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N. P. Wilburn 

M. E. Witherspoon 

ABSTRACT 

BNWL-lS24 

Blowdown experiments were made with a ISO ft 3 vessel containing a 

simulated reactor core consisting of 4' long tubes. High pressure water 

(up to 2100 psi, SOO OF) was exhausted suddenly from the annular zone 

of the vessel through orifices of 1.69, 3,44, and S.2" diameter. Tempera­

ture, pressure liquid level, pressure differential, and core movement were 

measured during the transient fluid flow period and much of the data is 

given. The forces measured during subcooled decompression were less than 

predicte9, liquid remaining was less than after blowdown without a core 

structure although pressure histories were about the same. Development of 

a differential-pressure transducer is described • 
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COOLANT BLOWDOWN STUDIES OF A REACTOR 

SIMULATOR VESSEL CONTAINING A SIMULATED 

REACTOR CORE 

PURPOSE AND SCOPE 

BNWL-1524 

This report describes the experiments made as part of the water 

reactor safety program to study loss-of-coolant accidents. The overall 

objective of these experiments was to obtain data from blowdown tests 

using a large reactor-simulator vessel and to make comparisons with the 

results of analytical prediction methods. The results are given for blow­

down experiments which were made using different initial water conditions 

and different size blowdown orifices in the exit pipe section attached to 

the annulus region of the simulated reactor. These tests continued those 

made with the same vessel with no internal parts, which were reported in 

BNWL-14ll and BNWL-1470, and with a sieve plate which were reported in 

BNWL-1463. This report discusses the experimental layout and the main 

conclusions which resulted from a partial reduction of the data. Data 

are presented in the discussion and in the Appendix. 

CONTAINMENT SYSTEM EXPERIMENT 

The containment system experiment (CSE) at Battelle-Northwest was a 

large scale program to evaluate the effectiveness of containment vessels 

and other engineered safeguard systems in reducing the release of radio­

active fission products resulting from a serious accident in a nuclear 

electric power plant. The main objective of the CSE program was to obtain 

experimental information for use in testing calculational models and for 

developing improved models. The following specific program objectives 

were identified as a basis for development of engineering tests and re­

lated research and development, and this report is concerned with work 

pertaining to the last objective on this list. 

I)-Determination of the effect of natural processes, such as agglomer­

ation and settling, diffusional deposition, and condensation of 

water vapor,on reduction of airborne fission product concentration 
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in containment systems; and application of experimental data to 

the evaluation of available analytical models. 

2) Determination of the effectiveness of both active and passive engi­

neered safeguard systems in reducing fission product concentration 

in the containment atmosphere. Active safeguard systems employ 

water sprays and air filtration methods, whereas a passive system 

might achieve pressure suppression by means of a containment water 

pool. Measured values were compared with those calculated from 

analytical models. 

3) Evaluation of the effectiveness of different methods of pressure 

reduction in containment vessels. Methods include water pool 

pressure suppression, cooling the contained atmosphere, and heat 

transfer to low temperature materials inside containment and 

through the containment membrane to the atmosphere. 

4) Determination of the amount of leakage of fission product activity 

from containment under a range of postaccident conditions and com­

parison of these values with those calculated from both low and 

high temperature air leakage rate tests and fission product con­

centration in the containment vessel. 

5) Determination of (both inside and outside a reactor vessel) the 

transient and dynamic pressures, temperatures, stresses, coolant 

flow rates, and hydraulic forces resulting from the sudden rupture 

of a high temperature water system. Measured values were compared 

with those calculated from analytical models. 

The results furnish a better technical basis for reactor site evalu­

ation and for those aspects of reactor plant design affecting public 

safety. 

The results of Tasks 1, 2 & 4 are reported elsewhere. Task 3 was not 

undertaken as the result of early termination of the program. 

Blowdown Program 

Background 

The blowdown program is designed around a vessel built to simulate 
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a water-moderated reactor inside the eSE containment vessel. Originally, 

only a small amount of blowdown transient experimental work was proposed 

for eSE, primarily because of the interference between aerosol and blow­

down transient tests inside the containment vessels, along with space 

limitations and resulting low test frequency. To increase both the fre­

quency of tests and extent of data gathered, a special test stand for the 

simulator vessel was built close to the containment vessel so that common 

facilities, personnel, and power could be used. 

The reactor simulator vessel tests outside containment have provided 

both a better environment for the experimental instrumentation and greatly 

improved access to the vessel and its instrumentation for repair of sen­

sors and for experimental modifications. In addition, there has been an 

increased interest in the acquisition of large scale experimental data 

which would permit the testing of analytical techniques intended to pro­

vide detailed and sophisticated analyses of both the thermal and mechani­

calor structural effects on the reactor vessel internals during the blow­

down transient. Aspects of particular interest include mechanical damage 

to the core or to the emergency cooling system which might adversely 

affect or prevent adequate functioning of this emergency cooling system in 

the event of a major loss-of-coolant accident. 

Problem Areas 

The two principal problem areas to be investigated consisted of the 

mechanical and structural aspects and the thermal aspects. The mechanical 

and structural aspects primarily include the hydraulic resistance effects 

of the core structure and of the typical reactor vessel internal parts, 

such as thermal shields, core barrels, and flow baffles, on the discharge 

rate of coolant during the blowdown transient. Forces resulting from 

sudden coolant system rupture must be known in order to evaluate the ten­

dency to dislodge or deform reactor vessel internals. Such relative move­

ments between parts may compound the effects of the coolant loss. Defor­

mation, for example, by preventing control rod entry or by causing move-
~ 
~ 

ment of fuel elements relative "to the rods, might produce a reactivity ex-

cursion. Motion of core internals could block the normal or emergency coolant 
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paths, damage the emergency cooling system, or so change the core geometry 

as to impair the required effectiveness of the emergency cooling. 

Forces of interest arise during the first few hundred milliseconds of 

the transient because of the passage and reflection of acoustic waves into 

the interior of the reactor vessel from the point of coolant system rup­

ture. These waves relieve fluid compression until flashing begins. Longer 

term forces result from the friction forces accompanying rapid coolant out­

flow. Also, temperature differences between hot and cold portions of the 

coolant system create differences in saturation pressure of these water 

volumes when the subcooled blowdown is complete. With a break in one 

portion of the system, this difference may lead to an oscillation of flow 

and of flashing brought on by the saturation-pressure difference between 

the volumes. This postulated oscillation could continue until fluid and 

mechanical damping cause it to die out. All of the forces discussed here­

in have the potential for developing lateral loads as well as the symmetri­

cal loads usually calculated with a one-dimensional treatment. The physi­

cal processes such as bubble and void formation, heat transfer, and liquid 

level swell occurring in the reactor vessel when the pressure is suddenly 

relieved have a bearing on the design of the reactor safeguards and of the 

reactor itself. 

