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ABSTRACT 

In  an attempt t o  increase the  eff ic iency,  a proton r e c o i l  neutron 

spectrometer has been b u i l t  i n  which the  proton detect ion c r y s t a l  is  

3 i n  the  shape of the  surface formed by the  ro t a t i on  of the  cos 8 curve 

about t he  8 = 0 ax i s  where 8 i s  the  angle between t he  d i rec t ion  of 

t r a v e l  of the  incident neutron a.n.d. the  d i rec t ion  of t r a v e l  of the  

r e c o i l  proton. Such a construction makes the  detector  c r y s t a l  conform 

t o  the  range envelope of the  protons r eco i l i ng  from a neutron beam of 

s u f f i c i e n t l y  high energy i n to  a gas i n  which the  proton range i s  

proportional  t o  the  3/2 power of t he  proton e n e r g y .  Sixteen pieces of 

thallium ac t iva ted  cesium iodide were assembled as  a mosaic arranged 

3 i n  the  cos 8 shape so  t h a t  the  maximum 8 was 30". Calculations show 

t h a t  25% of the  protons r e c o i l  within 30".  The PoBe and PoB spec t ra  

were measured with t h e  instrument using xenon i n  the  chamber. The 

resolut ion of t he  spec t ra  obta,jn.ed was low due t o  nonuniform pulse 

height response of the  CsI c r y s t a l  sect ions  and excessive gamma-ray 

response even though an anthracene proton r ad i a to r  was used i n  a 

coincidence scheme designed t o  minimize gamma-ray background. The 

instrument did not  exh ib i t  the  added e f f ic iency  which was being sought 

i n  the  design. The necess i ty  of s ing le  channel operatior1 f u - t l ~ e r  

l im i t s  i t s  usefulness.  



I. INTRODUCTION 

The two major problems i n  neutron spectroscopy a r e  the  detection 

of the  neutron and measurements of i t s  energy. Many d i f f e r en t  neutron 

spectrometers have been designed, most of which may be placed i n to  one 

of four general groups: 1) ve loc i ty  se lec t ion  neutron spectrometers; 

2) s c i n t i l l a t i o n  neutron spectrometers ; 3) nuclear react ion neutron 

spectrometers, and 4) proton r e c o i l  neutron spectrometers. 

Because neutrons cause e s sen t i a l l y  no d i r ec t  ionization,  they must 

be detected by observing some ionizing p a r t i c l e  r e su l t i ng  from a 

react ion with the  neutron. With the  exception of the  ve loc i ty  se lec tors ,  

neutron spectrometers d i f f e r  mainly i n  the  react ion used t o  produce a 

charged p a r t i c l e .  Proton r e c o i l  neutron spectrometers u t i l i z e  the  

e l a s t i c  co l l i s i on  between the  incident neutron and a proton i n  some 

hydrogenous mater ia l .  The r e su l t i ng  r e c o i l  proton i s  heavily ionizing 

and easy t o  detect .  

A simple proton r e c o i l  neutron spectrometer cons i s t s  of a gaseous, 

l iquid ,  o r  s o l i d  proton r ad i a to r  and a counter t o  de tec t  the  r e c o i l  

proton and measure i t s  energy. The energy of the  r e c o i l  proton i s  

r e l a t ed  t o  the  energy of the  incident neutron by the  square of the  

cosine of the  angle between the  d i rec t ion  *of t r a v e l  of the  incident 

neutron and the  d i rec t ion  of t r a v e l  of the  r e c o i l  proton. To obtain an 



unambiguous r e l a t i onsh ip  between'proton.energy and neutron energy the  

incident  neutron beam has t o  be collimated, and the  counter must be 

designed t o  measure the  protons given off  i n  some known direct ion.  

Because t he  energy re la t ionsh ip  depends upon the  cosine of the  

angle, it i s  general ly  be s t  t o  study only those protons coming from the  

r a d i a t o r  with t he  same d i rec t ion  of t r a v e l  a s  the  incident  neutrons f o r  

they  have t h e  same energy as t he  incident neutron. 

Most sources of neutrons have la rge  amounts of associated gamma- 

rays  so  t h a t  the  simple spectrometer described' would have a higher 

gamma-ray count than proton count due ' t o -  the  r e l a t i v e l y  s m a l l  c ross  

s ec t i on  f o r  the  proton r e c o i l  react ion.  The most successful  means of 

overcoming t he  d i f f i c u l t i e s  of a high gamma-ray background i s  by the  

add i t ion  of coincidence techniques t o  the  simple spectrometer. 

The f i r s t  proton r e c o i l  neutron spectrometers developed were used 

I 2 
in .  s tud ies  made independently by Watt and H i l l  of the  neutron spectrum 

from the  f i s s i o n  of u ~ ~ ~ .  They obtained t h e i r  f i n a l  r .esults  by d i f -  

f e r e n t i a t i n g  t he  curve of coincidence count versus absoi-ber thickness 

produced when absorbers of varying thickness were placed 'between t he  

Watt, B. E. ,  Phys. Rev. 87 -7 1037 (1952). 

H i l l ,  D. L., Phys. Rev. '87 -.r iG34 (1952). 



proton rad ia to r  and a bank of proportional  counters operating i n  coin- 

cidence. Cochran and ~ e n r ~ ~  a t  ORNL b u i l t  a more advanced un i t  i n  which 

absorbers of varying thickness were placed between the  rad ia to r  and 

three  proportional  counters operating i n  coincidence. To insure 

maximum ef f ic iency  they a l s o  used rad ia to rs  of varying thickness. The 

b i a s  of the  counters was s e t  t o  coynt only the  protons whose range ended 

i n  the  f i n a l  counter; thus t he  spectrometer responded t o  a l imi ted 

energy region f o r  each rad ia to r  -absorber combination. Cochran and 

Henry placed the radiator-absorber combinations on a wheel so  t h a t  

they could be changed e a s i l y  when a wide range of energies was t o  be 

s tudied . Absorber -type spectrometers have low ef f ic iency  because they 

a r e  e i t h e r  i n t eg ra l  b ias  o r  s ingle  channel u n i t s .  I n  addit ion,  it i s  

possible f o r  them t o  have large  e r rors  due t o  large  angle mult iple 

s ca t t e r i ng  within t he  absorber. 

The next proton r e c o i l  spectrometers developed determined the  . 

energy of the  r e c o i l  proton from the  spec i f ic  ionizat ion o r  from the  

range of the  proton, which allowed multichannel operation within a 

4 
l imi ted range of energies.  Reid constructed a spectrometer which 

measured 'the energy loss  of a proton as  it t raversed a t r i p l e  coin- 

cidence counter. To increase the  energy loss  a t  high energies an 

abcorber was placed between the  rad ia to r  and t he  counter. This 

Cochran, R .  G. ,  and Henry, K. M.', Rev. Sc i .  I n s t r .  26 -J 737 (1955). 
4 

Reid, C .  C . ,  Proc. Phys. Soc.  o on don) A-67, 466 (1954). 



l imi ted  t he  range of t h e  u n i t  by introducing a low-energy cut-off .  

such a l im i t a t i on  was not  t oo  serious as  the  maximum ef f ic iency  of the  

5 r ad i a to r  covered a l imi ted  range a l so .  Holt and Litherland a t  Liver-  

pad l  b u i l t  a spectrometer which measured the  range of t he  r e c o i l  proton 

i n  argon by determining t h e  time requtred f o r  the  proton t o  cross the  

chamber t o  a co l l ec to r  p l a t e .  To scan the  energy region of 5 t o  25 

Mev, pressures up t o  400 p s i  were required., Although t h i s  instrument 

w a s  qu i te  slow, due t o  the  long e lect ron transZt time, it did have good 

reso lu t ion .  

