OAK RIDGE NATIONAL' LABORATORY
Optroted by
UNION CARBIDE NUCLEAR COMPANY
Division of Union Carbide Corporation

Jct

Pat Office Bay X
Oak Ridge, $\boldsymbol{T}_{\text {onnemsier }}$ Authorized

ORNL
 CENTRAL FILES NUMBER

DATE: May 19, 1960
COPY NO.
$\begin{array}{ll}\text { SUBjECT: } & \text { IBM -704 Codes for Predicting the Response of Gamma - } \\ & \text { Ray Scintillation Counters }\end{array}$
To: Distribution
FROM: C. D. Zerby and H. S. Moran

Abstract
This paper is a manual for operating several codes for an IBM-704 automatic computer to calculate the pulse-height response functions for gamma -ray scintillation counters. Using the Monte Carlo method of computation the cotes villi calculate the pulse -height response function of xylene, CAI or MaI counters of various geometrical configurations with cylindrical symmetry. Various monoenergetic source configurations are possible with a maximum source energy of 10.22 Mev.

NOTICE
This document contains information of a preliminary nature and wen prepared primarily for internal urns at the Ooh Rider National Laboratory, It is aublact to ravislan of connection and therefore dips not represent a Final report.
rime information ia not ta be ebokraekdy, reprinted or otherwise given public dis formations without the approval of the GRSI. potent bremen. Lati tad loformation Control Department

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

 nor the Comumation, mop any parian afliag on baholf al the Cambuacian:

 provetely owned ongher

 ot hes smplaymont muh ; weh eontreator.

Table of Contents
Page 7 .
Introduction 1
General Description 1
Minimum IBM-704 Requirestenta 3
Counter Gecmetry 3
Source Geometry 4
Source type 1, Monodirectional 4
Source Type 2, Conical Exterior 4
Source Type 3, Point Isotropic Interior Source 4
Input 5
Number Format for Input 5
General Description 5
Input Formet 6
Description of Input Parameters 9
Timing 14
Nachine Operating Procedure. 15
Prograll Stops 15
Output Frogram 15
Error Stops 15
Program Stop Option 16
Output 16
Output Number Fornat 16
General Description 16
General Notes 20
Mote on Cesitum Iodide Program 20
Note on Xylene Program 20
Pulse-Height Response Functions for Complex Spectra 20
Auxiliary Broadening Frogram 21
Input 2
Output 24
Operating Procedure 24

Introduction

In the past few years there has been considerable interest generated by various groups at ORAL in the analysis of pulae height response functions from gema-ray scintiliation counters. In particular, the effect of various source geometries and detector geometries and materials bave been investigated experimentally to determine their effect on the response function. fealizing the large amount of time and money being expended in this effort, it vas deaided to code the general problem for an autanatic computing machine incorporating in the code as much versatility as possible to meet the requirements of present-day interest.

The Honte Carlo method of computation was used to produce aeveral codes for predicting the pulse-height response functions from gamma-ray acintillation countera. The results of calculations performed with these codes compared very favorebly with experimental results and will be reported in another paper along with a complete report on the project.

Because it was impossible to survey and publish results for all possible parameters of interest, and because of the wide-spread interest in these codes it seemed advisable to release the code to those interested parties having a IBM-704 computing machine available to them. This peper describes the codes and general mechenics of operating them.

General Description

The problem of predicting the pulse-height response functions for gamma ray sciatilistion counters has been idealized to a certain extent for ease of computation. In particujar, the counter was assumed to have eylindrical
symmetry and to be suspended in a vacuum with no surrounding materials to cause spurious pulses by scattering the source radiation into the detector or scattering radiation leaving the counter back into it. The source radiation is assumed to be purely monoenergetic and is restricted to three different configurations to be described below under "Source Geometry." The maximum source energy allowed is 10.22 Mev .

In genersl, it was attempted to take into consideration those physical processes that have the most significant effect on the response function. For this reason account 15 taken of bremsstrahlung and annihilation radiation losses as well as losses by radiation scattered out of the counter. This last statement is qualified to a certain extent in the case of the xylene counter as described belou under "General Fotes."

