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ABSTRACT 

A diffusion couple technique was  developed and s tandardized for the purpose 

of obtaining meaningful data regarding the diffusion kinetics of the Al-Ni-U s y s -  

tem.  The technique entailed hot press ing  under a dynamic vacuum and subse-  

quent i so thermal  soaking t rea tments  within evacuated quartz tubes for  per iods 

of 10 to 7000 h r  a t  t empera tures  of 650, 750, 850, and 9 5 0 ° F .  

. 

In addition, the nickel b a r r i e r  bond between Type 1100 aluminum cladding 

a n d c a s t U  - 3.570Mo fuel alloy was  metallographically examined on four fuel 

cyl inders  fabr icated according to Piqua procedure .  

in the "a s  fabricated" conditions, and the three  o thers  a f te r  1000,  2000,  and 

4000  h r  of i so thermal  soaking in Santowax OMP at 7 5 0 ° F  in an autoclave under 

100 psig of nitrogen. 

One cylinder was  inspected 

I 

The following conclusions w e r e  obtained: 

1) The penetration of aluminum into nickel followed a parabolic re la t ion-  
ship with t i m e .  

mined a s  a function of t empera tu re .  

The penetration coefficient was  graphically de te r  - 

2)  The nickel penetration data generated by the diffusion couple technique 

w e r e  sl ightlyhigher than those der ived f r o m  the cylinder bond study. 

The maximum discrepancy was  2070. This d i sagreement  was a t t r i -  

buted to  the geometry of the tubular specimens and to the interface 

displacements  which occur red  during the annealing p rocess  due to 

differential  t he rma l  expansion between fuel and cladding, both a t  the 

OD and ID. 

3) A low-aluminum phase AlNi  or AlNi  

interface when the supply of additional f r e e  A1 into the sys tem was 

r e s t r i c t ed  due to  void formation o r  separat ion between intermetal l ics  

and A l .  The growth of the low-aluminum phase progressed  a t  the 

expense of the Al Ni until a l l  this phase was consumed, then con- 3 
sumption of the Al Ni2 phase began. 3 

4) The interdiffusion r a t e  of uranium and nickel a l so  followed the p a r a -  

bolic relationship with t ime .  

of tempera ture  was plotted. 

nucleated a t  the A13Ni/A13Ni2 3 

The diffusion coefficient a s  a function 

NAA-SR- 8 38 7 
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I .  INTRODUCTION 

F o r  seve ra l  y e a r s ,  uranium base  metal l ic  fuels  clad with aluminum have 

been of p r i m a r y  in t e re s t  for  use in organic cooled r e a c t o r s .  

such a s  U - 3.5 wt 7'0 Mo or  U - 10 wt 7'0 Mo, offer such advantages as high u r a -  

nium density,  fabricabili ty,  and s t ruc tura l  s t rength.  Aluminum h a s  proven v e r y  

sat isfactory a s  a cladding mater ia l ,  p r imar i ly  because of i t s  high res i s tance  to 

organic cor ros ion ,  and i t s  re la t ively low neutron absorption c r o s s  section. 

cause  of the high reaction r a t e s  between uranium and aluminum at the reac tor  
1 operating t empera tu res  (above 600  O F )  

of the fuel protection by the original cladding, a sat isfactory diffusion b a r r i e r  

was requi red .  

promising b a r r i e r  ma te r i a l s ,  because of i t s  re la t ively low react ion r a t e s  with 

aluminum and uranium and the simplicity of i t s  application. 

The metal l ic  fue ls ,  

B e -  

which would ult imately r e su l t  in the loss  

Based  on l imited data,  nickel was chosen as one of the m o r e  

The p r i m a r y  purpose of this  work was  to determine quantitatively the r e a c -  

tion r a t e s  between A l / N i  and N i / U .  In addition to providing des igners  with data 

regarding the consumption r a t e s  of nickel,  a somewhat m o r e  bas ic  investigation 

was included, to a s s i s t  in understanding the development and behavior of the 

A l / N i  and N i / U  intermetal l ic  phases .  

Two l ines  of effort  w e r e  applied to the problem. One approach involved a 

s e r i e s  of diffusion couples which were  systematical ly  heat  t rea ted  and examined. 

The other  approach entailed a group of cylindrical  A1 -clad U-metal fuel e lements ,  

fabr icated to include a N i  diffusion b a r r i e r  of constant thickness .  The fuel 

e lements  were  isothermally heated and metallographically evaluated, to de te r  - 
mine  the r a t e  of nickel consumption and the general  diffusion cha rac t e r i s t i c s .  

NAA-SR-8387 
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II. EXPERIMENTAL PROCEDURE 

The bonding was achieved by hot press ing  the A1-Ni-U sandwiches encap- 
, 
I sulated in s ta in less  s teel  cans under dynamic vacuum, a s  shown in F igu re  1. 

