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SUMMARY 

Applications of the conventional finite element method to problems of 
mining subsidence can result in excessive expense, particularly when nonlinear 
constitutive stress/strain relations are used for the geological medium. An 
alternative finite element method is proposed which captures the essential 
characteristics of subsidence observed both in more sophisticated finite element 
programs and in the field. The alternative method treats the overburden with 
classical beam theory with the inclusion of shearing deformation. The nonlinear 
axial response of the pillars as well as the nonlinear response of any backfill 
that may be present is also modelled. Flexural and bending modes of deformation 
are included for the pillar and backfill media with classical beam theory. 
Shearing deflections are also included for these structural members. The 
development of the constitutive relations, the implementation of the consti
tutive relations in the computer program and the numerical algorithm for the 
problem solution are presented. An example problem in subsidence is presented 
to illustrate the potential of the computer program. Computer cost for the 
example problem clearly demonstrates that the alternative method for analysis 
of subsidence problems deserves consideration. 

INTRODUCTION 

In the last several decades the finite element method has been applied to 
numerous mining problems with the gratifying result that designs heretofore 
arrived upon by trial and error have been improved both from production and 
safety standpoints. Applications of the finite element method to problems of 
mining subsidence have been more difficult than applications in other areas due 
to the lack of obvious multiple geometric symmetry in most mining operations. 
Thus, finite element models of complex mining arrangements by necessity involve 
a significant number of degrees of freedom. When direct solution procedures 
are used to solve the system of linear equations, the solution of practical 
subsidence problems is often prohibitively expensive due to excessive band
widths. Although substructuring has alleviated these deficiencies to some 
degree, substructure technology has not yet permeated the profession. 



The purpose of this paper is to present an alternative method of modelling 
subsidence in a practical and inexpensive manner. The method we shall propose 
incorporates what we feel to be the salient deformation characteristics of the 
quasi~static behavior of typical geological materials while maintaining the 
model objective of minimizing expense. 

The remaining sections of this paper will describe the components of the 
computer model, the constitutive relationships assumed for the geologic 
materials, implementation of the constitutive relations, and presentation of an 
example. A user's manual for the computer program (1) and copies of the deck 
are available at no cost from the authors. 

SUBSIDENCE MODEL ELEMEN'I'S 

The program we will present is a nonlinear, two-dimensional, finite element 
computer program for evaluating static subsidence in a room-and~pillar or a 
lane-and~pillar configuration with homogeneous and isotropic overburden and 
homogeneous and isotropic pillars. The basic structural elements within the 
program ax·e: 

~ overburden elements 
~ pillar elements 
~ room elements 

The two-dimensional overburden elements possess six degrees of freedom; 
specifically, horizontal and vertical translation and rotation at both ends. 
The behavior of these elements is governed by the slope deflection equations of 
classical beam theory (2) with the inclusion of shear deflections. The shear 
deflections are assumed to be invariant with respect to depth. 

The pillar elements possess three degrees of freedom, all at the over~ 
burden/pillar connection. The pillars may rotate or translate vertically or 
horizontally. Each pillar is considered to be rigidly attached to a foundation 
at its lower end (i.e., the lower end may not rotate or translate). 

'I'he room elements are similar to the pillar elements. These elements may 
represent totally excavated cavities by specifying a compressive strength of 
zero, or they may represent "backfilled" rooms with the appropriate input para
meters. Room elements are also considered to be rigidly attached to a founda
tion at the lower end. Shear deflections for the pillar and room elements are 
assun~d invariant over the width of the room or pillar. 

