
ORNL-3592
UC-32 - Mathematics and Computers

TID-4500 28th ed.

AN APPROACH TO ALGOL TRANSLATION

A. A. Grau
L. L. Bumgarner

OAK RIDGE NATIONAL LABORATORY

operated by

UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

LEGAL NOTICE ---------------~

This report was prepared os on account of Government sponsorr.rl wnrlt Neith•r th'!' United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,

completeness, or usefulness of the information contained in this report, or that the use of

any information, apparatus, method, or process disclosed in this report may not infringe

privately owned rights; or

B. Assumes any I iabil ities with respect to the use of, or for damages resulting from the use of

any info rmation, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminates, or

provides access to, any information pursuant to his employment or contract with the Commission,

or his employment with such contractor.

ORNL-3592

Contract No. W-7405-eng-26

Mathematics Division

AN APPROACH TO ALGOL TRANSLATION

A. A. Grau
L. L. Bumgarner

JUNE 1964

OAK RIDGE NATIONAL LABORATORY
Oak Rj_dge, Tennessee

operated by
UNION CARBIDE CORPORATION

for the
U.S. ATOMIC ENERGY COMMISSION

Facsimile Price $ t{, / 0
Microfilm Price $,{/1 ,Z..,..
Avoiloble from the

Office of Technical Services

DeportmentofComme~e

Washington 25, D. C.
I

_j

-. THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Chapter 1.

Chapter 2.

Chapter 3.

iii

CONTENTS

Abstract

Problems of Implementation

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1. 7.

1.8.

1.9.

Introduction

Hardware Representations of Algol

intermediate Language Forms

Representation of Process Algol

Number Representation

Block Structure

Procedures

Static and Dynamic Handling

Machine Limitations

Theory of Trans~ation

2.1.

2.2.

2.3.

2.4.

2.6.

Recursive Definitions

Effect on Translation

.......................

Recursion Versus Iteration

Push-down Lists
Translation and Syntax

SWDI!l&ry

Techniques of Implementation

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

General Structure of the Translator

Storage Allocation
Temporary Storage for Expression Evaluation

Arrays

Switches

Procedures

1

1

1

3

4

5

6

7

8

8

10

10

10

12

13

16

17

19

20

20

21

23

25

27

30

Chapter 4.

Chapter 5.

Appendix

iv

The For Statement

The GO TO Interpreter

Strings

Specifications for a Translator

4.1.

4.2.

4.3.

4.4.

4. 5 •.

4.6.

.4.7.

General Considerations

Control Operations .•
Control States

Translation Table

Target Language

Notation in Macros

Macros

Miscellaneous Features

5.1.

5.2.

Input and Output Problems

Pretranslation of Procedures

ALCOR Hardware Representation of Algol

References and Bibliography

34

35

37

37

37

41

41

47

60

61

62

74

7.4

75

77

77

79

']

v

Foreword

The principles discussed in The Structure of ~ Algol

Translator (ORNL-3054) [19] have since the appearance of the Algol report

[30] been applied at ORNL to the design of a translator for the Control

Data Corporation 1604 ma.chine [7] and at Duke University to the

International Business Machines 7070 machine [2]. The present report

covers the revision and extension of [19) based on the experience at ORNL.

The translation table has been reformulated and expanded; new material,

particularly on storage allocation and the implementation of procedures

and blocks, has been furnished. Additional references to the fast-growing

literature on the subject have been added.

On storage allocation and the implementation of procedures,

acknowledgment is made to conversations with Professor K. Samelson, of

Institut fli.r Angewandte Mathematik, Mainz, Germany, during which fruitful

ideas were germinated.

-1-

AN APPROACH TO ALGOL TRANSLATION

L. L. Bwngarner A. A. Grau

ABSTRACT

The approach to Algol translation described in this report is
an extension and elaboration of that given in The Structure
of~ Ale;ol Translator (ORNL-3054). In machine-independent
form are given specifications for a translator for Algol 60.
These specifications have been obtained in the design and
construction of ~ Oak Ridge 51~01 Compiler for the Control
Data Corporation lb04"1°oRN'L=34 0 . They may alco be used
with little modification to give an Algol translator for any
present-day sequential machine.

1. Problems of Implementation

1.1. Introduction

In order to use a problem-oriented language such as Algol

[29) [30] 1 for programing a modern high-speed stored-program computing

machine, either a translator program or an interpreter program, or a

combination of the two, must generally be constructed for that ~chine •

. . A translator program (or simply, translator) is a machine program that

converts progra.ins written in cource lang1.1.A£P. Rubmitted to it as ·input

into programs in machine language; these are then executed as are ·any

other machine programs. An interpreter program, on the other hand, is

placed into memory with the source language program. Control is given

to the former, whereupon it takes the source language instructions, one

at a time, and translates and executes each in turn. This process

1 Numbers in brackets refer to the corresponding items in the list of
references on pages 79-81.

\1···~

-2-

obviously results in a relatively slow execution time. Because of this

and other considerations, major emphasis is placed almost universally

on translation rather than interpretation.

Translation and interpretation represent extreme approaches

to the handling of the language. The possibilities inherent in an

explicit combination approach will not be investigated here. Even when

translation is emphasized, much having the character of interpretation

must be done in the final machine program though it may not explicitly
•.
('

be called that.

A translator for an algorithmic language such as Algol has a

relatively complicated structure. In recent years considerable efforts

have been made to develop a systematic theory of translation which

permits a consequent simplification. of the translation process~ Some

of the principles evolved this way should prove.useful not only in the

translation of formal languages such as Algol, but also in the machine

translation of nat~al languages into each other.

In this paper are presented a theory of translation for bracket-

structure languages and moderately detailed plans for an Algol 60 trans-

lator based on that theory. A degree of familiarity with Algol is

naturally assumed throughout, but the self-explanatory nature of Algol

is such that this need not be exhaustive.

The first Algol translator for the Oracle [15] was based on

principles discussed by Samelson and Bauer [34] and influenced by

specifications drawn up at Mainz [31]. The principles outlined in this

report are revisions and ~eformulations which have the benefit of the

experience gained in the design and construction of that translator and

•I

; ..

-3-

the problems which had to be solved in attempting to apply the original

techniques. They have been used in the design of an Algol translator

for the Control Data Corporation 1604 [7].

1.2. Hardware Representations of Algol

Practically no machine at this time has as a subset.of its

peripheral hardware symbol set the Algol reference character set. It

is therefore necessary to design· and use a hardware representation· for

Algol if Algol is to be used on that machine. The hardware language

used on the Control Data 1604 is typical of such adaptations {see

Appendix). The latter by mutual agreement is. the ALCOR hardware language

for machines using 48-character set peripheral equipment.

Experience in the use of Algol at Oak Ridge and elsewhere

suggested certain principles which should be followed in the design of

a hardware language (15]: (1) If a reference language symbol is also

a·hardware symbol, the latter is used to represent it; (2) if it is not,

a substitution of a string of hardware symbols is made, and (3) one

l
hardware symbol is reserved for "escape" usage. This philosophy has

also been suggested by a report of users of KDF9 computers of the English

Electric Company, Ltd. The basic advantages of these principles are that

(1) the programmer may write in reference Algol, and if desired, the task

of tr;:i,nsli.t.eration may be referred to the key punch operator with the

i.nstructions: "If a symbol in the manuscript exists on the keyboard, use

it; if not refer to the card containing the rules and make the

appropriate substitution." (14], and (2) if more hardware characters

become available, the modification of the hardware language is obvious.

-4-

1.3. Intermediate Language Forms

The representation of Algol used during translation may, of

course, be related to the internal configurations induced by the hardware

representation. It is generally better to use a representation which

is isomorphic to an adaptation of the reference language rather than to

the hardware language: the representation is so chosen that there is a

one-to-one correspondence between the internal patterns and the reference

Algol symbols, so that it is possible by simple transliteration alone to

pass from one to the other.

Theoretically, the problem of translation is to convert from

reference Algol to target language. Practically, reference Algol must

be converted into hardware language by hand (either by a programmer or

keypuncher), and then hardware language must be reconverted to an

internal representation of reference language or a useful adaptation

of it; translation proper then consists of cpnverting this into target

language. It will be noted that a number of languaee forms actually

are-in view. It is advisable to carefully distinguish between these,

by referring to them by distinctive names. The practical source language

used within the machine may be called process Algol, or p-Algol.

Letters and digits are alphabetic symbols in Algol which do

not have individual meaning; syntactically they occur only as parts of

strings that constitute identifiers, labels, strings, and numbers, which

are basic syntactic units. The alphabet of process·Algol may be the

Algol delimiters and a set of internally generated identifiers, called

entities to distinguish them from the original Algol identifiers.

Entities correspond to identifiers·, labels, numbers, truth values, and

. '
~,

-.,

-5-

strings in Algol. Of these, identifiers, labels, and numbers

in their original form are made up of letters, digits, the decimal point,

and the delimiter 10 which are not retained as part of the alphabet of

process Algol. It is convenient to class these structures together

since in many connections they act alike.

The conversion fr0m hardware Algol to process Algol includes

the replacement of each identifier string, label string, number string,

proper string, and truth value by a corresponding internal identifier.

Numbers may be converted if necessary, and they, strings, and truth

values are stored for later incorporation into the target program. The

original external identifiers have no inherent meaning, so that, apart

from diagnostic printouts, they are not further needed in translation

or execution.

Since the internally generated entities may have a fixed

format, the use of process Algol also circumvents the problem of handling

identifiers of arbitrary length.

1.4. Representation of Process Algol

The choice of a representation for process Algol permits

latitude which may be used so as to facilitate translation. Nearly all

computers handle information most conveniently in units of fixed size.

One common unit is the machine word. A natural choice for a represen-

tatinn is that iP which each alphabetic symbol of process Algol, that

is, each delimiter and each entity, is assigned a uniquely corresponding

machine word. Some computers have other units which may conveniently

be used instead. In that case, what is said about.machine words below

applies equally well to such units.

-6-

Since entities are handled in a manner different from that used

for delimiters, the representation can make the distinction between the

two clear. It is also necessary to distinguish between simple variables,

numbers, arrays, truth values, strings, labels, switches, and procedures.

The relative precedence of two operations affects the flow of control at

certain points in the translation. It therefore is desirable to have as

part of the representation the precedence level of all operations and

relations.

The following .representation takes all of these considerations

into account. Each symbol of process Algol is represented by a machine

word consisting of three syllables, Pl, P2, and P3. Pl denotes the class

of symbol; classes include entities, operations and relations (together

a single class), and other classes with for the most part one or a few

elements. P2 denotes a subclass when this is needed. The subclasses of

the class of operations and relations are those with a connnon precedence

level. The subclasses of entities are determined by type (integer, real,

Boolean) and character (simple variables, arrays, strings, truth values,

procedures, switches and labels). P3 may consist of a serial number; it

may be convenient in the case of entities to let this also be a relative

address. Where a class consists of a single subclass, P2 is not used,

and where a subclass has a single element, P3 is ignored.

1.5. Number Representation

In the present report, there is an apparent use of a single

arithmetic mode in the target program. In most machines, if desired,

the use of a single mode can be made to suffice. This will usually

coincide with the floating-point mode. Under it, the addition,

-.

-7-

subtraction, or multiplication of integer-valued operands will yield

integer-valued results. The use of a single mode avoids a question of

implementation discussed below.