Most multichannel ~pec t romete rs  u t i l i z e  a coincidence c i r c u i t  

which gates  an analyzer t o  accept- the  pulse from a detector  which is  

designed t o  absorb t he  e n t i r e  energy of the  r e c o i l  proton. Except f o r  

minor energy losses  i n  the  coincidence counters the  amplitude of t h i s  

pu l se  i s  d i r e c t l y  r e l a t e d  t o  the  energy of the  p2oton. The f i r s t  

6 spectrometers.  of t h i s  type used gas counters. Nerespn and Darden used 

a double coincidence u n i t  i n  which a t h i n  f i r s t  counter w a s  s e t  t o  

operate  t he  gate s o  t h a t  the  analyzer would see the  produce,d i n  

-- - .- L! - 
- a long Fr i sch  grid-chamber. A- t h i r d  counter- was s e t  i n  anticoincidence 

a f t e r  t he  Frisch chamber so  t h a t  only protons whose range ended i n  the  

long counter would be measured. The d i f f i c u l t i e s  -caused by t ry ing  t o  - 

Holt, J. R. ,  and Litherland,  A .  E . , Rev. Sc i  . i n s t r  . 25, 298 (1954) . 
6 % .  - 

Nereson, N.,  and Darden, S . , Phys . Rev. 89 -, 775 (1953) . 
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construct  two s imi la r  counters of considerably d i f f e r en t  s i z e  was over- 

come by the  introduction of a s o l i d  s c i n t i l l a t o r '  as  the  f i n a l  detector .  

This was done simultaneously, around 1954, i n  three  d i f f e r en t  labora- 

7 -9 t o r i e s  . 
A d i f f e r en t  type of proton r e c o i l  spectrometer is one i n  which 

one of the  counters i s  the  proton rad ia to r .  A spectrometer using the  

gas of the  f i r s t  counter as  the  rad ia to r  was introduced by Schmidt- 

~ o h r l '  who used hydrogen, and l a t e r  developed by ~er low ' l  who used 

methane. Mozely and shoemaker12 introduced a counter which u t i l i z e d  

one anthracene c r y s t a l  as the  rad ia to r  and another anthracene c r y s t a l  

as  the  f i n a l  counter. By using s imi la r  r ad i a to r  and detector  c ry s t a l s  

it was f a i r l y  easy t o  obtain the  energy of t he  proton by summing the  .. 

pulses e lec t ron ica l ly .  Calvert ,  J a f f e  and Maslin13 b u i l t  a s imi la r  

u n i t  which u t i l i z e d  an anthracene rad ia to r  and a NaI (~1)  detector  

c ry s t a l .  The pulse energies had t o  be added by hand, but  the  un i t  

benef i ted by the  greater  l i g h t  output and b e t t e r  resolut ion of t he  NaI 

Ribe, F. I,. , and Seagrave, J. D., Phys . Rev. &, 934 (1954) . 
8 

Johnson, C . H., and Tra i l ,  C . C . , Rev. Sc i . I n s t r  . 27, - 468 (1956) . 
Risser, J. R., Price,  J., and Class, C .  M., Phys. Rev. 98, - 1183-A 

(1955) 

lo Schmidt-Rohr, U., Z. Naturforsch. 8aJ - 470 (1953). 

Perlow, G. J., Rev. Sc i .  I n s t r .  27, - 460 (1956). 
l2 Mozely, R. F . , and Shoemaker, F . C . , Rev. Sc i . Ins  tr . 3 569 (1952) . 
l3 Calvert ,  J. M., Ja f fe ,  A .  A., and Maslin, E. E., Proc. Phys. Soc. 

 ondo don) A-68, -- 1017 (1955) . 



c r y s t a l .  These t h i c k  r a d i a t o r  spectrometers have higher e f f i c iency  

than  t h i n  r ad i a to r  spectrometers although how much higher cannot be 

exac t l y  measured due t o  t h e  e f f e c t  of the  multiple s ca t t e r i ng  of the  

proton before it leaves t he  rad ia to r .  

The major disadvantage of a l l  t he  spectrometers described i s  the  

neces s i t y  of u t i l i z i n g  t h e  proton r eco i l s  i n  only a small  region around 

some pa r t i cu l a r  angle i n  order t o  co r r e l a t e  the  energy of the  protons 

wi th  t h e  energy of t he  incident  neutrons. This reduces t he  ove ra l l  

e f f i c i ency  of t he  spectrometer by l imi t ing  the  number of proton 

r e c o i l s  which can be s tudied.  

, The. aim of t he  present  study has been t o  design and construct  a . . 

proton r e c o i l  f a s t  neutron spectrometer t o  overcome t h i s  l imi ta t ion .  

The cosine-cubed f a s t  neutron spectrometer uses a t h i n  c r y s t a l  detector  

b u i l t  t o  u t i l i z e  the  r e c o i l  protons which come from the  r ad i a to r  i n  a 

l a r g e  s o l i d  angle. The spectrometer measures ' the  energy of the  protons 
1 

from t h e i r  range which i s  determined by varying the  gas pressure within 

t he  chamber of t he  spectrometer. 

-- -- S t u d i e s  have a l s o  been made using a:thick-anthracene s c i n t i l l a t o r  

a s  t he  proton r ad i a to r  i n  which t he ,  pulse caused by a r e c o i l  proton i n  

t h e  r a d i a t o r  i s  used t o  provide the  gate s i gna l  t o  a coincidence c i r -  

c u i t  designed t o  overcome g e a  -ray background d i f f i c u l t i e s  . 



The uniqueness of the cosine-cubed neutron spectrometer l i e s  i n  

t he  shape of the  c r y s t a l  used t o  de tec t  the  r e c o i l  protons. This 

c r y s t a l  is  i n  the  shape of the  surface formed by t he  revolution of the  

3 curve y = cos 8 about the  8 = 0' ax i s .  This configuration i s  based 

upon the  range-energy re la t ionsh ip  of protons in a gas and upon the  

mechanics of the  proton recoil  neutron react ion.  

The e l a s t i c  c o l l i s i o n  between a neutron and a proton is mechanically 

s imi la r  t o  t he  c o l l i s i o n  of two b i l l i a r d  b a l l s  and may be t r e a t e d  f o r  

non- re la t iv i s t i c  neutrons with simple Newtonian mechanics. The reac t ion  . 

may be shown diagramatically i n  the  laboratory frame of reference as: 

where N is  the  neutron, and P is t he  proton. The momentum of t he  neu- 

t r on  p r i o r  t o  the  c o l l i s i o n  is (mv) while i t s  momentum a f t e r  t he  co l -  

l i s i o n  is shown as  (mv ) .  Thc momentum of the  proton before the  
2 

react ion,  when it is  assumed a t  r e s t ,  i s  zero. After  t he  co l l i s i on ,  

the  proton has gained the  momentum (m v ) . The angle 8 is the  angle 
11 

between t he  d i rec t ion  of t r a v e l  of the  incident neutron and the  d i rec -  

t i o n  of t r a v e l  of t he  r e c o i l  proton. ~ i m i l a r i l ~ ,  I# is the  angle between 



t h e  d i r ec t i ons  of t r a v e l  of t he  neutron before and a f t e r  the  c o l l i s i o n .  