A. DIFFUSION COUPLE TECHNIQUE 

In o r d e r  to  obtain diffusion data on the A1-Ni-U sys tem,  the p r imary  ap -  

proach was  to develop and s tandardize a technique f o r  diffusion couple p r e p a r a -  

tion. 

tamination f r o m  the surrounding a tmosphere  during the soaking t r ea tmen t s .  

technique developed to satisfy this  requi rement  entailed hot press ing  the com-  

ponents under a dynamic vacuum to effect a metal lurgical  bond, and then heat  

t reat ing the diffusion couple within an evacuated quartz  tube. 

It was  necessa ry  to  a s s u r e  that  the r e s u l t s  would not be  affected by con- 

The 

The fir s t  s tep in fabricating the "s tandard diffusion couples" involved c a r e -  

ful preparat ion of the me ta l  su r f aces .  

sur faces  pr ior  to bonding w e r e  at tempted which included abrading, pickling, and 

electropolishing. 

bonds: 

Numerous methods of obtaining "clean" 

The following procedures  yielded the bes t  contamination-free 

1) Aluminum -Abraded  with No. 6 0 0  grit, paper ,  scrubbed with hot de -  

tergent  and water  solution, r insed  with hot wa te r ,  r insed  with alcohol, 

d r ied  in a i r  b las t ,  and s tored  under vacuum pr ior  to use .  

2) Nickel - Pickled with a solution of 500 mP H PO4, 200 mP HN03, and 3 
250 mP acet ic  acid a t  55 to 80°C for  2 to 6 minutes ,  r insed with wa te r ,  

r insed  with alcohol, d r ied  with air b las t ,  and s tored  under vacuum 

pr io r  to  use .  

3 )  Uranium - Electropolished with 8 p a r t s  H PO 5 p a r t s  glycerine,  
3 4' 

5 pa r t s  ethyl alcohol until surface was visually f r e e  of all t r a c e s  of 

oxide, r insed  with water ,  r insed  with alcohol, d r ied  in a i r  blast ,  and 

used immediately.  

4) All Spacer  and Encapsulating Mater ia l s  - Scrubbed with a hot de t e r -  

gent and water  solution, r insed  with wa te r ,  r insed with alcohol, d r ied  

in a i r  b las t ,  and s tored  in vacuum pr ior  to use .  

NAA-SR -8387 
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PRESSURE 

1 

t 
PRESSURE 

Figure  1. C r o s s  Section of Diffusion Couple 
Bonding Apparatus  

The sandwiches w e r e  wrapped in z i rconium foil  to get ter  contaminants during 

the hot press ing  operation. 

s ea l  welding the end of the can  p r io r  to bonding, the ent i re  assembly  was  cooled 

by: 

copper chil l  blocks,  and (3) purging the in te r ior  of the can with argon via  the 

evacuation tube.  

uated to 4 x 10 

tained at 1 x 10 

To minimize contamination of the specimen during 

(1) submerging the can (except the end being welded) in a water  bath,  (2)  using 

This  p rocess  proved to be v e r y  successful .  

mm Hg fo r  a minimum of 4 h r  pr ior  to press ing ,  and main-  

mm Hg during bonding. 

The can was  evac-  
-6 
-4 

The hot press ing  conditions used to achieve good A1-Ni bonds w e r e  7000 psi  

The conditions n e c e s s a r y  to achieve sa t i s fac toryNi /U and 1050°F for  2-1 /2  h r .  

bonds w e r e  7000ps iand  1175"Ffor  2 - 1 / 2 h r .  Because  the higher t empera tu re  

for  Ni/U bonding great ly  acce lera ted  the A1 -Ni diffusion, s epa ra t e  couples of 

A1-Ni were  p repa red  a t  1050°F to supplement the data acquired f r o m  the A1-Ni-U 

couples.  
- 

NAA-SR-8387 
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The bonded diffusion couples,  which w e r e  1 in.  square ,  w e r e  sectioned into 

four pieces .  One piece was  retained a s  a control  sample,  and the other  t h ree  

w e r e  wrapped in zirconium foil (to getter contaminants) and sealed separa te ly  

in evacuated quar tz  tubes for  i so thermal  soaking t r ea tmen t s .  

subjected to t empera tu res  of 650, 750, 850, and 950°F for  per iods f r o m  10 to  

7000 h r .  In mos t  c a s e s ,  duplicate samples  w e r e  run .  

The samples  w e r e  

Upon completion of the the rma l  exposure,  the diffusion zone and f r e e  nickel 

thickness measu remen t s  w e r e  taken by using a microscope  with a filar eyepiece.  

Readings were  taken a t  five random locations on each sample and averaged .  