For completeness, several other pieces of information are computed besides the puise-height function. Some of these are the intrinsic efficiency, peak-tototal ratio, analytic zero pulse-height response and others that are deseribed under "Output."

Throughout this report pulse-height is assumed to be measured in units of Mev.

Three separate Monte Carlo codes have been written for the IBM-704 to predict the response functions of counters composed of sodium iodide (haI), xylene ($\mathrm{C}_{8} \mathrm{H}_{10}$), and cesium iodide (CsI), for monoenergetic sources. Secondary radiations may (1) be entirely neglected, (2) include annihilation radiation effects only, or (3) include both annibilation radiation as well as secondary bremsstrahiung effects. Output histograms may, if desired, be "smeared-out" by a Gaussian broadening in order to match crystal resolutions. Bach of these
three programs comprises a separate binary deck. In operation, each deck is followed inmediately by sets of cards (18 each) carrying the neceasary input parameters for successive cases. These cards will be described below.

In addition to the three response function codes is a fourth for the puxpose of broadening unbroadened spectra and is described under "Auxiliary Broadening Program."

To obtain the binary deck for any of these prograns contact either one of the authors.

Minimum IEM-704 Requirements
The minimum IBM-704 required to mun the programs described in this report must have at leagt an 8192 core memory and built-in Floating Trap. Fo tapes or drums are necessary.

Counter Geometry

Figure 1 shows the most complex counter geometry allowed by the codes. The letters shown on that figure refer to the respective dimensions in centimeter units and are input parameters to the code. By selecting certain values of each of these parameters a variety of geometrical configurations can be obtained. For instance, by selecting C, D, E, and Fequal to zero one obtaing the familiar cylindrical counter or by selecting F equal to A the hole will pass completely through the counter.

The various gecmetricel configurations of the counter can be inferred from Table 1 which displays the permitted ranges for the parameters C, \mathcal{B}, \mathbb{E}, and F for the four cases involving the presence or absence of the truncated - conical end, each combined with the presence or absence of the hole. The paremeters A and B are unrestricted.

Table 1. Restrictions on the Parameters C, D, E, and F

Source Geometry

Each of the three response-function programs permits the use of any one of three source geometries which are shown in Fig. 2. Each of these sources is described below along with the required restrictions on the parameters H, I, and J. If the source type does not require a particular parameter, set it equal to zero.

Source Type 1, Monodirectional
This source is a circularly collimated beam centered on the axis. The output normalization will be for one photon uniformly distributed over the area of the circle.

Parameter Restrictions: 1 . With no cone $J \leqslant g$
2. With cone $J \leq \mathrm{C}$

Source Type 2, Conical Exterior
This source is for purposes of approximating a collimated (or uncollimated) counter when an isotropic point source is placed on the axis near the counter. The radiation is assumed to be uniformly distributed in angle within the cone subtended by the circle with radius H. The output will be normalized to one photon uniformly distributed within the cone.

Parameter Restrictions: 1. With no cone $H \leqslant B$
2. With cone $\quad \mathrm{H} \leq \mathrm{C}$

Source Type 3, Point Isotropic Interior Source
This source is self-explanatory with the exception that it must be on the axis. One unusual feature that may be achieved with this source is
that of a source buried in the counter. This is accomplished by removing the hole.

Parameter Restrictions: 1. With hole $0 \leq I \leq A$
2. Without hole $0<I<A$

Input

Number Format for Input

The input required three different types of number format. These are "decimal number" which is a decimally expressed number with a decimal point, a "decimal integer" which is a decimally expressed integer without a decimal point which is assumed to be at the right, and "octal number" which must be a 12-digit number of octal form without a decimal point.