Some change .. in the translator is needed if real and integer

types are implemented in the target program as floating-point and fixed-

point numbers, respectively. The type of a variable is determined at

the time type declarations are processed and can be made part of the

representation of entities. In the processing of arithmetic expressions,

it becomes necessary to test the type of each operand, provide for the

conversion from fixed-point to floating-point whenever the types of the

operands are mixed, determine the proper mode of arithmetic operations
\

and tag intermediate results with the proper type. Similar provisions

are needed to handle the application of the standard functions. The

coding of these decision programs, while relatively extensive, is

conventional.

1.6. Block Structure

An important feature of Algol is the block concept, which

provides an obvious means to economize in the allocation of storage to

variables and intermediate results. On machines where it is necessary

to make much use of secondary storage, there is a possibility of using

the block structure also for segmentation of programs and the storage

of large arrays. A mechanism which may be used to allocate storage to

variables in an economical manner is described in section 3.2.

.-

-8- .~

1.7. Procedures

Algol 60 permits the use of recursive procedures. These are

procedures which may directly or indirectly call themselves on a new level

without exiting or loss of information on an old. Procedures which are so

used are not distinguished from those which are not. Otherwise, procedures

not used recursively could be handled by simpler linkage mechanisms in the

target programs. The recursive use may also be of a sort that cannot be

determined at translation time. Provision for the recursive use of pro-

cedures requires manipulations on entry and exit which when applied uni-

formly result in a considerably slower execution time for short procedures.

In numerical work, for which Algol was ·originally designed,

recursion in a method is generally replaced by iteration in an algorithm.

The replacement of recursive·concepts by iterative algor.ithms is easily

done by progr8.mmers, while the mental processes they use cannot at this

time be fully simulated on a machine. For numerical work, recursive

procedures are not seriously needed. They are therefore not ·considered

in the present treatise.

On the other hand, recursive subroutines are useful in the

construction of translators, and here they are not conveniently replaced

by iterative ones. If the design·of a "boot-strapping" translator, that

is, one that can translate itself, is attempted, the implementation of

recursive procedures is necessary.

1.8. Static and Dynamic Handling

It is important to distinguish between Algol features which may

be processed at the time of translation and others which must be handled at

\ the time of execution of the program. The former may be said to be

-9-

handled statically and the latter dynamically. A fully efficient object

program is one in which all features which can be handled statically are

so handled.

An example of the difference is furnished by the allocation of

storage to simple variables and that to arrays with variable subscript

bounds. The first may be done at translation time, i.e., statically,

~- . while the second is necessarily carried out during the execution of the . •,

program, i.e., dynamically.

·~·

The question of static versus dynamic handling arises from the

treatment of number type. In most implementations of Algol, quantities

declared to be of integer type are represented by fixed-point numbers

and those of real type by floating-point numbers. The expression a 1 i,

where both a and i are of type integer, can be of either type depending

on the value of i. To handle this strictly when numbers are implemented

in this way requires the object program to keep track of type dynamically.

For other than research purposes, this is quite undesirable, and a slight

change in the definition of a T i is generally made to permit the handling

to be static. The possibility does exist of redesigning the representation

to avoid this problem (17]. It must be pointed out that the definition of

exponentiation in Algol is precisely the one that is used in mathematics.

The difficulty here is due to hardware. The use of two disjoint classes

of numbers in a computer is mathematically undesirable. Mathematically,

integers are also real numbers. The design of some recent computers

includes a number representation which obviates the difficulty.

There are cases where a choice between static and dynamic

haudling is not so critical. For example, 5.n computing the value of a

-10-

Boolean expression, it is possible to build a truth table at translation

time, leaving the object program simply to choose the correct entry when

the values of the variables are known [5]. In effect the Boolean

expression is then evaluated statically.

1.9. Machine Limitations

On practically any of the present generat_ion of machines there

is some feature which makes the implementation of some Algol device lead

to a degree of inefficiency. It is not desirable to redefine the language

because of this, since machines are still undergoing considerable modifi-

cation from one generation to the next. Mechanisms exist for implementing

fully almost all features of Algol on existing machines [10].

For the average present-day machine, practical considerations

lead to (1) the exclusion of the dynamic handling of variable type, (2)

the exclusion of the recursive use of procedures, and (3) some limitation

on ~ arrays. These restrictions to Algol 60 do not seriously affect

the power of the language.
/

2. Theory of Translation

2.1. Recursive Definitions.

The concepts of Algol, as those of other algorithmic programing

languages,.include those of "variable," "arithmetic expression,"

"statement," and the like. The definitions of many of these as given in

the report [29] are ip.ductive, or recursive. By this is meant that while

each definition lists strings of syntactic units which make up the type

of structure defined, some of these consist entirely of syntactic con-

stituents which have a separate definition, and others are in essence

. :i
,•

,•

,,
-,

-11-

rules which govern the construction of more complex examples of the

structure from simpler ones.

For instance, "simple arithmetic expression" has the syntactic

definition ([29), 3.3.1):

<simple arithmetic expression>::= <term>l<a.dding operator> <term>I

<simple arithmetic expression> <adding operator> <term>

Here there are listed three types of strings which constitute simple

arithmetic expressions. "Term" and "adding operator" are defined

elsewhere in the report. The first two strings state that any term, or

term preceded by an adding operator, constitutes a simple arithmetic

expression. However the last string states that given any simple

arithmetic expression another simple arithmetic expression is formed from

it by appen<Ung an adding operator and a term. Simple arithmetic

expressions may therefore contain as constituents other simple arithmetic

expressions. It is this feature that makes the definition recursive.

In any algorithmic programing language, "arithmetic expression"

must necessarily be defined recursively. In Algol, the definition of

"statement" also is recursive ([29), 4.1). In this case, assignment

statement, dummy statement, procedure statement, and go to statement are

separately defined. Statements of the following types have statements as

constituents: (1) compound statement, (2) block, (3) conditional

statement, and (4) for statement.

The use of recursive definitions here is an extension of a

similar use in mathematics, where it is quite common. For instance, the

integer-valued function of integers, factorial n, is usually so defined:

-12-

If n = O, then Fact (n) = l;

If n > O, then Fact (n) = n · Fact (n-1).

2.2. Effect on Translation

.A basic problem of translation is the decomposition of an

expression into the equivalent of parenthesis-free assignment statements.

One can proceed in many ways to devise a routine to do this. The

expression may be scanned for an "atomic" subexpression. This consists

of a simple arithmetic expression with simple or at most simply-subscripted

variables and a single operation or relation. The scan requires a means

for isolating such constituents and replacing them by simple generated

variables. At the same time, a corresponding elementary assignment

statement is generated and listed. The process is repeated until the

decomposition is complete.

The scan described requires in general many passes for the

complete processing if the expression is at all complex. Instead of

muitiple scans, a single scan will suffice if in that scan information

that cannot be processed inunediately is systematically stored for subse-

quent use.

At this point the effect of the recursiveness of the concepts

of Algol may be considered. However it may be organized, in effect there

must exist within the translator subroutines which correspond to the

various types of structures present in the language. One' subset of the

translator, for example, has as its function the processing of simple

arithmetic expressions. In a sequential treatment, this subroutine

provides for three alternatives at the outset corresponding to the

,,

.•

-13-

syntactical alternatives in the, definition. First, a term may be

encountered, in which case control is given to the correspondiD.g term

subroutine. Second, the expression may begin with an adding operator

which means that this is followed by a term. The third possibility

involves the processing of another simple arithmetic expression which is

a subexpression of the given one before the handling of the full expression

can be completed. Thus the subroutine must be able to call itself on

another level, without discarding the information still needed for final

processing on the current level. A subroutine which can call itself on

recursively higher levels without loss of information on previous ones

is generally called a recursive subroutine. The conclusion we draw at

this point, that it is necessary in effect to have recursive subroutines

in a translator, follows not only from the consideration of arithmetic

expressions. In Algol the definitions of "variable" and "statement"

require a similar recursive property of the translator. A translator is

necessarily a set of recursive subroutines based on syntactic structures

defining the language.

2.3. Recursion Versus lteration

A digression to discuss a somewhat analogous numerical situation

-at this point is worthwhile. The factorial function is defined

recursively, but it may be computed either recursively or iteratively.

The computation of factorial n reduces immediately from the definition

to the following recursive Algol procedure:

real procedure Fact (n); value n; integer n;

if n < 0 then wrong use else if n = 0 then Fact := 1

else Fact .- n x Fact (n-1)

-14-

Here "wrong use" is a procedure which monitors the fact that the parameter

is not permissible.

In machine coding, programmers universally sense the difficulties

that arise in efforts to implement the function in this way. In the

programing of recursively defined mathematical functions the conversion

to the iterative program is made with little difficulty and results

generally in a much superior program. If a procedure calls only itself

recursively, the execution may' in fact always be made into an iteration.

In this case, we may write instead the e·quivalent of the following

procedure:

real procedure Fact (n); value n; integer n;

begin integer w,k;

end

if n < 0 then wrong use;

w := l; for k .- 1 step 1 until n do w .- w x k;

Fact .- w

This iterative procedure is machine-wise preferable since it defines in

advance all storage requirements.

The question arises whether the translation process, which

appears to require recursive subroutines, might not also be handled

better by iterative substitutes. In the past the opinion has often been

expressed that the improvement that obtains in the mathematical case may

also be made in this situation. However, the situation is definitely

different in the case of translation. Three drawbacks to the attempted

reduction to iterative techniques are that (1) the processin~ becomes

necessarily nonsequential, (2) the bookkeeping involved in the analysis

,•

-,

-15-.

may become involved enough to offset any possible gain, and (3) the

recursion involves several different subroutines which may nest in almost

arbitrary order. In our example of the simple arithmetic expression, a

closer examination shows that "term" is defined in terms of "arithmetic

expression."· The probing for a true atomic entity becomes a complex

scanning problem. The iterative handling will have at least the same

order of complication as the recursive processing to be described.

Besides being easier to grasp once the mechanism is understood, the

latter has the added advantage that multiple passes through the original

material may be avoided.

In an explicit recursive treatment there is essentially a

recursive subroutine S to handle simple arithmetic expressions and a

subroutine T to handle terms. S may, during translation, call either S

or T, and in turn T may call s. At each stage information on one level

required after the work on a second level is completed is stored before

the call. This information includes a record of the place in the master

to which control must be returned. Once suitable provision is made for

the necessary storage of information, the various subroutines may be

constructed almost immediately from an analysis of the syntactic

skeletons defining the corresponding terms. The handling of the infor­

mation is then sequential. From this point of view, a translator consists

explicitly of a set of mutually recursive subroutines each of which takes

its pattern 1·rom a syntactic skeletuu u!:!f ln:i.ng the language.

-16- ,-

2.4. Push-down Lists

The use of recursive subroutines in a translator requires the

solution of the problem of providing for the systematic storage of infor-

mation required by the subroutines in a nesting at a given time. Let

subroutine Rl call at some point in the translation process subroutine

R2. R2 may be Rl on a new level. When entry is made into R2 the infor-

mation in Rl that will be needed by it after R2 finishes its work may be

added to a list in which similar information has been stored by subroutines

on previous levels of the nesting. If R2 itself calls new subroutines,

similar information will be added by it to this list. On exit from R2,

however, the information needed by it and the subroutines it called will

have been retrieved. The last meaningful material in the list is precisely

that stored before R2 was called.'

