approximations. ~owe'ver, since t h e  computations involved i n  more, exact 

expressions. are qui te .  lengthy, they should prove useful.  



To i l l u s t r a t e ,  i n  a more accurate manner, the e f fec t  of in te rna l  

eddy currents, consider the following :example fo r  a cyl indrical  core 

magnet . 
Let Tm = 1.9 sec. 

Ts = 0 

k .= 0.05 

a = 0.5m. 

t:l/lg = 50 

pr = 1000 

oi = 107 ho lm.  

Then CU, = 11785 

and 

A normalized Bode p lo t  of the above function i s  shown i n  Figure 4 along 

with a p lo t  of 'the function 1/(1 + j2o) which i s  the normali,zed admittance ,:. 

i f  'eddy currknts a re  neglected. 

The t ransfer  function fo r  the above example i s  

*m G ==: ' 1 
A g R o  1 + 0 . 0 5 d 1  + j785u 

A normalized plot  of thi 's function i s  shown i n  Figure 5. I f  .eddy currents  

a r e  neglected, G i s  of course a constant. It i s  evident from Figures 4 

and 5 t h a t  the in te rna l  eddy currents have a considerable e f f ec t  on the 

magnet dynamics f o r  t h i s  assumed .case., To i l l u s&ra te  the e f f ec t  o'f a 
* .  
"shorted turn", assume Ts = 0.48 seconds i n  the previous 'example. 
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Figure 4.  . Normalized Magnet Admittance f o r  an Assumed Case. 
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Figure 5 .  Normalized Magnet ~ r a n s f k r  Function f o r  Assumed Case. 



Then 

where 
1 Q =r 

1 + 0.05 41 + j785u 

The normalized values of Ym and G a re  plotted i n  Figures 6 and 7, 

respectively.  The external  eddy currents i n  the "shorted turn" have 

a ra ther  small e f f e c t  on the  magnet admittance i n  t h i s  par t icu lar  case. 

The t r ans fe r  function i s  affected t o  a greater  extent, but the e f f ec t  

i s  s t i l l  rather  minor. However, it should not be i n f e b e d  tha t  t h i s  
I 

i s  always t rue .  a 

To consider the  e f f ec t  of hysteresis  on the magnet admittance 1 

and t r ans fe r  functions, the  hysteresis  loop must, i n  some manner,, be 

l i ' nea r i t i e s  even on an incremental bas is .  several  authors have' suggested 
. . 

t h a t  the  hys teres is  loop may be assumed e l l i p t i c a l  i n  shape (1)(4)( .5)9 i n  . 

. . 

whkh case B .= poCI~exp( - j a ) ~ .  Then the . re la t ive  permeabib1ty as 'used  i n  
. . . . .  

. . . . .  . . 
t h e  preGious development becomes 

p r  = ~;exp(  - ja) 

I n  the  admittance and t r ans fe r  functions which have been developed, t h e .  

complex permeability would modify only the inductances and the f'unction 

Q. For the cy l indr ica l  core magqet with -complex perheabili ty 
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Figure 6. The Effect of External Eddy Currents on Magnet Admittance. 
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Figure 7. The Effect of External Eddy Currents on a Magnet Transfer Function. 



and 

Also 

where 

1 + ( &+./pi- lg )exp(  ja )  Q = 
1 + ( 1 Ig)exp(  ja)Na/Qa - 

I f  it i s  again assumed t h a t  ( fl.i,/p; f g  ) c =s 1, then i t  i s  obvious t h a t  

t h e  e f f ec t  of hys te res i s  on t h e  inductances i s  very small and may be 

neglected. In  f ac t ,  i f  the assumption i s  invalidated by saturat ion of 

t he  iron,  the  e f f ec t  on L, and Ls wi l l )  s t i l l  be very small since the  

angle a would a l so  decrease with saturat ion.  Therefore, i n  the  remainder 

of the  development it w i l l  be assumed t h a t  & and Ls a r e  unaffected by 