General Description

All three response-function codes utilize the same input format described below and use the WIINP 1 input subroutine to read cards on-line (Sense switch 1 on). Eighteen (18) input numbers are required for each case. These may be conveniently punched and printed on the yellow -edged cards labeled "UA SAF CAFD 1," as displayed in Fig . 3. In the case of decimal numbers and decimal integers the symbol DEC is punched in colum s 8, 9, and 10. For octal numbers the symbol OCT is punched in the corresponding columns. The number, in each cage starts in column 12.

For those who are familiar with the options allowed by RYINPI, we remark here that the 18 input parameters are initially stored in absolute decimal addresses 1065-1082, inclusive. Thus, successive cases, for which one, or perhaps few, input parameters change, may require but one, or few, cards carrying absolute decimal addresses for the changed parameters, followed by a card reading TRA 3, 4. Also input cards may be first transferred to tape, the tape mounted as tape 3, and the programs run without cards with Sense Switch 1 off.

Symbol Definition

1. N Number of source-photon histories
2. Q Number of equal energy-intervals between 0 and ESUEM
3. E_{0} Source energy (Mev)
4. SOURCE Source type: 1, 2, or 3
5. A Length (cm)
6. B Radius (cm)
7. C Radius or truncation (cm)
8. D Altitude of truncation (cm)
9. $\quad E \quad$ Radius of hole (cm)
10. $F \quad$ Depth of bole (cm)
11. H Radius of conical source (cm)
12. I Altitude of conical source (cm), or depth of source type 3 (cm)
13. $J \quad$ Radius of monodirectional source (cm)
14.
15.
16.

KEYWORD
A number indicating which secondary radiations are to be included:

- Ali secondaries

2 Annihilation radiation only
2 Flo secondaries
17. $\mathrm{E}_{\mathrm{M}} \quad$ The value, in Mev, of the maximum pulse height reported in all response histograms presented in the output

Decimal integer
Decimal integer
Decimal integer

Decimal rutaber
18. $R \quad$ A number indicating the initial random number to be used:

0 Initial random nurser is immaterial, i.e., use the next sequence Specified initial random number

Number Format
Decimal integer
Decimal integer

Decimal number
Decimal integer
Decimal number
Decimal number
Zero integer or decimal number
" "
" . "
" "
"
" "
" "
" in
" "

Second broadening coefficient

Octal zero
12-Digit octal

Fig. 1. Assumed Counter Geometry for Cslculations of Seintillation Counter Gamme-Ray Response Functions.

SOURCE TYPE 1: MONODIRECTIONAL SOURCE

SOURCE TYPE 2: CDNICAL EXTERIOR SOUAFEE

SOURCE TYPE 3: POINT ISOTROPIC INTERIOR SOURCE
Fig. 2. Assumed ' Gource-Counter Geometries for Galculations of Seintillation Counter Gamra-Fay Responge Functions.

Description of Input Parameters

1. N, Number of Source Photon Histories

The value or this parameter depends to a large extent on the particular problem being calculated. For a particular production problem where the data is to be used for comparison with experiment, a minimum of 1,000 source photons should be used. For slightly better statistical accuracy N can be increased; however, no significant overall improvement occurs for more than approximately 3,000 source photons. In most cases very good comparisons with experiments hove been achieved with 2,000 source photons or leas. For problems where it is desired to compare the different pulse-height outputs for various input parameters on a relative basis, fewer source photons can be used with a corresponding decrease in running time (see the section on "Timing").

By referring to the description of the output, one will see that there are several numbers which are calculated from analytical formulas. These numbers, in most cases, are derived from integrals which ere solved humericoly using a grid system which has the same number of intervals as N . As one would expect, if N is very mall the analytical values become very inaccurate. This should be kept in mind when selecting the value of this parameter.
2. Q, Number of Equal Energy-Intervals Between Zero and E_{M}

This input parameter, the number of equal energy intervals between 0 and E_{M}, may assume any value from 1 to 600 . It should be noted, however, that as the number of intervals ipereases, the statistics of the pulse-height spectra deteriorate rapidly, requiring disproportionately greater numbers of sourceparticle histories, concordant with longer running times. However, when Q is relatively large, in order to delineate in better detail any sharp peaks in
the pulse-height spectra, it may be four expedient to average pairs, or even larger sets, of entries in the low-energy tail to achieve smoothness in this range.
3. E_{0}, Source Energy in Nev

This input parameter, the energy of the monoenergetic source photons in Mev, is restricted to the range $0.00511 \angle \mathrm{E}_{\mathrm{o}} \leqslant 10.22 \mathrm{Mev}$. 4-13.