A close relationship therefore exists between recursive

subroutines and a type of list called a push-down list. In it infor-

mation is stored in last-in first-out fashion. Between the storage and

recall of any item in the list other information may likewise have been

stored and recalled. Information is at the end of the list whenever it

is needed. The contents of the push-down list at any time consist of all

information stored by all subroutines currently in a nesting, arranged in

the order in which they have called each other.

Theoretically only one push-down list is required for the inter-

mediate storage requirements of a set of mutually recursive subroutines.

Practically the information is usefully split into several. In our case

we shall make use of two: (1) one containing the information associated

with the point to which control will be returned in each of the subroutines

'.~;.

•,

-17-

of the nesting, and (2) one containing the remaining information. The

first we shall call the control push-down and the second the auxiliary

push-down.

2.5. Translation and Syntax

The syntax of Algol indicates how valid statements and programs

may be constructed from Algol symbols. In this the syntax emphasizes

synthesis. The problem of translation, however, is that of decomposing

a validly written program into its constituent parts. Here syntax is

regarded from an analytical point of view. To have syntactic rules

applicable to translation, it is necessary to derive rules of analysis

from the rules of synthesis.

The design of a formal language such as Algol takes into

account the necessity of analytical considerations, even though the

report is written with synthesis in primary view. The latter, of course,

alone concerns the user of the language. In natural languages the two

aspects are also present, but the situation is more complicated. One

difficulty encountered in automatic machine translation of natural

languages into each other is the fact tbat the rules governing decompo­

s1 t1on do not permit simple cxprcccion.

An example will make clear the contrast between the two aspects.

Two important concepts of Algol are those of "variable,. and "function

designator" ([29], 3.1 and 3.2). Syntactic descriptions in the report

show how valid strings of symbols to denote entities of these types may

be built up. In a sequential translation process, the problem becomes

one of recognizing the two types of entities: either may be present

-18-

when an identifier is encowitered. Additional information is required

to determine which is at hand. The rules of syntax in this case lead

to an analytical scheme of the following kind:

Is the identifier followed by ? yes)
no l

Is the identifier followed by (? yes)

no I
~

subscripted variable

function designator

simple variable or
function designator
for a procedure with­
out formal parameters.

In translation, syntax hinges on "identifier" while in writing programs

for the machine in Algol, "variable" and "function designator" are the

primary concepts.

One .task met in designing a translator is the reorganization

of the syntax for analytical purposes. The task may be mechanical to

some extent and made part of the translator [25]. The mechanization of

this task in such a way as to obtain desirable speed and efficiency

repiains to be worked out. Among the more important concepts which

determine the course of processing statements are:

1. Compound statement and block

2. Operand and identifier

3. Expression

4. Go to statement

5. Assignment statement

6. Conditional statement

7 .• For statement.

Corresponding to each of these we construct the equivalent of a closed

recursive subroutine.

.•

-19-

Some of the subroutines can make use of anticipating devices

to both speed up and simplify the translation. This is true when a

syntactic skeleton indicates before it is encountered what structure

will follow in a validly written program. For e:Xample, when in certain

contexts any of the symbols

(
'

.- if step until

~,
' - are encountered in a sequential examination, an expression (arithmetic

or Boolean) must follow. The expression subroutine is constructed in

such a way that it is entered on such anticipation. On the other hand,

compound statements, blocks, assignment statements, and conditional

statements cannot be anticipated. While most of these are recognized

'
from the first symbol in the structure (apart from labels), the

assignment statement is not fully determined until := is encountered

because the presence of an identifier may also mean that a statement

label is being processed.

2.6. Swmnary

Historically much attention has been focused on iterative

methods of translation. The methods used in the originai ~·ortran [l]

and the techniques outlined by Rutishauser (33) were of this type. The

true usefulness of recursive methods was overlooked, most likely, because

for numerical processes more efficient iterative algorithms could usually

be substituted for recursively defined processes, because the reduction

of recursion to iteration generally is simply counting and forming an

appropriate loop. In translation this is not so. The techniques

developed by Samelson and Bauer [34) are based on recursion. The

-20-

relationship of the symbol cellar {which is related to our control push-

down) to the nesting of recursive subroutines, while not stated, was

implied. Once the relationship of the Samelson and Bauer techniques to

the explicit use of recursive subroutines based on syntactic skeletons is

recognized, it becomes apparent that for translation the important and

useful methods are those based on recursion. It is also at that point

possible to reformulate the methods of Samelson and Bauer to give more

directly the relationship of the subroutines to the syntactic skeletons

with a resulting simplification of the process.

3. Techniques of Implementation

3.1. General Structure of the Translator

An early consideration in the design of a translator is the

choice of target language. This may be machine code or an intermediate

language. In the latter category are the symbolic assembly language~ as

well as machine-independent languages {for an e·xample of the latter

see (16]).

The use of an intermediate form permits the postponement of

certain functions to another program such as an assembler or a loader.

In some cases this expedites such things as the use of a general control

system and a library, the separate translation of procedures into a

relocatable form, and mixing with other languages.

Translation directly to machine code is likely to be consider-

ably faster. With a fast translator, it may be feasible to translate a

program each time it is run. Programs are then checked out at the source

language level.

,. ..

-21-

If it is desirable to construct the translator so as to provide

for an· option of either machine code or assembly language output, little

additional effort is necessary. The specifications for an Algol trans­

lator presented in this paper indicate the facilities required.

Another consideration in the structure of the translator is the

number of "passes" to be made during the translation processes. By a pass

is meant a transformation of a sequence of input symbols to a sequence of

output symbols. Here available memory size is a controlling factor. If

the memory is small, it may be necessary to segment the translator, and

several passes may be required. With a large memory the number of passes

can be kept small, though it is possible that some complexity may be

avoided with a larger number of passes. Processing to improve target

program efficiency may involve extra passes {see (22]).

3.2. Storage Allocation

The mechanism described here is for allocating storage to simple

variables and information vectors {see section 3.4) during translation.

For simplicity the case of simple variables only will be considered. An

easy modification will also provide storage assignment to formal parameters,

which is equivalent to generating local variables to correspond to the

parameters.

Three push-down lists are required: (1) the variable push-

down list V, (2) the block tracing push-down list T, and (3) the procedure

maximum serial number push-down R. In addition a list S of sentinels

{Boolean values) indicate which blocks of a nesting have procedures declared

in them. This list may be made part, in an implementation, of the list R

-22-

or of T. If m is the current depth of nesting of blocks, the lists T,

R, and S will have length m.

The variable push-down list V is the search area for the con-

version of identifiers to symbolic or relative addresses. The position

of the variable within the list, if a single entry list is used, can

denote its relative address in the target program. However, the list

will contain gaps, and actual deletions are necessary, whenever a pro-

\

cedure declaration has been processed, since new lists associated with
.-

higher level blocks must be added after· the area which once contained

the lists associated with a procedure declaration. The area is available

for re-use after the end of the block in which the procedure was declared.

The gaps may be avoided and the bookkeeping simplified if a double entry

push-down list is used, as we shall assume here. For each variable, the

double entry in V consists of the identifier and the associated serial

number. The entries in R then determine with which serial number each

new list must begin.

Each new variable list (including of course also information

vectors for arrays) is added to V, which is then a list of all variables

to which reference may be made in that block. The end serial number is

added to R. This entry is compared to each entry in R which corresponds

to that of a block in the nesting in which a procedure is being declared.

If it is larger it replaces the corresponding element of R.

When procedure appears, the sentinel in S corresponding to the

present block is set to indicate that the block is one in which there is

currently a procedure declaration being processed.

-23-

When the end of a block is reached (whether an ordinary block

or the block in a procedure declaration), the part of the variable list

declared within this block is removed from-V, and the corresponding

entries from R, S and T. In addition the sentinel of the containing

block is reset to indicate that a procedure declaration is not being

processed within this block.

We may consider the lists R, s, T, and V to be one-dimensional

arrays, whose current lengths are respectively m, m, m, and T(m]. Then

(considering simple variables only) the mechanism may be reduced to

operations at five points:

(1) when a begin is encountered:

m := m+l; T[m] := T[m-1]; R[m] := R[m-1]; S[m] :=false

(2) when procedure is encountered:

S[m] := true

(3) when the declaration of a variable is encountered:

R[m] := R[m]+l; T[m] := T[m]+l; V[T[m]] := (var, R[m])

(4) at the end of the declarations for each block:

for i := 1 step 1 until m do

begin if S[i] then R[i] := max(R[i], R[m]) end

(5) when end is encountered:

m := m - l; S(m] := false

Initialization requires m := R[O] := T[O] := O; S[O] := false at the

beginning of the program.

3.3. Temporary Storage for Expression Evaluation

In the evaluation of expressions, temporary storage is needed

for the preservation of intermediate results. The assignment of this

-24-

storage may be performed during the execution of the target program by

means of a simple push-down list. While this technique may be necessary

if one is handling recursive procedures, it is likely to seriously affect

target program speed if employed when recursive procedures are not to be

handled. Considering the nonrecursive ~ase, the problem is made interest­

ing by function procedures and the desire to minimize the storage required.

Assuming one does not assign a different temporary to each ·

request for storage (which would require an inordinate amount of memory),

the compiler will make the assignments on a push-down basis. Because of

the appearance of function designators in expressions, the temporary

storage level will not necessarily be zero upon dynamic entry to a pro­

cedure. The following techniques may be consider~d.:

(1) Temporaries may be assigned with aid of the same mechanism

used for declared variables, as described in section 3.2.

(2) The temporaries required by each procedure may be allo­

cated space within the coding for the procedure itself.

(3) The following algorithm may be used: Let h be the pointer

for push-down storage and hmax another counter. When

h := h + l '·

execute the statement

if h > hmax then hmax := hmax + 1 •

And at the end of a procedure declaration,

h := hmax •

Initially,

h := hmax := 0 •

-25-

These operations are all performed by the translator. While

technique (1) will yield the most economical use of storage, experience

indicates that (3) is a quite reasonable method.

3.4. Arrays

3.4.1. Allocation of Storage. The storage allocation problem

is quite different for ~ and non-~ arrays. We shall not present

plans for the full treatment of~ arrays {see (35]) but shall discuss

the case where the ~ arrays have subscript bounds which are either

constant or, if variable, do not change after having once been given a

value.

3.4.2. Non-~ Arrays. The storage for non-~ arrays is

naturally handled in push-down fashion in accordance with the block

structure of the program. A push-down list of counters BL[l], BL[2],

is generated during execution. The value of BL[m] is the initial address

of available storage upon entry to a block contained dynamically within

a nest of m-1 other blocks.

The subscripting operation, computing the address of an array

element, requires certain information about the array which is available

in the declaration. SlljJ.f:lU~e the l:J.l"l'l:J.'Y A l~ Lle<.:la1·eLl u,y

The ai a.nd bi can be any arithmetic expressions. If any of them have

non-integer values., the evaluation of those expressions must be followed

by the invocation of the appropriate transfer function.

i = 1, 2, ••• , N, denote the resulting integer values.

Ki = b' - a' + 1 , i i

Let a' and b!,
i J.

Define

i = 1, 2, ... , N.

-26-

The information necessary to the subscripting operation is conveniently

stored in an information vector. The information should include the

address of the array origin A[O, O, .•• , 0) and the numbers K2 , K
3

, ••• ,

~or, alternatively, K1 , K2 , ••. , ~-l·

The computations of the K. and the array origin, the storing
l.

of these values into the information vector, and the adjustment of the

proper BL[m] counter are performed in the target program by coding pro-

vided at the beginning of the block. Let the function ~A be ·defined by

~A (jl' j2' ••• , jN) = (••. (jl • K2 + j2). K3 + •..). ~ + jN. Suppose

the above declaration of A is the first in the block. Then the first

sequence of operations upon entry to the block during execution will be:

(1)

(2)

(3)

Aux := BL[m].