For an e l a s t i c  c o l l i s i o n ,  conservation of k ine t i c  energy and conserva- 

t i o n  of momentum can be expressed by the  equations: 

mv = m v cos 8 + mv cos I) 
11 2 

0 = m v s i n  8 + mv s i n  $ 
11 2 (2) 

From these  equations the  ve loc i t y  of the  r e c o i l  proton with respec t  t o  

t h e  v e l o c i t y  of t h e  incident  neutron is  found t o  be 

2m cos 8 

From Equation (4) ,  t h e  dependence of the  energy of the  proton ( E ~ )  

r e c o i l i n g  a t  any angle 8 on t he  energy of t he  incident  neutron (E ) is: 
0 



- 
I f  the  proton and neutron a r e  assumed t o  have equal mass, 

Equation ( 5 )  becomes : 

From the  r e c o i l  react ion i n  the  center  of mass system, 

it i s  possible t o  derive an expression.for the  angular d i s t r i bu t i on  of 

the r e c o i l  protons. Here €3 indicates  the  same angle as  previously, 

while d is  the  angle by which the  incident neutron and.recoi1 proton 

a r e  def lected in t h e  center of mass system. .The number of r eco i l s  

pso;jec,Led between t he  angles €3 and t3 + dE) i n  the  laboratory system by 

N incident neutrons i s  dN and the  number of s ca t t e r i ng  prot.on.s per  
0 

u n i t  area  i s  q .  he d i f f e r e n t i a l  cross ' sect ion f o r  the  reac t ion  per 

un i t  s o l i d  angle i n  the  center  of mass system may be denoted by a ( 0 ) .  
C 

The r e l a t i o n  between these quan t i t i es  is: 

dO 
dN = 2 d ~ ~ q o ~ ( d )  s i n  d dB . 

For e l a s t i c ,  non- re la t iv i s t i c  react ions  such as  those under considera- 

t ion :  



s o  t h a t  

s i n e  = s i n 2 8  . 
For t h i s  case Equation (7) becomes: 

and t h e  t o t a l  number of proton r eco i l s  def lected between 0 and 8 degrees 

is  given by the  in tegra ted  expression: 

This equation ind ica tes  t he  advantage of having a detector  which would 

u t i l i z e  t he  protons s ca t t e r ed  within a large  angle t o  t he  forward di rec-  

t i on .  

To maintain energy cor re la t ion  between incident neutrons and 

r e c o i l  protons the  proton detector  i n  the  cosine-cubed neutron spectro- 

meter is  shaped t o  f i t  the  range envelope of the  r e c o i l  protons. When 

t h i s  i s  done, neutrons of a given energy w i l l  produce r e c o i l  protons 

which, f o r  a pa r t i cu l a r  gas pressure within the  spectrometer chamber, 

w i l l  j u s t  reach t he  detector  regardless of t h e i r  r e c o i l  angle. 



In  general, the  range of a proton i n  a gas can be expressed as  a 

function of t he  proton energy by the  r e l a t i on :  

- i n  which R i s  the  range of the  proton, ,k i s  a constant whose value de- 

pends upon the  gas and the  un i t s  in  which pressure, energy and range - 
are  expressed, the  value of n depends upon the  gas and upon the  energy 

Y 
of the  proton, E, and P i s  the  pressure of t he  gas. I f  one follows the 

arguments of Hurst, e t .  a1.14, an expression f o r  the  range of t he  r e c o i l  

proton as  a function of the  energy of the  incident neutron may be 

found by subs t i tu t ing  the  exprecsion f o r  the  r e c o i l  proton energy 

 q qua ti on 6) i n to  Equation (12).  Such a subs t i tu t ion  r e s u l t s  i n  the  

equation: 

T?qe exact value of n may be found by the  appl icat ion of Geiger ' s  Law 
, 

t o  the  range-energy re la t ionships  f o r  protons in gases calcula ted by 

16 
H i r ~ c h f c l d e r  and ~ a ~ e e ' ~  whose work i s  an extension of Bethets work 

on stopping powers. 

1 4  . 
Hurst, G. S . ,  e t  a l . ,  ORNL-2049, Oak Hidge National Laboratory, Oak 

Ridge, Tennessee, (1956) p. 54. 

l5 Hirschfeldcr, J. O. ,  mid Magee, J. L., Phys. Rev. 73, - 207 (1948). 
16 

Bethe, H. ,  HANDBUCH DER PHYSIK (springer -verlag, Ber l in ,  1933) 
Volume 24, Par t  I, page 521. 



I n  Bethe's semi-empirical method of determing the  range, the  

e f f e c t i v e  ion iza t ion  p o t e n t i a l  f o r  the  e lect rons  i n  the  outermost s h e l l  

i s  adjus ted t o  f i t  an experimental value of alpha p a r t i c l e  range while 

t h e  remainder of t he  constants  i n  the  funct ional  equations a re  determined 

from t h e o r e t i c a l  considerat ions .  The r e s u l t i n g  form of the  range-energy 

r e l a t i onsh ip s  i s  v a l i d  f o r  proton energies g rea te r  than 0 . 1  Mev. 

For protons, the  equation: 

represents  t h e  change i n  energy, E ( ~ e v )  , with res idua l  range, ~ ( c m )  . 
Here ~ / m  is  the  r a t i o  of the  mass of the  proton t o  the  mass of the  e l ec -  

t ron ,  e i s  the  e l ec t ron i c  charge, and N i s  the  number of atoms per cubic 

centimeter.  The dimensionless quant i ty  B i s  the  stopping number which 

is c lo se ly  r e l a t e d  t o  t he  atomic stopping cross  sect ion a (e lect ron 

2 
v o l t s  cm ): 

i n  which a i s  defined so  t h a t  



The range of a proton i n  a substance may be calcula ted by the  numerical 

in t4grat ion of 

where 

A t  low energies t h e  range i s  roughly proportional  t o  but  t he  expo- 

nent increases with energy u n t i l  a t  high proton energies: 
._ , . * '. 

-. , ' I  - I) .  

That i s ,  n approximates 3/2 f o r  proton energies g rea te r  than 500 Kev. . . .. 

*_ . _.*., . , ,.;p 
When t h i s  value of n i s  used i n  Equation (13) the  re la t ionsh ip  

between r e c o i l  proton range and incident neutron energy becomes: 

Therefore, f o r  a given neutron energy E and with a given gas pressure 
0 

P, the  range envelope of the  r e c o i l  protons is t he  surface formed by ' 

3 ro t a t i ng  a cos 8 curve about t h e  8 = 0 axis ,  provided t he  energy of the  

incident neutron is s u f f i c i e n t l y  high so  t ha t  n = 3/2 f o r  the r e c o i l  

protons. 



The range-energy re la t ionsh ip  derived by Hirschfelder and Magee 17 

is  a funct ion of t he  atomic stopping cross sec t ion  a, which i s  dependent 

upon t he  atomic number of the  absorbing material ,  so  t h a t  n approaches 

t he  value 312 a t  a lower energy f o r  an absorbing gas with a high Z.  

The gas used, xenon, has a r e l a t i v e l y  high Z, so  the  value of n is  very 

3 c lo se  t o  312 f o r  proton energies as  low as 500 Kev. The cos 8 shaped 

c r y s t a l  of the  instrument had a maximum 8 of 30" so t h a t  the  incident 

neutrons had t o  have an energy of approximately 677 Kev t o  insure t h a t  

a l l  t he  r e c o i l  protons would have s u f f i c i e n t  energy t o  s a t i s f y  the  

requirement t h a t  n = 3/2 .  

l7 Hirschfelder,  J. O . ,  and Magee, J. L., op. c i t .  



111. APPARATUS 

A. The Basic Cosine Cubed Neutron Spectrometer 

Figure (1) is a drawing of the cosine-cubed neutron spectrometer 

as  it was original ly designed. The items are numbered t o  a id  i n  the 

explanation of the construction. 

Basically the spectrometer consists of a mild s t e e l  cylinder with 

provisions fo r  mounting the proton radiator and the cos3 crystal .  The 

device was designed t o  u t i l i z e  the protons recoiling a t  angles up t o  

8 = 30' fo r  which the resul t ing c rys ta l  was close t o  the maximum s ize  

tha t  could be used with a single pho toau l t ip l i e r  tube. An auxiliary, 

thin-walled, mild s t e e l  tube is added t o  enclose and ac t  as a magnetic 

shield f o r  the photo-mult i p l i e r  tube. 

The tube (1) entering the base of the chamber is the gas in le t .  

A removable plug (2) was designed t o  hold the proton radiator  and was  

provided with means of holdi.ng a collimator (5) for  the protons. Three 

lengths of collimators, as indicated by ( 5 ) ,  (6), and (7 ) ,  were 

constructed t o  provide varying amounts of collimation. The chamber (4) 

is made of mild s t e e l  and has an outside diameter of roughly f ive  and 

one -quarter inches and an inside diameter of four inches. 