hys te res i s .  For ( l . . / p i l g )  e -C 1 

Braphs of Na and Q,, a r e  shown i n  Figure 3 f o r  a = 0°, 10 O ,  20°, and 30° . 
It appears from these curves t h a t  complex .permeability has l i t t l e  e f f e c t  

on Na except i n  the  region 0 .l c due  c 10.  I t  can a l so  be shown t h a t  

l l m  N& 3 1 4% -, 0 

and 

l i m  N,+G 4% +, 
The angle @,is affected t o  a much greater  extent however. In f a c t ,  it 

can be shown t h a t  

Therefore l i m  + p) * (45" + ap).  4% + 



It i s  r a the r  d i f f i c u l t  t o  s ta te ,  i n  general, the e f fec t  of 

hys te res i s  on magnet admittance and t ransfer  functions. However, fo r  

the  case i n  which Ts = 0 and & = l/Tm, hysteresis  causes the r a t e  

of attenuation and the  phase of Ym t o  be l e s s  than tha t  of a mrztgnet 

without hys teres is .  The t ransfer  function, f o r  the same conditions, 

w i l l  at tenuate more rapidly and the phase angle w i l l  be greater than 

t h a t  of a magnet without hysteresis .  For both the admittance and the 

t r ans fe r  function, hys teres is  a f f ec t s  primarily the phase angle; the 

e f f e c t  on attenuation i s  rather  minor. Since the angle, a, i s  small 

f o r  "soft"  magnetic, materials,  it appears tha t  hysteresis  e f f ec t s  a re  

negl igible ,  i n  most cases, a s  compared t o  eddy current e f fec ts .  

Thus f a r  only cy l indr ica l  core magnets have been considered. In 

pract ice,  of course, la rge  magnets a re  seldom, i f  ever, constructed with 

t h i s  configuration throughout. Although the magnet poles may be cylin- 

d r i ca l ,  the  yoke, o r  re turn  path, i s  normally rectangular i n  cross-section. 

In  many cases the  pole a l so  i s  non-cylindrical. Analy'zing magnets i n  

pa r t i cu la r  have very peculiar 'pole cross-.sec.tions such a s  t r iangular ,  

semi -circular,  rectangular, o r  .combinations ,of these . For .any cross - 
sect ion other than c i rcu lar ,  an exact solution f o r  the. f lux  dis t r ibut ion 

would be extremely d i f f i c u l t .  It should be possible t o  approximate the  

e f f e c t  of eddy currents  i n  odd cross-section, however, by applying the 

solut ions fo r  the i n f i n i t e  sheet and semi-infinite sol id .  For an i n f i n i t e  

sheet of magnetic material  it can be shown tha t  (4) 



where t .= thickness of the ,sheet,,, 
I i .. . . . . . 

x .= distance from center of shee-t, .. . perpendicular t o  the surface, 

Ba = f lux  'density a t  surface of 'sheet, . , 

To apply Equation 12 t o  a rectangular yoke it i s  apparent tha t  the width, 

d, of the yoke should be much greater  than t h e  thickness, t, a s  shown i n  

Figure 8. Sjnce this i s  not always t rue,  a new width d '  may be defined 
. . ( '5  1 . . . . . 

a.s follows . 
. fo r  '6 < t / 2  

f o r  .6 > t / 2  
1. . 

where 6 =' 1. 

5 . . .  

. , I ' (  

. .  , . . ,  . . .  
i . .  . .  .. 

Figure 8. "C-Type" Magnet Core. 