Compute a., b., K., i = 1, 2, ••• , N.
l. l. l.

loc (A[O, o, ... , 0)) :=Aux - ~A(al, a2, ••• , 8N)·
(4) L := K1 x K2 X ... x ~·

(5) Aux := Aux + L.

When all array declarations for this block have been processed (during

execution),

(6) m := m + 1.

(7) BL[m) := Aux.

3.4.3. Information Vector. The storage allocation mechanism

can provide N consecutive locations for the information vector, the

address of the first of these being that assigned to the array identifier

itself. The information vector then has the form:

, ..

/,\
I

'~

..

-27-

loc (A) loc (A[O, O, ••• , O])

loc (A) + 1 K2

loc (A) + N - 1 ~ .

In the one-dimensional case no K. 's are required, which corresponds to
1

the case of the switch.

3.4.4. Own Arrays. In the case of an ~array, another area

of memory is made available for storage, and a single counter is suf-

ficient for keeping a record of free space. The computation of the

elements of the information vector are the same as in the non-own case.

One additional device is necessary. If the block containing the decla-

ration has been previously entered, no storage allocation is done, and

the information vector is not disturbed. Some cell should be set aside

to contain a Boolean value indicating whether the block has been

previously entered. It should be initialized to false at the beginning

of the program and set to true upon the initial entry to the block. It

is tested upon each entry to the block to determine whether to process

the declaration.

3.4.5. Subscripting Operation. To compute the address of

MJ1 , j 2 , ... , jN]' assuming the ji's are integer-valued, the operation

is

3.5. Switches

A switch is essentially a one-dimensional non-~ array. The

subscripting operation in computing a switch designator should be carried

-28-

out in the same manner as the computation of the address of a subscripted

variable. This is indicated by the following example:

procedure P(t)·; Q(t[i]) •

Here t may refer to either an array identifier or a switch identifier.

Consider a switch declaration such as

switch S := L, if B then M else N, T[j + k] .

To treat this as an array, we consider it as having three elements. There

is a difficulty, ·however, in that the coding for the designational

expressions will in general occupy more than one computer word (in the

example the last two expressions). To solve this problem, these pieces

of coding will be referenced indirectly; that is, there will be an array

of three computer words each of which contains a jump instruction either

to a simple label contained in the switch declaration (under certain

conditions) or to a generated label which marks the beginning of the

appropriate piece of coding. The simple label of each such piece of

coding representing a designational expression will produce the address

to which a jump must be made and perform this jump (possibly through a

GO TO interpreter, see section 3.8). The address which results from the

computation of the switch designator S[E] is the address of one of the

jump instructions in the three-word array. The execution of the statement

go to S[E] ,

in general involves a multiple jump. As in the case of an array, the

switch identifier S is initialized so as to contain the address of the

"origin", which here is the location just preceding the first element of

the three-word array. Assuming this initialization has been carried out,

the coding generated by the above switch declaration has the following

•

.. ,

skeletal form:

L 1: u+

L 2: u+

L 3: u+

jump to L
u

jump to L

..,29-

evaluate B, jump to M if B is true,
otherwise jump to N

compute the address T[j+k] and jump
to that address.

Lu+4: contents unimportant

L
u

jump to Lu+l

jump to L u+2

jump to L
3 u+

The address L 4 is that to which S is initialized. It can be made the u+

last word occupied by the coding marked L
3

. u+

A degree of optimization is possible in this example if L is

the label of a statement in the current block. In that case the

instruction "jump to L
1

" can be replaced by "jump to L", and the rest
u+

of the skeletal fOl::'111 altered 1::1.t:t:u::r:dingly.

To make t,he et'f'ect of a statemeu L

go to S[i]

that of a dummy statement if i lies outside the declared range requires

obvious additions to the scheme. This introduces considerable inef-

ficiency and is of doubtful value.

-30-

3.6. Procedures

The Algol procedure is a generalization of the familiar notion

of the closed subroutine. The features which present translation problems

are: recursiveness, call by name and call by value, and a wide variety

of possible parameters. The problems of recursiveness and call of arrays

by value are not discussed here, but the approach to implementation given

below can be modified to include the complete procedure concept. See

[23,24].

Included among the possibilities for parameters is that of the

procedure identifier. This fact.is of considerable significance in that

it shows that the translator should in general make no reference to the

procedure declaration in translating a procedure call. Consider the

following example:

procedure P(a);

be~in --- end;

procedure Q(b);

bef;?iin --- end;

procedure R(c);

be~in inte~er K;

end.

c(K);

I
I
I.

integer a;

value b; integer b;

procedure Cj

It is the call c(K) that points up the difficulty. If R is called as

R(P), then c(K) becomes P(K); if R is called as R(Q), then c(K) becomes

•,

..

.. ...

-31-

Q{K). Clearly the link from the body of R, at c{K), must be deferred

until run time. Also, the translator cannot make any assumptions about

whether K is call~d by name or by value. In this example, P will call

K by name and Q will call it by value.

The call by name of expressions and subscripted variables

presents the problem of repeated reference from the procedure body to the

calling sequence. {See the Innerproduct procedure in section 5.4.2 of

the Algol 60 report [29,30].) To accommodate this, the calling sequence

can represent each parameter as a closed subroutine. This will henceforth

be referred to as the parameter subroutine. The function of thie

subroutine will be to leave the appropriate address in some predetermined

reg,ister.

As mentioned above, a parameter subroutine produces an address.

The interpretation of this address is left to the calling subroutine, that

is, the procedure body. In some cases a store is done into this address,

in other cases the value in this .address is brought into a register, or

a transi'er made to this address, etc. 'l'he next paragraph will describe

how this linkage between procedure body and procedure statement is

effected. First we shall consider the various types of actual parameters

and see what sort of addresses must be produced by the parameter

subroutines. We classify parameters as follows:

Class 1: simple variables, constants, labels, formal parameters called

by value - the subroutine simply puts into some register the

.address of the variable, or constant, or label, or generated

local identifier corresponding to the formal parameter;

-32-

Class 2: subscripted variables, switch designators - the parameter

subroutine computes the address of the array element or the .

address to which transfer is to be made and leaves it.in the

register;

Class 3: array identifiers, switch identifiers - the subroutine places

in the register the address of the table (information vector)

where the information for the subscripting is to be found;

Class 4: procedure identifiers - the subroutine produces the address at

which the coding for the procedure begins (the exception is

where the ~rocedure identifier is a function designator having

no para.meters; here· the subroutine must carry out a subroutine­

jump to the procedure);

Class 5: formal parameters called by name - the subroutine for such a

parameter does a subroutine-jump to the parameter subroutine

corresponding to the formal parameter (this kind of thing can

proceed to a depth of several levels);

Class 6: expressions - the parameter subroutine evaluates the expression,

stores the value in a temporary location, and produces the

address of the temporary;

Class 7: strings - the subroutine produces the address at which the

string begins.

The mechanism for linking a reference to a formal parameter to

the appropriate parameter subroutine will to a high degree depend upon

machine characteristics. We give below a brief sketch of an approach to

the problem.

)'

r

-33-

In addition to the parameter subroutines, the calling sequence

generated for a procedure call will also have a list of pointers, each

occupying one word. Each pointer contains the address of a parameter

subroutine. To accommodate these pointers, the translator sets aside a

"formal location" for each formal parameter when the procedure declaration

is translated. At run time, then, the execution of a procedure call will

involve the following steps:

1. A subroutine jump is made to the coding for the procedure . . ,
declaration. The starting address of the pointers is

somehow made available to the pr9cedure declaration, per-

haps through an index register.

2. The procedure declaration picks up each pointer and places

it in the appropriate formal location.

3. Now when any reference is made to a formal parameter, the

corresponding formal location contains the address of the

necessary parameter subroutine. For a parameter called by

, ·~
value, this parameter subroutine is activated before the

procedure body is entered; the value in the delivered

address is assigned to a generated local identifier corre-

spending to the formal parameter, and all references to

this parameter in the procedure body are treated as

references to the generated identifier.

On many machines it would be convenient to have a subroutine jump code

in the pointer as well as the address. It is clear that an execute

instruction might be useful for activating the parameter subroutine

through the pointer.

•.

..

-34-

We have so far ignored the matter of specifications as well

as the question of types. The correct matching of arithmetic types when

one operand is a formal parameter can only be done through dynamic type

handling, that is, in the running target program. A fairly satisfactory

restriction, however, might be to have the translator assume a formal

parameter which acts as an arithmetic quantity is of type real unless

specified integer. The programmer must then keep the types of corre- .•
sponding actual and formal parameters identical. As far as other specifi-

·.
cations are concerned, the use of some of them, particularly array, might

enable the translator to more easily achieve some optimization.

It should also be observed that the procedure linkage mechanism

makes such calls as F(F(x)) recursive even if F calls its parameter by

value.

3. 7. The For Statement

Since the for statement is essentially a shorthand device for

a complex of other Algol statements, it is a natural candidate for "boot

strapping". As is described in these plans, it is simple to build the
f

set of Algol statements which is equivalent to the for statement and

process these through the other parts of the translator. It is desirable

to modify this notion slightly in the case of a for list with more than

one element. There the statement following the for clause should be made

a closed subroutine to avoid requiring more than one copy of it. If

object code efficiency may be ignored, the translation is simpler if

this is done in every case.

·w

-35-

The problem of optimization of loops·can be attacked at several

levels of difficulty. Because of this and the rather large extent to

which hardware must be taken into account here, specific plans are not

easily presented. We shall indicate a few of the possibilities.

The process in which new Algol statements are generated from

the for· statement and processed intact through the translator may gener­

ally be modified to yield improvement in the object code. For example,

the multiplication in the if clause

if (V - C) x sign(B) > 0 then ,

constructed from a list element of the step - until type, is generally

replaced by a faster logical operation to compare the signs of V - C

and B.

The selection of certain forms of list elements for special

processing that takes advantage of convenient machine instructions, will

greatly improve object code efficiency. In particular, list elements

of the type

x step 1 until y

occur very frequently and deserve special treatment.

Finally, recursive address calculation using index registers

[22,34] can greatly improve target program reference of arrays.

3.8. The GO TO Interpreter

On entry to a block at execution time, the block nesting index

m is raised by one, storage is allocated to arrays declared in that block,

and the beginning of free storage for any subordinate block is stored as

the value -of BL[m] (sec. 3.4.2). Except for procedures, the index m

could be handled statically, that is, assigned on entry to the block

i
a definite value determined already at translation time. Procedure

bodies, however, cannot be assigned a fixed numb~r in advance, so it is

preferable to handle this counter dynamically (i •. e. as m := m + 1) at

the beginning of each block. If this is done, a corresponding inverse

operation must be performed on exit from the block. This involves among

other things, therefore, bookkeeping in connection with any go to

statement leading out of the block. To solve this problem it is suf-

ficient to keep in the target program a push-down list of pairs of

addressess, the last pair always being the beginning and ending addresses

of the code for the innermost block currently being executed. When a

go to statement is encountered, the address to which transfer is to be

made is given to the GO TO interpreter, a routine which the translator

places in the target program. This interpreter compares the address

given it with the most recent address pair in the push-down list. If

the given address lies within the limits, a simple jump is performed;

otherwise the block nesting index is decreased by one and new block

limits become effective.
(

Each pair of block limits is of course entered into the push-

down list by coding which appears at the beginning of the block.

