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ABSTRACT 

The vaporization ra te  of zirconium oxide in the temperature  

range 2410 to 2830°K was measured using the Knudsen effusion 

technique, and the composition of the vapor was estimated f r o m  a 

m a s s  spectrometric: observation. These data were  used, with 

pertinent thermodynamic quantities obtained f r o m  the l i t e ra ture ,  

to calculate the dissociation energies DZ (ZrO) = 7.8 *0.2 ev, and 

D8 (ZrO ) = 14.9 *0.2 ev. 2 
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A I 1. INTRODUCTION 

1 The vaporization of Z rO has  been reported by Ackermann and Thorn . They 
I 2 

Q 
calculated the par t ia l  p r e s s u r e s  of Z r 0 2 ( g ) ,  ZrO(g),  and O(g) over solid Z r 0 2 ,  

using f r e e  energies  of formation of Z r 0 2 ( s ) ,  ZrO(g) ,  and O(g);  and reported 

Z r 0 2 ( g )  to be the predominant species .  More recently,  however, the same  

authors2 have reported that congruent evaporation and a minimum in the volatility 

occur  when the dioxide phase has  the composition O / Z r  = 1.96. 

tion, the ZrO(g)  is the predominant spec ies .  

was given as DZ = 15.3 *0.3 ev, the value of which is dependent on the acceptance 

of 7.8 

At this composi- 

The dissociation energy of Z r 0 2  

for  the dissociation energy of ZrO.  

Chupka, Berkowitz and Inghram4 made a m a s s  spec t romet r ic  analysis of the 

vapors effusing f r o m  a Knudsen ce l l  containing ei ther  Z r 0 2  o r  a mixture  of Z r  

and Z r 0 2 ,  and determined the vapor p r e s s u r e s  and heats of sublimation of the 

gaseous species .  

dissociation energies  of Z rO and Z r 0 2 ,  respectively.  The dissociation energy 

of Z r 0 2  given by Chupka, et  al, 

by 14 kcal,  even af te r  correct ing for  the different values used for  the heat of 

sublimation of zirconium in deriving the value for  D8 (Zr02) .  

Their resu l t s  yielded 7.8 *O. 2 ev and 14.5 k 0 . 2  ev  for the 

is l e s s  than that given by Ackermann and Thorn -- 

i 7  

In the present  work, the evaporation r a t e  of 21 -02  f r o m  a tungsten cel l  was 
c measured  using the Knudsen effusion technique over  the temperature  range 2410 

to 2830°K. Vapor species  were  identified a t  2575 OK using a time-of-flight m a s s  

spec t rometer .  

s u r e s  of the gaseous spec ies  were  calculated f r o m  these data .  

The dissociation energies  of Z rO and Z r 0 2 ,  and the par t ia l  p r e s -  
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II. APPARATUS AND EXPERIMENTAL PROCEDURE 

t. 

I 

I .  

A total-weight-loss Knudsen effusion method was used. The effusion ra te  

measurements  were  made in a vacuum induction furnace heated by a 6-kw Ajax high 

frequency converter .  The vacuum in the sys t em was maintained in the range of 
-6  to 10 mm Hg during the runs,  except during the brief warmup period. 

The tempera tures  were  measured  with a Leeds and Northrup optical pyrometer  

by sighting into the effusion hole. The pyrometer  was calibrated against  a s ec -  

ondary s tandard tungsten ribbon lamp; and the maximum estimated uncertainty 

in the tempera ture  measurements  is f 15 '. 
The tungsten Knudsen ce l l  was made 

in two pa r t s ,  as shown in Figure 1. The 

crucible measured  5/8-in.  0. D, 1/2-in.  ID, 

and 1/2-in. high. The lid, with an approx- 

imately 1 mm-diameter  orifice,  was a 1/16- 

in. thick disc  which fitted into a r eces s  cut 

in the crucible .  The orifice was ground 

to a knife-edge, and was placed with the 

AUXILIARY SUSCEPTOR 

LID 
CRUCIBLE ' 

7302 POWDER - SHIELDING 

TRIPOD flat surface facing out. An auxiliary tung- 

s ten susceptor  was used above the cel l  

assembly to reduce heat loss  f r o m  the lid, 

and to minimize the tempera ture  differen- 

tial between the lid and the crucible.  Both 

the Knudsen cell  and the auxiliary suscep-  
tor  were  heated in hydrogen for  1 - 1 / 2  h r  F igure  1. Tungsten Knudsen 

Cel l  Assembly at 1775"K, and then degassed in vacuum a t  

The cel l  was supported on a 2900°K for  8 h r ,  previous to the vaporization runs .  

tungsten tripod and shielded with 1-mil  tungsten foil. 