There are important effects external to the reactor, which include, 

for example, forces from the impact of the fluid jet, vessel reaction 

forces, and whiplash of piping between the reactor vessel and the point of 

the coolant system rupture. 

Data needed for evaluating all of these effects can be obtained dur­

ing blowdown transient tests through the use of a series of unheated dummy 

cores. The initial tests performed prior to those herein reported were 

conducted without dummy core parts or with a simple core plate in order to 

check blowdown theories against simple tests and/or to provide a check of 

the test instrumentation and data processing methods being developed. 

Purpose of CSE Blowdown Tests 

CSE blowdown tests were conducted to: 
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• 

• Provide data with which to design models and to check modeling 

assumptions and calculations so that these can be applied to full 

scale reactor plants. The blowdown results are used as input to 

design calculations for stress, heat transfer, fission product 

distribution, emergency core cooling, and engineered safeguards. 

• Perform blowdown tests at large enough scale to measure liquid 

level, void fraction, and thrust forces, and to observe effects of 

bubble formation and rise and the effects of geometry upon a full 

size reactor. 

• Provide actual blowdown results for use in empirical formulations 

of blowdown rates and, in particular, to accurately predict blow­

down times expected in the CSE containment vessel-reactor simula­

tor, combined tests. 

• Contribute to the knowledge of two-phase critical flow, liquid­

vapor action, and thermal hydraulic effects in a water-cooled 

reactor and thus increase safety and reduce the expense of engi­

neering, construction, and licensing. 

Perhaps this knowledge will eventually allow the codification of 

rules to cover safety aspects of the loss-of-coolant accient. Until that 

time, detailed calculations must be made for each case, and confidence in 

the calculation methods can only come through comparisons with experiments. 

SUMMARY AND CONCLUSIONS 

Six blowdown tests modeling a loss-of-coolant accident of a nuclear 

power reactor were made with alSO ft 3 vessel 17 feet tall containing a 

core barrel and a 4 feet long simulated core. The blowdowns were made 

from a nozzle connected to the annular region outside the core barrel at 

a level above the core. Breaking of a double rupture disk on the nozzle 

simulated an inlet break of a pressurized water reactor. Two tests were 

made with cold pressurized water, one with a steam dome as is present in 

a boiling water reactor and three with hot (500 OF) pressurized water 

(1000 - 2080 psig). Square edge orifices were used to establish break 
~ 

sizes from 1.5 to 5.18 inches diameter. Data were taken on pressure, 
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temperature, liquid level, pressure differential, liquid remaining, weight 

of water, strain on core support bolts and nozzle thrust. Some comparisons 

were made with previous runs of simpler geometry and with analytical pre­

dictions. The results show that, 

• The presence of the core and annulus showed little effect on the 

pressure histories during the saturated portion of blowdown when 

compared to similar blowdown with a sieve plate • 

• The transient liquid level in the core region during blowdown was 

lower than during similar blowdowns without the core and annulus. 

This results from the generally downward core flow in these tests 

indicating the importance of properly assessing flow direction in 

LOCA calculations of core heat-up • 

• The liquid remaining in the vessel after blowdown was less than 

with similar blowdowns without cores • 

• The subcooled decompression history pattern was approximated by 

calculations with a one-dimensional code but the magnitudes of 

measured pressure oscillations and forces were less than predicted. 

EXPERIMENTAL FACILITY AND EQUIPMENT 

CSE BLOWDOWN FACILITY 

Description 

The full description of the CSE facility is contained in Reference 1. 

The CSE reactor simulator vessel (Figure 1) was fabricated and accepted in 

accordance with Section III of the ASME Pressure Vessel and Boiler Code. 

Design temperature and pressure is 650 of and 2750 psig, respectively, and 

volume is 150 ft 3 • 

The reactor simulator vessel was mounted within a supporting frame 

(Figure 2). The weight of the vessel and simulator support frame were 

suspended from a vertical load cell. Thrust forces generated during the 

blowdown experiment were restrained by a thrust support system which in­

clude upper and lower thrust support members and load cells. 

A simulated core was installed in the vessel. This core was built to 

be attached to a perforated core plate which was used for earlier experi-

6 
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ments(2) and which was attached to the supporting lugs on the inside of 

the vessel with strain bolts. The dummy core (Figures 3, 4, 5, & 6) was 

designed following the criteria outlined in Reference 3. It had to fit 

into the existing vessel and was to have the capability of giving geomet­

rical similarity to both BWR's and PWR's by appropriate changes in barrel 

size and flow restrictions. The design was an attempt to give typical 

scaled height positions of reactor piping for the blowdown nozzles. The 

core would probably be built differently if based on present insite. A 

longer core would probably be worthwhile, but at the time the proposed 

LOFT core length of four feet made this seem an appropriate value to use. 

Subsequent to the initial design, calculations which took into account 

the results of experiments in progress showed that the lugs (eight) on the 

vessel wall designed to support the core might not be adequate, so bracing 

gussets were added. Similarly, the diagonal braces (Figure 4) were added 

to the main support plate (used as a simple plate in the sieve plate 

experiments(2)) to stiffen it. A few simulated control rods were designed 

with the idea of placing them to investigate side loads on structures of 

this type. Side loads might occur when fluid flow was out of a broken 

nozzle at the same level. The core barrel was modified to give it more 

strength, without significantly reducing flow areas by putting stud bolts 

through the shell to touch the walls of the vessel. For similar reasons, 

shear pins and compression pads were added to the top grid plate flanges. 

Operation 

Operation procedure of the blowdown experiments was started by 

filling the vessel with water. The water was then circulated through an 

external loop containing a heater and pressurizer until the fluid in the 

vessel was at the prescribed experimental conditions. The water level was 

held in a level pot above the vessel so that the vessel remained full dur­

ing the entire heating period (except in the case of a BWR simulation when 

a steam plenum was required). Excess volume due to thermal expansion was 

bled off continuously through an outlet on the nozzle extension (Fig. 5). 

This procedure prevented the pressurizing gas (nitrogen) from dissolving 

in the water and prevented the outlet duct from becoming a cool stagnant 
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zone. During the heating period, the pressure in the cavity between the 

rupture discs was maintained at a fraction of the vessel pressure. After 

the desired conditions were established, the vessel was isolated (by 

valving off the circulation loop) and the rupture discs were broken by in­

jecting nitrogen in the cavity between the two rupture discs until breakage 

occurred. 

Control of the facility was switched to the on-line PDP-7 digital com­

puter at a prescribed time (7 sec to 3 min) before the blowdown time. 

Nitrogen injection into the rupture disc cavity and data logging were 

triggered by the computer. 

The blowdown facility was instrumented to measure pressure and temper­

ature at selected locations, weight of water remaining, liquid level and 

thrust reaction force, and differential pressures. 