B .  A1-Ni-U BOND STUDY ON CYLINDRICAL FUEL ELEMENTS 

1. Experiment  

To pe r fo rm th is  study, four fuel cyl inders  w e r e  available.  The cy l inders  

w e r e  representa t ive  of those units used in the Piqua fuel e lements ,  and w e r e  
10 fabr ica ted  according to the procedure developed a t  Atomics International.  

The cyl inders  consisted of a c a s t  U - 3.570 Mo cyl inder ,  e lectroplated withnickel  

and clad with Type 1100 A1 a t  the OD and ID. The cladding was  welded toa lumi -  

num end plugs a t  the top and bottom of the cyl inder .  

One cylinder was retained a s  a control ,  and used  for  the bond evaluation 

in the as -fabricated condition. 

to an i so thermal  t rea tment  in an  autoclave containing agitated Santowax OMP at 

750°F under 100 psig of nitrogen. 

f i r s t  exposure of 1000 h r ,  one cylinder was  removed and evaluated. The second 

cylinder was  removed a f t e r  a n  additional exposure of 1000 h r ,  and the remaining 

cylinder was  removed a f t e r  an  additional exposure of 2000 h r  (4000 h r  total) .  

The immers ion  and removal  of the cyl inders  was per formed a t  3 5 0 ° F ;  the p r e s -  

sur iz ing and depressur iz ing  of the autoclave was  done at 6 0 0 ° F .  

The remaining th ree  cyl inders  w e r e  subjected 

After the th ree  specimens underwent the 

All  of the cyl inders  were  visually and dimensionally inspected pr ior  to 

loading and af te r  each exposure .  

2 .  Equipment 

The soaking was per formed in an e lec t r ica l ly  heated 5-gal s ta inless  s t ee l  

autoclave.  To hold th ree  cyl inders  and avoid any vibration, a special  f ixture  

NAA -SR - 8387 
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w a s  fabr ica ted  and f i r m l y  attached to the head of the autoclave.  Each  cylinder 

was positioned on stepped r ings  which simulated the actual  "seat"  in the Piqua 

fuel e lements .  

position without impeding i t s  longitudinal expansion ( s e e  F i g u r e s  2a  and 2b). 

propel ler ,  located a t  the bottom of the holder ,  s t i r r e d  the organic (200 r p m ) .  

F o u r  thermocouples  (Chromel-Alumel couple in a s ta in less  s tee l  sheath) w e r e  

positioned in a wal l  of the autoclave at the middle level of the Santowax O M P .  

These  thermocouples  w e r e  connected to a t e m p e r a t u r e  r e c o r d e r ,  a tempera ture  

cont ro l le r ,  a potent iometer ,  and a n  overheating c i rcu i t  b r e a k e r .  The autoclave 

w a s  providedwith a Bourdon type p r e s s u r e  gauge, a rupture  d isc ,  a bleed valve,  

and a pressure-cont ro l led  nitrogen a c c e s s .  

A .three-point centering piece kept the top of each cylinder in 

A 

3 .  Metallography 

Standard metallographic techniques w e r e  used in this  study. Complete 

t r a n s v e r s e  sect ions of the cyl inders ,  and specimens showing longitudinal views, 

w e r e  prepared  metallographically and evaluated. 

and hot p r e s s e d  mounts w e r e  used,  and some complete  r ings  w e r e  prepared  and 

inspected without mounting. 

Cold mounts (epoxy r e s i n s )  

T e s t s  w e r e  per formed to de te rmine  whether the cutting of the spec imens  

a l t e r e d  the or iginal  bond conditions.  T h r e e  different techniques w e r e  compared: 

(a) a meta l lurg ica l  cutoff wheel (Buehler) with carborundum (Crystalon)  medium 

g r i t  s ize  wheel,  (b) the cutoff machine with rotating specimen and diamond wheel 

( C r e s t a ) ,  and (c) a m e t a l  erosion core-boring machine (Elox e lec t r ic  d i scharge  

p r o c e s s ) .  

Syntron v ibra tory  pol isher .  

for  all the specimens,  ruling out the cutting techniques as  a factor  affecting the 

observat ions.  The cutoff wheel was  frequent ly  used to section complete r ings ;  

the Elox metal erosion machine proved to be  more versatile f o r  obtaining indi-  

vidual 1 -in. d iameter  OD -to-ID specimens.  

After  grinding, the metal lurgical  specimens w e r e  finished on a 

Fina l  inspection indicated s i m i l a r  bond conditions 

4. Measurements  

The outside d i a m e t e r s  of the cyl inders  w e r e  m e a s u r e d  before and after 

the soaking t rea tments  with a m i c r o m e t e r  (two readings a t  r ight  angle  on t h r e e  

elevations).  

t h r e e  elevations.  

and ID, with the t ightest  fitting to detect  misal ignment  and bl is ter ing.  

urements  of e las t ic  deformation of the cyl inders  during annealing w e r e  contem- 

plated for  this  study. 