The above def in i t ion  considers i n  an approximate mznner the f lux  which 

flows along the  edges of the rectangular sheet. With t h i s  def ini t ion 

the  average f lux  densi ty  i n  the rectangular yoke of Figure 8 i s  

The reluctance of a length A of the rectangular yoke i s  then 

where Hs = magnetic f i e l d  in t ens i ty  a t  the i ron surface, 

5 = td ,  the cross-sectional area of the yoke, 

and s h  = d/d - j7t/2 
t a d  -jyt/2) 

The function SA i.s p lo t ted  i n  FJ-gure 9 f o r  three t /d  r a t io s .  It can 

be shown t h a t  

for  .u/% 2 1 

1 4 j w / q  

( 1 + ( t / d ) ( l  - / tanh Jx fo r  ,u/q =- 1, 

where % = 4 
2 

D i p i t  



UNCLASSIFIED 
ORNL - LR-  DWG 42523  

Figure 9 .  Graph of S and 7.  



. . 
From ~ t jua t ion  1 5  and Figure it i s  apparent t h a t  f o r  Ge , 1 - 

A s  defined above, % f o r  the  rectangular yoke w i l l ,  i n  most cases, be 
a 

somewhat l a rge r  than c~t, f o r  a cy3.fndrical yoke of the same cross-sectional 

a rea .  

By employing Equation 14 it i s  possible t o  determine, approximately, 

t he  e f f e c t  of i n t e r n a l  eddy cwren t s  on cyclotron magnets, which usually 

have a rectangular yoke and cyl indrical  poles. Two types of construction 

a r e  common for  these magnets - the "C-type" core and the "H-type1' core-. 

i s  assumed tha t  the i ron  i n  the yoke and poles i s  of the same type, the 

f l u x  i n  the gap i s  uniformly dis t r ibuted,  and tha t  the length of the 

rectangular yoke i s  1 2 .  The ef fec t  of the corners and 'of the c i rcu lar -  

... -. - 
t o  -rectangular t r ans i t ion  w i l l  be neglected. The- t o t a l  re l~~ictance,  of the 

and the zero -frequency reluctance i's 

giving 
1 .+ 

Q = 



Under the assumption that the flux is uniformly distributed in the air 

gap, the airgap area, Ag, is equal to the pole area, . However, it 
. . % .  

is advantageous to include the ratio, A /A in Equation 16 since this 
g p9 

permits the fringing flux, which is always present in an actual case, 

to be considered in an approximate manner. . . . 

For the "H-type" yoke, Q may 'be obtained directly .from Equation 

16 since there are, in effect, two "C-type" 'yokes in parallel. Then 

It is possible to determine' an % for the rectangular yoke also, 

if it is again assumed that '9 is the frequency at which 

where .= zero-frequency reluctance of 'rectangular 
OY 

yoke. If qoy/Rg C :I, then S - - 1 at 
r-- 93 and S ;r 
i T T 7 Z  

Then ( % . 
&by m g 

For iron-cross-sections which are neither 'circular nor rectangular 

it is necessary to resort to 'further  approx xi mi ti on^ to .determine the effect 
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of i n t e r n a l  eddy'.cur'rents. Since the interiial  eddy currents  tend t o  force . . 

the  time-varying f lux  toward the surface of the i ron for  any pole or  

yoke shape, i t  should be possible t o  employ the sdlution f o r  f lux 

d i ~ t r i b u t ~ o n  i n  a semi-infinite magnet i n  approximating the e f fec t  of 

'eddy 'currents. For the semi - inf in i te  'mgnet 'occupying the en t i r e  lower 

ha l f  space . . 

where Ba = flu density a t  the i ron surface 

Bi = flwc density x meters from iron surface 

. . 
, . , x = di.stance in to  the i ron perpendicular t o  

i ron surface. 

Then the  t o t a l  time-varying f lux i n  a  section of the sol id  y meters 

wide i s  

- 00 

- g . = y  J  bid^ 
- 

0 

= (y/-j7)Ba 

where 6 . =  .'... . 
. . ,/= 

And, the  reluctance. of a  sect ion y meters wide and meters l o n g  i s  



The use of Equation 19 i n  estimating the .effect of eddy currents i n  odd 

shaped poles may bes t  be i l l u s t r a t e d  by a simple example. Consider t h a t  

two poles such as the one sketched i n  Fi'gure.10 are employed with a 
. . 

rectangular " C  -type" yoke t o  form an +ikl&ing a g n e t .  Then the 
. . .  

