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ABSTRACT

Blowdown experiments were made with a 150 ft3 vessel containing a
simulated reactor core consisting of 4' long tubes. High pressure water
(up to 2100 psi, 500 °F) was exhausted suddenly from the annular zone
of the vessel through orifices of 1.69, 3.44, and 5.2" diameter. Tempera-
ture, pressure liquid level, pressure differential, and core movement were
measured during the transient fluid flow period and much of the data is
given. The forces measured during subcooled decompression were less than
predicted, liquid remaining was less than after blowdown without a core
structure although pressure histories were about the same. Development of

a differential-pressure transducer is described.
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COOLANT BLOWDOWN STUDIES OF A REACTOR
SIMULATOR VESSEL CONTAINING A SIMULATED
REACTOR CORE

PURPOSE AND SCOPE

This report describes the experiments made as part of the water
reactor safety program to study loss-of-coolant accidents. The overall
objective of these experiments was to obtain data from blowdown tests
using a large reactor-simulator vessel and to make comparisons with the
results of analytical prediction methods. The results are given for blow-
down experiments which were made using different initial water conditions
and different size blowdown orifices in the exit pipe section attached to
the annulus region of the simulated reactor. These tests continued those
made with the same vessel with no internal parts, which were reported in
BNWL-1411 and BNWL-1470, and with a sieve plate which were reported in
BNWL-1463. This report discusses the experimental layout and the main
conclusions which resulted from a partial reduction of the data. Data

are presented in the discussion and in the Appendix.

CONTAINMENT SYSTEM EXPERIMENT

The containment system experiment (CSE) at Battelle-Northwest was a
large scale program to evaluate the effectiveness of containment vessels
and other engineered safeguard systems in reducing the release of radio-
active fission products resulting from a serious accident in a nuclear
electric power plant. The main objective of the CSE program was to obtain
experimental information for use in testing calculational models and for
developing improved models. The following specific program objectives
were identified as a basis for development of engineering tests and re-
lated research and development, and this report is concerned with work

pertaining to the last objective on this 1list.

1) Determination of the effect of natural processes, such as agglomer-
ation and settling, diffusional deposition, and condensation of

water vapor,on reduction of airborne fission product concentration



2)

3)

4)

5)
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in containment systems; and application of experimental data to
the evaluation of available analytical models.

Determination of the effectiveness of both active and passive engi-
neered safeguard systems in reducing fission product concentration
in the containment atmosphere. Active safeguard systems employ
water sprays and air filtration methods, whereas a passive system
might achieve pressure suppression by means of a containment water
pool. Measured values were compared with those calculated from
analytical models.

Evaluation of the effectiveness of different methods of pressure
reduction in containment vessels. Methods include water pool
pressure suppression, cooling the contained atmosphere, and heat
transfer to low temperature materials inside containment and
through the containment membrane to the atmosphere.

Determination of the amount of leakage of fission product activity
from containment under a range of postaccident conditions and com-
parison of these values with those calculated from both low and
high temperature air leakage rate tests and fission product con-
centration in the containment vessel.

Determination of (both inside and outside a reactor vessel) the
transient and dynamic pressures, temperatures, stresses, coolant
flow rates, and hydraulic forces resulting from the sudden rupture
of a high temperature water system. Measured values were compared

with those calculated from analytical models.

The results furnish a better technical basis for reactor site evalu-

safety.

ation and for those aspects of reactor plant design affecting public

The results of Tasks 1, 2 & 4 are reported elsewhere. Task 3 was not

undertaken as the result of early termination of the program.

Blowdown Program

Background

The blowdown program is designed around a vessel built to simulate
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a water-moderated reactor inside the CSE containment vessel. Originally,
only a small amount of blowdown transient experimental work was proposed
for CSE, primarily because of the interference between aerosol and blow-
down transient tests inside the containment vessels, along with space
limitations and resulting low test frequency. To increase both the fre-
quency of tests and extent of data gathered, a special test stand for the
simulator vessel was built close to the containment vessel so that common

facilities, personnel, and power could be used.

The reactor simulator vessel tests outside containment have provided
both a better environment for the experimental instrumentation and greatly
improved access to the vessel and its instrumentation for repair of sen-
sors and for experimental modifications. In addition, there has been an
increased interest in the acquisition of large scale experimental data
which would permit the testing of analytical techniques intended to pro-
vide detailed and sophisticated analyses of both the thermal and mechani-
cal or structural effects on the reactor vessel internals during the blow-
down transient. Aspects of particular interest include mechanical damage
to the core or to the emergency cooling system which might adversely
affect or prevent adequate functioning of this emergency cooling system in

the event of a major loss—-of-coolant accident.

Problem Areas

The two principal problem areas to be investigated consisted of the
mechanical and structural aspects and the thermal aspects. The mechanical
and structural aspects primarily include the hydraulic resistance effects
of the core structure and of the typical reactor vessel internal parts,
such as thermal shields, core barrels, and flow baffles, on the discharge
rate of coolant during the blowdown transient. Forces resulting from
sudden coolant system rupture must be known in order to evaluate the ten-
dency to dislodge or deform reactor vessel internals. Such relative move-
ments between parts may compound the effects of the coolant loss. Defor-
mation, for example, by prevenging control rod entry or by causing move-

k4
ment of fuel elements relative to the rods, might produce a reactivity ex-

cursion. Motion of core internals could block the normal or emergency coolant
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paths, damage the emergency cooling system, or so change the core geometry

as to impair the required effectiveness of the emergency cooling.