The inside d i a m e t e r s  w e r e  m e a s u r e d  with a t r i m i c r o m e t e r  a t  

Go-gauges (1.5 in .  long) w e r e  machined for  each cylinder OD 

No m e a s -  

Qualitative observat ions of the bond quality in the as - fabr ica ted  condi- 

tions w e r e  per formed by m e a n s  of the crack-propagat ion t e s t  descr ibed  in 

another r e p o r t  (NAA-SR-8 128). 

NAA-SR - 8 3  8 7 
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a. Holder 

7597-5 1 0 2 A  

b. Elements  in Holder 

7 597-5102C 

Figure  2 .  Cylindrical  F u e l  Element  Soaking 
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1 1 1 .  DISCUSSION OF RESULTS 

-G A. DIFFUSION COUPLE RESULTS 

As mentioned, the p r i m a r y  purpose of th i s  study was to supply reac tor  

des igners  with consumption r a t e s  of f r e e  nickel a t  var ious t empera tu res ,  

o r d e r  t o  proper ly  pred ic t  the thickness  required for  a given in - r eac to r  exposure 

t ime.  

in te rmeta l l ics  under these  conditions was  des i red .  

in  

In addition, information regarding the behavior of the A1-Ni and N i - U  

The as-bonded diffusion couples revealed two distinct A1 - N i  intermetal l ic  

phases ,  which were  identified previously by o the r s  as A1 Ni and A1 Ni 293( see  

phase d iagram,  F igure  3) .  A typical example i s  shownin F igure  4a. F igure  4b 

shows a representat ive A1-Ni diffusion zone af ter  prolonged exposure to  i so-  

t he rma l  soaking t r ea tmen t s .  

that  w e r e  heated for  periods of t ime between 1000 and 7000 h r .  

3 3 2  4 

A slight porosi ty  was found innea r ly  all specimens 

Two ma jo r  N i - U  in te rmeta l l ics  w e r e  apparent  on the as-bonded couples,  a s  

shown in F igure  5. In addition, t r a c e s  of s eve ra l  other  in te rmeta l l ics  w e r e  

evident. The two ma jo r  phases  were  previously identified a s  UNi5  and U6Ni .  

Upon heating, sma l l e r  phases ,  which nucleated between the two original,  became 

m o r e  eas i ly  resolved.  By comparing with References 3 and 9 ,  and the N i - U  

phase d i ag ram (F igure  6 ) ,  
F igure  7 .  The a r e a  designated as "X t Y" i s  believed to be a two-phase region, 

present ly  unidentified. Much additional work,  using x - r a y  diffraction analysis ,  

is required to  substantiate these  identifications. 

3 

5 the phases  were  tentatively identified a s  shown in  

To de termine  the penetration r a t e  of nickel by aluminum, the thicknesses  of 

f r e e  nickel were  measu red  metal lographical ly  on the A l / N i  couples that had been 

subjected to diffusion annealing t r ea tmen t s .  As shown in  F igure  8, the pene t ra -  

tion r a t e  obeyed a parabolic equation of the form: 

where  

2 

t '  
X K = -  

x = nickel thickness  dec rease  

K = diffusion coefficient 

t = t ime .  

. . . ( 1 )  

NAA - SR- 8 3 87 
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Figure  3 .  Aluminum-Nickel 
P h a s e  Diagram 

b. After I so thermal  Soaking 
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Figure  4. Typical Al-Ni Diffusion Zones 
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a .  A s  Bonded 

E T C H E D  soox  
2911-3 

b. After  I so thermal  Soaking 

E T C H E D  

Figure  5 Typical Ni-U Diffusion Zones 
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F igure  6 .  Uranium-Nickel 
P h a s e  Diagram 

NICKEL (at %) 

Figure  7 .  Ni-U Intermetal l ic  P h a s e s  
(After  2400 h r  at 8 5 0 ° F )  

E T C H E D  l o o o x  
2911-5  

T E N T A T I V E  IDENTIF ICATION 

1: U N i 5  5: U7N i  

2 :  X t Y 6 :  U N i  
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P H O T O G R A P H E D  A T  250X 
REDUCED T O  160X 

Figure  10. A1-Ni In te r face ,  Showing Development of Low-Al P h a s e  

ETCHED 500 X 
2911-6 

Figure  11. Al/Al-Ni Interface,  Showing 
Development of Low-Al P h a s e  
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To verify the l inear i ty  of the relationship between the logari thm of the 

diffusion coefficient (K) and the rec iproca l  t empera tu re  ( T ) ,  according to the 

equation K = Koexp(-Q/RT),  the data  w e r e  plotted a s  shown in F igure  9 .  
r e su l t s  were  in  fair agreement  with a s t ra ight  l ine function. As  noted in F igure  9 ,  
the 10-hr points (indicated by " ? " )  consis tent ly  fell  well above the other  longer 

t ime  data  between 100 and 700 h r .  

a s t ra ight  l ine,  a r e  somewhat questionable, but m a y  ref lect  higher init ial  diffu- 

sion r a t e s  resul t ing from: (1)  a higher init ial  concentration gradient,  o r  ( 2 )  an  

init ially increased  number of nucleation sights for  phase formation left  by residual  

s t r e s s e s  f r o m  the hot p re s s ing  operation ( the 7000 ps i  was maintaineduponcool-  

ing to 600 O F ) .  