Before making the effusion ra te  runs ,  the cel l  containing the ZrO 

was heated in vacuum a t  2850°K for  4 h r .  The gray  residue obtained was assumed 

to be the congruently vaporizing zirconium oxide composition, 

powder 2 

The or i f ice  diameter  was measured  before and af ter  each run with a micro-  

me te r  comparator  mounted in a s tereomicroscope;  and the average reading was 

used, a f te r  applying a s m a l l  correct ion for  the thermal  expansion of tungsten . 5 

NAA - SR - 6 0 9 5 
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It is estimated that the orifice d iameters  are accura te  to 0.01 mm. All  weight 

losses  were  multiplied by the factor 1/0.98 to co r rec t  for  the thickness of the 

or i f ice  wall .  6 

7 The averaging method of Skinner, -- e t  al, was used to c o r r e c t  for  the temper-  

a ture  fluctuation during each run, and for  the initial heating and cooling per iods.  

The Knudsen ce l l  was weighed before and af te r  each run on an  analytical 

balance to 0.1 mg. 

t rac ted  f rom the weight-loss measurements .  

A small weight loss  of the empty tungsten ce l l  was sub- 

The mass spectrometr ic  data were  obtained using a Model 12-101 Bendix 

time-of-flight m a s s  spec t rometer .  

heated tungsten ribbon was used a s  the spec t rometer  source .  

pera ture  was observed by sighting on the sample,  using a Leeds and Northrup 

optical pyrometer .  

50 v, and was displayed on a Tektronic Model 541 oscilloscope and recorded 

using a 35-mm Bolsey oscilloscope camera .  

A zirconia sample supported on a res i s tance-  

The apparent  tem-  

The m a s s  spec t rum was obtained with an electron energy of 

The operating procedure consisted of calibrating the spec t rometer  and ad-  

justing the oscilloscope to display the m a s s  range of in te res t ,  85 to 135. 

the tempera ture  of the tungsten s t r i p  source  was raised,  keeping the sys t em 

p r e s s u r e  below 10 mm Hg. The m a s s  spec t rum was photographed, a check 

for  shut ter  dependency was made, and the tempera ture  observed to complete the 

measurement .  

Then, 

-5 

The zirconium oxide was reac tor  grade mater ia l  obtained f r o m  The Car-  

borundum Metals Corp. 
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111. EXPERIMENTAL RESULTS AND DISCUSSION 

5 

The effusion data a r e  given in Table I. F o r  convenience in per,arming the 

calculations to be descr ibed l a t e r  in this section, the Clausing correct ion was 

applied to the measured  effusion r a t e s .  

given in the sixth column of the table.  
6 calculated by means of the Knudsen equation , 

These cor rec ted  o r  "ideal" values a r e  

The p r e s s u r e s  in the l a s t  column were  

P * ( a t m )  = 0.02256 G (T/h4) l l2 ,  . . . (1) 

2 where G is the effusion ra te  in g r a m / c m  / s e c ,  T i s  the absolute tempera ture ,  

and M is the molecular weight. The p r e s s u r e s ,  P', were  calculated assuming 

the vapor to consist  ent i re ly  of Z r 0 2 ( g ) ,  and a r e  represented a s  a function of 

tempera ture  by Equation 2, obtained by a leas t  squares  t reatment  of the P*values,  

4. 

R un 

9 
6 

10 

2 

7 

1 

3 

8 

4 

5 

Temp 
(OK) 

2830 

2800 

2730 

2715 

2625 

2605 

2535 

2515 

2475 

2410 

TABLE I 

EVAPORATION RATES O F  ZrO, 

6830 

8100 

10800 

17580 

17910 

14060 

27970 

31400 

31620 

60380 

Orifice Area  
103 

(cm2 1 

6.94 

8.40 

6.79 

7.54 

8.40 

7.54 

7.84 

8.59 

8.17 

8.17 

0.0427 

0.0216 

0.0157 

0.0202 

0.0115 

0.0072 

0.0056 

0.005 3 

0.0024 

0.0030 

Evap Rate 
105 

(gm / cm2 / s e c ) 

90.1 

31.8 

21.4 

15.24 

7.64 

6.79 

2.55 

1.96 

0.93 

0.61 

. . . (2) 