Forces of interest arise during the first few hundred milliseconds of
the transient because of the passage and reflection of acoustic waves into
the interior of the reactor vessel from the point of coolant system rup-
ture. These waves relieve fluid compression until flashing begins. Longer
term forces result from the friction forces accompanying rapid coolant out-
flow. Also, temperature differences between hot and cold portions of the
coolant system create differences in saturation pressure of these water
volumes when the subcooled blowdown is complete. With a break in one
portion of the system, this difference may lead to an oscillation of flow
and of flashing brought on by the saturation-pressure difference between
the volumes. This postulated oscillation could continue until fluid and
mechanical damping cause it to die out. All of the forces discussed here-
in have the potential for developing lateral loads as well as the symmetri-
cal loads usually calculated with a one-dimensional treatment. The physi-
cal processes such as bubble and void formation, heat transfer, and liquid
level swell occurring in the reactor vessel when the pressure is suddenly
relieved have a bearing on the design of the reactor safeguards and of the

reactor itself.

There are important effects external to the reactor, which include,
for example, forces from the impact of the fluid jet, vessel reaction
forces, and whiplash of piping between the reactor vessel and the point of

the coolant system rupture.

Data needed for evaluating all of these effects can be obtained dur-
ing blowdown transient tests through the use of a series of unheated dummy
cores. The initial tests performed prior to those herein reported were
conducted without dummy core parts or with a simple core plate in order to
check blowdown theories against simple tests and/or to provide a check of

the test instrumentation and data processing methods being developed.

Purpose of CSE Blowdown Tests

CSE blowdown tests were conducted to:
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e Provide data with which to design models and to check modeling
assumptions and calculations so that these can be applied to full
scale reactor plants. The blowdown results are used as input to
design calculations for stress, heat transfer, fission product
distribution, emergency core cooling, and engineered safeguards.

e Perform blowdown tests at large enough scale to measure liquid
level, void fraction, and thrust forces, and to observe effects of
bubble formation and rise and the effects of geometry upon a full
size reactor.

e Provide actual blowdown results for use in empirical formulations
of blowdown rates and, in particular, to accurately predict blow-
down times expected in the CSE containment vessel-reactor simula-
tor, combined tests.

e Contribute to the knowledge of two-phase critical flow, liquid-
vapor action, and thermal hydraulic effects in a water-cooled
reactor and thus increase safety and reduce the expense of engi-

neering, construction, and licensing.

Perhaps this knowledge will eventually allow the codification of
rules to cover safety aspects of the loss-of-coolant accient. Until that
time, detailed calculations must be made for each case, and confidence in

the calculation methods can only come through comparisons with experiments.

SUMMARY AND CONCLUSIONS

Six blowdown tests modeling a loss—of-coolant accident of a nuclear
power reactor were made with a 150 ft3 vessel 17 feet tall containing a
core barrel and a 4 feet long simulated core. The blowdowns were made
from a nozzle connected to the annular region outside the core barrel at
a level above the core. Breaking of a double rupture disk on the nozzle
simulated an inlet break of a pressurized water reactor. Two tests were
made with cold pressurized water, one with a steam dome as is present in
a boiling water reactor and three with hot (500 °F) pressurized water
(1000 - 2080 psig). Square edge orifices were used to establish break

sizes from 1.5 to 5.18 inches diameter. Data were taken on pressure,
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temperature, liquid level, pressure differential, liquid remaining, weight
of water, strain on core support bolts and nozzle thrust. Some comparisons
were made with previous runs of simpler geometry and with analytical pre-

dictions. The results show that,

e The presence of the core and annulus showed little effect on the
pressure histories during the saturated portion of blowdown when
compared to similar blowdown with a sieve plate.

e The transient liquid level in the core region during blowdown was
lower than during similar blowdowns without the core and annulus.
This results from the generally downward core flow in these tests
indicating the importance of properly assessing flow direction in
LOCA calculations of core heat-up.

e The liquid remaining in the vessel after blowdown was less than
with similar blowdowns without cores.

e The subcooled decompression history pattern was approximated by
calculations with a one-dimensional code but the magnitudes of

measured pressure oscillations and forces were less than predicted.

EXPERIMENTAL FACILITY AND EQUIPMENT
CSE BLOWDOWN FACILITY

Description
The full description of the CSE facility is contained in Reference 1.

The CSE reactor simulator vessel (Figure 1) was fabricated and accepted in
accordance with Section III of the ASME Pressure Vessel and Boiler Code.
Design temperature and pressure is 650 °F and 2750 psig, respectively, and

volume is 150 £t3.

The reactor simulator vessel was mounted within a supporting frame
(Figure 2). The weight of the vessel and simulator support frame were
suspended from a vertical load cell. Thrust forces generated during the
blowdown experiment were restrained by a thrust support system which in-

clude upper and lower thrust support members and load cells.

A simulated core was installed in the vessel. This core was built to

be attached to a perforated core plate which was used for earlier experi-
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(2)

ments and which was attached to the supporting lugs on the inside of
the vessel with strain bolts. The dummy core (Figures 3, 4, 5, & 6) was
designed following the criteria outlined in Reference 3. It had to fit
into the existing vessel and was to have the capability of giving geomet-
rical similarity to both BWR's and PWR's by appropriate changes in barrel
size and flow restrictions. The design was an attempt to give typical
scaled height positions of reactor piping for the blowdown nozzles. The
core would probably be built differently if based on present insite. A

longer core would probably be worthwhile, but at the time the proposed

LOFT core length of four feet made this seem an appropriate value to use.