-u The 

The 10-hr points, which essent ia l lyfe l l  within 

It appears  that  m o r e  work is  n e c e s s a r y  to de te rmine  relat ive growth r a t e s  

of the A1 Ni and A1 Ni intermetal l ic  phases .  The data  showed inconclusive 3 3 2  
r e su l t s ,  but a few genera l  observat ions w e r e  made .  

bolic relationship with t ime was apparent ,  the r e su l t s  w e r e  somewhat sca t te red .  

The as-bonded couples showed two phases  of approximately equal thickness ,  but 

subsequent heating showed that  the A1 N i  phase general ly  grew much m o r e  3 2  
rapidly.  In some c a s e s ,  a dec rease  in the A1 Ni was noticed a f te r  a n i n c r e a s e  

previously had been observed a t  sho r t e r  soaking t imes .  

ported in  detail ,  at a l a t e r  date,  when the i r  validity i s  es tabl ished.  

Although a g e n e r a l p a r a -  

3 
These data will be r e -  

The p resence  of low-aluminum in te rmeta l l ics  (AlNi o r  AlNi ) among the 3 
This formation A1 - N i  diffusion phases  was mentioned in recent  l i t e r a tu re .  6,7 

was observed in  s e v e r a l  diffusion couples that  had undergone prolonged i so -  

t he rma l  soaking t r ea tmen t s .  
to nucleate in  a r e a s  between the A1 Ni. and A1 Ni a t  locations where  apparent ly  

the supply of aluminum a toms was l imited by extensive Kirkendall  void fo rma-  

t ion o r  mechanical  separat ion resul t ing f r o m  differential  t he rma l  expansion. The 

phase continued to grow, a t  the expense of the A13Ni phase,  until the A1 Niwas 

finally consumed. 

which a r e  d iscussed  l a t e r .  

The phase,  a s  shown in F igu res  10 and 11, began 

3 2  3 

3 
This  phenomenon was  observed s imi l a r ly  on the fuel cyl inders  

The interdiffusion of nickel and uranium was  determined by measur ing  the 

total  thickness  of the N i / U  diffusion zone. F igure  12 shows the parabolic r e -  

lationship between total  diffusion zone thickness  

c ients  revealed essent ia l ly  a l inear.  relationship 

and t ime .  The diffusion coeffi- 

with rec iproca l  t empera tu re ,  

as shown in F igure  13. 

NAA- SR - 8 3 87 
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Several  A l / N i / U  diffusion couples w e r e  designed in  such a way that the f r e e  

&I 
nickel would be consumed, in o r d e r  to  observe  the interact ion between A l / N i  

and N i / U  in te rmeta l l ics .  Anexample of th is  react ion i s  shown in  F igure  14. The 

par t icu lar  a r e a  depicted was located nea r  the outer  edge of the couple, where 

deformation occur red  f r o m  the or iginal  hot press ing  operation. The react ion 

products  w e r e  ve ry  similar in  appearance to  those reported by Hanford.' Insuf- 

ficient data  were  generated to  compare  with Hanford 's ,  which indicated a slow 

dec rease  of A13NiZ l aye r  by reaction with the U / N i  in te rmeta l l ics .  

B. CYLINDRICAL FUEL ELEMENT OBSERVATIONS 

1. Nickel Consumption P r o c e s s  

At 7 5 0 ° F ,  the electroplated nickel b a r r i e r  layer  was consumed a lmost  

completely by the A l / N i  react ions which yielded a s e r i e s  of intermetal l ic  com- 

pounds, p r imar i ly  A1 Ni and A1 Ni Diffusion between nickel and uranium also 

occurred ,  but a t  a significantly lower ra te .  
3 3 2 '  

L i t e ra tu re  showed that,  af ter  consumption of the free-nickel  l aye r ,  the 

U / N i  and Ni/A1 sys t ems  came in contact,  and finally a t e r n a r y  phase UNi7Al13 

was formed.  

diffused into it, forming the UA13 intermetal l ic .  