9.74 

3.41 

2 .27  

1.61 

0.796 

0.705 

0.261 

0.200 

0.094 

0.061 
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The mass  spectrometr ic  data a r e  presented in the fo rm of the photograph of 
t t Figure 2, which shows the charac te r i s t ic  patterns for  the Z r  , ZrO', and Z r 0 2  

isotopes; and a l so  those for  Hgst8. The Z r  t peaks a r e  attr ibuted mainly to f rag-  

mentation produced by the 50-v electron beam. Comparison of measured effusion 

r a t e s  with those to be expected for  simple dissociation to the elements,  

Z r 0 2  (s)  = zr (g)  t 2 0 , . . . ( 3 )  

indicates that molecular species and oxygen must greatly predominate in the 

vapor,  and that Z r ( g )  could have been present  to the extent of l e s s  than about 270. 

Figure 2 .  Mass Spectrum of the Vapor Over Z r 0 2  

An est imate  of vapor composition was made, based on the known abundances 
of the Z r  isotopes,  a s  follows: visual inspection showed that the intensity of the 
Z r  91 0 peak (relative abundance 11.270) i s  slightly grea te r  than that of the Zr90OZ 

peak (relative abundance 51.5%), so that the apparent ZrO- t o - Z r 0 2  ratio i s  about 

5 to 1. 

wi l l  be given, although it i s  believed that the effect of fragmentation in this case 

would tend to compensate for differences in ionization probabili t ies.  As wil l  be 

shown la te r ,  dissociation energies  of ZrO and ZrOZ a r e  not sensit ive to moderate 

uncertainties in vapor composition. In summary,  therefore ,  the mass  spectro-  

me t r i c  examination and thermodynamic considerations lead to the conclusions that 

Because of uncertainties result ing f rom fragmentation, no fur ther  analysis 

the predominant vaporization processes  a r e  

NAA -SR- 6095 
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and 

ZrOZ(s )  = ZrO(g)  t 0 ,  . . . (5) 

and that about 5 /6  o r  83% of the vapor is ZrO and 0; and about 1 /6 ,  o r  17% is 

Z r 0 2  at 2600°K. 

The dissociation energies of Z rO and ZrO2 may be oi ta ined f r o m  the vapori-  

zation data,  the est imated vapor composition, and thermodynamic data available 

in the l i t e ra ture ,  as descr ibed below for  ZrO.  

First, AF; for  reaction 5 is calculated by use of Equation 6, 

AFk = -RT In K = -4.576 T Log PZrO Po. 
P 

. . . (6)  

The par t ia l  p r e s s u r e s  a r e  computed f r o m  the evaporation r a t e s  correspond-  

ing to Pz 

and Thorn showed that zirconium dioxide vaporizes congruently a t  elevated tempera-  

t u re s  in vacuum at the composition ZrOl  .96, no significant e r r o r  will be made if the 

assumption of stoichiometry i s  made.  

given by Equation 2 .  It should be noted that although Ackermann 
r 0 2  

Thus the effusion r a t e s  of Z rO and 0, in g ram-  
m o l / c m  2 / s e c ,  wi l lbe  equal; andwouldbe in the proportion 107.2/16 by weight. The 

heat of reaction 5 at 0°K is then calculated using f r e e  energy functions: 

. . . ( 7 )  

The heat of reaction thus obtained is combined in the usual manner  with those f o r  

other  reactions to give AH: f o r  the dissociation of ZrO(g):  

Z r 0 2 ( s )  = zr(s) t 0 2  AH: =' 260.1 kcal . . . ( 8 )  

0 2  = 2 0  AH: =' 118.0 kcal  . . . (9)  

Z r ( s )  = z r ( g )  AH: = 145.7 kcal . . . (10) 

ZrO(g) t 0 = Z r 0 2 ( s )  AH: = -343.0 kcal - (5)* 

ZrO(g)  = Zr(g )  t 0 AH: = 181 kcal . . . (11) 

*The negative sign r e fe r s  to the r eve r se  of reaction 5.  

NAA - SR - 6 0 9 5 
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where  AH^ = DZ (ZrO).  

the est imated vapor composition, the calculations outlined above lead to DZ ( Z r O ) =  

181 (& 4) kcal,  o r  7.8 (* 0.2)  ev, and to DZ (ZrO2) = 343 (* 5)  kcal, o r  14.9 (* 0.2) ev.  

The values are based on the effusion rate at 2600"K, because this tempera ture  is 

n e a r  the midpoint of the experimental  t empera ture  range and is a l so  n e a r  that  at 

which the vapor composition w a s  determined. 