INSTRUMENTATION ON THE CSE REACTOR SIMULATOR VESSEL 

Several basic measurements were required to accomplish the objective 

of studying the fluid behavior during the simulated loss-of-coolant acci­

dent. Some of the measurements, such as pressure and temperature, could be 

made directly but others, such as mass flow rate or liquid level, required 

an indirect measurement because of inadequacies in state-of-the-art instru­

mentation or the general difficulties associated with basic measurement of 

two-phase flow. The nozzle extension detail is shown in Figure 7, and 

associated instrumentation for the simulator vessel in Figures 8, 9 and 10. 

Tables 1 and 2 summarize the instrumentation types, the intended measure­

ments and locations, and list of the manufacturers. Details concerning 

Notation Glossary 

S Strain gage DRAG Drag Disc Sensor 

T Temperature sensor SBIiI Strain bolt inner gage 11 

P Pressure sensor SBSII Strain bolt outer gage 11 

DP Differential pressure TIFZIl Temperature inside fault zone 

LC Loadcell TSFZII Temperature outside fault zone 

LG Level gage SCBHII Control rod in barrel extension probe 

Tl1l Temperature on level gage 

14 
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TABLE 1. Core Series Sensor Designations & Locations 

Sensor 
Number 

LC-1 
LC-2 
LC-4 
LG-1 
LG-2 
P-1 
P-4 
P-6 
P-7 
P-8 
P-10 
P-12 
P-13 
P-14 
P-15 

*P1ug 7 
P-20 

P-21 

P-22 
P-23 

SCR 4A 

SCR 4B 
Drag 1 
T-1 
T -2 
T-4 
T-6 
T-7 
T-12 
T-15 
TL-1 
TL-3 
TL-4 
TL-5 
TL-6 
TLUG 7 
TIFZ 3 
TBI 2 
T8I 9 
TBI rJ 
T8I 6 
T8I 12 
CPDP-1 
CPDP-2 
CPDP-3 
CPDP-4 
NDP 

CBDP-l 
CBDP-2 
CBDP-3 
SBll 
SB1Q 
SB2I 
SB3I 
SB4I 
SB5I 
SB5Q 
SB6I 
SB6Q 
SBll 
SB81 
SB8Q 
SCR 8A 

SCR 8B 
SCR 8C 
SCR 6A 
SCR 6B 

Type* 
(See Table 2) 

Toroid (2) 
Strainsert (3) 

TDR (1) 
TDR (1) 

Norwood (4) 

Standard Controls 
Standard Controls 

Microdot 

Ramapo 
.040" CHR-CON 

.040" CHR-CON 

.040 CIA 

.040 (stripped)C/A 
" 

.060 CIA 

.040 (stripped)C/A 
" 

Microdot 

Mi crodot 

Location 

Top of vessel 
Upper strongback 
Lower II II 

Centerline vessel 
Below core plate 
Nozz1 e R 
Nozzle ext. 
Nozzle Q 
Nozz1 e H 
Nozzle extension 
Nozzle extension 
Nozzle C 
Nozzle S 
Nozzle S }pressure probe 
Instrument ring 
Lug 7 below plate 
Outer plenum, core 

barrel, Nozzle A side 
Outer plenum, core 

ba rre 1 oppos ite 
nozzle A 

Center of core assembly 
Top of control rod sup­

port 
On control rod in 

barrel ext. piece 

Discharge nozzle 
Nozzle R 

Nozzle extension 
Nozzle Q 
Nozzle H 
Nozzle C 
Inst. ri ng 
TDR 

Lug 7 

" 

Bottom head ins i de 

Inserted in core p1~te 

Flanged in barrel 
b lowdown nozz 1 e' 

Flanged, in lower barrel 
F1a~ged, in upp,er barrel 

L~g Supp,ort bolts 

On control rod barrel 
extension 

16 

Measurement 

Weight of vessel contents 
Thrust 
Thrust 
Liquid level 
Liquid level 
Pressure state of fluid 

Pressure state inside vessel 

Strain, control rod 4 

pu 2 of discharge fluid 
Temperature of fluid 

II 11 

Temp'eratur~ of fluid 

Tempera tu re of metal skin 

fl uid 
fluid 

Differential pre~sure across plate 
" 

Differential pressure on barrel 

Diff. pressure on core barrel 
Strain in l~g bolt 

Strain on control rod 8 

Strain on control rod 6 

• 
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TABLE 2. Manufacturers, Models, and Nominal 
Specifications of Instrumentation 

Manufacturer and Model No. Description Range 

1 Hewlett-Packard l4DA 1 Sampling Oscilloscope 
Coupled with Time Do­
main Reflectometer 

N/A 

2 Toroid Model 35-132 DDG 

3 Strainsert Model FLY-50SF2.5 

Strainsert Model FLY-100SG2.5 

4 American Standard-Norwood 
Model 110-2-3000G 

5 NANMAC Models A and G 

6 Microdot Model SG 122 

7 FASTAX Camera 

8 Standard Controls model 420 

1 

2 

2 

8 

7 

2 

2 

Strain Gage Load Cell 0-100,000 lb 

Strain Gage Load Cell 0-50,000 lb 

Strain Gage Load Cell 0-100,000 lb 

Water Cooled Strain Gage 0-3000 psig 
Pressure Sensor 

Chromel-Constantan 
Thermocouple Probes 

Quarter Bridge Weldable 
Strain Gage 

2000-9000 Frames/sec 

Uncooled High Tempera­
ture Strain Gage 
Pressure Sensor 

0-600 of 

0-6000 micro­
strain 

400 ft/film 

0-3000 psig 

Static 
Accuracy 

N/A 

0.1% FS 

0.1% FS 

0.1% FS 

1.0% FS 

5.0% FS 

millisecond 
timer 

0.1% FS 

.. 
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the time domain reflectometer may be found in Reference 5. The camera 

arrangement is discussed in Reference 6. 

Experimental instrumentation was similar to that used previously(2) 

except that additional instruments were added in the core and barrel 

regions. 

Figures 8, 9 and 10 show the general location of the sensors which 

were logged by computer. 

INSTRUMENTATION DEVELOPMENT 

Three additions were made to the instrumentation of this experimental 

series that were not reported previously. These include the fully sub­

merged TDR probe (Fig. 8), the diaphragm type differential pressure trans­

ducer (Fig. 6), and the drag disc flow velocity transducer. All of these 

devices were developmental and were not reliable enough to give results on 

every test. However, the results which were obtained are reported. 

Fully Submerged Time Domain Reflectometer Probe 

The results of blowdown tests made with a sieve plate(2) indicated 

that under certain blowdown conditions a steam dome could form beneath the 

sieve plate. Because the central TDR probe which was used in those tests 

sensed only the top surface of the liquid, the liquid level in the lower 

plenum could not actually be detected until the upper plenum was dry. For 

this series of runs with the reactor core, a second probe was added which 

detected the level of the fluid in the lower plenum only. This sensor 

could give level information in the lower plenum throughout the blowdown 

and be corroborated at the end of the run by the central TDR which also 

extended into the lower plenum. The basic method of operation of the 

lower plenum TDR was exactly the same as the other(5). The main problem 

with its design (and operation) was the sealed feed through for the high 

frequency electrical signals. The method used was to encase the signal 

lead in a nitrogen pressurized conduit and feed through (Figure 11). 