The sc in t i l l a t ion  c rys ta l  (8) is made of sixteen pieces of 1/16" 

thick cesium iodide pieced together in the shape of the surface of a 
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cos3 curve of revolution.  The c r y s t a l  i s  mounted on a l u c i t e  l i g h t  pipe 

(10) which is held i n  the  chamber by a r e t a ine r  r i n g  (11). ''0" r i n g  

s ea l s  ( 3  and 9) a r e  used t o  provide a pressure -vacuum s e a l  f o r  the  

chamber. 

The photo-multiplier tube (12) i s  a f i v e  -inch Dumont 6364 which is 

held against  the  l u c i t e  l i g h t  pipe by a spring-loaded socket assembly. 

The socket assembly fas tens  t o  the  mild s t e e l  tube with s e t  screws. The 

only e lec t ron ics  contained within t he  un i t  is the  divider  network f o r  

the  photo-multiplier tube. The high voltage and s igna l  terminals a re  

type BNC -1PC No. 27,OOO,> and a re  fastened t o  t h e  end cover which i s  
* 

. $  " 7, 
held i n  place by a f r i c t i o n  f i t .  A l i g h t - t i g h t  s e a l  i s  a s s i r ed  by . 

appl icat ion of opaque tape around the  junction of the  mild s t e e l  tube 

and the  chamber and over t he  end cover joind. 

Sc in t i l l a t i ons  from the  c r y s t a l  a re  transmitted tkough the  l u c i t e  

l i g h t  pipe t o  the  photo-multiplier tube. 'An op t i ca l  coupling is main- 

ta ined between the  l i g h t  pipe and the  photo-tube by using a c l e a r  

s i l i c o n  f l u i d  Dowxorning 200, a t  t he  in te r face .  Fluid  with 500,000 

cent is toke v i scos i ty  was used i n  t he  exp.loratory s tages  of the  work 

and 1,000,000 cent is toke f l u i d  was used i n  obtaining s p e c t r a l  data.  

The cosine-cubed neutron spectrometer measures neutron energy by 

measuring the  range of the  r e c o i l  protons produced by e l a s t i c  co l l i s i ons  

of the neutrons with the  hydrogen atom nuc le i  of a hydrogenous rad ia to r .  



The spectrometer is  designed so  t h a t  t he  ac tua l  range used remains 

constant  while t h e  amount of absorber between the  proton rad ia to r  

and t he  detector  c r y s t a l  is  changed by changing the  pressure of the  

gas i n  t he  chamber. I f  t he  proton jus t  reaches the  c r y s t a l  and pro- 

duces only  a small  pulse, t he  distance from rad ia to r  t o  c r y s t a l  approxi- 

mates t he  range f o r  protons of t h a t  energy. Protons of lower energy 

w i l l  l ack  the  necessary energy t o  penetrate the  gas and w i l l  not reach 

t h e  c r y s t a l .  A proton of higher energy w i l l  produce a l a rge r  pulse 

than t h a t  caused by t he  proton which jus t  reaches the  c ry s t a l ,  so t h a t  

t h e  pulse  can be r e j ec t ed  e l ec t ron i ca l l y  by a s ing le  -channel d i f f e r e n t i a l  

pulse  height  analyzer s e t  so  t h a t  only the  smallest  pulses detectable 

above noise  a r e  r eg i s t e r ed .  I n  ac tua l  p rac t ice  a proton cannot be 

exac t ly  a t  t he  end of i t s  range when it s t r i k e s  the  c r y s t a l  or  it 

would not produce a pulse i n  t he  c r y s t a l  large  enough t o  overcome the  

noise  of t he  e lec t ron ics .  Some correct ion t o  the  apparent energy must 

be i n  any spectrum t o  compensate f o r  t h i s .  

The e lec t ron ic  equipment used was s t r a i g h t  forward and a l l  of the  

items used were r e a d i l y  ava i lab le .  The Dumont 6364, f ive-inch photo- 

mu l t i p l i e r  tube was s e t  up with a divider  network whose t o t a l  res is tance 

w a s  near 5 megohms. The voltage applied across t he  divider  was approxi- 

mately 1,310 vo l t s  which was supplied by an ORNL super-stable high 

vol tage power supply. The output from the  photo-multiplier i s  fed 

i n t o  a standard A1A pre-amplif ier  which i n  tu rn  feeds a standard A 1  



l i nea r  amplif ier .  The output from the  l i n e a r  ampl i f ier  i s  fed t o  a d i f -  

f e r e n t i a l  pulse height analyzer. The s igna l  from the  analyzer was then 

f e d  i n to  a standard binary s ca l e r .  This set-up i s  shown diagramatically 

as a block diagram i n  Figure (2 ) .  

The gas system is qui te  simple and consis ts  of a manifold with the  

necessary connections f o r  the  spectrometer chamber, the  d i f f e r e n t i a l  

pressure gauge and t he  vacuum pump. Connections were provided so  t h a t  

two gas cylinders could be used simultaneously. A valve was i n s t a l l ed  

so t h a t  the  device could be vented t o  t he  atmosphere when desired.  A 

diagram of the  system i s  presented as Figure ( 3 ) .  

The d i f f e r e n t i a l  pressure gauge has a connection t o  the  case o r  

outside chamber and another t o  a smaller, sens i t ive  volume. The gauge 

reads i n  cm of Hg with the case pressure as the  reference.  

Although three  d i f f e r en t  gases, nitrogen, argon, xenon, were 

used i n  the  chamber during the  course of the  experiment, only two con- 

nections were provided fo r  gas cylinders because no more than two gases 

were used' a t  any one time. 

When the  spectrometer was t o  be used, the  cyl inder  valves and the 

valve t o  t he  atmosphere were closed and the  regulators  and valves t o  the  

cylinders,  the  chamber valve, both gauge valves and the  valve t o  the  

vacuum pump were opened. Then the  system was pumped down over night .  

To put the.spectrometer i n  use, the  valves t o  the  gas cylinders,  the  

vacuum pump and the  case s ide  of the  gauge were closed.  Then the  proper 
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gas cy l inder  was opened, and the  amount of gas necessary t o  produce 

t h e  des i red  pressure i n  t he  chamber was put i n to  the  system. 

I n  t h e  preliminary s tud ies ,  when nitrogen o r  argon was used as  the  

gas i n  the .  chamber, no attempt was made t o  save t he  gas, and when the  

s tudy was completed t he  gas w a s  vented t o  the  atmosphere. Recovery 

was made of the  design gas, xenon, due t o  the  d i f f i c u l t y  of obtaining 

pure xenon. A simple means of recovering the  gas was used which con- 

s i s t e d  of p lacing the  s m a l l  xenon cyl inder  i n  a bath of l i qu id  nitrogen 

when recovery was desired.  . The temperature of the  l i qu id  nitrogen was ,  

low enough t o  conderise-the xenon remaining i n  the  cylinder,  which r e -  

duced t h e  pressure i n  t h e  cyl inder  so t h a t  the  remainder of the  gas i n  

t h e  system was drawn back i n t o  the  cylinder.  This system could not 

r e s u l t  i n  per fec t  recovery, bu t  i f  a long enough condensing period was 

used only a small  portion' of t he  xenon w a s  l e f t  i n  the  system. This 
/ 

method worked very wel l  i n  a c t u a l  p rac t ice .  

It w a s  found by a l t e r n a t e l y  using lead or  para f f in  shie lding t h a t  

t h e  simple spectrometer t h a t  has been descr ibed 'here  did  not  possess 

s u f f i c i e n t  neutron -to -gamma r a y  discrimination so  t h a t  coincidence 

techniques were necessary t o  reduce- the  gamma-ray background before 

neutron spec t ra  could-be observed. 