U /Ni /Al  sys t em developed the following zones,  in sequence: 

The aluminum then reached the uranium alloy, and subsequently 

At this  point, the original 

U /  UA13/ UNi7A1 13/  

A1 Ni /A13Ni /Al .6  The kinetics of the UA13 thickness  growth, which i s  an 3 2  
essent ia l  p a r a m e t e r  for  determining the fuel element l i fe t ime,  depends on the 

A13Ni2, a n d A l  Ni .  final thickness  reached by the intermediate  l a y e r s ,  UNi7A1 13, 3 

This study covered only the f i r s t  s tep of the diffusion p rocess  ( i . e . ,  the 

per iod at which the nickel i s  completely consumed).  

l aye r  los t  continuity and s ta r ted  to vanish,  on the 4000-hr exposed cyl inder ,  the 

amount of aluminum that  diffused into the fuel alloy was insufficient to pe rmi t  

detailed ana lys i s .  

Although the free-nickel  

F igu res  15 through 18 show the init ial  bondandi t s  developmentwith the ther -  

mal exposure.  The U / N i  diffusion zones genera l ly increased .  In the 4000-hr exposed 

cylinder,  the layer  of U / N i  in te rmeta l l ics  became continuous, and the resul t ing 

weakening of the bond s t rength was such that  numerous a r e a s  of separat ioncould 

be observed ( s e e  F igure  18c).  

specimens showed that  a continuous separat ion between A1 and A13Ni tookplace 

Metallographic examination of the t r a n s v e r s e  

NAA-SR- 8 387 
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Figure  15.  Sontrol Cylinder (After  P r e s s u r e  Bonding P r o c e s s )  
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Figure  16. Cylinder Exposed 1000 h r  at 7 5 0 ° F  
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F igure  17. Cylinder Exposed 2000 hr at 7 5 0 ° F  
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Figure  18. Cylinder Exposed 4000 h r  at 7 5 0 ° F  
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TABLE I 

NICKEL CONSUMPTION IN CYLINDRICAL F U E L  ELEMENTS 

Thickness  of F r e e - N i  Layer"' 
( i n . )  ( x  103) 

ID 

Control Cylinder 

1000-hr Exposed 

2000-hr Exposed 

4000-hr Exposed 

Fabricat ion 

Cylinde r 

Cylinder 

Cylinder 

Thickness  of Ni 
Cons u n e  d t  

OD 

Control Cylinder 

1000-hr Exposed 

2000-hr Exposed 

4000-hr Exposed 

F a b r i c  ation 

Cylinder 

Cylinder 

Cylinder 

Electroplated 

1.40 

1.63 

1.52 

1.49 

1.22 

1.16 

1.21 

1.07 

Final  
~ 

1.32 

1.11 

0.75 

0.40 § 

1.11 

0.66 

0.47 

. 

0 . 0 8  

0.52 

0.77 

1.09 

0.11 

0.50 

0.74 

0.95 

70 

5.7 

31.9 

50.6 

73.2 

9 .O 

43 .O 

61 .O 

88 .8  

* T h e s e  t h i c k n e s s e s  correspond to the cyl indrical  s u r f a c e s  without including the  cyl inder  e n d s ,  where the  

t c a l c u l a t e d  on the b a s i s  of the n icke l  content  on the measured intermetal l ics .  
$Average th ickness ;  the  nickel  layer  w a s  cont inuous;  in no a r e a  did the  AI/Ni intermetal l ic  contac t  the  

uranium. 
**Average th ickness ,  assuming a n  even n icke l  distribution over  the ent i re  interface;  the  n icke l  layer  w a s  

discont inuous;  the Al/Ni intermetal l ic  w a s  in  contac t  with U/Ni intermetal l ic  in 51% of the  perimeter 
inspected.  

or iginal  n icke l  t h i c k n e s s e s  were greater. 
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a t  the inner  A l / N i  in te r face .  It i s  postulated that  the aluminum cladding plast i -  

cal ly  adapted i tself  to the ID of the uranium cylinder while a t  t empera tu re .  Upon 

cooling to room tempera ture ,  the differential  contraction between the aluminum 

and uranium resul ted in  the observed separat ion of the cladding. 

which has  a t he rma l  expansion s imi l a r  to that of U, remained  attached to the fuel. 

The gap was not continuous a t  the outer  A l / N i  interface,  but the unbonded a r e a s  

were  a s  f requent  a s  the bonded ones.  

The Ni  b a r r i e r ,  

The inspection of the longitudinal specimens showed an  effect of the lon- 

gitudinal differential  expansion of the aluminum and the Ni /  U sys tem.  A relat ive 

displacement  of both phases  was  observed metallographically by the position of 

adjacent pa t te rns  in  the i r r e g u l a r  interface.  However, the uniform growthof the 

intermetal l ic  phases  a t  the OD and ID indicated that,  a t  the soaking t empera tu re  

and p r e s s u r e ,  the contact between nickel and cladding was sufficient to p e r m i t  

diffusion. The observed separat ions and relat ive displacements  w e r e  a resu l t  

of weakening of the bond s t rength during the the rma l  exposure,  which resul ted 

f r o m  substantial  growth of the br i t t l e  intermetal l ic  l a y e r s .  

faces  of the uranium cyl inder ,  the f r e e  longitudinal expansion of the aluminum 

cladding crea ted  a c learance  between nickel and aluminum, wide enough to  p r e -  

vent the aluminum migrat ion.  The diffusion l a y e r s  did not i nc rease  in th ickness ,  

as on the cylindrical  sur faces .  