This description assumes that the coding for each block is

stored sequentially in memory. For further comments on this and for an

extension of the notion to include recursive procedures, see [26].

If the compiler is to have the facility for translating pro-

cedures separately from a calling program, provision must be made for

linking the block limits push-down list in the calling program to that

in the procedure.

-37-

3.9. Strings

In a strict interpretation of Algol 60, strings as such can

only be used as actual parameters of procedures with formal parameters

specified string. Therefore, strings may be treated much like constants.

There need be no limit on their length. It may be desirable, antici-

pating the appearance of string variables in a future version of Algol,

. to refer to them indirectly, i.e., the address associated with the string

points to the location where the storage of the string begins. As

strings are manipulated by procedures written in non-Algol language,

the programmer must know how the strings are stored and how they are

delimited. While nested strings may be of limited value, no significantly

additional effort is required to provide for them.

4. Specifications for ~ Translator

4.1. General Considerations

The translator, for which specifications are given below, has

as source language process Algol. This means that a program is required

to convert the hardware Algol of a given computer into process Algol

before the language can be handled by the translator. Such a program

depends on the actual hardware language used and may easily be designed.

It need, consequently, not be discussed here.

Based on the theory outlined in chapter 2, the translator is

organized as a collection of recursive subroutines based on the syntactic

skeletons. The problem of designing the translator, therefore, becomes

that of designing the subroutines. To promote translation efficiency,

the organization of the s~broutines is around the framework of two

-38-

push-down lists for the storage of intermediate information. The basic

switching mechanism may be .described by means of a table or matrix rather

than a flow-chart. The various subprograms can be written in Algol

itself, augmented by additional prilllitive elements; to obtain a working

translator, these may easily be hand-translated into programs in a

symbolic machine language, and a suitable device may be used to illlplement

the switch [18).

The recursive subroutines representing the syntactic units \

call other subroutines, a few doz.en in number. To avoid confusion in

the terminology, the term subroutine is retained for the former and the

term macro used for the latter. Macros are of three main types: (1)

those that manipulate the control push-down and determine the sequence

of operations performed by the translator, (2) those that generate target

program, and (3) those that perform necessary bookkeeping, storage, and

checking.

To permit easy reference to certain lists which play a leading

role during translation, we introduce the following notation for them

and their elements:

List Name Nature of List Element Item Counter ---
Source program r Symbol of process Algol 'l g

Target program 11 Symbolic or machine instruction re p

Temporary push-down H Generated variable ri h

Control push-down ~ State a s

Auxiliary push-down A Miscellaneous information a: a

The function of the translator is to produce from the source

program r consisting of the elements -,
1

, -,2 , ••• , -,G the target program

-39-

TI with symb~lic or machine instructions n1 , n2 , ••• , np. Apart from

the list H which furnishes generated variables needed in the target

program, the remaining lists have a catalytic function in the process.

For example, the control push-down at a given point during translation

will contain elements a
1

, a2 , ••• , as, where sis the current size of

the list at this point. Initially and finally (in a syntactically

correct program) the list is empty, except for an initial state.

The process to be described is sequential. This means that

the list r is scanned only once from first element to last element

during translation. At each point in translation, the last element a
s

of the control push-down L· and the p-Algol symbol r under scan
g

together determine a list of macros that operate on the lists [; and r.

Thus, the control push-down is changed at times. The operations on r

by the requirement of sequentiality are limited to retaining the current

symbol under scan or proceeding to the next one (by the operation

g ;; g + 1).

One way of describing the process is by a matrix whose

columns are headed by all possible states which may occur as a and
$

whose rows are headed by all possible p-Algol symbols which occur as r .
g

In the field determined by each state and symbol (a , r) may be listed
s g

the macros to be executed when that combination occurs •. This device

was first used by the ALCOR group [3] [31]; it was retained in [19].

However, a serious attempt has been made to minimize the

total number of entries in the present design by the suitable choice of

states and macros. In consequence most of the fields in the matrix are

blank; if the corresponding pairs do occur during translation, an error

-40-

in syntax is indicated. A simpler course,· therefore, is to list in a

table all valid combinations and t~e actions.evoked by them. If in

implementation, it is desired to place in memory the actual matrix first

described in order. to do the switching, the recons·truction may easily be

made from the table.

begin

The translator program is basically the following:

Initialize; comment This procedure carries out all opera­
tions necessary to begin the process. This includes
the initialization of the counters in~he above table
and the placing of the state PR into L·

next: g := g + l;

process: Execute (o[s], 7[g]); comment Execute is a procedure that .
executes in turn each of the macros listed in the table
opposite the pair (a , 1);

. s g

end

In addition to the above lists, two label tables, LABDEC and

LABREQ, are used if the target language is machine language (their

functions are generally delegated to an assembler if symbolic language

is the output from the translator). The LABDEC table is a double entry
: • :--..· •• .- ~ .,: :· ·,. .. :,: :· '. +

table, with the first element a label name and the second element the

address tq which go to statements leading to this label must cause

transfer. The LABREQ table is also double entry, with its first

element a label name and its second element an address at which must be

supplied the address associated with that label in the LABDEC table.

At the time an entry is made into the LABREQ table, the addre$s r~quired

in that entry may not be available due to a forward reference in the

program. Of course no entry need be made in LABREQ if the address is

available.

'-.

:1'

.-

..·

•'

-41-

There are two sequences of generated labels: Lu, u = 1, 2,. •••

and Mq_, q_ = 1, 2, ••••

4.2. Control Operations

There are three macros which perform control operations. These

add to, delete from, or replace the last entry of the control push-down.
,..

Letting A denote a state, the operations are described by means of Algol

sta~ements as follows:

1. Ent(A) - enter a recursive subroutine:

s := s + l; cr(s] := A

In the translation table, the activation of this macro is

indicated by the appearance of a state in the Add column.

It is also called from other macros.

2. Ch(A) - establish a new state within a subroutine:

cr[s] := A

In the translation table, the appearance of a state in

the Change column denotes the activation of this macro.

3, Exit - exit from a recursive subroutine:

0 := 0 .. 1

TM.s is indicated in the translation table by the

appearance of an asterisk in the Delete column. Exit

is also called from other macros.

4.). Control States

1. Assignment statement

Al Added to control push-down upon encountering assignment

symbol :=, assumes control when expression on right-hand

side has been processed.

-42-

A2 Added to control push-down from state Al when multiple

assignment is discovered, assumes control when expression

on right-hand side has been processed.

2. Conditional statement

Cl Added to control push-down when if is encountered in

statement state, assumes control when Boolean expression

following if has been processed.

C2 Added to control push-down when then is encountered in

state Cl, assumes control when unconditional statement

following then has been processed.

C3 Added to" control push-down when else is encountered in

state C2, assumes control when statement following else

has been processed.

3. Conditional arithmetic or Boolean expression

CEl Added to control push-down when if is encountered in state

EO, assumes ,control when Boolean expression f()llowing if

has been processed.

CE2 Added to control push-down when then is encountered in

state CEl, assumes control when expression following then

has been processed.

CE3 Added to control push-down when else is encountered in

state CE2, assumes control when expression following else

has been processed.

4. Declaration

D Added to control push-down when declarator is encountered

in state SO, and again if ~ is encountered in state D.

It assumes control after each declaration is processed.

Dl Given control from state D after type declarator.

D2 Given control from state Dl after element of type list.

·..;

.-

,,

.•.

-43-

5. Array declaration

Da Given control to process array identifier of array

declaration.

Dal Given control from state Da. The lef't bracket of an array

Da2

Da3

Da4

segment or a comma is expected.

Assumes control when lower bound has been processed.

Assumes control when upper bound has been processed, added

to control push-down in state Da2.

Given control from state Da3 following right bracket of

array segment.

6. Pro<..:edure declaration

Dp Given control from state D when procedure declarator is

encountered.

DpO Added to control push-down from state Dp, assumes control

when the procedure declaration has been processed and a

semicolon is expected.

Dpl Given control from state Dp to determine whether formal

parameter part is empty.

Dp2 Given <..:unt:rol to process formal parameter.

Dp3 Given control from state Dp2 to discriminate between right

parenthesis and comma following formal parameter.

Dp4 Given control from state Dp3 to process semicolon.

Dp5 Given control from state Dp4 to determine whether value

part exists.

Dp6 Given control to process identifier of value part.

Dp7 Discriminates between comma and semicolon following

identifier of value part.

Dp8 Determines whether specification part exists.

-44-

Dp9 Given control after type specifier is encountered in state

Dp8.

DplO

Dpll

Discriminates between connna and semicolon following

identifier in specification part.

Given control to process identifier of specification part.

7. Switch declaration

Ds Given control to process identifier of switch declaration.

Dsl Given control to process assignment symbol of switch

declaration.

Ds2 Replaces state Dsl in control push-down, uncovered when

designational expression has been processed, discriminates

between connna and semicolon.

8. Arithmetic or Boolean expression

EO Whenever an arithmetic or Boolean expression is expected,

this state is given control.

El Added to the control push-down in state EO. When state

El assumes control, an operand has been processed, and

its address directly or indirectly stored in the uppermost

cell of the· auxiliary push-down.

E2 Added to contr01 push-down in state El, together with the

binary operation encountered there. When state E2 assumes

control, an operand has been processed. It is in this

state and E3 that precedence .of operations is handled.

E3 Added to control push-down in state EO when a unary opera­

tion is encountered. The unary operation is stored in the

control push-down in the saJUe cell as the state E3. This

state assumes control when an operand has been processed.

UEO Whenever an unconditional arithmetic or Boolean expression

is expected, this state is given control from CEl.

'.

-45-

9. For statement

FO Given control when for is encountered. The controlled

variable is copied into table V while in this state.

Fl Given control to copy the expression following the

assignment symbol of for clause.

F2 Given control to copy the increment expression in step­

until for list element.

F3 Given control to copy terminal expression in step-until

for list element.

F4 Given control to copy Boolean expression in while for list

element.

F5 Added to control push-down when do is encountered, assumes

control to process end-of-statement indicator following

for statement.

F6 Given control while copying expression in for clause when

left parenthesis is encountered.

F7 Given control while copying expression in for clause when

left bracket is encountered.

10. Go to statement and designational expression

G Added to control push-down when go to is encountered, .
assumes control to process end.-of-statement indicator

fn 11 nwi.ng go to sta:tement.

Gl Given control to process designational expression of go

to statement.

G2 Given control to determine whether preceding symbol was

label or switch identifier.

G3 Added to control push-down when switch designator is

determined, assumes control to process right bracket.

G4 Given control in state CG to process the unconditional

designational experession i'ollowing then.

-46-

G5 Added to control push-down when then is encountered in

state CG, assumes. control to process else of conditional

designational expression.

G6 .Added to control push-down in state G5, assumes control at

end of designational expression.

CG Added to control push-down in state Gl when if is

encountered, assumes control to process ~ of conditional

designational expression.

11. Identifier, operand and parenth_esis level

Il Given control '!:-.9 d-ist.inguish subscripted variables and

procedure calls from simple variables and to provide for

the processing of procedures without parameters.

I2 Added to control push-down in state Il upon discovery of

subscripted variable, assumes control ~o distinguish

between connna and right bracket following subscript

expression.

I3 Added to control push-down in state Il upon discovery of

procedure call,· assumes control to distinguish between

_connna and right parenthesis following actual parameter.