Figure 10 .. Magnet Pole of.. Odd Cross -Section. 

rkluctance of the poles i s  . .  . 
. . 

The zero'-f requency .reluctance of the poles is:. 

and fo r  the magnet 
. . 





CIIAPTER' I11 . - .  
. . . .  

~ E R I ~ B L  RESULTS - 

To check 'the theory 'developed i n  the preceding .chapter a s m a l l  

magnet was constructed having, approximately, the dimensions shown i n  

Figure 11. The core was formed from a one-inch round bar of 1018 st;eel 

, 11 

Figure 11. Test Magnet Core. 

and annealed a f t e r  forming. The exciting winding consisted of eighteen 

100-turn c o i l s  wound of #18 copper wire. The co i l s  were dis t r ibuted 

i~niformly around the core t o  minimize the leakage inductance. A 600- 

turn  "pick-up" c o i l  was. a l so  placed on the core i n  order t o  measure 

the magnet t ransfer  function. 

The one-half inch a i r  gap was a rather  unfortunate choice since the  

large gap-to-pole diameter r a t i o  resulted i n  a large amount of '!fringing 

flux" which i n  turn complicated, and reduced the accuracy of,  the calcula- 

t ions .  The r e l a t ive ly  large a i r  gap was chosen i n  order t h a t  the co i l s  
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could be eas i ly  i n s t a l l e d  and t o  provide access for  a rotat ing-coi l  

f l u x  meter. 

A magnetization curve f o r  the t e s t  magnet i s  shown i n  Figure 1 2 .  

This i s  a graph of the  f l u x  density i n  the center of the a i r  gap and 

pole a s  a function of magnet winding current.  In  t h i s  case it should 

be termed an "air-gap flux-density curve" since the f l?  density i n  

t h e  i ron  i s  considerably greater  than tha t  shown on the curve. This 

f a c t  i s  i l l u s t r a t e d  by Figure 1 3  which i s  a p lo t  of f l k  density versus 

radius,  o r  dfstance from t h e  pole center.  It i s  obvious from t h i s  curve 

t h a t  the  "fringing f lux" was quite large f o r  the t e s t  magnet. To com- 

pensate f o r  this f a c t  an equivalent a i r  gap area was calculated by 

determining, approximately, the t o t a l  f lux  crossing a surface i n  the 

center  of the a i r  gap .and dividing t h i s  f lux  by the flu,x den.sity 'at the 

pole center .  For a f i e l d  having c i rcu lar  symmetry 

therefore,  i f  ~ ( r )  i n  Figure 13 is multiplied by .r .and the resul t ing 

curve i s  integrated graphically, the t o t a l  f lux  i n  the i ron i s  obtained 

approximately. The curve r B ( r )  i s  al'so shown i n  Figure 13.  Since 

measurements out t o  r = 00 a re  somewhat impractical the area under the 

curve, rB( r ), out t o  r = 2 w a s  obtained with a planimeter and >he re-  

maining area  estimated by assuming tha t  the slope of the curve w a s  

constant f o r  r 2 2 and r B ( r )  Z 0 .  From t h i s  calculation the equivalent 

cross-sectional a rea  of the  'air gap was computed t o  be 3.38 square inches 

and the f l u x  density i n  the  iron 



I 2 3 
MAGNET CURREPJT (amp) 

Figure 1 2 .  Magnetization Curve of Test  Magnet. 
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Figure 13.  Radial  Var ia t ion  of Flux Density i n  Tes t  Magnet Air Gap. 



where A = .equi.v&ent a i r  gap area, 
g 

Bo = a i r  gap f lux  .density a t  r ,= 0. 