Occasional electrical short circuits and discontinuities still occurred 

because inadequate nitrogen pressure control resulted in leakage of water 

through the sealing packing. These difficulties resulted in useable level 

21 
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data from the lower plenum only for run B75. 

Diaphragm Type Differential Pressure Transducer 

Experience with several commercial high speed pressure transducers had 

shown that they could not give differential pressures under the wet high 

temperature and rapid transient conditions of the blowdown. The success 

of the sealed, weldable strain gages suggested their use in a differential 

pressure transducer which operated on the principle of deflection of a thin 

diaphragm of metal. Two types were eventually developed. One was used for 

the differential pressure across the core plate (Figure 6, Part 19). It 

was machined from a solid piece of steel to preclude hysteresis and 

slipping at the edges. These problems were not serious on a larger type 

which used a thin sheet of Inconel clamped between rings. The larger type 

(Figure 6, Part 21) was used for measuring pressure differential across the 

core barrel. On both types a weldable strain gage was attached to the 

diaphragm radially as near as feasible to the region of maximum strain 

caused by uniform differential pressure across the diaphragm. These 

differential pressure transducers were calibrated before being installed in 

the reactor simulator vessel and were found to be linear (~~4%) in the 

region of operation and they could withstand considerable overpressure. 

Appendix A contains developmental notes concerning these transducers. 

RESULTS AND DISCUSSION 

EXPERIMENTAL CONDITIONS 

The initial conditions used for the core-in-vessel blowdown test are 

shown in Table 3. The series was designed in order to work up from small 

forces and to allow safe extrapolation to larger breaks and higher 

pressures. Only an inlet break condition was simulated for the PWR be­

cause budget limitations caused a sharp curtailment of the series. The 

parameters were initial temperature, pressure and break size. One run was 

made with a partly full vessel to simulate a steam line break of a BWR. 

The objectives of the complete run series (Table 4) as outlined in 

the operation run plan were to simulate the blowdown of a power reactor 

23 



TABLE 3. Summary of B1owdown Runs Performed 

Run Date Pressure Approx. Nominal Initial Initial 
No. 1970 Psig Initial Orifice Water Water 

Temp. of Diam. , in. Volume, Mass 
Ft2 1bm 

B 60 4-7 2086 75 2 140 8700 

B 73 4-9 1285 75 2 140 8700 

B 63 4-17 2081 500 2 140 full 

B 74 4-24 1283 500 4 140 full 

B 66 5-1 952 535 4 107 steam line 

B 75 5-14 1000 500 6 140 full 

N 
~ 

Nominal 
ft2 Orifice I.D. Area, 

Size, in. in. 

2 1.689 .0156 

4 3.438 .0643 

6 5.189 .146 

.. ... 



II • 

TABLE 4. Proposed Run Conditions 

Nozz. Nom. Area Break 
Nom. Press Temp. Over Vessel Free Area 

Run No. ~ Diam. (psia) (OF) Press. Volume of Core 

B60 PWR/lnlet A2" 2100 70 Full .00838 

B61 " A4" 1700 " Full .00345 

B62 " A6" 1300 " Full .136 

B63 " A2" 2100 500 1420 Full .00838 

B64 " A4" 1700 500 1020 Full .0345 

B65 " A6" 1300 500 620 Full .136 
N 
VI 

B66 BWR/Recirc B4" 1000 545 0 3/4 Full .0345 

B67 PWR/Outlet A2" 2100 500 1420 Full .00838 

B68 " A4" 1700 500 1020 Full .0345 

B69 " A8" 1300 500 620 Full .136 

B70 BWR/steam A4" 1000 545 0 3/4 Full .0345 

B71 " A4" 1000 545 top/500 0 3/4 Full .0345 
bot. tJj 

~ B72 PWR/outlet similar to B-64, but for high N2 content effect I 
~ 
VI 
N 
+='-
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using a PWR dummy core to study the effects of complex geometry, break 

size, and break locations or blowdown and on the comparison with analyti­

cal results. 

Specific Objectives 

1. To obtain subcooled decompression data in the several internal 

volume zones in the simulated reactor core. 

2. To obtain saturated blowdown rates as a function of break size. 

3. To measure the forces during decompression and blowdown on an inter­

nal vessel structure, including support members, core barrel, and 

simulated control rods. 

4. To measure the operational vertical temperature gradient in the 

fluid filling the vessel. 

5. To measure the heat-transfer coefficient from the vessel walls to 

fluid during and after blowdown. 

6. To measure liquid level remaining shortly after blowdown. 

7. To measure additional temperature, liquid levels, pressures, and 

forces as required to determine the state of the fluid during blow­

down. 

8. To obtain the pressure history in the vessel during decompression 

after saturation has been reached. 

9. To obtain the effect of flow restrictions and a multizone volume 

distribution on the decompression pattern in the vessel and subse­

quent saturated blowdown. 

10. To monitor the defect in the bottom head. 

11. To obtain BWR blowdown data with vertical temperature rise from 

500 of to 545 of, (bottom to top of liquid level respectively). 

SUBCOOLED DECOMPRESSION 

As has been described elsewhere(1,2,5,6,7), the rupture of a water 

leg of a hot pressurized water system results in a rapid pressure decrease 

to a pressure below saturation with subsequent recovery to the saturation 
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pressure and formation of two phase conditions as the water flashes to 

steam. The time for the depressurization to saturation is very short 

(less than 100 milliseconds in these experiments) because the low compress­

ibility of water requires very little volume change (i.e., flow out the 

break) to reduce the pressure. The pattern of reduction of pressure is 

dominated by the conservation of mass and momentum and by the equation of 

state of the water which are manifested in an acoustic propagation velo­

city. Although the propagation velocity is high, since the decompression 

pattern starts from the break point, temporal and spatial imbalances of 

pressure are set up in the fluid system. Decompression patterns are ob­

served in which pipe lengths and locations and chamber position have impor­

tant effects. 