The source parameter and parameters A-J are described in the sections "Counter Geometry" and "Source Geometry" along with certain restrictions pertaining to these numbers.

14-15. A_{b} and B_{b}, Broadening Coefficients
These broadening coefficients enter into the formula for Gaussian broadening of the zero-resolution pulse-height curve which is calculated in these programs. The first step in the computations is to compute the zeroresolution curve in the form of a histogram with interval widths equal to $\mathrm{E}_{\mathrm{M}} /$ Q. This histogram is then used to generate the broadened histogram using the relation

$$
F\left(E, E^{\prime}\right)=\frac{e^{-\frac{1}{2}\left(\frac{E-E^{\prime}}{\sigma}\right)^{2}}}{\sigma \sqrt{\pi}}
$$

The function $\mathrm{P}\left(\mathrm{E}, \mathrm{F}^{\prime}\right)$ expresses the probability that a pulse recorded at energy E (Mev) on a zero-resolution counter would have been recorded at energy E^{\prime}, (Mev) on a nonzero resolution counter. The factor σ is a function of E and is given by

$$
\sigma=A_{b} \sqrt{E}+B_{b} E,
$$

which demonstrates the dependence of the Gaussian broadening on the broadening coefficients.

The factor σ is related to the total width, W, at half maximan by the relation

$$
W=20 \sqrt{2 \ln 2}=2.3548 \sigma
$$

and is related to the resolution, R, by

$$
\mathrm{R}=\frac{\mathrm{W}}{\mathrm{E}}=2.3548\left[\frac{A_{b}}{\sqrt{E}}+B_{b}\right] .
$$

The value of each of the constants'for a particular counter are best deternined by ploting the resolution against ($1 / \sqrt{\overline{\mathrm{E}}}$) where E is in Mev units.

The broadening is carried out by assuming the entry in the $i^{\text {th }}$ box of the histogram of the unbroadened spectrum to be concentrated at the mitapoint of the box at energy E_{i}. The final entry, F_{j}, in the $j^{\text {th }}$ box of the broedened spectrum having energy limits E_{j} and E_{j+1} is then calculated using

$$
F_{j}=\sum_{i} \int_{E_{j}}^{E_{j+i}} F\left(E_{i}, E^{\prime}\right) d E^{\prime}
$$

16. Keyword

This parameter is self-explanatory, however, it might be pointed out that if secondary effects are expected to be small it is best to run the problem with KEYWORD set equal to 2 so that the secondariea are not calculated at all. This will reduce the running time to a considerable extent.

17. E_{M}

This input parameter, the value in Mev, of the maximum pulse height reported in all response histograns in the output, serves two purposes. First, when E_{M} is greater than the source energy, E_{O}, energy intervals above

$$
\therefore 2013
$$

E_{0} appear in the histograms. Although the unbroadened puisemeight spectra can never show contributions to these intervals, the broadened spectra will usually do so. The degree of this "spilling-over" into intervals above E_{0} is of course dependent upon the magnitudes of the two broadening coefficients. Second, when F_{N} is set. less than E_{O}, the histograms display energy intervals between zero and E_{M} only. In this situation, aninilation radiation effects are not included, nor is bremsstrahlung from pair electrons; however, fhebremsstrahlung from Comption ejected electrons is.included if one specifies all secondaries. As E_{M} decreases from E_{O} downard, the smoothness of the low-energy ena of the Compton tail may be faproved by inereasing the number of histories ulthout a proportionate increase in computing time, since a decrease in E_{M} vitiates an increase in M. It should be noted that, when $E_{M}<E_{O}$, the printed valiue or the photofraction has no meaning, and that the histogram of the broadened photopeak is not printed.