Subsequent to the initial design, calculations which took into account
the results of experiments in progress showed that the lugs (eight) on the
vessel wall designed to support the core might not be adequate, so bracing
gussets were added. Similarly, the diagonal braces (Figure 4) were added
to the main support plate (used as a simple plate in the sieve plate

(2)

experiments Yto stiffen it. A few simulated control rods were designed
with the idea of placing them to investigate side loads on structures of
this type. Side loads might occur when fluid flow was out of a broken
nozzle at the same level. The core barrel was modified to give it more
strength, without significantly reducing flow areas by putting stud bolts
through the shell to touch the walls of the vessel. For similar reasons,

shear pins and compression pads were added to the top grid plate flanges.
Operation

Operation procedure of the blowdown experiments was started by
filling the vessel with water. The water was then circulated through an
external loop containing a heater and pressurizer until the fluid in the
vessel was at the prescribed experimental conditions. The water level was
held in a level pot above the vessel so that the vessel remained full dur-
ing the entire heating period (except in the case of a BWR simulation when
a steam plenum was required). Excess volume due to thermal expansion was
bled off continuocusly through an outlet on the nozzle extension (Fig. 5).
This procedure prevented the pressurizing gas (nitrogen) from dissolving

in the water and prevented the outlet duct from becoming a cool stagnant

13
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zone. During the heating period, the pressure in the cavity between the
rupture discs was maintained at a fraction of the vessel pressure. After
the desired conditions were established, the vessel was isolated (by
valving off the circulation loop) and the rupture discs were broken by in-

jecting nitrogen in the cavity between the two rupture discs until breakage

occurred.

Control of the facility was switched to the on-line PDP-7 digital com-
puter at a prescribed time (7 sec to 3 min) before the blowdown time.
Nitrogen injection into the rupture disc cavity and data logging were

triggered by the computer.

The blowdown facility was instrumented to measure pressure and temper-—
ature at selected locations, weight of water remaining, liquid level and

thrust reaction force, and differential pressures.

INSTRUMENTATION ON THE CSE REACTOR SIMULATOR VESSEL

Several basic measurements were required to accomplish the objective
of studying the fluid behavior during the simulated loss-of-coolant acci-
dent. Some of the measurements, such as pressure and temperature, could be
made directly but others, such as mass flow rate or liquid level, required
an indirect measurement because of inadequacies in state-of-the-art instru-
mentation or the general difficulties associated with basic measurement of
two-phase flow. The nozzle extension detail is shown in Figure 7, and
associated instrumentation for the simulator vessel in Figures 8, 9 and 10.
Tables 1 and 2 summarize the instrumentation types, the intended measure-

ments and locations, and list of the manufacturers. Details concerning

Notation Glossary

Strain gage DRAG Drag Disc Sensor
Temperature sensor SBI#  Strain bolt inner gage #
Pressure sensor SB6#  Strain bolt outer gage f#
DP Differential pressure TIFZ# Temperature inside fault zone
LC Loadcell TOFZ# Temperature outside fault zone
LG Level gage SCBH# Control rod in barrel extension probe
TL# Temperature on level gage

14
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Core Series Sensor

Location

BNWL-1524

Designations & Locations

Measurement

IABLE 1.
Sensor Type*
Number _{See Table 2)

LC-1 Toroid (2)
LC-2 Strainsert (3)
LC-4 "

LG-1 TDR (1)
LG-2 TOR (1)

P-1 Norwood (4)
P4 u

P-6 w

p_7 u

-8 M

P-10 "

P-12 "

P-13 "

P-14 "

P-15 "

*Plug 7 Standard Controls
P-20 Standard Controls
P-21 "

p-22 "

P-23 "

SCR 4A Microdot

SCR 4B "

Drag 1 Ramapo

T-1 .040" CHR-CON
T_2 " " "
T-4 u 0w
T-6 " PR
127 u PR
T-12 u T
T-15 u woow
TL-1 040" CHR-CON
TL-3 M nou
TL-4 " T
TL-5 n T
TL-6 " T
TLUG 7 .040 C/A
TIFZ 3 .040 (stripped)C/A
TBI 2 "

TBI 9 "

TBI @ .060 C/A

TBI 6 .040 (stripped)C/A
TBI 12 "

CPDP-1 Microdot
CPDP-2 v

CPDP-3 v

CPDP-4 "

NDP "

CBDP-1 !

CBDP-2 u

CBDP-3 "

SB1I "

SB18 »

SB21 "

SB3I “

SB41 "

SB51 "

SB5Q "

SB61 "

SB6Q "

SB71 "

SB81 "

SB8Q "

SCR 8A Microdot

SCR 8B "

SCR 8C "

SCR 6A "

SCR 6B "

Top of vessel
Upper strongback
Lower " "
Centerline vessel
Below core plate

Nozzle R

Nozzle ext.

Nozzle Q

Nozzle H

Nozzle extension

Nozzle extension

Nozzle C

mg;;}g g }pressure probe

Instrument ring

Lug 7 below plate

Quter plenum, core
barrel, Nozzle A side

Outer plenum, core
barrel opposite
nozzle A

Center of core assembly

Top of control rod sup-
port

On control rod in
barrel ext. piece

Discharge nozzle

Nozzle R
n n

Nozzle extension

Nozzle Q

Nozzle H

Nozzle C

Inst. ring

TDR

Lug 7
Bottom head inside

Inserted in core plate

[ " " "

[ t n w

Flanged in barrel
blowdown nozzle

Flanged, in lower barrel

Flanged, in upper barrel

Lug Support bolts
a i u

control rod barrel
extension
w

Weight of vessel contents
Thrust

Thrust

Liquid Tevel

Liquid level

Pressure state of fluid
H " n

Strain, control rod 4

" n n

pu2 of discharge fluid
Temperature of fluid
1 n n

Temperature of metal skin
M W "