The use of a one-dimensional analysis such as WHAM(8) to model the 

actual system has been found to be reasonably successful for simple pipe­

vessel systems(2,6,7). It is valuable to know whether this type of analy­

sis can be extended to the more complicated case with vessel internals 

(such as annulus, baffles, core tubes, etc.). Although most data of sub­

cooled pressure history are available in Appendix B for comparison, only a 

few features will be discussed here. Comparisons were made with a computer 

solution obtained from WHAM(8). A schematic layout of the nodal input to 

WHAM is shown in Figure 12. The figure shows the rather complicated lay­

out suggested to model the core system. A few comparisons of the WHAM 

predictions with data from 2", 4", and 6" PWR blowdowns (the sizes given 

are nominal diameters for runs B-63, B-74, and B-75, respectively) are 

shown in Figures 13, 14, and 15. The WHAM predictions used the outlet 

pressure history from the run as a boundary condition, obtained by the 

techniques described in Reference 2. The data for pressure gage P-lO 

appears to have calibration errors on most runs because P-4 generally 

agrees well with WHAM for the first 10-15 msec. The structure and magni­

tude of the WHAM calculations begin to deviate beyond this point perhaps 

because of incorrect modeling of the pipe to annulus transition. WHAM 

predictions of the vessel pressure show too large an amplitude of fluctu­

ation, and some phasing error late in the calculation. The measured core 
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and barrel differential pressures are less than predicted and there are 

some phase errors. The core plate forces show some super position of a 

lateral force on the vertical force. No terms for losses were included in 

the WHAM predictions. The WHAM results show the general trend of the 

pressure reduction but seems to overpredict the rate of reduction and the 

size of the oscillations. There is considerable smoothing compared to 

WHAM of the major oscillations at the top of the vessel at the instrument 

ring. It is possible that some of this smoothing is due to leakage past 

the seal at the top of the core barrel but smoothing is also evident in 

the lower regions as well. The agreement is better for the larger break 

sizes. Th,~ pressure drop across the core barrel (shown in Figures 16, 17 

and 18) or the suppcrting plate were less than the predicted values. 

Since generally better agreement was obtained with WHAM for the simp­

ler piping arrangements (2) (6) than in these tests, one could say that the 

increased complexity or the less perfectly defined geometry of the core-in­

vessel case causes a wider spread between prediction and measurement. rf 

the measurements are to be believed, then WHAM (that is, one-dimensional 

analysis) shows itself to be a powerful, but not assuredly accurate, 

method of prediction in the form used here. Further development of the 

method might hinge on establishing loss factors and standard methods of 

treating area changes in plenums, core entrances, etc. 

The results from WHAM predict the main features of the blowdown pat­

terns even when applied in this relatively simple manner. In general, the 

"no loss" calculations have predicted pressure histories that are more 

severe than measured. A few minor frequencies that appear more prominent 

in the measured pressure differential (Figures 13 and 15) may be associated 

with the instrumentation. It appears that WHAM can be used to calculate 

order of magnitude (usually conservative) pressures and therefore " impulses 

on major internal parts; but to use the WHAM results as input to calcu­

lations of dynamic response may not be successful because of slight fre­

quency mismatches, non linear response, and possible dynamic-hydraulic 

interaction. 

32 



o 
D 

D 
D 

D 
o 
UJ 
N 

o 

o 

o 
o 

en 
tTl , 

D 
o 

UJ 
UJ , 

o 
a 
UJ 
r-- _ ... 

'-10.00 

o 
o 
D 
UJ 

D 
D 

o 
('") 

-.J 
'ITO 
~C; 
f-a 
z'" 
W' 
[Y 

W 
!.La 
LLC: 
~D 

• 

WHRM B-63-01. PWR INLET BRERK CRSE 
CORE PLRTE DP 
DP1. DP4. NODE 46-NODE 30 

o 

o 
D 

"0 
D 

o 
N 

o 
D 

o 

o 
o 

D 
N , 

o 
o 

o 
tTl 

'-10.00 

'-~'----I------- ---r-~-------'---~--~ I 1-- ---------r-- -,----~,-- - g 
0.00 10.00 20.00 30.00 40.00 50.00 60.00 

TIME RFTER RUPTURE, MSEC 
70.00 80.00 D· _u, 

0' ,. 

o 

D 
G 

I
u i I~"" 
C ~~~~~BWN IZIN.2100.500.209J w 
H fF. PRESSURE RCRBSS PLRTEICPDP4 ~ 

WD (/) c: 
l.J.JLO 
0-: , 

D-

~ . 
f-~ 
Z, 
W 
0-: 
W 
!.L

0 
. D 
!.L . 
>--I :.." 

CJ~ 

o 
D 

--------r-------- - ~----------

0.00 10.00 

BNWL-1524 

WHRM B-63-0'l. PWR INLET BRERK CRSE 
CORE BRRREl. DP. INLET PLRNE 
CBDP-Z. CBDP-3. NODE 37-NODE 16 

-20:00----;0:00 40.00 50.00 

TIME RFTER RUPTURE, ~~EC 
60.00 80.00 

RU 
CS ~~ : [2[N.2100.S00. 1 .f E5.RCRS COR BRL =ZICBDPZJ 

OUJ+-___ ~----~-

'-10.00 0·00 10.00 20.00 30.00 40.00 50.00 
, 

70.00 

u1 

(T)+-___ -. ____ ,-___ -. ____ ,-___ _.----._---_.~---._---_.-----

TIME RFTER RUPTURE (MSEC) '-10.00 0.00 10.00 20.00 30.00 40.00 50.00 60.~0 70.00 80.00 
TIME RFTER RUPTURE (MSEC) 

FIGURE 16. Comparison of WHAM Differential Pressure With 2" Data 

33 



0 

'" -

0 
0 

0 

'" 

0 
0 

0 
Ln 

0 

(f)", 

0....': 
0 

W 
a:: 
:=J

o 
(f)o 
(f) 
W Cl 

a::~ 
CL 

D· 
': 
a 
I"-, 

Cl 

': 
0 --, 
0 

': 
Cl 
Ln -, 

-10 .00 

0 

': 
0 
VJ 

0 

': 
0 

'" 

0 

': 
0 -
0 
0 

0 -, 
a 

(f) 
0... 0 

0 

a 
t...J'" 
0::' 
:=J 
J) 

(f)o 
W o 

o::~ 
0... VJ , 

-10.00 

0.00 

0.00 

10.00 

WHRM 6-74-01. FWR I NLET 6RER~ CRSE 
CORE FLRTE DP 
OF 1. DF4. NODE 46-NODE 30 

20.00 30.00 40.00 50.00 
, 

60.00 
TIME RFTER·RUPTURE. M5EC 

RUN B-74JH 
CSE SLOWDOWN (4IN.1300.500.209J 
HSDIFF. PRESSURE RCROSS PLRTE(CPOP-2 

10.00 A 20.00 30.00 40.00 50.00 60.00 70.00 80.00 
TIME RFTER RUPTURE (M5EC) 
o 

o 
o 

o 
If) 

o 
o 

o 
o 

o 
o 

o 
alf' 

(f) 
Q.. 