At the top and bottom 

The da ta  in  Table I indicate the r a t e  of consumption of the electroplated 

nickel.  

inders ,  was  prac t ica l ly  consumed af te r  4000 h r  of t r ea tmen t .  

unreacted nickel did not constitute a continuous l aye r  a f te r  this  exposure.  It was  
concluded that the p r e s s u r e  bonding p rocess ,  plus the 4000-hr exposure a t  750"F,  

consumed a thickness  of 1 mil of e lectroplated nickel b a r r i e r .  The net consump- 

t ion of Ni for  each exposure i s  indicated in  F igure  8. 

The OD b a r r i e r ,  which was thinner than the ID b a r r i e r  on the four cyl-  

The remaining 

2.  A1-Ni Diffusion Reactions 

The thickness  growths of the A13Ni and A13NiZ phases  w e r e  measu red ,  

a t  both the OD and the ID su r faces  of the cyl inders .  

Table 11, a r e  accompanied by calculated th icknesses  of aluminum and nickel r e -  

quired to produce the A13Ni and A13NiZ in te rmeta l l ics .  

la ted and measu red  thicknesses ,  it was  observed that  no volume i n c r e a s e  would 

be expected to  resu l t  f r o m  the diffusion p rocess  during the rma l  exposure.  

The r e su l t s ,  shown in 

. In comparing the calcu-  

This 
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TABLE I1 

Mea s u r  ed Thic kne s s e s 

BOND DEVELOPMENT IN CYLINDRICAL F U E L  ELEMENTS 

Calculated Thic kne s s e s 
of Consumed Metal  

0.08 

0.52 

0.77 

1.09 

I A13Ni I A13Ni2 

0.26 

1.39 

2.34 

3.35 

ID 

C ont r 01 Cylinde r 

1000-hr Cylinder 

2000-hr Cylinder 

4000-hr Cylinder 
Z 
b 

0.11 

0.50 

0.74 

0.95 

0.16 

0.51 

1.38 

2.08 

0.36 

1.34 

2.26 

3.00 

32 OD 
Nul 
W P  Control Cylinder 

1000-hr Cylinder 

4 2000-hr Cylinder 

. 4000-hr Cylinder 

co 
w co 

0.18 

1.33 

1.63 

2.20 

0.24 

0.58 

1.37 

2.03 

0.22 

1.22 

1.52 

1.78 

Ni I A1 

I t 

NOTE: 
All  t h i c k n e s s e s  in  10 -3 inch 
Densi t ies :  F o r  AI : 2.71 g/cc 

F o r N i  : 8.90 g/cc 
F o r  A13Ni : 3.98 g / c c  
F o r  A13Ni2: 4.78 g / c c  

Calculated 
Total  A l / N i  
Consumed 

Measured  Thickness  
of A l / N i  

Int e rm e ta l l ic  s 

0.34 

1.91 

3.11 

4.44 

0.47 

1.84 

3.00 

3.95 

0.34 

1.84 

3.01 

4.28 

0.46 

1.80 

2.89 

3.81 

@ .  



conclusion assumed that  the measurement  s ta t i s t ics  were  adequate, that the 

adopted values for  phase densi t ies  w e r e  p rec i se ,  and that the electroplated nickel 

b a r r i e r  and extruded aluminum cladding w e r e  of ze ro  porosi ty .  Dimensional in-  

spection was in  agreement  with this  conclusion, in that no significant dimensional 

changes occur red .  

-ey 

In addition to these  high-aluminum phases ,  another phase was  formed at  

specific and consis tent  locations in  the cyl inders .  The new phase (AlNi  and /o r  

A1Ni3, according to the A1-Ni phase d iagram)  appeared a s  an  agglomeration of 

da rk  g r a y  gra ins  which grew at  the expense of the A13Ni and the Al3NiZ,  but 

only in  zones where  the in te rmeta l l ics  had no fur ther  contact with the aluminum 

cladding during the soaking t r ea tmen t s .  The growth of the new in te rmeta l l ic  p ro -  

g re s sed  until a l l  the A13Ni vanished, producing a nucleate and discontinuous fo r -  

mat ion in  the 1000-hr exposure specimens and a continuous band in  the 2000-hr 

exposure specimens,  a s  shown in F igure  19. The 4000-hr exposure specimens 

showed depletion of A1 f r o m  the A1 Ni, phase a f te r  the A1 Ni phase was con- 

sumed.  The appearance of the low-aluminum phases  was  observed only at  both 

ends of the exposed cy l inders ,  where a separat ion between the uranium and the 

aluminum end plugs could occur  by differential  expansion during the annealing. 