The calculations for  Do" ( Z r 0 2 )  are  similar. Based on 

The sources  of thermodynamic data used in the calculations were :  Stull and 

Sinkeg for  heats  of formation and f r e e  energy functions of the elements;  Brewer 

and Chandrasekharaiah", l1 for  the free energy functions of ZrO(g)  and Zr02(g ) ;  

Kelley l2 , l3  f o r  heat capacit ies and entropies; Coughlin14 for  heat of formation 

and of t ransi t ion of Z r 0 2 ( s ) .  

to be' 2000 c a l  f r o m  the low-temperature heat capacity data in Reference 13. The 

table of the f r e e  energy functions for  the tempera ture  range of the experiments 

is given in the Appendix. 

The quantity (Hi98-H:) fo r  Z r 0 2 ( s )  was est imated 

To i l lus t ra te  the effect of e r r o r  in vapor composition, the dissociation ene r -  

gies were  calculated for  a number of other  vapor compositions; and these are 

given in Table 11. 

a twofold e r r o r  in the fraction of Z r 0 2  in the vapor,  i. e . ,  970 o r  3470 - vs 17% 

Z r 0 2 ,  would affect DZ ( Z r 0 2 )  to the extent of only 3.5 kcal,  and the corresponding 

effect on Dg (ZrO)  would be less. 

As may be seen by inspection of the DZ values - vs composition, 

70 Z r O +  0 70 Z r O 2  D (ZrO) 
in vapor in vapor (kcal)  

Dg (Zr02) 
(kcal)  

100 

95 

90 

17 

20 

83 

80 

180.8 

180.4 

0 

5 
10 

70 30 

60 I 40 

182.7 

182.1 

181.6 

179.0 345.5 

177.4 347 .O 

- 
336.3 

339.8 

342.6 

343.4 

0 I 100 I I 351.8 
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IV. CONCLUSIONS 

The resul ts  of this work appear  to be in excellent agreement  with those of 

Chupka, Berkowitz, and Inghram; and in fair agreement  with those of Ackermann 

and Thorn. Somewhat different values of the thermodynamic quantities were  

used in calculating the dissociation energy of 21 -02  in each of the two previous 

repor t s  and in this work. 

values given in the two previous repor t s  were  adjusted,  using the values of the 

thermodynamic quantities used in this repor t .  

g rea t e r  than that of Chupka, -- e t  a l ,  by 6.4 kcal, o r  0.3 ev; and l e s s  than that of 

Ackermann and Thorn by 9.2 kcal, o r  0.4 ev.  

Ackermann and Thorn in obtaining their  va lue ,  15.3 ev, a r e  probably subject to 

somewhat g rea t e r  experimental  e r r o r  than those obtained in this work, in that 

To properly compare the resu l t s ,  therefore ,  the 

The resu l t  i s  that our  value is 

The par t ia l  p r e s s u r e s  used by 

their  method involved correct ing init ial  loss  r a t e s  of stoichiometric ZrO2 f o r  

loss  of ZrO-and-0.  

kca l  o r  14.8 (*0.2) ev, be taken as the best  value for  DE ( Z r 0 2 ) .  

to be little question concerning Do" (ZrO) = 7.8 ev. 

It is therefore  suggested that the weighted average ,  342(*4) 

There appears  

To predict  the behavior of the oxide in m r i o u s  environments, i t  would be 

helpful to have information concerning the equilibrium constants as a function of tem-  

pera ture  f o r  the important equilibria.  Thus, utilizing the fact  that f ree-energy func- 

tion differences change very  slowlywith tempera ture ,  one may wri te  for  Reaction 4 

F,P, - Hz 
-AF+ = 4.576 T Log PZro2 = -AH: -A( 

) T .  
. . . (12)  

Substituting and simplifying, 

P ~ r ~ 2  (atm) = -39,73O/T t 9.18 . 

Similar ly ,  fo r  Reaction 5, one finds 

. . . (13) 

P = -74,91O/T t 17.68 . . . . (14) L ' g P ~ r ~  o 

Reaction 4 would be predominant in air or  in an  oxygen-bearing atmosphere,  and 
Reaction 5 would be predominant in vacuum. 

NAA -SR - 6 0 9 5 
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APPENDIX 

F? - HE 
T A B L E O F -  USED IN CALCULATIONS 

Tempera tu re  
(OK) 

I Species 
2400 I 2600 

I I t 
0 I 43.93 I 44. 34 I 

50.43 

68 .6  

73.7 

31.5 

50.95 

69 .4  

74 .9  

1 32.8 

2800 

44.72 

51.44 

70. 0 

75 .8  

34.0 
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