B. The Cosine Cubed Neutron S~ectrometer with Coincidence Added 

The only change which had t o  be made on the basic cosine-cubed 

neutron spectrometer t o  use coincidence techniques involved replacing 

the plug designed t o  hold the proton radiator and collimator with a 

plug designed t o  hold a photo-multiplier tube and a different  proton 

radiator.  Figure (4) shows the design of the end plug used fo r  

coincidence counting. Two new end plugs were fabricated--one t o  

accouodate a 3/11" tube, the other designed fo r  a 1-1/4" tube. 

A n  anthracene sc in t i l l a t ion  c rys ta l  was used as the proton 

radiator with t h i s  arrangement so tha t  the r eco i l  proton would produce 

a pulse as it l e f t  the radiator.  The electronic equipment used with the 

spectrometer were then revised t o  require a coincidence between the 

pulse in the anthracene c rys ta l  and the cesium iodide c rys ta l  before a 

count would be registered. The proton could s a t i s f y  t h i s  condition 

with higher efficiency than a gamma ray, which would not generally 

calSe' a sc in t i l l a t ion  i n  both crystals .  

An anthracene crystal ,  1/8" thick by 1" i n  diameter, m s  mounted 

t o  the surface of a Dumont 6467, 1-1/4" photo-multiplier tube with 

s j l icone stop-cock grease. The grease was s t iff  enough t o  hold the 

c rys ta l  i n  place during handling and as the spectrometer was used i n  

an upright position no d i f f i cu l t i e s  were encountered due t o  the anthrrz- 

cane c rys ta l  sl ipping off the photo -multiplier tube. The photo -multiplier 

tube was wrapped i n  opaque tape t o  prevent unwanted l igh t  from s t r ik ing  
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the  cathode. The ra ther  l a rge  diameter of the  proton rad ia to r  would, 

of course, decrease the  resolut ion of the  spectrometer. The 3/4" photo- 

mul t ip l i e r  tube used with a 1/2" diameter c r y s t a l  was planned t o  improve 

the  s i t ua t i on .  

A brace was designed which fastened the  photo-tube holder t o  the  

photo-tube socket t o  prevent the  photo-tube from being blown out of the  

holder when the  gas pressure i n  the  chamber was increased above atmos- 

pheric pressure. 

There a re  severa l  fac to rs  which must be taken i n to  account when 

the  s c i n t i l l a t o r  c r y s t a l  is  t o  be used as  the  proton rad ia to r .  The 

primary problem i s  t h a t  of placing the  r ad i a t i ng  surface a t  the  apex of 

the  r.nsi.n.e -cubed curve accurately.  Any inaccuracy i n  t h i s  settling w i l l  . 

cause a decrease i n  the  reso lu t ion  of the  spectrometer. For p r a c t i c a l  

use a posi t ioning device i s  necessary. I n  these s tud ies  it was f e l t  

t h a t  i n  comparison with other possible e r ro rs ,  the  reso lu t ion  e r ro r s  

due t o  the  inexact placing of the  proton rad ia to r  would not contr ibute  

s i gn i f i c an t l y  t o  the  loss  i n  ove ra l l  resolut ion.  

While the  mechanical changes necessary i n  the .  cosine -cubed coinci-  

dence spectrometer were qu i te  simple, the  changes made necessary a 

considerably more complicated e lect ronic  system. Figure ( 5 )  is a 

block diagram of the e lect ronic  system used. 
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The .1-1/4" photo-multiplier tube had a 5 Megohm divider,  network 

s i m i l a r  t o  t h a t  used with t he  '5"'photo-tube. The 1310- vo l t  supply f o r  

each tube was provided from separate ORNL super s t ab l e  high voltage 

power supplies.  

The output from the s m a l l  photo-multiplier tube fed  a standard 

ALA pre-amplifier which i n  t u rn  fed  a standard A 1  l i n e a r  ampl i f ier .  As 

with the  c i r c u i t  used f o r  the  l a rge r  photo-multiplier tube, the  d i s c r i -  

minator i n  the  amplif ier  was not used; instead,  the  ampli f ier  output 

was red i n to  a s ing le  channel d i f f e r e n t i a l  pulse height analyzer. The 

outputs from the  s ing le  channel analyzers fed  separate standard sca le  . .&-. .j,. 

<:> 
.,:., 

of 64 binary sca le r s  used f o r  monitoring purposes. ;>: . 
. ?:.' 

Normally, i n  a r e c o i l  proton f a s t  neutron spectrometer, the  th ick-  r .  

ness of the  proton rad ia to r  i s  of g rea t  importance t 6 ' t h e  e f f ic iency  

of the  spectrometer. . A  t h i n  r ad i a to r  w i l l  not  have many neutron-proton : .  
. ~ 

co l l i s i ons  within it, but any r e c o i l  protons which a r e  produced w i l l  lose  .;, . , 
4 -  . 

I / 

only a small  amount of energy escaping from the  r ad i a to r .  Conversely, 

a th ick  rad ia to r  w i l l  produce more r e c o i l  protons but  the  energy 

resolut ion of the  spectrometer w i l l  be poorer due t o  t he  energy l o s t  

by the  protons as  they leave the  r ad i a to r .  I n  t h i s  spectrometer, a 

th ick  anthracene c r y s t a l  was used as  the  proton rad ia to r .  However, the  

s ing le  channel analyzer f o r  the anthracene c r y s t a l  was s e t  so  t h a t  only 

small pulses jus t  above noise would be seen. This guaranteed t h a t  the  

coincidence gate was open only when a proton l o s t  a small'amount of 



energy i n  leaving the anthracene c rys t a l  and produced a small s c i n t i l -  

l a t ion .  Therefore, any proton tha t  was produced near the back of the 

c r y s t a l  o r  that  went through the c rys t a l  with an angular path was 

r e j ec t ed  electronical ly .  A correction fo r  the amount of energy l o s t  

by the proton in  leaving the anthracene crystal-proton radiator  could 

be e a s i l y  made because any proton, regardless of i ts  i n i t i a l  energy, had 

t o  lose the  same amount of energy in  leaving the c rys t a l  or it was not 

counted. The window width, 43, used on t h i s  analyzer was 0.5 v t o  

insure a small energy loss  i n  the radiator .  

The output pulses from the single channel d i f f e ren t i a l  pulse 

height analyzer used with the anthracene c rys t a l  were fed into a variable 

delay l i n e .  The delay l i n e  was not necessary t o  correct for  the t r a n s i t  

time of the  protons i n  the chamber because the chamber was small enough 

s o  tha t  the output pulses of the single channel analyzers were longer 

than the t r a n s i t  time. The delay l ine  was needed t o  compensate for  the 

difference i n  decay time f o r  the organic anthracene c rys t a l  and the 

non-organic CsI c rys t a l .  Because the discriminators of the single 

channel analyzers function on the back slope of the amplified pulse, 

they would f i r e  f i r s t  f o r  the shorter pulse from the anthracene crys ta l .  

Therefore, a s l igh t  delay was needed t o  get the analyzer pulses into 

coincidence for coincidence pulses. 

The output of the s ingle  channel analyzer i n  the cosine-cubed 

c r y s t a l  chain and the output of the delay l ine  a re  fed. into a coinci- 

dence c i r c u i t  developed original ly  by Marshall a t  the Ins t i tu t e  of 



18 
Nuclear Science of the  University of Chicago . The c i r u i t  u t i l i z e s  a 

6 ~ ~ 6  gated beam tube as  t he  coincidence gate.  Tae 6 ~ ~ 6  has two con t ro l  

g r ids  so  t h a t  when both gr ids  a r e  biased beyond cutoff ,  p l a t e  current  

w i l l  flow only when both gr ids  receive a pos i t ive  pulse a t  the  same 

time. The p l a t e  impedance is  made high t o  lengthen output pulses t o  

about one micro-second. The c i r c u i t  should be capable of a resolving 

-10 
time of 3 X 1-0 sec, however leakage of s ing le  e lect rons  causes a 

skewed curve when the  output voltage is p lo t ted  against  the  delay 

between the  applied input pulses.  Marshall s t a t e d  t h a t  t he  pulse height 

d i s t r i bu t i on  of t he  source a f fec ted  t he  r e l a t i o n  between t rue  co inc i -  

dence counts and the  resolving time. One hundred percent of the  pulses 

can 'be counted without counting any of the  background if t h e  input 

pulses a r e  2 X loe9 sec.  The pulses encountered with the  cos inesubed  

neutron spectrometer were 3 X sec i n  duration bu t  were a l l  of 

uniform s i z e  because they came from the  discriminators of s ing le  

channel pulse height analyzers. 