" t "

fluid
fluid
Differential pressure across plate

" [0

" n " n

n n " "

Differential pressure on barrel

n [0 " n

n " 0 "

Diff. pressure on core barrel
Strain in Tug bolt
i " n i

Strain on

Strain on control rod 6
) " w «
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TABLE 2. Manufacturers, Models, and Nominal
Specifications of Instrumentation
Static
Manufacturer and Model No. Description Range Accuracy
Hewlett-Packard 14DA 1 Sampling Oscilloscope N/A N/A
Coupled with Time Do-
main Reflectometer
Toroid Model 35-132 DDG 1 Strain Gage Load Cell 0-100,000 1b 0.1% FS
Strainsert Model FLY-50SF2.5 2 Strain Gage Load Cell 0-50,000 1b 0.1% FS
Strainsert Model FLY-100S8G2.5 2 Strain Gage Load Cell 0-100,000 1b
American Standard-Norwood 8 Water Cooled Strain Gage 0-3000 psig 0.1% FS
Model 110-2-3000G Pressure Sensor
NANMAC Models A and G 7 Chromel-Constantan 0-600 °F 1.0% FS
Thermocouple Probes
Microdot Model SG 122 2 Quarter Bridge Weldable  0-6000 micro- 5.0% FS
Strain Gage strain
FASTAX Camera 2000-9000 Frames/sec 400 ft/film millisecond
timer
Standard Controls model 420 2 Uncooled High Tempera- 0~-3000 psig 0.1% FS

ture Strain Gage
Pressure Sensor

7S T~"IMNG
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the time domain reflectometer may be found in Reference 5. The camera

arrangement is discussed in Reference 6.

(2)

Experimental instrumentation was similar to that used previously
except that additional instruments were added in the core and barrel

regions.

Figures 8, 9 and 10 show the general location of the sensors which

were logged by computer.

INSTRUMENTATION DEVELOPMENT

Three additions were made to the instrumentation of this experimental
series that were not reported previously. These include the fully sub-
merged TDR probe (Fig. 8), the diaphragm type differential pressure trans-
ducer (Fig. 6), and the drag disc flow velocity transducer. All of these
devices were developmental and were not reliable enough to give results on

every test. However, the results which were obtained are reported.

Fully Submerged Time Domain Reflectometer Probe

(2)

The results of blowdown tests made with a sieve plate indicated
that under certain blowdown conditions a steam dome could form beneath the
sieve plate. Because the central TDR probe which was used in those tests
sensed only the top surface of the liquid, the liquid level in the lower
plenum could not actually be detected until the upper plenum was dry. For
this series of runs with the reactor core, a second probe was added which
detected the level of the fluid in the lower plenum only. This sensor
could give level information in the lower plenum throughout the blowdown
and be corroborated at the end of the run by the central TDR which also
extended into the lower plenum. The basic method of operation of the

(5)

lower plenum TDR was exactly the same as the other The main problem
with its design (and operation) was the sealed feedthrough for the high
frequency electrical signals. The method used was to encase the signal
lead in a nitrogen pressurized conduit and feedthrough (Figure 11).
Occasional electrical short circuits and discontinuities still occurred

because inadequate nitrogen pressure control resulted in leakage of water

through the sealing packing. These difficulties resulted in useable level
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data from the lower plenum only for run B75.

Diaphragm Type Differential Pressure Transducer

Experience with several commercial high speed pressure transducers had
shown that they could not give differential pressures under the wet high
temperature and rapid transient conditions of the blowdown. The success
of the sealed, weldable strain gages suggested their use in a differential
pressure transducer which operated on the principle of deflection of a thin
diaphragm of metal. Two types were eventually developed. One was used for
the differential pressure across the core plate (Figure 6, Part 19). It
was machined from a solid piece of steel to preclude hysteresis and
slipping at the edges. These problems were not serious on a larger type
which used a thin sheet of Inconel clamped between rings. The larger type
(Figure 6, Part 21) was used for measuring pressure differential across the
core barrel. On both types a weldable strain gage was attached to the
diaphragm radially as near as feasible to the region of maximum strain
caused by uniform differential pressure across the diaphragm. These
differential pressure transducers were calibrated before being installed in
the reactor simulator vessel and were found to be linear (F-4%) in the
region of operation and they could withstand considerable overpressure.

Appendix A contains developmental notes concerning these transducers.

RESULTS AND DISCUSSION

EXPERIMENTAL CONDITIONS

The initial conditions used for the core-in-vessel blowdown test are
shown in Table 3. The series was designed in order to work up from small
forces and to allow safe extrapolation to larger breaks and higher
pressures. Only an inlet break condition was simulated for the PWR be-
cause budget limitations caused a sharp curtailment of the series. The
parameters were initial temperature, pressure and break size. One run was

made with a partly full vessel to simulate a steam line break of a BWR.

The objectives of the complete run series (Table 4) as outlined in

the operation run plan were to simulate the blowdown of a power reactor
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n

No.

W ®W W «w ®w

60
73
63
74
66
75

Date
1970

TABLE 3. Summary of Blowdown Runs Performed

Pressure
Psig

2086
1285
2081
1283

952
1000

Nominal
Orifice

Size, in.

2
4
6

Approx.
Initial
Temp. °F

75
75
500
500
535
500

I.D.
in.
1.689
3.438
5.189

Nominal
Orifice
Diam., in.

(o " \ SR )

Area, ft

.0156
.0643
.146

Initial

Water

Volume,
Ft2
140
140
140
140
107
140

Initial

Water

Mass
lbm
8700
8700
full
full

steam line

full
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Run No.