Qf course the f lux  .distribution around -the a i r  gap is not t ru ly  

:symmetrical f o r  the t e ~ t  magnet due t o  the return yoke. but the 

approximation should be reasonably .accurate. 

To 'calculate b9. pr, and a it was necessary t o  obtain a minor 

.hysteresis loop f o r  .the magnet. Such a loop is shown i n  Figure 14.  

Since the maximum slope o f ' t h e  magnetization curve i n  Figure 12 occurs 

i n  the v ic in i ty  of 1, = 0.4 amp, a l l  measurements and calculations 

were mads ,for a quiescent, magnet current of 0.4 ampere. The values 

of the incremental quant i t ies  calculated from the minor hysteresis  

loop are  a s  follows: 

L, = 0 352 .hy 

pr ,= 274 

a = l o O  . 
The d-c resistance of the magnet winding was determined t o  be 

3.92 'ohms giving 

The conductivity of 1018 s t e e l  i s  given a s  0.7(107) mhos .per meter 

resul t ing i n  
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Figure 14.  Minor Hysteres is  Loop f o r  Tes t  Magnet. 



l 

and the r a t i o  of the .zero-frequency"reluc't.@nce of the i ron t o  the a i r  

gap reluctance i s  

Since the above r a t i o  i s  not' small compared t o  unity, several o f ' t h e  

simplifying assumptions employed i n  Chapter I1 a re  not va l id  for  t h i s  

par t icu lar  case .  I f  the e f f ec t  of hysteresis  i s  t o  be considered, Lm 

i s  no 1onger.a r e a l  quantity and the ,value of 'Tm. computed above must 

be multiplied by t h e  ra t io ,  1.973/(1 + 0.973/10?,), giving 

T m z 0.09- . 
Also , .  

The leakage factor ,  k, f o r  the t e s t  magnet was not calculable, 

but  it may be assumed t o  be about 0'.b5. 

For the above parameters the normalized admittance of the t e s t  

magnet i s  

Y'. = I , " 1 + ju(0.09)/.-5~. (0.05 + 8) 

and the normalized t ransfer  f'unction i s  

These functi.0n.s a re  plot ted i n  Figure,& . l5  arid 16::dong with the experi- . . 

mental data .  
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Figure 15. Normalized Admittance ( Computed and Measured) of Test Magnet. 



!.INCLASSIFIED 
ORNL-LR- DWG 42521 

1 ! 0 4 00 
FREQUENCY (cps) 

Figure 16. Normalized Transfer Function of Test k g n e t .  



A block diagram of the measuring equipment i s  shown i n  Figure 

17. In  measuring the  admittance and t ransfer  flmctions the voltage 

applied t o  the magnet winding was maintained very nearly constant a t  

(1.6 + 0.8 s in  ut ) . This voltage was a l so  applied t o  the horizontal  

amplif ier  of the  oscilloscope, and the a-c component was monitored 

with a Iow-frequency, peak-to -peak voltmeter. In  measuring the ad- 

mittance the voltage across a four-ohm res i s to r  i n  ser ies  with the 

magnet winding was applied t o  the v e r t i c a l  amplifier of the osc i l lo-  

scope. Both the  amplitude and phase of the magnet current re la t ive  

t o  magnet voltage could then be obtained from the resul t ing Lissajous 

Figure 17. Block Diagram of Measuring Equipment. 



pat tern.  The t ransfer  flmction cannot be measured direct ly;  however 

it may be computed i f  a plot  of the induced voltage ( a s  a function of 

frequency) i n  a secondary winding i s  obtained. I f  Vs induced voltage 

i n  the secondary winding, 

or  'for sinusoids 

I f  a p lo t ,of  vs/vm i s  obtained from Lissajous patterns,  then 

and 

Since the admittance f'unction (&/Vm) had been measured, it was 

r e l a t ive ly  easy t o  obtain G .  However, 'consi'derable d i f f i c u l t y  was 

encountered i n  measuring v,/v, due t o  a large amount of noise pick-up 

(primarily 60 cps) by the secondary c o i l .  