The output from the  coincidence network was f ed  i n to  a glow t rans -  

f e r  tube, decade scaler-t imer.  The count of t h i s  s ca l e r  provided the  

desi red information about the  neutron spectrum being s tudied.  

l8 Marshall, J., Nucleonics - 10, 38 (1952). 



The only unusual instrument used for  the coincidence set-up of 

the cosine -cubed neutron spectrometer was the coincidence c i r c u i t  

i t s e l f ,  which was a very simple c i r cu i t .  A l l  of the remaining 

components were readi ly  available items which added t o  the simplicity 

of the construction of the spectrometer. 

A l l  110-volt, 60-cycle power used in the power supplies, 

amplifiers,  analyzers, and coincidence c i r c u i t  was obtained from constant 

voltage transformers. The power fo r  the s c a l e r s  was taken d i rec t ly  

from the AC l ine .  



IV. PFELIMINARY STUDIES OF THE CRYSTAL 

A. Resolution 

Each sect ion of the  mosaic C s I  cosine-cubed c r y s t a l  was s tudied 

separate ly  t o  determine t he  resolut ion of the  c ry s t a l .  The c r y s t a l  was 
-, 3 

c o ~ ~ s t r u c t e d  of' s ix teen pieces of 1/16'' th ick  C s I  which were arranged i n  

the  pa t te rn  shown i n  Figure (6 ) )  where the  project ion of the  c r y s t a l  

onto the  plane of the  photo-multiplier tube cathode i s  shown. For 

i den t i f i c a t i on  purposes the  sect ions  were numbered as  on the  diagram. 

The s ing le  sect ion i n  the center  r i n g  whose edges were completely within 

the  edges of an outer sect ion served as  the  reference point  i n  the  nwn- 

ber  ing . 
A well-collimated Pu239 alpha source was used t o  study the  resolu-  

t ion .  The alpha source was i n  the  shape of a small, t h i n  disc 1/8" in  

diameter,which was mounted a t  the  end of a l u c i t e  rod 1" long and 1/2" 

i n  diameter. The rod had a 1/8" hole d r i l l e d  lengthwise through it 

which served as  the  coll imator fo r  the  alpha p a r t i c l e s .  The coll imator 

was mounted on another l u c i t e  rod long enough t o  place the  coll imator as  

c lose  t o  the c r y s t a l  as  possible.  The long rod was fastened t o  a 

spec i a l  end plug. The coll imator was connected t o  the  support rod 

with a connector which allowed t i l t i n g  t he  coll imator a t  an angle with 

t he  center  l i n e  of the  chamber so  t h a t  the  alpha source could be 

pointed a t  any one of the  c r y s t a l  sect ions .  Figure (7) is  a drawing 
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of t he  spectrometer chamber with the  collimated alpha source i n  place 

and pointed a t  the  cen te r  r i n g  of c r y s t a l  sect ions .  

The e lec t ron ic  equipment used f o r  these  experiments consisted of a 

simple, s i n g l e  -channel, d i f f e r e n t i a l  pulse height analyzer. A block 

diagram of t h e  arrangement used i s  shown i n  Figure (8).  

The high-voltage supply was operated a t  a s e t t i n g  of 2050 vol t s .  

The power supply had a b u i l t - i n  5 Megohm s e r i e s  r e s i s t o r  which formed 

a voltage divider  with t he  5 Megohm photo-multiplier tube divider ne t -  

work so  t h a t  only ha l f  of t he  power supply voltage was on the  tube. A 

standard A1A pre-amplif ier  was used t o  feed an A 1  l i n e a r  amplif ier  which 

provided a s i gna l  f o r  t he  d i f f e r e n t i a l  pulse height analyzer. The out-  

pu t  of t he  analyzer was f e d  t o  a standard sca le  of 64 s ca l e r .  The high 

col l imat ion used r e su l t ed  i n  a low counting r a t e  which made ten  minute 

counting periods necessary t o  obtain one per  cent  s t a t i s t i c s .  

Typical  data  obtained f o r  the  energy peak of the  collimated alpha 

source a r e  p lo t t ed  i n  Figure (9 ) .  As i s  noted, these a r e  the  data  f o r  

s ec t i on  number 1 of t he  c r y s t a l ,  the  large  center  sect ion.  Similar  

p l o t s  were obtained f o r  each of the  s ixteen c r y s t a l  sect ions .  

From the  p lo t t ed  data  it i s  poss ible  t o  ca lcu la te  the  resolut ion 

of t he  c r y s t a l  sect ions  f o r  5 Mev alpha p a r t i c l e s .  The method used f o r  

c a l cu l a t i ng  reso lu t ion  i n  t h i s  case was t o  divide the  width of the  peak 

a t  ha l f  height by t he  pulse height a t  the  peak. 
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A tabula t ion of the  resolut ions  obtained by t h i s  method f o r  each 

of the  s ixteen c r y s t a l  sect ions  is given i n  Table I. The resolut ions  

obtained by t h i s  method f o r  the  c r y s t a l  sect ions  a l l  range around 10%. 

The pr inc ipa l  reason f o r  the  f i n i t e  resolut ion 0.f a  s c i n t i l l a t i o n  

detector  i s  the  s t a t i s t i c a l  spread i n  the  number of photoelectrons 

produced, i n  the  photocathodc by similar  irlcident photons. The spread 

of the  number of e lect rons  produced, coupled with t he  poorer s t a t i s t i c s  

of photon production f o r  low-energy p a r t i c l e s  i n  the  sc  int i l lator?,  

produced pourer resolut ion f o r  the  c r y s t a l  sect ions  when the  spectro- 

meter was 5n use than was obtained with alpha p a r t i c l e s .  

I n  operation there  i s  a loss  of resolut ion due t o  s ca t t e r i ng  of 

the  incoming neutrons and s ca t t e r i ng  of the  protons within the  chamber. 

The protons a r e  more ap t  t o  be sca t te red  when high energy neutrons a r e  

being s tudied and higher pressures of xenon a re  used i n  the  chamber. 

The resolut ion of the  spectrometer i s  .also impaired by other more 

fundamental reasons. I f  the  c ry s t a l s  were not exact ly  the  r i g h t  shape, 

i f  the  3/2 r e l a t i on  between range and energy did  not hold accurately,  

and i f  the  separate sect ions  of t he  c r y s t a l  produce d i f f e r en t  pulse 

heights f o r  .i.d.entical pa r t i c l e s  , lower r e s o l u t i o ~ l  would be expected . 

B. Pulse Height Comparisons 

Because the  detector  c r y s t a l  i s  ac tua l ly  s ix teen  d i f f e r en t  c ry s t a l s ,  

any difference i n  the  pulse height response -or the  e f f ic iency  of the  
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TABLE I. Resolution of the Crystal Sections 

Sect ion $ Resolution 
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individual  sect ions  would adversly a f f e c t  t he  resolut ion of the  c r y s t a l  

as  a whole. The pulse height response of the  sect ions  was compared by 

recording the  locat ion of ~u~~~ alpha peak on the  pulse height sca le  of 

a d i f f e r e n t i a l  pulse height analyzer f o r  each sect ion.  The e f f ic iency  

of the c r y s t a l  sect ions  was .measured by placing the  same source, under 

* 
s imi la r  conditions of distance and gas pressure, i n  f ron t  of each sec-  

t i o n  of the  c r y s t a l  and comparing the  count r a t e s  obtained. With t he  

well-collimated alpha source used, it was poss ible  t o  check each c r y s t a l  

sectiori fo r  pulse height and count r a t e  a t  t he  same time. 