I4 Given control when an identifier is the first symbol in a

statement, provides for adjustment of control push-down in

case of label.

I5 Same as I4 for unconditional statement.

0 When an operand is expected, this state is given control.

P Added to control push-down when left parenthesis is

encountered in state O, assumes control to process corre­

sponding right parenthesis.

12. Statement

PR Initial control state when processing begins, checks that

program starts with begin.

-.

·.

-47-

SO Given control when begin is encountered, determines

whether a statement is a block.

Sl Added to control push-down when first declaration of block

is found, provides for processing of end at end of block.

S2 Given control when statement is expected.

S3 Added to control push-down in states S2 and US2, assumes

control to process end-of-statement indicator.

US2 Given control when unconditional statement is expected.

4.4. Translation Table

T.he translation table is given in the following pages. In the

Symbol column is a list of all p-Algol symbols permissible in the indi-

cated state. If the entry "other" occurs in the Symbol column, any

symbol not listed explicitly for that state should cause the action that

would be indicated if that symbol stood in place of "other". The actions

associated with each state-symbol pair are given in that line of the

table in which the symbol occurs. These actions are executed from left

to right beginning with any macros in the Building Block column. The

columns under the heading "Control Push-down" indicate changes in the I;
push-down in accordance with section 4.2 on control operations. An

asterisk in the Delete column indicates that the Exit operation should

be performed. The entry in the Transfer column is the label in the

tranclation program to which t:r.a.nsfe.r is made after execution of all

operations in thR.t. 1 i.ne of the table.

It is clear that a more extensive use of the "other" device

can be made to reduce the number of table entries if a syntactical check

is not desired. The table is derived from the metasyntactical formulas

-48-

appearing in the Algol Report. As has been pointed out [8], these

formulas describe a "superlanguage" in which Algol 60 is imbedded. The

table is intended to permit a complete syntactical check of this super-

language except in the case of the for statement. The expressions in

the for clause and the controlled variable may of course be checked

while processing the strings constructed from the for statement. This

may make it difficult, however, to pinpoint the error. Alternatively,

a prepass may perform the check, and the modifications in states FO

through F7 are fairly evident: states F6 and F7 (needed in translation

because of the problem of commas in the copying operation) are elimi-

nated, state EO is entered where an expression is expected, and a state

is added to the table for checking the controlled variable (which may
r

be subscripted). Still another possibility, one not requiring a prepass,

is to provide special expression states which handle the copying opera­

tion. A complete syntactical check of Algol 60 programs must also

determine whether the declarations are complete and consistent and. whether

identifiers are used in accordance with their declarations.

As indicated earlier in this section, the translator has as

its source language process Algol. Consequently, it is assumed that the

information contained in the declarations has previously been collected.

The actions indicated in the table with regard to declarations are

therefore restricted to those actually involving the generation of code.

The symbol m is used in expression states to indicate a unary

or binary operation. The letter I in the Symbol column denotes an

identifier.

-49-

The form of the translation table here is somewhat different

from that given in previous papers by one of the present writers (18,19].

The principles are, however, identical.

Control Push-down

State Symbol Building Block Delete Change Add Transfer

Al end EVl· * process --
else EVl * process --
; EVl * process

.- A2 Al, EO next

A2 end EV2 * process --
else EV2 * process --
; EV2 * process

Cl then IF C2 US2
..
next --

C2 end THEN * process --
else ELSE C3 S2 next --
; THEN * process

C3 end -- THEN * process

. THEN , * process

-50-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

CEl then IF CE2 UEO next --
CE2 els_e CC,ELSE CE3 EO next

CE3 then CC,THEN,CCl * process --
step CC,THEN,CCl * process

while CC,THEN,CCl * process

until CC,THEN,CCl * process

do CC,THEN,CCl * process -
CC,THEN,CCl * process '

] CC,THEN,CCl * process

) CC,THEN,CCl * process

end CC,THEN,CCl * process --
else CC,THEN,CCl * process --
; CC,THEN,CCl * process

D real Dl next --
intes;er Dl next

Boolean Dl next

array ARRAY Da next

switch Ds next

;erocedure Dp next

own D next --
other * process

Dl array ARRAY Da next

Erocedure Dp next

I D2 next

D2
' Dl next
. * next '

-51-

Control Push-down

State •Symbol Building Block Delete Change Add Transfer

Da I STID Dal next

Dal [Da2 EO next

'
Da next

Da2 : STV Da3 EO next

Da3 '
VECTOR Da2 EO next

] VECTOR,ORIGIN Da4 next

Da4
'

ARRAY Da next

; * next

Dp I PROCDEC DpO . Dpl next

DPO . ENDPROC * next '
Dpl (Dp2 next

; S2 next

Dp2 I STORE PAR Dp3 next

Dp3
'

Dp2 next

) Dp4 next

Dp4 ; Dp5 next

Dp5 v1::1.lue Dp6 next

other Dp8 process

Dp6 I VALUE Dp7 next
·-

Dp7 '
Dp6 next

. Dp8 next ,

-52-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

Dp8 real -- Dp9 next

integer Dp9 next

Boolean Dp9 next

array Dpll next

switch Dpll next

procedure Dpll next ·-

string Dpll next

label Dpll next

other S2 process

Dp9 I DplO next

array Dpll next

:erocedure Dpll next

DplO
'

Dpll next

. , * next

Dpll I DplO next

Ds I STID,SWITCH Dsl next

Dsl ·- Ds2 Gl next

Ds2
'

TRA,RAILROAD Gl next

. TRA,JUMPLIST , * next

-53-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

EO if CEl EO next -
I El 0 process

(El 0 process

(.l) El (E3,w),o next

El then -- * process

step * process
·-·

while * process

until * process

do - * process

* process
'
] * process

) * process

end -- * process

else -- * process

. * process ,

: * process

(.l) (E2 ,w),o next

(E2 ,w) then -- EXB * process

step EXB * process

while EXB * process

until .EXB * process

do EXB * process -
EXB * process

'
] .l!:x.B * process

-54-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

(E2 ,m)) EXB * process
(cont.)

end EXB -- * process

else· EXB -- * process

; EXB * process

: EXB * process

CJ.) COMPEX

(E3 ,m) then EXU * process --
step EXU * process

while EXU * process

until EXU * process

do EXU * process -
EXU ·* process

'
] EXU * process

) EXU * process

end EXU -- * process

else EXU * process --
. EXU * process '
: EXU * process

(.l) COMPUX

UEO I El 0 process

(El 0 process

(.l) El (E3 ,m) ,O next

-55-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

FO .- Fl next

other COPY(O) FO next

Fl step F2 next

while F4 next

, Al,CL Fl next

do Al,B F5 S2 next -
[COPY(l),list:=l F7 next

(COPY(l),list:=l F6 next

other COPY(l) Fl next

F2 until F3 next

other COPY(2) F2 next

F3 , A2,CL Fl next

do A3,B F5 S2 next -
[COPY(3),list:=3 F7 next

(COPY(3),list:=3. F6 next

other COPY(3) F3 next

F4 , A3,CL Fl next

do A3,B F5 S2 next -
[COPY(2),list:=2 F7 next

{ COPY(2),list:=2 F6 next

other COPY(2) . 1''4 next

F5 . c * process ,

else c * process -
end c * process -

./

-56-

Control Push-down

State ·,Symbol Building Block Delete Change Add Transfer

F6 (. COPY(list) F6 next

[COPY(list) F7 next

) COPY(list) * next

other COPY(list) next

F7 [COPY(list) F7 next

] COPY(list) * next
"·'

(· COPY(list) F6 next

other COPY(list) next

G end TRA * process -
else TRA * process --
; TRA * process

Gl if CG EO next -
I G2 next

(p Gl next

G2 [G3 EO next

; * process

end * process -
else * process --
) * process

* process ,

G3] * next

G4 I G2 next

(p Gl next

-57-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

G5 else G6 Gl next --
G6 * process ,

j * process

end * process ·--
else * process

) * process
.......

CG then G5 G4 next --
Il (PROC I3 EO next

[12 EO next

then NO PAR * process --
step NO PAR * process

while NO PAR * process

until NO PAR * process

do NO PAR * process -
NO PAR * process ,

] NO PAR * process

) NOP AR * process

end NO PAR * process -
else NO PAR * process --
. NO PAR ' * process

().) NO PAR * process

: NO PAR * process

* process .-

-58-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

12
'

STV EO next

] SUBS * next

13'
' RETURN EO next

) RETURN, FUNC * next

14 : * S2 next

(11 process
·.

[11 process

.- Al EO next

end * process --
else -- * process

; * process

·15 : * US2 next

(11 process

[11 process

.- Al EO next

end -- * process

else -- * process

; * process

0 l STlD 11 next

(p EO next

()..) (E3 ,w) 0 process

p) * process

-59.;.

Control Push-down

State Symbol Building Block Delete Change Add Transfer

PR bet:!jin so process

so begin so next

for S2 process -
goto S2 process

if - S2 process

I S2 process

end EOP * next --
; S2 next

declarator BBL Sl D process

Sl. begin S2 process

for -- S2 process

goto S2 process

if - S2 process

I S2 process

end EOB * next --
.I S2 next

S? 'hP.gi.n s3 so next

for CLO S3 FO next --
goto S3 G,Gl next

)
if S3 Cl,EO next -
I STID S3 I4 next

end * process --
. * process ,

-60-

Control Push-down

State Symbol Building Block Delete Change Add Transfer

S3 . , * process

end * process --
else * process --

US2 begin S3 so next

for S3 FO next --
5oto S3 G,Gl next

I STID S3 I5 next

end * process --
else * process --
; * process

4.5. Target Language

In order to describe the macros, the machine code of a fie-

titious s~ngle-address machine will be assumed as the target language.

Only certain instructions are used explicitly:

CLA y

STO y

ENA t

INA t

SUB y

TRA y

Clear the accumulator and add the contents of location

y.

Store the contents of the acc\.Ullulator in location y.

Clear the accumulator and enter the number t. This

is equivalent to CLA y where t is in location y.

Add the number t to the contents of the accumulator.

Subtract (fixed-point) the contents of location y

from the accumulator.

Transfer control to the instruction in location y.

. ·

·.

TIF y

SJP y

SSE y

MPY y

-61-

Transfer if value in accumulator is false to

instruction in location y; otherwise proceed.

Perform subroutine jump to location y.

Set the subroutine exit address in the instruction

in location y.

Multiply (fixed-point) the contents of the accumulator

by the contents of y, leaving the result in the

accumulator.

In several macros the operation codes SJP and SSE appear underlined •

This occurs where strings of p-Algol symbols are built up in processing

the for statement and means that the translator is to generate an

instruction using the underlined operation c.ode.

4.6. Notation in Macros

The macros are described in Algol, with the exception of some

additional notational conveniences. The comment facility of Algol is

used in instances where the details are obvious or highly machine-

dependent. To augment Algol the following devices are used:

C(E) The target program address which is the value of E.

E is A. t.:rFt.ni=;l at.or variable or itself a target program

address (the case of indirect addressing).

< m > The representation in the translator of the target

program address m. The assignment of this represen­

tation to a translator variable v is indicated.by

v := < m >.

Ac The representation in the translator of the accumu­

lator, indicating its use in the target program as

a temporary.

An apostrophe is used to indicate both left and right string quotes.

-62-

4. 7. Macros

The·ma:cros appearing in the translation· table are described

below. With the exception of those in section I, they are grouped under

headings corresponding to the subroutines in which they are used.