B60

B61

B62

B63

B64

B65

B66

B67

B68

B69

B70

B71

B72

TABLE 4. Proposed Run Conditions

Nozz. Nom.
Nom. Press Temp. Over Vessel
Type Diam. (psia) (°F) Press. Volume
PWR/Inlet A2" 2100 70 Full
" A4" 1700 " Full
" A6" 1300 " Full
" A2" 2100 500 1420 Full
" A4" 1700 500 1020 Full
" A6" 1300 500 620 Full
BWR/Recire B4" 1000 545 0 3/4 Full
PWR/Outlet A2" 2100 500 1420 Full
" A4" 1700 500 1020 Full
" A8" 1300 500 620 Full
BWR/steam A4" 1000 545 0 3/4 Full
" A4" 1000 545 top/gOO 0 3/4 Full
ot.

PWR/outlet similar to B-64, but for high Ny content effect

Area Break
Free Area

of Core

.00838

.00345

.136

.00838

.0345

.136

.0345

.00838

.0345

.136

.0345

.0345

#TST-TMNE
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using a PWR dummy core to study the effects of complex geometry, break

size, and break locations or blowdown and on the comparison with analyti-

cal results.

Specific Objectives

10.
11.

To obtain subcooled decompression data in the several internal
volume zones in the simulated reactor core.

To obtain saturated blowdown rates as a function of break size.

To measure the forces during decompression and blowdown on an inter-
nal vessel structure, including support members, core barrel, and
simulated control rods.

To measure the operational vertical temperature gradient in the
fluid filling the vessel.

To measure the heat-transfer coefficient from the vessel walls to
fluid during and after blowdown.

To measure liquid level remaining shortly after blowdown.

To measure additional temperature, liquid levels, pressures, and
forces as required to determine the state of the fluid during blow-
down.

To obtain the pressure history in the vessel during decompression
after saturation has been reached.

To obtain the effect of flow restrictions and a multizone volume
distribution on the decompression pattern in the vessel and subse-
quent saturated blowdown.

To monitor the defect in the bottom head.

To obtain BWR blowdown data with vertical temperature rise from

500 °F to 545 °F, (bottom to top of liquid level respectively).

SUBCOOLED DECOMPRESSION

1,2,5,6,7)

As has been described elsewhere , the rupture of a water

leg of a hot pressurized water system results in a rapid pressure decrease

to a pressure below saturation with subsequent recovery to the saturation
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pressure and formation of two phase conditions as the water flashes to
steam. The time for the depressurization to saturation is very short

(less than 100 milliseconds in these experiments) because the low compress-
ibility of water requires very little volume change (i.e., flow out the
break) to reduce the pressure. The pattern of reduction of pressure is
dominated by the conservation of mass and momentum and by the equation of
state of the water which are manifested in an acoustic propagation velo-
city. Although the propagation velocity is high, since the decompression
pattern starts from the break point, temporal and spatial imbalances of
pressure are set up in the fluid system. Decompression patterns are ob-
served in which pipe lengths and locations and chamber position have impor-
tant effects.

(8)

The use of a one-dimensional analysis such as WHAM to model the

actual system has been found to be reasonably successful for simple pipe-

(2’6’7). It is valuable to know whether this type of analy-

vessel systems
sis can be extended to the more complicated case with vessel internals
(such as annulus, baffles, core tubes, etc.). Although most data of sub-
cooled pressure history are available in Appendix B for comparison, only a
few features will be discussed here. Comparisons were made with a computer
solution obtained from WHAM(B). A schematic layout of the nodal input to
WHAM is shown in Figure 12. The figure shows the rather complicated lay-
out suggested to model the core system. A few comparisons of the WHAM
predictions with data from 2", 4'", and 6" PWR blowdowns (the sizes given
are nominal diameters for runs B-63, B-74, and B-75, respectively) are
shown in Figures 13, 14, and 15. The WHAM predictions used the outlet
pressure history from the run as a boundary condition, obtained by the
techniques described in Reference 2. The data for pressure gage P-10
appears to have calibration errors on most runs because P-4 generally
agrees well with WHAM for the first 10-15 msec. The structure and magni-
tude of the WHAM calculations begin to deviate beyond this point perhaps
because of incorrect modeling of the pipe to annulus transition. WHAM

predictions of the vessel pressure show too large an amplitude of fluctu-

ation, and some phasing error late in the calculation. The measured core
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and barrel differential pressures are less than predicted and there are
some phase errors. The core plate forces show some super position of a
lateral force on the vertical force. No terms for losses were included in
the WHAM predictions. The WHAM results show the general trend of the
pressure reduction but seems to overpredict the rate of reduction and the
size of the oscillations. There is considerable smoothing compared to
WHAM of the major oscillations at the top of the vessel at the instrument
ring. It is possible that some of this smoothing is due to leakage past
the seal at the top of the core barrel but smoothing is also evident in
the lower regions as well. The agreement is better for the larger break
sizes. Th: pressure drop across the core barrel (shown in Figures 16, 17

and 18) or the suppcrting plate were less than the predicted values.

Since generally better agreement was obtained with WHAM for the simp-

(2)(6)

ler piping arrangements than in these tests, one could say that the
increased complexity or the less perfectly defined geometry of the core-in-
vessel case causes a wider spread between prediction and measurement. If
the measurements are to be believed, then WHAM (that is, one-dimensional
analysis) shows itself to be a powerful, but not assuredly accurate,

method of prediction in the form used here. Further development of the
method might hinge on establishing loss factors and standard methods of

treating area changes in plenums, core entrances, etc.