The agreement between t h e  measured and computed admittance 

functions i n  Figure 15 i s  fair ly good; however it appears tha t  the  

value of k assumed (0.05) was too la rge .  If k had been assumed smaller 

the  computed phase would not decr&ase so rapidly 'at the high frequency 
l 

end of the curve. There i s  a l so  a strong poss ib i l i t y  of measurement 

e r ro r  a t  the high frequency end since the ,signal-to-noise r a t i o  decreases 

with frequency. The magnet time constant, Tm, appears t o  be d i f fe rent  

f o r  the measured and computed case a l so .  This discrkpancy may have been 

due t o  the r e l a t ive ly  large vari 'ations. employed i n .  ,the measurements . 



The peak-to-peak var ia t ion  i n  magnet current for  the hysteresis  loop i n  

Figure 14, from which L, was computed, was 0.108 ampere. In measuring 

the  admittance the va r i a t ion  was about 0.4 amp, peak-to-peak, a t  low 

frequencies. Since the  incremental permeability increases a s  AB 

increases  (over a l imited range)(6), the apparent inductance f o r  the 

measurements may very well  have been la rger  than t h a t  calculated from 

the  hysteresis  loop. Ideally,  the measurements should have been made 

using a very small variat ion,  but the problem then a r i s e s  of measuring 

a small signal i n  the  presence of noise. 

The correlat ion between the computed and observed t ransfer  

f'unctions i n  Figure 16 i s  rather  poor; however, as s tated previously, 

a la rge  amount of noise w a s  encountered i n  measuring Vs/Vm which 

increased the probable e r ro r  i n  the measurement. Two other fac tors  

may a l s o  have contributed t o  the observed er ror .  F i r s t ,  the r a t i o  of 

i ron  reluctance t o  air-gap reluctance~.~:may have been i n  e r r o r  due t o  
. . 

an e r ro r  i n  calculat ing the equivalent air-gap area.  Second, an e r ro r  

may -ar ise  due t o  the  non-uniform dis t r ibut ion .of  f lux  in the a i r  gap 

since the theory was predicated on a uniform dis tr ibut ion;  however 

t h i s  e r ro r  i s  undoubtedly small since the f lux  d is t r ibut ion  i n  the 

i ron  should follow Equation 7 very closely .except f o r  a small region 

near the pole t i p s .  The incremental permeability has verF l i t t l e  

e f f e c t  on the t r ans fe r  function for  the t e s t  magnet. If Q i s  replotted 

f o r  pr = 548 ra ther  than 274 there i s  l i t t l e , ,  i f  any, change i n  the 

magnitude of Q. 

Most o f t h e  discrepancie's between computed .and observed data 



f o r  the t e s t  magnet a re  a re'sult of the r e l a t ive ly  large a i r  gap. In  

most prac t ica l  magnets the air gap-to-pole d i m e t e r  r a t i o  ~5.41 be much 

l e s s  than t h a t  of the t e s t  magnet, and calculations should be consiqerably 

more accurate . 
Although eddy currents external t o  the i ron have received l i t t l e  

a t ten t ion  thus f a r ,  t h e i r  e f fec t  on the magnet dynamics can be even 

greater  than tha t  of in te rna l  eddy currents.  This i s  i l l u s t r a t e d  i n  

Figure 18 by a p lo t  of the admittance of the 63-inch cyclotron analyzing 

magnet. A s  shown i n  Chapter 11, the e f f ec t  of eddy current coupling i n  

"shorted turns" i s  .easily calc~xlable and the r e s u l t s  are  quite accurate. 

The computed tlme constants f o r  the analyzing magnet were Tm 1.5 sec 

and Ts 0.5 second. 