The data  used f o r  t h i s  study of the  c r y s t a l  a re  the  same as  t h a t  

used f o r  determining resolut ion.  Table I1 a l s o  shows count r a t e  data  

obtained a t  t he  same time t'or each c r y s t a l  sect ion.  Also given i n  the 

t ab l e  is  the  angular posit ' ion of each of the  c r y s t a l  sect ions .  

Table I1 shows t h a t  the re  i s  some cor re la t ion  between angular 

pos i t ion  and c r y s t a l  response. I n  other words, one s ide  of the  c r y s t a l  

does not  respond as  well  as  the  other s ide .  Attempts t o  cor rec t  t h i s  

were made, consis t ing ch i e f l y  o f t r y i n g  t o  improve the  op t i ca l  contact  

between the  l u c i t e  l i g h t  pipe and the  photo-multiplier tube.  After  

r e d o i n g t h e o p t i c a l c o n t a c t ,  aquickexaminationshowednochangein . 

the  angular cor re la t ion  of the  differences i n  the  c r y s t a l .  Therefore, 

it was f e l t  t h a t  the  defects must be e i t h e r  i n  the c rys t a l ,  i n  the  

l i g h t  pipe, o r  i n  the  contact  between the  c r y s t a l  and the  l i g h t  pipe. 



TABLE 11. Pulse Height and Count Rate Data 

Pulse Maximum Angular 
Sect ion Pos i t  ion 

Peak ' ~ o . m t s / m i n  on Counter 



The differences i n  pulse height contributed t o  lowering the  ove ra l l  

resolut ion of the  spectrometer. Differences in,  e f f i c iency  would not 

have as great  an e f f e c t  upon the  reso lu t ion 'bu t  do e f f ec t  the  e f f ic iency  

of the spectrometer. 



V . SPECTROMETER PERFORMANCE 

A. Response of t he  Basic Spectrometer Using Argon 

Although no r e a l  da ta  were obtained using t he  spectrometer without 

t h e  coincidence c i r c u i t ,  some quick preliminary t e s t s  were made. These 

t e s t s  indicated t h a t  it would be f u t i l e  t o  t r y  t o  get  any neutron data  

with t he  simple spectrometer due t o  the  e f f ic iency  of the  large  C s I  

c r y s t a l  f o r  gamma rays .  

The spectrometer e lec t ron ic  equipment was adjusted with a narrow 

window s e t  jus t  above noise  on the  d i f f e r e n t i a l  pulse height analyzer. 

The pressure  was var ied  by placing argon i n  the  chamber t o  a pressure 

of two atmospheres and then l e t t i n g  the  gas slowly escape t o  t he  

atmosphere. An automatic recording of the  count r a t e  was taken on a 

Brown recorder as the  chamber pressure was decreasing. The record of 

t he  count r a t e  versus pressure  curve thus obtained had no var ia t ions  

o ther  than s t a t i s t i c a l  va r ia t ions  i n  the  count r a t e .  

Lead and pa ra f f i n  sh ie lds  were t r i e d .  The lead was used f i r s t  t o  

decrease t h e  gamma-ray background and a second quick run of the  spectrum 

w a s  made. F ina l ly  a pa r a f f i n  sh i e ld  w a s  t r i e d  t o  see i f  any of the  

observed a c t i v i t y  was due t o  neutrons. No change i n  the  count r a t e  was 

observed. 



Even with a t h i n  c ry s t a l ,  the  spectrometer as o r ig ina l l y  designed, 

without a coincidence s e t  -up, does not exclude the  gamma rays well 

enough f o r  the  neutron spectrum t o  be observed. It was f o r  t h i s  reason 

t h a t  no attempts were made a t  obtaining data  with t he  simple spectro- 

meter and the  coincidence s e t  -up was designed and i n s t a l l e d  i n  the  

spectrometer. 

B. Response of the  Coincidence Spcctrometer Usirlg Argon 

After  the  coincidence u n i t  had been ins ta l l ed ,  the  cosine-cubed 

neutron spectrometer was operated f i r s t  with argon i n  the  chamber. 
. . .," .... -. . ,,,: >:: 

Argon was used i n  the, preliminary t e s t s  because it was more abundant 
, 0 . . . .  . : , . .  , 

than the  xenon f o r  which the  spectrometer had been designed. The 
- .  ,. . . ..i'- 

range-energy re la t ionsh ip  i n  argon doec not reach a 3/2 exponent u n t i l  

the  proton energy i s  greater  than 3 Mev. This would a f f e c t  the  resolu-  
i; . ,... . ,: 

t i o n  a t  lower energies but  would not make the  spectrometer.inoperable. 
, . ..,.. . .. ' 2  

Before any neutron data  were t&,en, the  proper s e t t i n g  o f . t h e  

delay l i n e  had t o  be determined. The procedure used consis ted of s e t -  

t i n g  the  argon pressure i n  the  chamber a t  100 cm of Hg which was calcu- 

l a t e d  as  being representa t ive  of the  pressures t o  be used. Then counts 

of about one-half hour duration were taken a t  varying delay s e t t i ngs  

with t he  spectrometer exposed t o  a PoBe neutron source. The delay 

s e t t i n g  which gave the  l a rge s t  number of coincidence counts under these 

condit ions was chosen as  the  optimum se t t i ng .  This procedure resu l ted  

i n  a delay l i n e  s e t t i n g  of 0 .1  microseconds. 



A rough calculation was made .using the known chamber length of 

16 cm as the range .and the data  of Hirschfelder and M.ageel9 t o  f ind the 

approximate posit ion of the peaks .of the PoBe neutron spectrum. The 

energy values for  the peaks were taken from values found by Cochran and 

H e ~ r ~ * ~ .  A s  counts of approximately t h i r t y  minutes were the minimum 

which could be used, only the region in which calculation had shown the 

peaks should 1ie.was studied. The upper energy l i m i t  was s e t  by the 

leaking of the large c r y s t a l ' s  "0" r ing s e a l  a t  chamber pressures' above 

two atmospheres. 

To pbtain the neutron spectrum of the PoBe source, it .was placed 

i n  the center of a paraff in  sphere 20 cm i n  diameter. A hole from the 

center  of the sphere with a diameter of about 2 cm ended about 8 cm 

b 

1 . ' .  - from the proton rad ia tor .  The neutron beam, a f t e r  leaving the collimator, 
"- - 
k had t o  t r ave l  through the small photo-multiplier tube and i t s  base before 
iJ, 

4.. it reached the proton rad ia tor .  The neutron source had a flux of 

L 6 2 
4.6 X 10 neutrons/cm sec . 

I" 
The study was s t a r t ed  with 66 cm of Hg pressure, and counts were 

made-at- 1-cm of-Hg-pressure . intervals up-to-a-prgssure of 171 cm of Hg. - 5 - -  -_-_- -- - 
A counting time of 100,000 cycles of 60 c .p.s . l i ne  voltage was used. 

-c. 

A l a t e r  calculation showed that  the pressure increment used was 

- equivalent t o  energy increments of approximately 60 Kev.' Because t h i s  

l9 Hirschfelder, J. O. ,  and Magee, J. L., op. c i t .  
r 

20 Cochran, R. G., and Henry, K. M., op. c i t .  



energy increment w a s  considerably l e s s  than t he  possible reso lu t ion  of 

the  spectrometer, data  points were averaged i n  groups of four p r i o r  t o  

p lo t t ing .  The averaging process a l so  improved the  s t a t i s t i c s  by a 

f ac to r  of two. The r e su l t i ng  data  from the  Po-Be run using argon i n  . 

the  chamber a r e  shown i n  Figure (10) .  The hor izontal  spread indicates  

t he  enCYgy range over which t he  points was averaged and t he  v e r t i c a l  

spread i s  the  s t a t i s t i c a l  va r ia t ion  f o r  the  average. The s o l i d  l i n e  

indicates  the  neutron spectrum a s  calcula ted by ~ e s s * '  f o r  the  energy 

range observed. 