The results from WHAM predict the main features of the blowdown pat-
terns even when applied in this relatively simple manner. In general, the
"no loss'" calculations have predicted pressure histories that are more
severe than measured. A few minor frequencies that appear more prominent
in the measured pressure differential (Figures 13 and 15) may be associated
with the instrumentation. It appears that WHAM can be used to calculate
order of magnitude (usually conservative) pressures and therefore impulses
on major internal parts; but to use the WHAM results as input to calcu-
lations of dynamic response may not be successful because of slight fre-
quency mismatches, non linear response, and possible dynamic-hydraulic

interaction.
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TWO-DIMENSIONAL EFFECTS

An example of an effect which is not predicted by a straightforward
calculation using WHAM is the non-uniformity of the forces on the sup-
porting plate. Figure 19 shows the forces as measured by the plate sup-
porting "strain bolts." The initial pulse on the bolts on the side of the
barrel away from the break, bolts 5 and 6 (refer to Figure 18), was in
tension while the bolts on the near side (bolts 1 and 8) were in com-
pression. This was probably the result of the unequalized lateral foce on
the barrel causing a tilting moment toward the break. Within 15-30 ms,
however, the force had equalized and the bolts were receiving the up and
down pulses in unison. The WHAM calculations were based on the layout
assumption of a series of legs shaped as concentric rings at the outlet
position of the annulus. The area of the rings were increased until the
annulus cross sectional area was achieved. The lateral force on the
barrel was taken equivalent to the unbalanced force across the barrel
(pressure x area) for these ring shaped legs. The moment generated by
this lateral force would be taken up by the bolts and the contact of the
barrel with the vessel wall. The WHAM calculated lateral force shows some
agreement early in time with the forces on the strain bolts but the data
does not extend far enough to show whether the moment dies out or con-

tinues* as a condition of flow.

AMBIENT TESTS

The cold runs B-60 and B-73 were made to explore the subcooled de-
compression phenomenon by a relatively easy method not requiring heat-up.
The results were nearly as comparable with WHAM calculations as were the
high temperature blowdowns made later. For example, Figure 17 shows the
pressure history and prediction for a location in 2" blowdown tests at 75°C
and Figure 16 shows the same location results at 500 °C. The similarities
outweigh the differences. The success of this method suggests that simple

checks of the analytical treatments can be made for the full scale reactor

* During steady flow there may be a moment on the barrel caused by the
Bernoulli pressure loss in the region of the outlet. It may be of
interest to explore these aspects further.
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system by rupture disc testing of the pressurized system when filled with
cold water. Subsequent recalculation using the propagation velocities at
operating temperatures would then give a semi~verified prediction of the

accident case.

SATURATED PORTION OF BLOWDOWN

After decompression to saturation is accomplished, the pressure his-
tory in the hot water filled system becomes a function of the equation of
state of the fluid as it flashes to a vapor and of the critical two-phase
flow condition at the break. Previous reports(z)(s) deal extensively with
this part of the blowdown. The most important questions to be answered
by the experiments with the core in the vessel concerned the effect of the
core on the rate of flow from the vessel, the liquid level during the blow-

down and the liquid level remaining after the blowdown.

Rate of Flow

The results show that times required for blowdown are about the same
with or without the core, but that slightly more liquid is actually re-
moved in the core case; hence the actual flow rate might be slightly

higher. The mass flux is probably a strong function of the break size.

A typical result of the CSE blowdown experiments has been that the
(9)

mass flux as predicted by the Moody maximum flow slip model has not
been achieved in practice. However, the mass flow rate that was achieved
could be predicted by using Moody's calculation and multiplying the break
area by a factor. The factor was dependent on the size of the break. A
"homogeneous', that is a non-slip, thermal equilibrium, model has also been
used to predict mass flux of water from a broken pipe. This model pre-
dicts less flow than the Moody slip model roughly as shown by the ratio
plot in Figure 20. Also, shown on the ordinate are typical coefficients
for the different break orifices used in the CSE experiments. Although

at first it might seem that the CSE coefficients are merely the manifesta-
tion of the homogeneous flow condition, this is not the case as evidenced
by the typical range of enthalpies used in the CSE experiments. If the

flow followed the homogeneous model, the experimental coefficients of all
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nozzle sizes should have been below 0.6. However, some coefficients are
greater than this. The evidence gathered so far suggests that the flow is
"metastable'", i.e. non equilibrium flow. That is, not all the steam has
been formed that would ultimately form at the pressure conditions of the
exit duct. This allows the flow rate to be higher than for the 'homo-—
geneous" equilibrium, non-slip condition. The deviation from equilibrium
seems to be influended by the size of the break, showing less metastability
(and closer to homogeneous equilibrium flow) for the larger breaks. It

is a matter of interest how phenomena seen for these sizes might be
extrapolated to the pipe sizes involved in design basis accidents of

nuclear power plants.

The influence of the core on the blowdown rate was small. A com-
parison of the results with a core and with a sieve plate can be made by
referring to results of blowdowns made from the same nozzle and the same

initial temperature. The latter were reported in Reference 2 (see Table 5

for comparable runs).

TABLE 5. Comparable Blowdowns
(Core Series and Sieve Plate Series)

Core Sieve Plate Nozzle

Series Series Size Temperatures
Run No. Run No. Inches °F

B63 B50 2 500

B74 B51 4 500

B75 B52 6 500

For example, the pressure histories were not much affected by the presence

of the core as can be seen in the comparison of 6" blowdown results in

Figure 21.