The % calculated f o r  the analyzing magnet i s  14.5 radian per 

second. However, there appears t o  be no noticeable e f fec t  on the ad- 

mittance, due t o  in t e rna l  edcy currents.  From a qual i ta t ive viewpoint 

t h i s  i s  reasonable since any al ternat ing mmf produced by the magnet wind- 

ing i s  opposed by 'the mmf 'due t o  the .external :eddy currents, and the net 

alternatingmmf .acting on the i ron core i s  very'smaL1. O f  course, i f  

9 were l e s s ,  than, or  nearly equal to ,  1/~,  (T, = 0.5 sec) then the 

in t e rna l  eddy currents would undoubtedly a,ffect the admittance. 
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Figure 18. Normalized Input Admittance of an Analyzing Magnet. 



CONCLUSIONS AND RECOMMENDATIONS 

=thou& the t r b s f e r  functions and admittances developed i n  

Chapter TT 'are of '.some in t e res t  academically, the i r .  p rac t ica l  importqce 

i s  i n  t h e i r  .effect .on the magnet control 'system. To i l l u s t r a t e  t h i s  

e f fec t ,  a control system w i l l .  be considered f o r  the' magnet assumed i n  

Chapter' 11. 

A block diagram of 'a typ ica l  current regulator i s  sketched i n  

Figure 19 in  W c h  only the primary feedback loop i s  shown ( G ~  may a$so 

be s tabi l ized by feedback). It i s  assumed tha t  the system was designed 

Figure 19. Block 'Diagram of Currentn Regulator. 

f o r  a magnet i n  which .eddy.currents were neglected. From the  example i n  

Chapter XI 

} i f  :eddy currents a re  neglected. 



then GIY& = 2 
~ m [ l  + jo .12u + ( jq/5)'] 

This open loop t ransfer  f'unction i s  plot ted i n  Figure 20 along wTth the 

r e su l t ing  closed loop f'unction. The system i's, of course, stable; how- 

ever i f  the  magnet admittance were actual ly  I 

1 .' . .: where Q = : ,  ,. . . 

1 .+ 0. o j J1 .+ j785ico, 

then the open-loop t r ans fe r  function becomes t h a t  shown i n  FSgure 21, 

and the closed Ioop system would be unstable. Thus it appears tha t ,  i n  

cer ta in  cases, neglect of eddy current coupling may re su l t  i n  an unstable 
. . 

system. However,, if 'the. above. sxstem. were con'stmcted and found t.0. be . . 

un'stable, it could be s tabi l ized rather  eas i ly  by reducing the loop gain 

by s i x  decibels. The closed loop t ransfer  f'unction f o r  t h i s  case i s  a lso  

shown i n  ~ i g u r e - 2 1 .  The reduced gain wil l ,  of course, a l so  reduce the 

re'gulation at ta ined by .the system. A comparison of 'the . regulat i  on 

achieved i n  the design case (no eddy currents) and the actual  case (eddy 
' , 

currents  and reduced gain) ,  may be obkained by considering the e f fec t  of . . 

the  disturbance, D i n  Figure 19,. on the magnetic f i e l d .  It can be shown. 
. . 

t h a t .  

The noPmalized disturbance t ransfer  functions f o r  the design case and 

ac tua l  case are  plot ted i n  Figure 22. The regulation f o r  the design ease 



Figure 20. Open- and Closed-Loop Transfer  Functions f o r  Assumed Current Regulator.  
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Fig-ure 21.  Open- and Closed-Loop Transfer  Functions f o r  System w i t h  Eddy Current 
Coupling i n  Magnet. 
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Figure 22. Disturbance Transfer  E b c t i o n s  f o r  Two Cases. . 



i s  considerably b e t t e r  than . that of .the sc tua l  case exc,ept i n  the 

.range 0.2 c d, 5 6 :  The improved regulation over t h i s  range i s  due 

t o  attenuation of the magnet t ransfer  function since, f o r  the ac tua l  

The ac tua l  regula t ion 'a t ta ined  W O U ~ ~ ~  .of course, depend on the character 
. . 

of .'the disturbance, .D, but i f  D i s  a random variat ion (.llwhite noise" )., 
. , 

then t h e  ac tua l  system would have considerably poorer regulation than 

was intended during the design. If the e f fec t  of eddy current coupling 

i n  the  magnet had been considered i n  synthesizing the above assumed 

system then a g rea t ly  improved regulator could have been designed. 