.0 
o 

W . 
0:: 0 

::::l 
(f) 
UJ o 
Wo 
0:: . 
(L~ 

o. 
o 

o 
o 

o 
o 

o 
If) 

BNWL-1524 

WHRM 6-60-01. PWR INLET BRER~ CRSE 
CORE PLRTE OP 
OPI. OP4. NODE 46-NOOE 30 

'-+I-O-.O-O---,-------,------,------,------,-------~----~------~----~----
0.00 10.00 20.00 . 30.00 40.00 50.00 60.00 70.00' 80.00 

o 

o 
o 
o 
If) 

o 
o 

(f)o 
0...0 

o 

W 
0:: 
::::l 
U)o 
(f)~ 
wo 
a::-
0...' 

-1 
Ceo 
~~ 
1-'"0 

Z'" 
w' a:: , 
w 
LLo 
LL~ 

TIME RFTER RUPTURE. M5EC 

RUN B-60TN 
CSE BLOWOOWN 12IN.2100.070.209J 
HSOIFF. PRESSURE RCROSS PLRTE(CPOF-4 

~o 

OLn~-------.--------r_------,-------_.--------r_------,_------_.--------._----
'0. 00 10.00 

FIGURE 17. 

20.00 30·00 40.00 50.00 BO.OO 70.00 
TIME RFTER RUPTURE (M5EC) 

Comparison of WHAM Differential Pressure 
With 4" and Cold 2" Data 

34 

80.00 



o 
D 

'" 

a 
o 

0'" 

en 
O-~ 

D 
D 

'" N 
I 

0 
0 

Ln 

'" I 
-10.00 

0 
0 

0 

'" 

0 

"? 
0 

"" 
0 

enD 
0-0 

W 
0:: 
::::l 
enD 
en"? 
w o 
0::-

I 
0-

---.l 
ITo 

D 
f-Cl 

Z"" 
Wi 

0:: 
W 
LLo 
LL,,? 
·~O 

'OLfJ 
I 
-10 ~OO 

0.00 

O~OO 

10.00 

WHRM 6-75-01. PWR INLfT 6RfRK CRSf 
[ORf PLRTf OP 
OP I. DP4. NODE' 46-NOO[ 30 

20.00 30.00 40.00 50.00 60.00 70.00 
TIME RFTER RUPTURE. M5EC 

RUN B-75T 
CSf BLOWDOWN (6IN.IOOO.500. 
HSoiFF PRESS.RCRS PLRTE(CPDPI) 

60.00 

10.00 20.00 30.00 40.00 50.00 60.00 70~00 80.00 
TIME RFTER RUPTURE (M5EC) 

en 
0-

o 
o 

LfJ' 

Cl 
Cl 

o 
.0 

Wli1 
0:: I 

::=> 
.en 
(.;")0 

Wo 
0:: . 
o-Lf) 

N 
I 

o 
CJ 

", 

BNWL-1524 

WHRM 6-75-01. PWR INLET BRfRK CRSf 
CORf BRRRfL~ DP. INLET PLRNf 
CBDP~ 2. CBDP-3. NO Of 37-NOOf 16 

~-~1-0-.-O-0-----0",0-0-------1'0-.0-0------2rO-.-00------3'b-.-0-c-----.'O-.-0-0-----S'0-.-0-0-----6'O-.-0-0-----7'0.-.0-0------8'0-.0-0-----

0 

Cl 
CJ 

Cl 
LIJ 

0 

"? 
0 
0 

enD 
0-

0 

~D 
LIJ 

W 
0:: 
::::l 
en 
en O 

C) 

w 
0:: 0 

0-

---.lo 
ITo 

;::~ 
Z I 

W 
0:: 
W O 
LL"? 
LLD 
~D 

.07 

0 
0 

0 

'" 
I 
-10 ~OO 

TIME RFTER RUPTURE. M5EC 

RUN B-75T 
CSf BLOWoOWN (6IN.IoOO.500. ) 
HISo oIF.PRfS.RCRS COR BRL' =2(CBoP2) 

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 
TIME RFTER RUPTURE (M5EC) 

FIGURE 18. Comparison of WHAM Differential Pressure with 6" Data 

35 



BNWL-1524 

TWO-DIMENSIONAL EFFECTS 

An example of an effect which is not predicted by a straightforward 

calculation using WHAM is the non-uniformity of the forces on the sup­

porting plate. Figure 19 shows the forces as measured by the plate sup­

porting "strain bolts." The initial pulse on the bolts on the side of the 

barrel away from the break, bolts 5 and 6 (refer to Figure 18), was in 

tension while the bolts on the near side (bolts 1 and 8) were in com­

pression. This was probably the result of the unequalized lateral foce on 

the barrel causing a tilting moment toward the break. Within 15-30 ms, 

however, the force had equalized and the bolts were receiving the up and 

down pulses in unison. The WHAM calculations were based on the layout 

assumption of a series of legs shaped as concentric rings at the outlet 

position of the annulus. The area of the rings were increased until the 

annulus cross sectional area was achieved. The lateral force on the 

barrel was taken equivalent to the unbalanced force across the barrel 

(pressure x area) for these ring shaped legs. The moment generated by 

this lateral force would be taken up by the bolts and the contact of the 

barrel with the vessel wall. The WHAM calculated lateral force shows some 

agreement early in time with the forces on the strain bolts but the data 

does not extend far enough to show whether the moment dies out or con­

tinues* as a condition of flow. 

AMBIENT TESTS 

The cold runs B-60 and B-73 were made to explore the subcooled de­

compression phenomenon by a relatively easy method not requiring heat-up. 

The results were nearly as comparable with WHAM calculations as were the 

high temperature blowdowns made later. For example, Figure 17 shows the 

pressure history and prediction for a location in 2" blowdown tests at 75°C 

and Figure 16 shows the same location results at 500°C. The similarities 

outweigh the differences. The success of this method suggests that simple 

checks of the analytical treatments can be made for the full scale reactor 

* During steady flow there may be a moment on the barrel caused by the 
Bernoulli pressure loss in the region of the outlet. It may be of 
interest to explore these aspects further. 
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system by rupture disc testing of the pressurized system when filled with 

cold water. Subsequent recalculation using the propagation velocities at 

operating temperatures would then give a semi-verified prediction of the 

accident case. 

SATURATED PORTION OF BLOWDOWN 

After decompression to saturation is accomplished, the pressure his­

tory in the hot water filled system becomes a function of the equation of 

state of the fluid as it flashes to a vapor and of the critical two-phase 

flow condition at the break. Previous reports(2) (5) deal extensively with 

this part of the blowdown. The most important questions to be answered 

by the experiments with the core in the vessel concerned the effect of the 

core on the rate of flow from the vessel, the liquid level during the blow­

down and the liquid level remaining after the blowdown. 

Rate of Flow 

The results show that times required for blowdown are about the same 

with or without the core, but that slightly more liquid is actually re­

moved in the core case; hence the actual flow rate might be slightly 

higher. The mass flux is probably a strong function of the break size. 