For a cryatal parameter study, from which only intrinsic effriciencies are being considered, E_{M} may be set very low (e.g., 0.00512 Mev), and kfyword set to 2 (no secondaries). Then a series of cases may be run comparatively rapidly, since there are no secondary events, while the number of primary colisions is reduced essentially to the number of particles incident on the counter.
18. R, Random Mumbers

All three programs contain two major loops. The first is concerned with primary radiation effects, while the other works with the secondarie's: "Both of the loops use the same chain of random numbers, but separately and independently. When any of the codes is first loaded and the firsti'casé
atarted with the parameter R set to zero, both mejor loops start with the first rendon number of their identical ehains. If it is desired to run a case in uhich one or both mejor loops atart with some random number other than their first, this may be accomplished under Sense Switch control, as deseribed below.

When Senge Sritch 3 is depressed (ON) during progran loading or input reading, almost immediately after input has been read, the programs enter very short loops which pass through the chain of random numbers very rapldy (about 1 ms per pass). When Sense Switch 3 is then eleveted (orf) the current random number at that instant becomes the initial random nuaber in the major secondary 100p.

The same applies to Sense Switch 4 and the initial random number in the major primary loop. When both Switches 3 and 4 are used, Switch 3 must be raised first, since the loop it controls is entered first.

In general, when running either a single cage or a series of cases, it 19 best to start with both Switches 3 and 4 down (ON). Almost immediately (2.1 ms) following the reading of input, the loop controlled by Switch 3 is entered. Switch 3 should then be lifted. At once the loop controlled by Switch 418 entered. It should next be lifted, and computation will commence. This procedure insures randomization of initial random numbers in both major loops. Oniy a few seconds (or even a few tentios of a second) need separate the end of input, the ralsing of Switch 3, and the raising of stitch 4 . For those eases following the first, one need only set R equal to zero and each random number generator will automatically continue in the chain of random numbers from where it stopped on the previous problem.

If, for some reason, it is desired to start with a particular random number which may be displayed on the output of some problem that had been run previously, this can be accomplished by setting (R) equal to this number and turning Sense Switches 3 and 4 off. If R is different from zero both random number generators start with the indicated random number.

If (R) is not equal to zero this parameter will become the first random number in each chain of random numbers regardless of the operation of Sense Switches 3 and 4 as described under "Machine Operating Procedure."

Timing
Computing time, exclusive of input and output, varies directly with N , the number of histories. Tabulated below are sample timings for a $3-1 / 2 \mathrm{in}$. by $5-\mathrm{in}$. CaI crystal, with $\mathrm{I}=1000$.

The increase in computing time with energy is due almost entirely to the increase in the number of secondary events. When no secondaries are called for, operation is much faster, with computing time increasing but very slightly with energy. Also, for constant H, larger crystals require longer times.

Crystals with holes and/or conical ends require somewhat longer times, due to more complicated geometrical calculations.

Machine Operating Procedure

1. Place set/sets of input cards behind program deck. Follow with three blank cards.
2. Sense Switch 1 On.
3. (Optional) Sense Switches 3 and 4 On (see description of random numbers).
4. Clear and Load Cards.
5. If Sense Switches 3 and 4 are on, turn off switch 3 first approximately one to two seconds after computation starts and one to two seconds later turn off switch 4.
6. Cases run continuously until output is exhausted.

Program Stops

Output Program
All three programs use the NYOUP3 output subroutine, and utilize the online printer. There are no programed stops during the printing of output. Any stops during this time arise from an echo-check error from the on-ine printer. Depressing START will cause the line in error to be reprinted, and the program to continue.

Error Stops

All experience to date with the three programs has indicated that any machine stops prior to output, or any "hanging-up" in loops can be attributed to machine error. To restart a case following such a stop, merely run any remaining cards out of the card reader, delete input cards for cases sarisfactorily completed, and start over again, as listed under "Machine Operating Procedure."