External eddy currents  i n  a magnet assembly may a lso  produce i n -  

s t a b i l i t y  and poor regulation i f  neglected i n  designing the magnet control 

system. 

One of the  most useful s tab i l iz ing  networks i n  the design of magnet 

r'egulator's i s  t h e  "lead" network. If the magnet admittance i s  assumed t o  

be 1/(1 + jdm), then the  lead network required i n  the  loop has the form 

(1 + jdm)/(l + jmTm) where a -c 1. In general, such a network allows 

the  loop gain t o  be increased with a resu l t ing  improvement i n  regulation. 

For the  system containing a magnet i n  which only external  eddy currents  

a r e  of im'portance, the s tab i l iz ing  network i s  again quite simple. I f  the 

magnet admittance is. as,s.pned t o  be t h a t ' i n    qua ti on 4 .'then the network 

should have a t r ans fe r  function of 1 + J ~ ( T ~  + P,)] /(1 + jds). If the [ 
i n t e r n a l  eddy currents  produce a marked ef fec t  on the magnet admittance, 

the'  s t ab i l i z ing  network re'quired i n  the  loop is '  no longer a s  simple a s  

, . .  
. ,  . 



, . 

the preceding;one. In general the required network w i l l  have a 
. . . . . . . . . . . .  

t ransfer  function of the form 
. . 

where T1 =- T2 =- T3 . . . . The ' n w k r - ' o f  f ac to r s  required i n t h e  
i 

numerator -and denominator w i l l  depend &on ,the.  frequency =ange over 
. . 

.. . 

.wfii.ch the network i s  t o  be effect ive and.the r a t e  of 'attenuation re-  

quired. 

This paper has been concerned exclusively with tpe frequency 

.response of ' agnets .  and regulators.; howev.er i f  'the t ransient  response 

i B  'desired it be approximated by Floyd's or  f o r  a more. 
. . 

exact treatment of the t ransient  re,sponse of 'gagnets', the  reader i s  r 

( 2 )  referred t o  Wagner's paper 

In  conciusion the e f f ec t s  of :eddy durrggts and hysteresis  on . 

the &ynamics of 'a magnet .may be summarized .as fqllows : 

External eddy currents produce a zero and a second pole i n  the  

magnet admittance and at tenuate  the e f f ec t  of rapid variat ions of magnet 

current on the magnetic f i e l d .  The e 'ffect of.'.external eddy currents may 

be obscured by in t e rna l  eddy 'currents, and vice versa depending on the 

r e l a t ive  time constants. 
I 

Hysteresis has  a rather  minor 'effect  on magnet dynamics.' It 

primarily a f f e c t s  the  phase angle of 'the magne't admittance and t ransfer  
. . 

function .. 
In terna l  eddy currents tend t o  produce aq attenuation r a t e  of 

1.0 db per decade fo r  the magnet admitt.ance'.and t ransfer  function. . ,Their 



e f fec t  may be obscured by e i the r  external eddy currents or by large 

leakage inductance. 

Although the admittance and t ransfer  functions developed here 

a re ,  a t  best ,  approximations, they should enable the designer of 'magnet . . . ' 

regulators  t o  predict  more accurately the chara;cteristi.cs of the magnet 

t o  be controlled p r io r  t o  i t s .  construction and tes t ing .  

. .  . . . .  
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