LIQUID LEVEL

The liquid level history, however, was affected by the presence of
the core (Figure 22). The effect is caused by the presence of the

annular path of the fluid to the break. In the core case, the flow was
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generally downward toward the lower plenum and then upward in the annulus
to the break. In the sieve plate case (Run B52) the flow was generally up-
wards toward the break for most of the flow from the vessel. The upward
flow tended to hold the level up near the break but with the core the
liquid level seemed to show a drop in the lower plenum even before the
liquid was cleared out of the space below the core. This was probably
caused by the liquid level dropping below the top of the core tubes, such
that insufficient liquid came from above to make up that being lost from
the lower plenum. Subsequent reduction in level in the core region was due
to flashing and slow flow through the small leakage path through the plate
at TDR probe seal. The downward path through the core results in an
earlier uncovering of the core than would result from an upward path.
Hence, an accurate assessment of the flow path in the reactor core during

a design basis accident may be important to proper determination of the

core heat-up rate.

LIQUID REMAINING AFTER BLOWDOWN

The core had the effect of reducing the amount of liquid remaining in
the vessel after blowdown to a value similar to that which probably would
have remained if the break were at the bottom of the core (i.e., at the
core to annulus restriction). Figure 23 shows a comparison of several
blowdowns made with and without core from the top nozzle. The figure also
shows the differences in the amount remaining as a result of changing the
height of the break. The top nozzle is about 12 ft above the bottom of
the vessel, the middle nozzle about 4 ft,. and the core plate about 6 ft
above the bottom. The presence of the core apparently reduces the amount
of liquid remaining for the same break nozzle position. The mass remain-
ing is only a little greater than for the case of the middle nozzle break.
Although the fraction remaining is slight and the mass differences small,
the effect may be important when full scale reactors are considered in
which the height differences are larger. Analysis should be used to
properly account for these effects for scaling to the full size reactor

rather than using the ratios given in Figure 23 for direct application.
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APPENDIX A

Notes on the Development of
A Differential Pressure Transducer
A differential pressure transducer was designed which can measure
the differential pressure across the core plate and survive the hostile
environment of the fluid in the simulator vessel during blowdown. This
same basic design of transducer was used to measure the differential

pressure on the core barrel.

Two designs of an instrumented diaphragm differential pressure
transducer were proposed and tested statically at ambient temperature.
The design selected for use in the core plate of the CSE simulator vessel
had the diaphragm as an integral part of the transducer case. The sensing
element was a weldable uniaxial resistive strain gage mounted in the
center of the diaphragm. The resultant transducer would function in a
water environment to 600 °F if corrections were made to relate to the
ambient temperature calibration of data obtained. Two corrections which
had to be applied to calibration data at 70 °F involve the gage factor of

the sensor and change in modulus of elasticity of the diaphragm material.

The transducer was calibrated to * 50 psid. The resultant measured
strain vs. pressure was linear and the maximum static calibration errors
were 1 3.7% of the applied differential pressure or the error may be ex-
pressed as *+2.0% of the peak differential pressure applied. The natural

frequency was calculated to be greater than 4800 Hz.

The second design consisted of a 12 mil Inconel X-750 diaphragm
clamped in a stainless steel case. This thin diaphragm did not produce
an acceptable transducer; however, for larger thickness, this design was
thought to be sufficient. Further discussion of this design is given in

the text which follows.

DESIGN AND CALIBRATION

The completed differential pressure transducer had to be installed

in an existing 2 1/4" - 8 threaded hole in the core plate. The required
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differential pressure range was =50 psid. The environment in which the
transducer was to be used is 500 °F water with pressure pulses at nominal
rates of 100 Hz. As with all transducers, maximum reasonable accuracy,
sensitivity, and reliability were desired. To meet the above requirements,
it was decided to design and construct a strain gage instrumented diaphragm

AP transducer.

Weldable resistance strain gages were selected as the sensing elements.
When properly hydro-tested, this gage has proven to be reliable in the

harsh environment within the simulator wvessel.

The analysis of the diaphragm is based on the following assumptions:
1. Uniform diaphragm thickness

2, Small deflections

3. Infinitely rigid clamping around the diaphragm periphery

4, Perfectly elastic behavior
5

. The presence of the sensing element is negligible

With these assumptions, the radial strain is

3R 2 Py 2
fr T —2— 3. 3 v 5—7- = +v
2 Y R -
8 Et o

where
P = differential pressure
r = radius
R, = diaphragm radius
v = Poisson's ratio

= diaphragm thickness

= modulus of elasticity

A plot of this equation for radial strain is shown in Figure A-1.

For interest, the tangential strain is also shown.

Maximum signal would be obtained if the point of maximum strain were
instrumented (r = R,). Because of physical contraints, the strain gage
could not be located here. This maximum strain was the determining factor

for the diaphragm dimensions. The second choice location, the center of
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Tangential Strain l

Radial Strain 5 5
€ = _3PRD (1-Ll )

R 4t2E

* ¢

Figure A-1. Strain Distribution in Clamped Diaphragm

the diaphragm, was where the gage was located. The active element of the
gage was to be as short as possible because the radial strain drops off
rapidly (Figure A-1) and the signal from the gage is the integrated value

over the gage length,
The resonant frequency of such a diaphragm is

¢ - 2268 .
Ro vy - v

v is the density of the diaphragm material.

The radial strain at r = Ro is the maximum strain in the diaphragm

and is
R? 2
3 7 oP (1-v")
r 2
4t E
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This is twice the strain at r = o for the same differential pressure.
The larger the magnitude of strain at r = R,, the greater would be the
transducer's response per psid applied. It is natural then, to make the
diaphragm of a material with a high yield strength. Such a transducer was
built using a 12 mils 1.25 inch diameter Inconel X-750 (Eyd > 3000 at
600 °F) diaphragm placed in a stainless steel case. The diaphragm was not
clamped tight because of differences in the thermal expansions of the two
materials. The radial clearance was 2 mils, and the axial clearance was

1/2 mil.