Should a machine error occur which falla to generate a stop (egg., a pickup or drop-out in a stored constant), but which creates obviously anomalous results in the output, the only recourse is to reload the program and rerun the case.

Program Stop Option

Sometimes, wile a case is running, it may be desired to know how near it is to completion. This information may be obtained by depressing Sense Switch 2. This causes the 704 to print online, as a decimal integer, the number of histories remaining to be computed, and then to stop. To proceed, turn Sense Switch 2 off, and depress START.

Output

Output Number Format

The only number format in the output which may not be familiar is the floating decimal format. These numbers are of the form

$$
\pm y y \pm x \times x x
$$

representing the decimal number

$$
\pm 0 . \times x \times x 10^{+y y}
$$

General Description

All three programs produce output via the on-line printer. Figure 4 displays the output derived from the input shown in Fig. 3. Circled numbers on Fig. 4 refer to numbers below.

1. Initial and final random numbers in octal.
2. The number (decimal integer) of primary -particle collisions before cutoff.
3. Added as a programing aid only.
4. Aḋded as a programing add only.
5. The fraction (decimal number) of source perticles incident on counter; e.g., always unity for source types 1 and 2 if the hole does not extend completely through the crystal and also unity for eource type 3 if hole is absent and $0<I<A$; otberwise, some number less than unity. This number is calculated from an apalytic formala and is not a statistical eatimate.
6. Counter intrinsic efficiency; a decimal fraction equal to the probability that a source particle will make at least one collision in the crystal. This number is calculated from on analytic formula and is not a statisticsi estimate.
7. Photorraction + standard deviation. Tvo decimal fractions, the first of which, the photofraction, is equal to the probebility that a particie will be completely sbsorbed, provided it makes at lesst one collision in the crystal. The second decimal fraction represents standard deviation of the photofraction. Both of these numbers are statistical estimates.
8. Interval width in Mev. A decimal number equal to $\mathbf{E}_{\mathbf{M}} / \mathbf{Q}$.
9. Abalytic Zero Energy Value (same units and normalization). The number ${ }^{\text {t }}$ printed here (in floating decimal) is the zero energy pulse height of the Corpton tall as calculated from an analytic formila.
10. Number of intervals. Q as a decimal integer.
11. Response histogram of the Compton tail in units or counts per Mev in ascenaing order, normalized to a total response of one count. Shumbers presented here are all in floating decimal notation. fumbers appeer in pairs, five pairs per line, reading horizontally, top to bottom, The total number of pairs printed is equal to the number of intervals chosen (Q), and
thus the last row printed may consist of less than five pairs. The first number of each pair is a statistical estimate of the number of counts per Hew in the appropriate energy interval. The second number is a rough estimate of the standard deviation of the counts in the corresponding energy interval. Because of the roughness of the estimate (sometimes even negative:) the standard deviations should not be given too great a significance. Instead, the smoothness of the plot of the pulse-height spectrum is a better indication of the statistical error.
12. A_{b} and B_{b} as decimal numbers.
13. Response histogram of the compton tail after broadening (same units and normalization). fere the format is the same ns in the previous histogram With the standard deviations omitted, but with Gaussian broadening applied to the pulse-height spectrum of the first histogram.
14. A_{b} and E_{b} as before.
15. Response histogram of the photopeak after broadening (same units and normalization). The format here is again the same as in the previous histograms. The numbers displayed show the effect of the same Gaussian broadening when applied to the total absorption peak, which, because of the normalization, is here equivalent to the photofraction.
16. Response histogram of the Compton tail without secondaries of broadening (same units and normalization). Again the format is the same. This histogram is the same as the first, with standard deviations omitted, except that here the effects of any secondary radiations are not included.
17. Added as a programming aid only.