A typical result of the CSE blowdown experiments has been that the 

mass flux as predicted by the Moody maximum flow slip model (9) has not 

been achieved in practice. However, the mass flow rate that was achieved 

could be predicted by using Moody's calculation and multiplying the break 

area by a factor. The factor was dependent on the size of the break. A 

"homogeneous", that is a non-slip, thermal equilibrium, model has also been 

used to predict mass flux of water from a broken pipe. This model pre­

dicts less flow than the Moody slip model roughly as shown by the ratio 

plot in Figure 20. Also, shown on the ordinate are typical coefficients 

for the different break orifices used in the CSE experiments. Although 

at first it might seem that the CSE coefficients are merely the manifesta­

tion of the homogeneous flow condition, this is not the case as evidenced 

by the typical range of enthalpies used in the CSE experiments. If the 

flow followed the homogeneous model, the experimental coefficients of all 

38 .. 



• 

r TYPICAL RATIOS FOR C. S.£. AT I INDICA TED NOMINAL BREAK SIZE 

1",0 ---r 

2 " O#B ----

----4" 

---8" 

BNWL-1524 

0.2 
r TYPICAL c.s.£ EXPERIMENTAL 

~ CONDITIONS .. 
~ 
~ 
\Q 

O~-----L------~-~~~~----~------~------L-----~ 

o 200 400 600 BOO 1000 /LOO 

INITIAL ENTHALPY Ho ' BTU/LBm 

FIGURE 20. Ratio of Mass Flux (Homogeneous/Moody) 

39 



BNWL-IS24 

nozzle sizes should have been below 0.6. However, some coefficients are 

greater than this. The evidence gathered so far suggests that the flow is 

"metastable", i.e. non equilibrium flow. That is, not all the steam has 

been formed that would ultimately form at the pressure conditions of the 

exit duct. This allows the flow rate to be higher than for the "homo­

geneous" equilibrium, non-slip condition. The deviation from equilibrium 

seems to be influended by the size of the break, showing less metastability 

(and closer to homogeneous equilibrium flow) for the larger breaks. It 

is a matter of interest how phenomena seen for these sizes might be 

extrapolated to the pipe sizes involved in design basis accidents of 

nuclear power plants. 

The influence of the core on the blowdown rate was small. A com­

parison of the results with a core and with a sieve plate can be made by 

referring to results of blowdowns made from the same nozzle and the sa~e 

initial temperature. The latter were reported in Reference 2 (see Table S 

for comparable runs). 

TABLE S. Comparable Blowdowns 
(Core Series and Sieve Plate Series) 

Core Sieve Plate Nozzle 
Series Series Size Temperatures 
Run No. Run No. Inches of 

B63 BSO 2 SOO 

B74 BSI 4 SOO 

B7S BS2 6 SOO 

For example, the pressure histories were not much affected by the presence 

of the core as can be seen in the comparison of 6" blowdown results in 

Figure 21. 

LIQUID LEVEL 

The liquid level history, however, was affected by the presence of 

the core (Figure 22). The effect is caused by the presence of the 

annular path of the fluid to the break. In the core case, the flow was 
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generally downward toward the lower plenum and then upward in the annulus 

to the break. In the sieve plate case (Run B52) the flow was generally up­

wards toward the break for most of the flow from the vessel. The upward 

flow tended to hold the level up near the break but with the core the 

liquid level seemed to show a drop in the lower plenum even before the 

liquid was cleared out of the space below the core. This was probably 

caused by the liquid level dropping below the top of the core tubes, such 

that insufficient liquid came from above to make up that being lost from 

the lower plenum. Subsequent reduction in level in the core region was due 

to flashing and slow flow through the small leakage path through the plate 

at TDR probe seal. The downward path through the core results in an 

earlier uncovering of the core than would result from an upward path. 

Hence, an accurate assessment of the flow path in the reactor core during 

a design basis accident may be important to proper determination of the 

core heat-up rate. 

LIQUID REMAINING AFTER BLOWDOWN 

The core had the effect of reducing the amount of liquid remaining in 

the vessel after blowdown to a value similar to that which probably would 

have remained if the break were at the bottom of the core (i.e., at the 

core to annulus restriction). Figure 23 shows a comparison of several 

blowdowns made with and without core from the top nozzle. The figure also 

shows the differences in the amount remaining as a result of changing the 

height of the break. The top nozzle is about 12 ft above the bottom of 

the vessel, the middle nozzle about 4 ft,. and the core plate about 6 ft 

above the bottom. The presence of the core apparently reduces the amount 

of liquid remaining for the same break nozzle position. The mass remain­

ing is only a little greater than for the case of the middle nozzle break. 

Although the fraction remaining is slight and the mass differences small, 

the effect may be important when full scale reactors are considered in 

which the height differences are larger. Analysis should be used to 

properly account for these effects for scaling to the full size reactor 

rather than using the ratios given in Figure 23 for direct application. 
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APPENDIX A 

Notes on the Development of 
A Differential Pressure Transducer 

A differential pressure transducer was designed which can measure 

the differential pressure across the core plate and survive the hostile 

environment of the fluid in the simulator vessel during blowdown. This 

same basic design of transducer was used to measure the differential 

pressure on the core barrel. 

Two designs of an instrumented diaphragm differential pressure 

transducer were proposed and tested statically at ambient temperature. 

The design selected for use in the core plate of the CSE simulator vessel 

had the diaphragm as an integral part of the transducer case. The sensing 

element was a weldable uniaxial resistive strain gage mounted in the 

center of the diaphragm. The resultant transducer would function in a 

water environment to 600 of if corrections were made to relate to the 

ambient temperature calibration of data obtained. Two corrections which 

had to be applied to calibration data at 70 of involve the gage factor of 

the sensor and change in modulus of elasticity of the diaphragm material . 

The transducer was calibrated to 1-50 psid. The resultant measured 

strain vs. pressure was linear and the maximum static calibration errors 

were =t3.7% of the applied differential pressure or the error may be ex­

pressed as :t2.0% of the peak differential pressure applied. The natural 

frequency was calculated to be greater than 4800 Hz. 

The second design consisted of a 12 mil Inconel X-750 diaphragm 

clamped in a stainless steel case. This thin diaphragm did not produce 

an acceptable transducer; however, for larger thickness, this design was 

thought to be sufficient. Further discussion of this design is given in 

the text which follows. 

DESIGN AND CALIBRATION 

The completed differential pressure transducer had to be installed 

in an existing 2 1/4" - 8 threaded hole in the core plate. The required 
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differential pressure range was 1-50 psid. The environment in which the 

transducer was to be used is 500 of water with pressure pulses at nominal 

rates of 100 Hz. As with all transducers, maximum reasonable accuracy, 

sensitivity, and reliability were desired. To meet the above requirements, 

it was decided to design and construct a strain gage instrumented diaphragm 

~P transducer. 

Weldable resistance strain gages were selected as the sensing elements. 