Static calibration of this differential pressure transducer resulted
in errors of * 10 psid throughout the range of * 50 psid. The difficulty
is thought to be related to minor imperfections in the case or small
particles of dirt between the diaphragm and the case which tend to change
the static of strain in the diaphragm. Particles of dirt may jam between
the diaphragm and case which, when the pressure is removed, do not allow
the diaphragm to return its free state. It is believed that with larger
and thicker diaphragms, (where the presence of dirt would produce negli-
gible effects) a '"clamped" diaphragm of this type would produce a usable
transducer. Such a transducer was built for use in the core barrel wall

of the CSE simulator vessel.

Because of the difficulties encountered with the mechanical con-
figuration of the Inconel diaphragm in the small differential pressure

transducer, a unit construction design was built and tested.

This transducer was machined from stainless steel and is shown in
Figure 3.5. This material has a yield strain of 730 ue. The experimental
strain measured for this differential pressure was 330 ue, and the agree-

ment is considered satisfactory.

Two additional factors had to be included before the data obtained
from this transducer could be evaluated. The most significant was the
change in modulus of elasticity of stainless steel with temperature. For

stainless steel

E = 28 x lO6 psi

70°F
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E550°F = 24.8 x lO6 psi

At 550 °F, the pe/psid value will be 1.129 the value of 70 °F (static cali-
bration value) because of this decrease in modulus. The second tempera-
ture correction was the gage factor of the weldable strain gage. The gage
factor is approximately 57 lower at 550 °F than at 70 °F. The gage was
connected in a 3-wire Wheatstone bridge. The net effect of the decrease

in gage factor was a 5% decrease in voltage output for a given strain

value.

The data recording system was calibrated using parallel calibration
resistors. The overall indicated response (AP) produced by the cali-
bration resistors was 12.9% (change in modulus) -5% (change in gage fac-
tor) or 7.9% higher at 550 °F than at 70 °F. That is, the MV/psid value
at 550 °F were 1.079 times this value at 70 °F when all other parameters

are unchanged. The needed calibration information is shown in Table A-1
Notes:
1. Calibration resistors to be 1% or better.
2. Calibration must be performed at 70 °F.
TABLE A-1

CALIBRATION DATA

Rcal Indicated AP Indicated AP
ohms 70 °F - psid 550 °F - psid
800K 14.39 13.34
600K 19.07 17.67
400K 28.42 26.34
200K 57.41 53.21
150K 76.67 71.06
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CONCLUSIONS AND RECOMMENDATIONS

An accurate differential pressure transducer with sufficient sensi-
tivity has been developed for AP measurements on the CSE simulator vessel
core plate. This transucer will survive the 550 °F water environment of

the simulator vessel.

It is recommended that high yield strength material be used in future
construction of such AP transducers of this design since the potential
signal which can be obtained from the transducer is directly dependent on

this strength.

If such measurements of differential pressure are to be made in a

less hostile environment, it is recommended that one consult Reference 10.
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APPENDIX B

Data Plots

This appendix contains some of the plots of raw data taken during
the core series blowdown tests. Fiscal limitations did not allow all data
to be correctly zero adjusted. Also available but not given here are
other pressure and temperature histories of the fluid, force data, and the

data of temperatures and strain in the bottom of the vessel.

B-1



TABLE B-1. Figure Numbers - Appendix B

T = See main body of report

BNWL-1524

Run Number

Low Speed Data B-63 B-74 B-66 B-75
Weight of Water B6 B12 B18
Nozzle Thrust Force B6 B18
Level of Fluid Remaining B1 B7 T
Pressure at Exit (P-10) B1 " B12 B18
Pressure at Exit Pipe (P-4) B1 " B12 B18
Pressure,Nozzle R (P-6) B1 " B12 B18
Pressure, Instrument Ring (P-15) B1 " B12 B18
Pressure, Radial Probe (P-13) B1 " Bi13 B19
Pressure,Nozzle C (P-12) B1 B8 B13 B19
Pressure,Core, Side Near A (P-20) B1 B8 Bi13 B19
Pressure,Core, Side Opposite A (P-21) B2 B8 B13 B19
Pressure,Center of Core Assembly (P-22) B2 B8 B13 B19
Temperature,Exit Pipe T-3 B2 B8 B13 B19
TemperaturesNozzle R T-1 B2 B8 B14 B20
Temperature,Nozzle J T 2 B2 B9 B14 B20
Temperature, Inst. Ring T-15 B2 B9 B14 B20
Temperature, Lower Plenum TWG 7 B2 B9 B14 B20
High Speed Pressure Data
Exit Orifice (P-10) B3 B15  B20
Exit Pipe (P-4) B3 B15 B20
Nozzle R (P-1) B3 T B15 B20
Core Near A (P-20) B3 B9 B15 B21
Core Opposite A (P-21) B3 B9 B15 B21
Center of Core (P-22) B4 B10 B15
Radial Probe Quter (P-13) T B16
Radial Probe Inner (P-14) B10 B16 B21
Diff. across Plate CPDP-1 B4 B10 B16 B21
Diff. across Plate CPDP-4 B10 B16 B21
Diff. across Barrel CBDP-1 B4 B11 B16 B21
Diff. across Barrel CBDP-2 B11 B16 B22
Diff. across Barrel CBDP-3 B4 B11 B17 B22
Plate Force SB 11 B4 B17 B22

51 B4 B17 B22

6 6 B5 B11 B17 B22

61 B5 B17

81 B5 B17
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