RESPONSE OF A SCINTILLATION COUNTER
 COMPOSITION SODIUM IODIOE
 DENSITY $=3.677$ GRAMS PER GURIC CENTIMETER
 \$OURCE TYPE CONICAL EXTERIOR
 SOURCE ENERGY IN MEV - 2,0000

NUMBER OF HISTORIES $=500$
RESULTS JNCLUDIHG EFFEGTS OF ALL SECONOARY RAOIAT IOM
FRACTIOA OF SOURCE PARTICLES INCIDENF ON COUNTER 1.00000000-…-5
COUNTER JNTRINSIC EFFICIENCY .6584--
RESPONSE HISTOGRAM OF THE COHPTON TAIL IN UNITS OF COUNTS PER MEV IN ASCENDING ORDER
NORMALIZED TO A TOTAL RESPONSE OF ONE COUNT
INTERVAL WIOTH IN MEV $=100000-1-1$ -
AMALYTIC ZERO ENERGY VALUE ISAME UNITS AMD NORMALIZATIONY $=$
MUMBER OF INTERVALS $=25-$ - 10 (1)

2132	-1	4452	2891	-1	5646	2071	-1	4533	1927	-2	4066	1632	-1	3025
2903	-1	5343	2272	-1	4608	2573	-1	4422	3014	-1	3213	2883	-1	4470
3398	-1	5396	3654	-1	5187	4357	-1	5478	3915	-1	4844	7567	-1	3190
5933	-2	5430	5806	-1	4640	5278	-1	4561	2725	-1	2885	4533	-1	3468
0000		0000	0000		0000	0000		0000	0000		0000	0000		0000

RESPONSE HISTOGRAM OF THE COMPTON TAIL AFTER GROADENTMG

RESPONSE HISTOGRAM OF THE PHOTO PEAK AFTER BROADENJNG (SAME UMITS AND NORMALIZATION)

RESPONSE HISTOGRAM OF THE COMPTON TAIL WITHOUT SECONDARIES DR BROAOENJNG $\{S A M E$ UNITS AND NORMALIZATIONI

2132	2891
2903	2272
2645	3458
5338	5786
0000	0000

2071
2573
4297
5503
0000
1927
2914
3519
-19489
0000

1632
1907
4354

2140	2909	2080
2763	2353	2598
3368	3737	4173
6204	5693	4931
1024	6472	4690

60
$1024-264720446900000$

Hote on Cesium Iodide Program
The ceaium iodide code, in its present state, calculates its secondary bremestrahlung effecte from the sodium iodide bremsstrahlung spectrum. It is planned to conpute the necessary cesium lodide spectrum and to incorporate it in the program. Since brensstrahlung effects become important only at the higher source energies, present errors should be small except perhaps at thene bigher energies.

Note on Xylene Program

The xylene code includes no secondary bremsstrablung effects because of the low-Z materials. Errors should be negligible up to moderate energies. Should the xylene code be supplied with KEYWORD $=0$ (all secondaries), it will compute the effecte of annibilation radiation only, and so report in output.

Pulse-Helght Response Punctions rox Complex Spectra

It is often the case in an experiment that the source may produce a corplex spectrum of ganma rays consisting of photons at several different in screte energies. The pulse-height response function for this complex spectrum can be obtained by compounding the response functions for each separate energy of the photons appearing in the spectrum.

To carry out the compounding of the response functions we assume the broadened total absorption peak has been added to the broadened Compton tail. Both of these are separately displayed in the output. In addition, we assume the interval vidth used in the histograms for each source energy to be identical. If we let $G_{i}\left(E_{j}\right)$ be the entry in the $i^{\text {th }}$ box of the histogram resulting from a monoenergetic source at E_{d}, then the entry K_{i} in the $i^{\text {th }}$ box or the compounded histogram is given by

$$
K_{i}=\frac{\sum_{j} F\left(E_{j}\right) Y\left(E_{j}\right) G_{i}\left(E_{j}\right)}{\sum_{j} F\left(E_{j}\right) Y\left(E_{j}\right)}
$$

where $F\left(E_{j}\right)$ is the fraction of the complex spectra that has energy E_{j} and $Y\left(E_{j}\right)$ is the intrinsic efficiency recorded on the output for the monoenergetic source at energy E_{j}.