When properly hydro-tested, this gage has proven to be reliable in the 

harsh environment within the simulator vessel. 

The analysis of the diaphragm is based on the following assumptions: 

1. Uniform diaphragm thickness 

2. Small deflections 

3. Infinitely rigid clamping around the diaphragm periphery 

4. Perfectly elastic behavior 

5. The presence of the sensing element is negligible 

With these assumptions, the radial strain is 

where 

P 

r 

Ro 

v 

t = 
E = 

£ 
r 

3 R 2 Pv 
o 

differential pressure 

radius 

diaphragm radius 

Poisson's ratio 

diaphragm thickness 

modulus of elasticity 

2 
r 

~ o 

1 

A plot of this equation for radial strain is shown in Figure A-I. 

For interest, the tangential strain is also shown. 

Maximum signal would be obtained if the point of maximum strain were 

instrumented (r = Ro). Because of physical contraints, the strain gage 

could not be located here. This maximum strain was the determining factor 

for the diaphragm dimensions. The second choice location, the center of 
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Tangential Strain 

Radial Strain t 
2 2 

E = -3PRO (l-~ ) 
R 4t2E 

Figure A-I. Strain Distribution in Clamped Diaphragm 

the diaphragm, was where the gage was located. The active element of the 

gage was to be as short as possible because the radial strain drops off 

rapidly (Figure A-I) and the signal from the gage is the integrated value 

over the gage length. 

The resonant frequency of such a diaphragm is 

f 
n 

9.26t 
R 2 

o 

E 

y is the density of the diaphragm material. 

The radial strain at r = R is the maximum strain in the diaphragm 
o 

and is 
R2 2 

3 0 P (1 - v ) 

4t
2 

E 
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This is twice the strain at r = 0 for the same differential pressure. 

The larger the magnitude of strain at r = Ro ' the greater would be the 

transducer's response per psid applied. It is natural then, to make the 

diaphragm of a material with a high yield strength. Such a transducer was 

built using a 12 mils 1.25 inch diameter Inconel X-7S0 (Eyd > 3000 at 

600 OF) diaphragm placed in a stainless steel case. The diaphragm was not 

clamped tight because of differences in the thermal expansions of the two 

materials. The radial clearance was 2 mils, and the axial clearance was 

1/2 mil· 

Static calibration of this differential pressure transducer resulted 

in errors of +- 10 psid throughout the range of ± 50 psid. The difficulty 

is thought to be related to minor imperfections in the case or small 

particles of dirt between the diaphragm and the case which tend to change 

the static of strain in the diaphragm. Particles of dirt may jam between 

the diaphragm and case which, when the pressure is removed, do not allow 

the diaphragm to return its free state. It is believed that with larger 

and thicker diaphragms, (where the presence of dirt would produce negli­

gible effects) a "clamped" diaphragm of this type would produce a usable 

transducer. Such a transducer was built for use in the core barrel wall 

of the CSE simulator vessel. 

Because of the difficulties encountered with the mechanical con­

figuration of the Inconel diaphragm in the small differential pressure 

transducer, a unit construction design was built and tested. 

This transducer was machined from stainless steel and is shown in 

Figure 3.5. This material has a yield strain of 730 ~€. The experimental 

strain measured for this differential pressure was 330 ~€, and the agree­

ment is considered satisfactory. 

Two additional factors had to be included before the data obtained 

from this transducer could be evaluated. The most significant was the 

change in modulus of elasticity of stainless steel with temperature. For 

stainless steel 
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6 
E5500F = 24.S x 10 psi 

At 550 of, the ~E/psid value will be 1.129 the value of 70 of (static cali­

bration value) because of this decrease in modulus. The second tempera­

ture correction was the gage factor of the weldable strain gage. The gage 

factor is approximately 5% lower at 550 of than at 70 of. The gage was 

connected in a 3-wire Wheatstone bridge. The net effect of the decrease 

in gage factor was a 5% decrease in voltage output for a given strain 

value. 

The data recording system was calibrated using parallel calibration 

resistors. The overall indicated response (6P) produced by the cali­

bration resistors was 12.9% (change in modulus) -5% (change in gage fac­

tor) or 7.9% higher at 550 of than at 70 of. That is, the MV/psid value 

at 550 of were 1.079 times this value at 70 of when all other parameters 

are unchanged. The needed calibration information is shown in Table A-I 

Notes: 

1. Calibration resistors to be ~l% or better. 

2. Calibration must be performed at 70 of. 

TABLE A-I 

CALIBRATION DATA 

R cal Indicated 6P Indicated 6P 
ohms 70 of - psid 550 of - Esid 

SOOK 14.39 13.34 

600K 19.07 17.67 

400K 2S.42 26.34 

200K 57.41 53.21 

l50K 76.67 71.06 

A-5 



BNWL-1524 

CONCLUSIONS AND RECOMMENDATIONS 

An accurate differential pressure transducer with sufficient sensi­

tivity has been developed for ~p measurements on the CSE simulator vessel 

core plate. This transucer will survive the 550 of water environment of 

the simulator vessel. 

It is recommended that high yield strength material be used in future 

construction of such ~p transducers of this design since the potential 

signal which can be obtained from the transducer is directly dependent on 

this strength. 

If such measurements of differential pressure are to be made in a 

less hostile environment, it is recommended that one consult Reference 10. 
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APPENDIX B 

Data Plots 

This appendix contains some of the plots of raw data taken during 

the core series blowdown tests. Fiscal limitations did not allow all data 

to be correctly zero adjusted. Also available but not given here are 

other pressure and temperature histories of the fluid,- force data, and the 

data of temperatures and strain in the bottom of the vessel. 
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TABLE B-1. Figure Numbers - Appendix B 

T = See main body of report 

Low Speed Data 

Weight of Water 
Nozzle Thrust Force 
Level of Fluid Remaining 
Pressure at Exit (P-10) 
Pressure at Exit Pipe (P-4) 
Pressure,Nozzle R (P-6) 
Pressure,Instrument Ring (P-15) 
Pressure, Radial Probe (P-13) 
Pressure,Nozzle C (P-12) 
Pressure,Core, Side Near A (P-20) 
Pressure,Core, Side Opposite A (P-21) 
Pressure,Center of Core Assembly (P-22) 

Temperature,Exit Pipe T-3 
Temperature,Nozzle R T-l 
Temperature,Nozzle J T 2 
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Temperature,Lower Plenum TWG 7 

High Speed Pressure Data 
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Core Near A (P-20) 
Core Opposite A (P-21) 
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Radial Probe Outer (P-13) 
Radial Probe Inner (P-14) 
Diff. across Plate CPDP-l 
Diff. across Plate CPDP-4 
Diff. across Barrel CBDP-l 
Diff. across Barrel CBDP-2 

Diff. across Barrel CBDP-3 

Plate Force SB 1 I 
5 I 

6 8 

6 

8 I 
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