It was . f e l t  t h a t  there  was su f f i c i en t  agreement between the  

experimental values and the  data  o l  Cochran and ~ e n r ~ ~ ~  t o  make 

continued s tudies  using xenon i n  the  spectrometer chamber worthwhile. 

C . - Response of Coincidence Spectrometer using Xenon 

Data from a PoB and a PoBe neutron source were taken with xenon 

i n  the  spectrometer chamber. Due t o  i ts  greater  atomic number, lower 

pressures of xenon and a smaller pressure var ia t ion  were required than 

with argon. The pressure range f o r  the  PoBe source was from 3 1 t o  

83 cm of Hg. That f o r  the  PoB source .was from 5 t o  80 cm of Hg. 

~ -- 

21 Hess, W. N . ,  Ann. Phys. 6, 115 (1959). 

'' Cochran, R .  G. ,  and-8enry, K.  M., op. c i t .  
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The data from both of these  t r i a l s  were t r ea t ed  i n  the  same manner 

t h a t  t he  previous neutron data  were t rea ted .  The experimental values 

were averaged i n  groups of four and the  r e s u l t s  p lo t ted .  The hor izontal  

spread indicates  the  energy range over which the  average was taken and 

the  v e r t i c a l  spread is the  s t a t i s t i c a l  va r ia t ion  of the  aver8ge. The 

s o l i d  l inca  represent the  ileutron spectrum i n  the  region of i n t e r e s t  as  

calcula ted by ~ e s s ~ ~ .  The PoBe data  a re  shown i n  Figure (11) and the  

PoB data  a r e  shown i n  Figure. (12).  

6 
The PoBe source had a f l ux  of 4.6 X 10 neutrons/cm2 sec and was 

27 cm from the  proton rad ia to r .  The PoB source had a f l ux  of 9.86 X 

6 2 
10 neutrons/cm sec and was located only 9 cm from the  proton rad ia to r  

with v i r t u a l l y  no coll imation.  

The PoB data  suffered because it was necessary t o  mount the  source 

nearer t he  rad ia to r  thus providing poorer coll imation of the  neutron 

beam and a higher gamma-ray background. The higher gamma-ray background 

increased the  chance gamma coincidences s u f f i c i e n t l y  t o  o b l i t e r a t e  the  

d e t a i l s  of the  neutron spectrum. ' 

None of the  data  obtained compare favorably with the  t heo re t i c a l  

curves or  with thc  r e s u l t s  of previuw experimenters. However, the re  

i s  f a i r  i n t e rna l  con~ ic t ency  between the  data  obtained using the  PoBe 

source with argon i n  the  chamber and the  data  obtained from the  same 

source with xenon i n  the  chamber. 

2 3 . ~ e s s ,  W. N . ,  gp. c i t .  
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Fig. 12. PoB Data with Xenon in the Chamber. 



V I  . CONCLUSIONS 

The cosine -cubed neutron spectrometer was designed in  an attempt 

t o  achieve a  higher eff ic iency than had been exhibited by previous proton- 

r e c o i l  neutron spectrometers. The data indicate tha t  no improvement was 

noted i n  efficiency, and that the resolution of the instrument was quite 

poor. Certain changes i n  the apparatus t o  improve the resolution became 

apparent during the course of the investigation and w i l l  be summarized 

b r i e f ly .  

Neutrons which do not s t r i k e  the radiator  a t  a  r ight  angle cause 

an ambiguity i n  the angle-energy relationship of the recoi l ing protons. 

This ambiguity would be exhibited as a  widening of the spectral  l ines  

obtained with the spectrometer. A collimator such as tha t  used for  the 

PoBe measurements would have a  similar e f fec t  upon the measured spectrum 

due t o  the sca t te r ing  i n  the s t ra ight  throat  walls of the collimator. 

Much of t h i s  d i f f i cu l ty  could be overcome by the use of a  collimator 

with a conical throa t .  No attempts were made t o  improve the neutron 

collimation because it was f e l t  t ha t  the spectrum 'broadening caused 

by f au l ty  collimation was considerably l e s s  than tha t  caused by other 

d i f f i c u l t i e s  . 
A major fac tor  i n  the loss of resolution was the large gamma-ray 

response experienced even when coincidence techniques were being 

u t i l i zed .  Therefore, any means of reducing the chance gamma-ray count 



would r e s u l t  i n  an improvement of t he  resolut ion.  The cosine-cubed 

shaped detector  c r y s t a l  was 1/16" thick.  Calculations show t h a t  the  

maximum thickness necessary t o  completely s top a l l  protons i n  t he  energy 

range of i n t e r e s t  would be about 1 m i l .  Probably some phosphor such as  

ZnS would have t o  be used t o  produce a detector t h a t  t h i n .  A reduction 

i n  c r y s t a l  thickness would r e s u l t  i n  a considerable reduction i n  gamma- 

ray  s e n s i t i v i t y  of the  large  c ry s t a l .  Similarly,  t he  anthracene rad ia to r  

c r y s t a l  should be i n  the  range of 30 t o  40 mils th ick  f o r  maximum 

ef f ic iency  ins tead of the  1/8" thickness used. The th inner  rad ia to r  

would a l so  provide a reduced gamma-ray s e n s i t i v i t y  . 
A la rger  neutron f l ux  would a l s o  be benef ic ia l  i n  two ways. F i r s t ,  

the  greater  f l ux  would improve the  counting. s t a t i s t i c s  and second, it 

would permit using a rad ia to r  c r y s t a l  of smaller diameter with a sub- 

sequently b e t t e r  approxjlmation of the  point  r ad i a to r  upon which the  

cosine -cubed curve assumption i s  based. Removal o f  low Z mate r ia l  such 

as  the  base and socket of the  small photo-multiplier tube from the  

neutron beam would increase the  number of neutrons reaching the  proton 

rad ia to r .  A non-hydrogenous. l i g h t  pipe might a l so  help by cu t t i ng  down 

unwanted background i n  the  large  c ry s t a l .  

Further study of Geiger's Law indicates  t h a t  the  Geiger function 

g which is  the  exponent i n  the  range-energy re la t ionsh ip  does not  

become constant but  remains a slowly varying'function of energy even a t  

high energies.  Calculations of g i n  the  proton energy range from 1 t o  



6 Mev show t h a t  it va r i e s  about a value of 3.1 r a the r  t h a n . 3  f o r  xenon. 

Addi t ional  ca lcu la t ions  on Jar ious  gases show t h a t  g i s  the  most 

constant  f o r  xenon. This bas ic  deficiency i n  the  theory of the  cosine- 

'cubed neutron spectrometer would cause a decrease i n  resolut ion of t h e -  

device . 
Even i f  correct ions  f o r  a11 these  def ic iencies  could be made, it 

is  doubtful  i f  t h i s  spectrometer would have any r e a l  advantage over 

previously  designed proton-recoi l  neutron spectrometers. While t h i s  

-4 
instrument should have had an e f f ic iency  of 10 protons per  neutron, 

ca lcu la t ions  from the  experimental r e s u l t s  indicate  an e f f ic iency  of 

protons per neutron. An e f f i c iency  of lo-' protons per  neutron is 

comparable t o  t h a t  obtained from e a r l i e r  proton-recoil  neutron spectro- 

meters. Even i f  t he  maximum ef f ic iency  had been observed t h i s  s ing le  

channel device would not  have been more advantageous than a l e s s  

e f f i c i e n t  spectrometer capable of multichannel operation. 
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