The resulting histogram after compounding as indicated above will be properly normalized to a total response of one count and will have the same 2 unite as the hiatograms for the monoenergetic sources.

The zero-energy pulse height for the complex spectrum can be obtained by using the game compounding formula given above but by replacing $\mathrm{G}_{2}\left(\mathrm{E}_{\mathrm{j}}\right.$) by the corresponding analytic zero-energy value given on the output for the monoenergetic source at energy E_{3}.

The fraction of the source photons from the complex spectrum, z, making at least one collision in the counter is given by

$$
z=\sum_{j} F\left(E_{j}\right) Y\left(E_{j}\right)
$$

Auxiliary Broadening Program

It has been noticed, in the process of matching experimental pulse-height spectra with those predicted by the 704 codes, that Irequently the matching is good in all respecta except half-widths, and concurrently small differences in peak maxima and valley minims. Realizing that these differences might be attributed almost entirely to inproper estimates of the broadening coefficients, an awciliary program was written to demonstrate the effect of different broadening coefficients upon any unbroadened spectrum. This program is described on the following pages.

Input
As with the other 3 main programs, input cards may be conveniently punched and printed on the yellow-edged SAP cards. Displayed in Fig. 5 is a sample input derived from the output show in Fig. 4, but with sets af different broadening coefficients. As one can observe from Fig. 5, it is only necessary to include the unbroadened spectrum and the constants other than A_{b} and H_{b} in the first set of input parameters. These remain unchanged in the machine until another set of parameters including all the constants and unbroadened spectrum data is read into the machine. After the first set of parameters are read in, subsequent sets of brodening constants are used to broaden the particular upbroadened apectrum that is at that time in the machine.

The program accepts unbroadened spectra for all Q up to andinciuding $Q=300$. For a given unbroadened spectrum, input consists of

1. The six parameters appearing on the first six lines of Fig. 5. The parameters $E_{0}, Q, E_{N} / Q$, and the photofraction can be obtained from the output shown in Pg. 4. All of these parameters except Q are represented as "decimal fractions" containing a decimal point. Q is a "decimal integer."
2. The unbrosdened spectrum under consideration (lines 7 through 11 in Fig. 5) are taken directly from the "counts per Mev" displayed in the first histogram of the output from the main program shown in Fig. 4 followed by a card reading TRA 3,4. These numbers are represented as "decimal fractions" with a decimal point and are convenientiy written five to a line with a commin separating the

SHARE SYMBOLIC CODING FORM

numbers. No spaces are to be included in the set of five numbers on each line. The card with symbol TRA is mandatory except when $Q=300$, in which case it must not be included.
3. Additional sets of cards containing the parameters A_{b} and B_{b} followed by a card reading TRA 3,4.
4. Repetition of items 1, 2, and 3 above for different cases as desired. . Output

Output is via the on-line printer. Figure 6 displays the output derived from the input of Fig. 5. The broadened spectra presented here have the same format as in the output of the 3 main programs. However, the spectra here incluade the broadened photo-peak, instead of it being presented separately as in the main programs.

Operating Procedure

1. Place sets/set of input cards behind program deck. Follow'with … 3 blank cards.
2. Sense switch 1 On.
3. Clear and Load Cards.
4. Cases run continuousiy until input is exhausted.

P(E)

2877
B = . 00260000

1907	1767
2932	2993
4791	6440
6254	1864
0000	0000

Fig. 6.

Distribution

1. P. R. Bell
2. E. P. Blizard
3. O. T. Chapman
4. L. B. Holland
5. W. H. Jorden
6. \%. H. Lazar
7. T. A. Love
B. F. K. MeGowan
8. F. C. Maienschein
9. A. B. Meyer

11-60. H. S. Moran
61. F. J. Muckenthaler
62. R. B. Murray
63. R. W. Peelle

64-113. C. D. Zerby
114. M. J. Skinner
115. Central Research Library

116-127. Laboratory Records Department
128. Taboratory Records, ORNL R.C.

129-143, Technical Tnformation Serwice, ABC 14h. Document Feference Section