I. General procedures. These procedures are used by many of those that

follow. Some are involved in target program generation and the others

in bookkeeping.

A. Target program generation

1. procedure TARGET (instruction); string instruction;

comment Writes symbolic or machine instruction into the

target program TI , increasing counter p as necessary;

2. procedure LOADA; comment Writes an instruction to load the

accumulator;

begin

end;

if a[a] = < n[h] > then h := h - l;

if a[a] is sentinelled then

TARGET(' CLA c(c(a[a]))') else

TARGET(' CLA C(a(a])'); a[a] :=Ac

3·. p:rocedure ROUND; comment Writes subroutine jump to target

program routine when real-to-integer transfer function

must be invoked;

if a[a] is of type real then

TARGET (I SJP FIX I) ;

.·

•'

-63-

B. Bookkeeping

1. procedure LABEL DECLARE {label); label label; comment If

the target language is machine code, an entry of label

together with the address at which it is used is made in

the LABDEC table {any requests for label in LABREQ can now

be f.illed). If the target language is assembly language,

label is placed in the target program;

2. procedure LABEL REQUEST {label); label label; comment If

the target language is machine code, a scan is made of

LABDEC: if label is there the address is filled, if not,

label is entered with the associated address into LABREQ.

If the target language is assembly language, no action is

taken;

3. integer procedure prec {operation);

comment Each operation has a precedence number, those of

high~r precedence having higher numbers, those of equal

precedence having equal numbers. The value of this function

is this number;

II. D.eclarations

A. Array declarations

1. procedure ARRAY; comment Initializes computation of array

storage;

begin

TARGET ('ENA l');

TARGET (I STO ARRAYLENGTH I)

-64-

2. procedure VECTOR; comment Computes and stores away the

multipliers for subscription;

begin

end;

LOADA; ROUND; a := a - l; if a[a) = < n[h] >

then h := h - l;

if a(a] is sentinelled then

TARGET ('SUB c(c(a[a]))') else

TAR~ET ('SUB c(a[a])');

TARGET ('INA l');

comment The value now computed is stored into the

information vector of each array identifier in the

declaration; a := a - i-;

TARGET (I MPY ARRAYLENGTH I) ;

TARGET (I STO ARRAYLENGTH I)

3, procedure ORIGIN; comment Writes code to compute the origin

addresses for the arrays in the declaration and store them

in the infonnation vectors, removes array identifiers from

auxiliary push-down;

B. Switch declarations

1. procedure SWITCH; comment Writes code to initialize a

switch. This consists of storing the address of the switch

origin into the location reserved for the switch identifier;

2. procedure RAILROAD; comment Inserts a label at beginning of

coding of designational express.ion in switch list;

..

-65-

begin

u := u + l; a := a + l; a[a] .- < Lu > ;

LABEL DECLARE (Lu)

end;

3. procedure JUMPLIST; comment Writes the array of jump

instructions following the switch origin;

C. Procedure declarations

1. procedure PROCDEC; comment Writes entry line of procedure •

A label is generated and associated with the procedure

identifier, and LABEL DECLARE is called to handle the

label;

2. procedure ENDPROC; comment Writes exit line of procedure.

If any special locations are reserved for procedure linkage,

this routine may allot the space;

3. procedure STORE PAR; comment Processes formal parameter.

Any coding required to establish linkage with the actual

parameter in the calling sequence may be written at this

point;

4. procedure VALUE; comment Writes code to fetch value of

actual parameter and assign it to the formal parameter;

III. Compound statement and block

1. procedure BBL; comment Writes code to carry out block entry

operations. This includes adjustment of array storage push­

down pointer and block limits push-down pointer;

-66-

2. procedure EOB; comment Writes code to carry out block exit

operations. This includes adjustment of array storage push"."

down pointer and block limits push-down pointer. Calls EOP;

3. procedure EOP; comment Tests for end of program;

IV. Designational

1. procedure LABEL; connnent Places label in target program or

LABDEC table;

begin

LABEL DECLARE ·(c(o:[a]));

a .- a - 1

end;

2. procedure TRA; ·comment Writes code for transfer;

begin

end;

V. Assignmen4

if o:[a] is a label then

begin

TARGET ('ENA c(o:[al) •);

· .· LABEL REQUEST (C (ex (a)))

end else LOADA;

TARGET ('TRA GO TO') ; comment GO . TO is the target

pro'gram routine referred to previously as the GO TO

interpreter and discussed in section 3.8;

a .- a - 1

1. procedure EVl; comment Writes code to perform the operation

of assignment;

-67-

· begin LOADA; a : = a - l; EV2 end;

2. procedure EV2; connnent Writes code to perform a storing

operation;

begin

if a[a] is sentinelled then

begin

TARGET (' STO C (C (a [a])) ') ;

h := h - 1

end else TARGET ('STO C(a[a])'); a .- a - 1

VI. Operand and identifier

1. procedure STID; comment if r[g] is a formal parameter

called by name, this routine writes code to fetch address

from calling sequence and store it into temporary location,

puts temporary into next available position in auxiliary

push-down, and sentinels it. Otherwise, it puts r[g] into

next available position in auxiliary push-down;

2. procedure.SUBS; comment Writes code to compute the address

of a subscripted variable or switch designator. If K is

the number of subscripts, the last K entries in the

auxiliary push-down give the addresses of the K subscript

values. Any of these which are temporaries are released.

et[C:t. - K] t..:ontains the address at which the infor=

mation vector begins. The address computed here is stored

in the next available temporary. The address of this

temporary is sentinelled a.nd plA.c~rl in o:[a - K].

-68-

3. procedure STV; comment Writes code to do any necessary

rounding and store value into next available temporary;

begin

end;

if a[a] is of type real then

begin LOADA; ROUND end;

if a[a] = Ac then

begin

end

h := h + l; TARGET ('STO n[h]')

a[a] = < n[h] >

4. procedure PROC; comment Writes code to initiate procedure

call. This includes the subroutine jump to the appropriate

procedure body, the address of which may not be known at

translation time (the case of a formal procedure identifier)

and any instructions necessary to establish linkage with

the calling sequence;

5. procedure NOPAR; comment I.f a[a] is a procedure identifier

having no parameters, a subroutine· jump is written to the

procedure;

6. procedure RETURN; comment Writes code to place the proper

address in some standard location and exit from a para.meter

subroutine. This will sometimes require code to store a

computed result in a temporary location;

..

-69-

7. procedure FUNC; co:rmnent Writes any code or link words/

necessary to describe to the procedure the locations of

the parameter subroutines;

VII. Expression

1. procedure COMPEX; comment Tests for precedence between the

incoming binary operation and the one in the control push-

down a[s]. If the latter does not have lower precedence,

it is executed;

if prec (a[s]) 2 prec (r[g]) then

begin EXB; Exit; go to next end else

begin Ent(E2, r[g]); Ent(O); go to next end;

2. procedure COMPUX; co:rmnent Tests for precedence between the.

incoming binary operation and the unary operation in the

control push-down a[s]. If the latter does not have lower

precedence, it is executed;

if prec (a[s]) 2:: prec (r[g]) then

begin EXU; Exit; go to next end else

begin Ent(E2, 7[g]); Ent(O); go to next end;

3. procedure EXU; co:rmnent Writes code for the execution of a

unary operation;

begin

if a[a] ~ < n[h] > then h := h + l;

comment now code is written to perform the assignmerit

n[h] := (.l) c (a[a]);

a[a] := < n[h] >

-70"."'

4. procedure EXB; comment Writes code :for the execution of a

binary operation;

begin

. if a[a] -/:- < n[h] > then

begin

if a[a l]-/:- < n[h] >then

h := h + 1

end else

if a[a - l] - .< n[h - l] > then

h := h - lj

corrunent now code is written to perform the assignment

T][h-] := c(a[a - ll) w c(a[a]).

This typically might involve the testing of w to

determine which binary operation it is and executing

a subroutine which performs that particular operation.

On many computers it will be necessary to test the types

of the operands and possibly invoke a transfer function.

Type information should be pre.served in th~ auxiliary

push-down entries;

a .- a - l; a[a] := < n[h] >

VIII. For statement

1. ·· procedlire COPY (list); comment Copies ;-[g] into the next

available position in a table, which is one of the tables

V., EXl, EX2 or EX3 according as list equals 0, 1, 2 or 3;

~-

-71-

2. procedure CLO; comment Initializes pointers for tables V,

EXl, EX2 and EX3 and also q := q + l;

3. procedure CL; comment Initializes pointers for tables EXl,

EX2andEfj;

4. procedure Al; comment Processes a list element of the type

EXl. The following string is constructed and processed as

if part of the Algol program;

'V := EXl; SJP Mq;';

5. procedure A2; comment Processes a list element. of the type

EXl step EX2 until EX3. The following string is constructed

and processed as if part of the Algol program after per-

forming u := u + l;

'V := EXl; Lu: if (v - EX3) * EX2 ~ 0

then begin SJP Mq; V := V + EX2;

go to Lu end;';

6. procedure A3; comment Processes a list element of the type

EXl _while EX2. The following string is constructed and

processed as if part of the Algol program after performing

u := u + 1:

'Lu: V:= EXl; if EX2 then

begin SJP Mq; go to Lu end;';

7, procedure B; comment Writes a transfer past the subroutine

for the statement subject to the for clause and a subroutine

entry to it;

-72-

begin

u := u + l; TARGET ('TRA Lu');

LABEL REQUEST (Lu); a := a + l;

a[a] := <Lu > ; LABEL DECLARE (Mq);

u := u + l; TARGEI' ('SSE Lu');

LABEL REQUEST (Lu); a := a + l;

a[a] := <Lu>

8. procedure C; comment Writes the exit from the subroutine

enclosing the statement subject to the for clause;

begin

LABEL DECLARE (c(a[a])); a :=a - l;

TARGEI' ('TRA I) • --- ·'
LABEL DECLARE (C(a[a])); a :=a - 1

IX. Conditional expressions and statements

1. procedure IF; comment Writes code for making a test on a

Boolean value;

begin

if a[a] is sentinelled then

TARGET ('CLA c(c(a[a]))') else

TARGET ('CLA c(a[a])');

if a[a] = < D[h] > then h := h - l;

u := u + lj

TARGET ('TIF Lu');

··,

-73-

LABEL REQUEST (Lu);

a[a] := < Lu >

2. procedure THEN; comment Does label manipulation for

processing of conditional;

begin

LABEL DECLARE (C (a[a]));

a := a - 1

3. procedure ELSE; comment A transfer is written following

the first statement or expression of a conditional;

begin

u := u + l;

TARGET ('TRA Lu');

LABEL REQUEST (Lu);

LABEL DECLARE (c(a[a]));

c:x[a] := < Lu >

4. proce~1.:.1E~. CC; comment Writes code to load the accumulator

properly in the case of a conditional expression;

begin

if a[a] is a label then

begin

TARGET ('ENA c(c:x[a])');

. LABEL REQUEST (C (a [a]))

end else

-74-

begin

if a[a] is sentinelled then

TARGET ('CLA c(c(a[a]))') else

TARGET ('CLA C(a[a])');

if a[a] = < n[h] > then h .- h - 1

a := a - 1

5. procedure CCl; comment Adjusts the auxiliary push-down;

begin

h := h + l; a := a + l; a[a] := < n[h] >

5. Miscellaneous Features

5.1. Input and Output Problems

The Algol report does not specify facilities for input and

output. There are provisions, however, for procedures written in non-

Algol code. Such procedures may be designed for input and output and

may conveniently be treated in the same manner as the standard functions,

i.e., considered as available without declaration. Many implementations

of Algol have involved the addition of new language elements to aid the

design of input an.d output facilities. It has been shown, however, that

a satisfactory system can be devised entirely within the language [12].