When th is  separat ion occurred ,  insufficient aluminum was available to promote  

growth of the high-aluminum phases ,  which induced the i r  t ransformat ion  to the 

low-aluminum phases .  The f i r s t  phase to undergo this  t ransformat ion  was the 

r iches t  in aluminum, A13Ni. 

3 L. 3 

The insufficient contact between fuel and end plug under the heat  t rea tment  

conditions was  substantiated by the calculation of the total  amount of aluminum 

which migra ted  f r o m  the plug to the bond. Table 111 indicates the aluminum 

migrat ion in milligrams of aluminum p e r  in .2  of bonded a r e a s ,  for  boththe cylin- 

d r i ca l  su r f aces  and the annular ends,  calculated f r o m  the in te rmeta l l ic  thickness  

on those a r e a s .  L e s s  aluminum migra ted  f r o m  the end plugs, due to poor contact.  

At the cylindrical  sur faces  of the cy l inders ,  both on the OD and ID, the 

growth of the high-aluminum in te rmeta l l ics  p rogres sed  a t  essent ia l ly  equal r a t e s .  

This was  t rue ,  even though some metal lographic  specimens showed a definite gap 

between aluminum and bond, because apparently,  under the p r e s s u r e  and t empera -  

t u r e  of the the rma l  exposure,  sufficient contact occu r red  between the cladding and 

diffusion zone to promote formation of the high-aluminum in te rmeta l l ics .  
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a.  Control Cylinder b. 1000-hr Exposed Cylinder 

250 X 250X 
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c. 2000-hr Exposed Cylinder d. 4000-hr Exposed Sylinder 

F igu re  19. Bond Conditions Between Fuel  Cylinder and Aluminum End P lug  
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TABLE I11 

ALUMINUM MIGRATION FROM CLADDING TO BOND IN 
CYLINDRICAL F U E L  ELEMENTS 

(mg  Al/in. '  of bonded a r e a )  

After  P r e s s u r e  Bonding 

After  1000-hr Annealing 

After  2000-hr Annealing 

After 4000 -hr Annealing 

Zones of Piqua F u e l  Cylinder 

Cyl indrical  Surface s 

13.9 

60.7 

102.3 

141.2 

Annular Ends  

9.8 

36.9 

53.2 

66.4 
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IV. CONCLUSIONS 

The experimental  work per formed on the A1 - N i - U  sys tem,  using the diffusion 

couple technique, and the r e su l t s  of the investigation of the fuel cylinder bond 

quality, se rved  a s  a bas is  fo r  the following conclusions and general  observations:  

a) The penetration of aluminum into nickel followed a parabolic re la t ion-  

ship with t i m e .  The penetration, x, can  be calculated f rom the equa- 

t ion x = d v ,  
K 

in reasonable agreement ,  but slightly lower than data  reported by 

o the r s .  

where t is the t ime and K1 i s  the penetration coefficient. 

is a function of t empera tu re ,  a s  shown in F igure  9 .  These da ta  a r e  1 

2 

b) The nickel penetration data  generated by the diffusion couple technique 

w e r e  slightly higher than those produced during the cylinder bond study. 

The maximum discrepancy  was 20%. 

buted to the cyl indrical  geometry of the specimens and the bond in t e r -  

face displacement resul t ing f r o m  differential  t he rma l  expansion be- 

tween fuel and cladding. 

This disagreement  was a t t r i -  

c)  A low-aluminum phase (AlNi  o r  A1Ni3) nucleated at  the A 1 3 N i / A 1 p 2  

interface when the supply of additional f r e e  aluminum into the sys t em 

was r e s t r i c t ed  due to void formation o r  separat ion between the in t e r -  

meta l l ics  and aluminum. The growth of the low-aluminum phase p ro -  

g r e s s e d  at the expense of the A13Ni until a l l  th is  phase was consumed, 

then consumption of the A1 Ni phase began. 

d) The interdiffusion r a t e  of uranium and nickel a lso followed the p a r a -  

bolic relationship with t ime .  

la ted f r o m  the equation x =-, 

n e s s  and K 

a tu re ,  a s  shown in F igure  13. 

3 2  

The diffusion zone growth can be calcu-  

where x i s  the diffusion zone thick- 

is the diffusion coefficient, which is a function of t e m p e r -  2 

e)  A react ion was observed between the A l / N i / U  intermetal l ic  sys tem 

and the uranium alloy a f te r  complete consumption of the free-nickel  

layer  between A l / N i  and Ni /  U in te rmeta l l ics .  

to propogate rapidly into the uranium alloy. 

This reaction appeared 

NAA - SR - 8 3 8 7 
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