The procedures should handle type-matching problems auto-

matically. On input, for example, this means that if, say, read is a

• •

.. ·.,

· ..

..
~

~· _,

-75-

procedure which inputs a number without format requirements, then the

statement

read (x)

should have the effect of

x := the number on the input medium.

Any necessary transfer function should be invoked automatically. Since

there are no format requirements, the form of the number on the input

medium should be required simply to be a proper Algol number.

The problems of format, which are more significant in output,

may be solved through the use of strings for specifying number patterns.

5.2. Pretranslation of Procedures

It is a not uncommon programing practice to compile subroutines

separately from the rest of the program, particularly when the program is

quite large. Ordinarily the result of this is a relocatable code which

will be linked to the calling program by means of some sort of loading

routine. The details of how this is accomplished may vary greatly with

the machine and operating system, so that the problems arising may not

easily be anticipated by designers of a universal language. The Algol

report specifies no facilities for hap.dling this problem. If this feature

is desired, it is necessary to make an extension of the language to

facilitate the linkage of procedure to calling program. This extension

should be designed. so as also to satisfy any requirements of the library

system.

The Algol report specifically allows that a procedure body may

be in non-Algol language. The compiler may therefore need to be capable

-76- ..

of processing one or more·other languages. It may be more practical,

however, to handle such procedures separately, as described above. In

this way the problem is handled at the level of the operating system,

allowing the procedures to be written in any language for which the

system has a processor.

'··

,.,

-77-

APPENDIX

ALCOR Hardware Representation of Algol

In the table below is given a hardware representation of Algol

symbols for which substitutions are required on 48-character set

peripheral equipment. This is consistent with the ALCOR convention. On

80-column cards, ALCOR considers only columns 1 through 72 as relevant

to Algol program texts, leaving the remaining columns to be used for

identification purposes if.desired.

Only capital letters are used. One character, supposed here

to be the apostrophe, is reserved as an escape symbol. It is used to

delineate word delimiters and truth values. 'l'he reference symbol begin,

for example, appears in the hardware representation as 'BEGIN'.

Reference Symbol Hardware Representation

< 'LS'

'LQ'

'EQ I (1)

·~ :::: 'GQ'

> 1 GR 1

f 'NQ'

--z 'NOT'

/\ 'AND'

v 'OR'
--
._j I]]/JP I

- 'EQV'

10

x *
f-,

·~:

d

-78-

Reference Symbol Hardware Representation

T **
+ II

; $

·=

[(/

I)
"(2)

II

(space)

~he reason for making a replacement for the symbol = is that this
symbol is also tolerated as a substitution for the symbol :=. If it
is not desired. to allow this, no replacement is made for the symbol

In fact the keypunching rule on page 3 breaks down if this
replacement is required.

2The representation of strins quotes using apostrophes does not provide
for nested strings. This difficulty is overcome by using'(' for
'and')' for'

· . .,

.:

,~--

...

-79-

References and Bibliography

1. J. W. Backus, et al., "The Fortran Automatic Coding System," Proc.
Western Joint Comput. Conf., Los Angeles, Calif., 1957, ----

2. B. Balch and T. Gallie, Jr., "Algol at Duke," Datamation .§,(1962),
No. 6, 33-35°

3, F. L. Bauer, et al., The Structure of ALCOR, Institut fuer Angewandte
Mathematik, Mainz, Germany, 1960. Multilith ALCOR Report.

4.

5.

H. H. Bottenbruch, "The Structure and Use of Algol 60, 11 Journ. Assoc.
Comput. Mach. 2(1962), 161-221, and ORNL-3148 •

H. H. Bottenbruch and A. A. Grau, "On Translation of Boolean
Expressions," Cormn. ACM L_(July 1962), 384-386.

6. H. H. Bottenbruch, "Uebersetzung von algorithmische Formelsprachen
in die Programmsprachen von Rechenmaschinen," ~· fuer math. Logik
u. Grundl. ~· Math. ~(1958), 180-221.

7. L. L. Bumgarner, The Oak Ridge Algol Compiler for the Control Data
Corporation 1604 - Preliminary Progra.rruner's Manual, ORNL-3460
(Jan. 30, 19b4'):'°

8. Caracciolo di Forino, "Some Remarks on the Syntax of Symbolic
Programming Languages," Corrun. ACM £(Aug. 1963), p. 456.

9. E. W. Dijkstra, "Operating Experience with Algol 60, 11 The Computer
Journal L,(1962), 125-127.

10. E. W. Dijkstra, An Algol Translator for the Xl, Amsterdam, 1961.
Multilith report translated by P. Nau:r •

11. A. C. Downing, "Magnetic Tape Storage Files," ORBIT Memo No. 3~
ORNL (1959). - --

12.

13.

14.

15.

16.

F. G. Duncan, "Input and Output for ALGOL 60 on KDF9," The Computer
Journal L,(1963), No. 4, 341-344.

F. G. Duncan, "Implementation of Algol 60 for The English Electric
KDF9," The Com~uter Journal L_(July 1962), 130-132.

F. G. Duncan, "Algol Translation for KDF9," Automatic Programming
Information Bulletin, May 1961, No. 7, 31-32.

M. Feliciano, Oracle Algol Translator! (Preliminary Report),
Mathematics Panel, ORNL, Sept., 1960. Multilith ALCOR.

A. A. Grau, "A Translator-oriented Symbolic Programming Language,"
Journ. Assoc. Comput. ~· 2.(1962), 480-487.

l 7.

18.

l9.

20.

2l.

-80-

A. A. Grau, "On a Floating Point Number Representation for Use
with Algorithmic Languages," Comm. ACM L_(Oct. 1962), l60-16l.

A. A. Grau, "Recursive Processes and Algol Translation," Comm. ACM
~(Jan. 196l), l0-15.

A. A. Grau, The Structure of ~ Algol Translator, ORNL-3054
(Jan. 23, l961J.

A. A. Grau, et al., Progrannner's Manual. Oracle Bin)ry Internal
Translator (ORBIT), ORNL CF-59-9-20 (Sept. 22, 1959 .

A. A. Grau, "Multi-Segment ORBIT Programs," ORBIT Memo No. g_,
ORNL (1959). - -

22. E. N. Hawkins and D. H. R .. Huxtable, "A Multi-pass Translation
Scheme for Algol 60," Annual Review in Automatic Progranuning .2_(1963),
163-205.

23. P. z. Ingerman, "Thunks," Comm. ACM ~(Jan. 196l), .55-58.

24. E. T. Irons and W. Feurzeig, "Comments on the Implementation of.·
Recursive Procedures and Blocks in Algol 60," Comm. ACM ~(Jan. ·;i:961),
65-69.

25. E. T. Irons., "A Syntax Directed Compiler for Algol 60," Comm. ACM
~(Jan. 196l), 51-54.

26. D. E. Knuth and J. N. Merner, "Algol 60 Confidential," Comm. ACM
~(June 196l), 268-72.

27. P. Lucas, "The Structure of Formula Translators (Theoretical
Investigation of Translation)," Algol Bulletin Supplement No. 16,
Sept. 196l.

28. Math. Panel Ann. Progr. Rept. Dec. 3l, 1961, ORNL-3264.

29.

30.

3L

32.

Peter Naur (editor), "Revised Report on the Algorithmic Language
Algol 60," Comm. ACM _§.(Jan. 1963), 1-17.

Peter Naur (editor), "Report on the Algorithmic Language Algol 60,"
Conun. ACM .2_(May l960), 290-314.

M. Paul, Structure of the first Algol Translator at the Institute
fuer Angewandte Mathematik, Mainz, Germany, 1959. Unpublished notes.

A. J. Perlis and K. Samelson, editors, "Preliminary Report­
International Algebraic Language," Comm. ACM .!,(Dec. 1958), 8-22.

\j

• •

.•.

:"''.:

..

· ..

33.

34.

35.

-81-

H. Rutishauser, "Ueber automatische Rechenplanfertigung bei
programsteuerten Rechenanlagen," z. Angew. Math. ~· Mech. 31(1951),
255. -

K. Samelson and F. L. Bauer, "Sequential Formula Translation,"
Comm. ACM 2(Feb. 1960), No. 2, 76-83.

K. Sattley, "Allocation of Storage for Arrays in Algol 60," Comm.
ACM ~{Jan. 1961), 60-65 .

-o THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

.
•

~

j\

'•""

. .

-83-

ORNL-3592
UC-32 - Mathematics and Computers

TID-4500 (28th ed.)

INTERNAL DISTRIBUTION

1. B,iology Library 69. M. T. Harkrider
2-4. Central Research Library 70. A. s. Housholder

5. Reactor Division Library 71. w. H. Jordan
6-?. ORNL - Y-12 Technical Library 72. L. Jung

Document Reference Section 73. c. E. Larson
8. CDPF Computer Library (K-25) 74. M. E. La Verne

9-28. Laboratory Records Department 75. E. Leach
29. Laboratory Records, ORNL R.C. 76-79. M. H. Lietzke
30. Nancy B. Alexander 80. C • McCracken
31. E. D. Arnold 81. Mary J. Mader
32. Susie E. Atta 82. c. D. Martin
33. G. J. Atta 83. F. Miller
34. Nancy Betz 84. R. V. Miskell
35. J • E. Bigelow 85. c. E. Parker

36-55. L. L. Bumgarner 86. s. K. Penny
56. H. P. Carter 87. D. c. Ramsey
57. D. K. Cavin 88. R. M. Rush
58. Arline Culkowski 89. c. D. Scott
59. M. H. Davis (K-25) 90. M. J. Skinner
60. w. Davis, Jr. 91. w. J. Stelzman
61. H. J. deBruin 92. J. G. Sullivan
62. L. Edwards 93. c. D. Susano
63. Margaret Emmett 94. J. A. Swartout
64. O. E. Esral 95. J. s. Watson
65. M. Feliciano 96. A. M. Weinberg
66. Barbara Flores 97. R. E. Worsham
67. T. B. Fowler 98. H. Wright
68. D • A. Griffin 99. J. H. Zeigler (K-25)

EXTERNAL DISTRIBUTION

100. F. L. Bauer, Mathematisches Institut der Technischen Hochschule,
Munchen, Germany

101. A. c. Downing, Control Data Corporation, Computer Division,
4201 North Lexington Avenue, St. Paul, Minnesota

102-121. A. A. Grau, Department of Mathematics, Northwestern University,
Evanston, Illinois

122. B. H. Mount, Manager, Mathematj_r.R RP.ction, Westinghouse Electric
Corporation, Bettis Atomic Power Laboratory, Box 1468,
Pittsburgh, Pennsylvania

123. Ralph Shively, pepartment of Mathematics, Swarthmore College,
Swarthmore, Pennsylvania

124. R. G. Stuela.nd, Control Data Corporation, 3330 Hillview Avenue,
Palr.:1 .JU to, California

-84-

125. K. A. Wolf, Control Data Corporation, Computer Division, 4201
North Lexington Avenue, St. Paul, Minnesota

126. Research and Development Division, AEC, ORO
127-655. Given distribution as shown in TID-4500 (28th ed.) under

Mathematics and Computers category

/