The uniaxial pillar and room elements do not allow for horizontal varia~ 
tions in vertical stress and are only connected structurally via the overburden 
elements. The response of the pillar and room elements to load is characterized 
by an initial pore volume decrease and collapse followed by a monotonic strain 
hardening behavior asymptotically approaching the unconfined compressive 
strength. Only response to loading in compression is modelled in the program. 
The pillar and room elements possess infinite stiffness in tension. 
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CONSTITUTIVE RELATIONSHIPS 

The uniaxial stress/strain behavior of the pillar and room elements is 
illustrated in Figure 1. Region I of the stress/strain curve represents pore 
volume decrease or microcrack closing and Region II represents strain hardening 
of the matrix material. Mathematically: 

a 

where 

* 

* 

* for E: < £ 

(C ~ k) [1 - e -A (c ~ £ ) ] + k * for E > £ 
0 

a = uniaxial stress, 

£ uniaxial strain, 

C = unconfined compressive strength, 
0 

£ , N, A constants determined from laboratory stress/strain data. 

* Note that the maximum tangent modulus from Eq. (1) occurs at E = E • 
Mathematically, the maximum tangent modulus is: 

dO 
max as A (C - k) • 

0 

From the requirements of stress and stiffness continuity at E 
following relationship is obtained: 

k 

* A.c s 
0 

* N + A£ 

* 

* E , the 

(1) 

(2) 

If we consider that the pore structure has collapsed at s , the permanent 
deformation which would be present from an elastic unloading from s* (with a 
tangent modulus at s*), would represent the pre-loading porosity, n. 

The resulting expression for pre-loading porosity is obtained: 

* 
n = E (N - 1) 

N 
(3) 

Bending and flexural deformations within the pillar and room elements are 
considered to be linear with the applied load and represented with the slope 
deflection equations. The deformation modulus for these modes of loading is 
taken to be identical to the tangent modulus from the stress/strain curve of 
Figure 1 at the present vertical compressive strain. 

The load/deformation response of the overburden elements is taken to be 
linear and constant. Classical beam theory applies with the addition of shear 
deformations. 



Region I 

Region II 

E = n 
Uniaxial compress1ve strain, E 

Figure 1. Uniaxial stress/strain response for pillar and room elements. 

ELEMENT STIFFNESS MATRICES 

This section describes the form of the element stiffnesses. The general 
form of the force/displacement relations is: 

where [Ke] the element stiffness matrix, 

{ue} element displacement vector, 

{Fe} = element force vector. 

Discussion of the direct stiffness method and further explanation of Eq. 
(4) are given elsewhere (2). 

Overburden Elements 

The forces, displacements, and appropriate sign convention for an over~ 



burden element are illustrated in Figure 2. The corresponding form of Eq. (4) 
is: 
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= Young's modulus of the overburden element, 

= moment of inertia of the overburden element about the z axis, 

= length of the overburden element, 

"" cross-sectional area of the overburden element, 

= 2- 2 
6~Ib/L Ap~ = 12Ib(l + V)/L Ap), 

= effective area of the overburden element cross section (Slb/6 for a 
rectangular cross-section; see any elementary structures text), 

Gb = shear modulus of the overburden element, 

V = Poisson's ratio. 

Figure 2 Overburden element forces, displacements, and positive siqn 
convention. XBL 809-1969 



Pillar Elements 

The forces, displacements, and appropriate sign convention for a pillar 
element are illustrated in Figure 3. The force/displacement equations are: 

where 
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The following relations between the displacement and forces of the pillar 
connected to node "i" of an overburden element and the displacements and forces 
at the overburden element node "i" can be stated as: 

X 
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F 
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where Hb = the height of the overburden element. Then, Eq. (6) becomes (in 
terms of the displacements and forces at the ith node): 
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Equation (7) cannot be written in the form of Eq. (4) directly due to the 
obvious nonlinearity. In other words, the stiffness of the pillar element 
depends explicitly on the vertical displacement of the pillar element. The 
solution procedure or numerical algorithm for the nonlinear equations is 
discussed later in this paper. 

Room Element 

~ 

The forces, displacements, and appropriate sign convention for the room 
element are illustrated in Figure 4. The force/displacement equations are 
identical to those of the pillar elements except that the subscript "p" is 
replaced with a subscript "r" indicating room material properties and geometry. 

Figure 3 Pillar element forces, 
displacements, and 
positive sign convention. 

XBL 809-1978 

Figure 4 Room element forces, 
displacements, and 
positive sign convention. 

XBL 809-1970 
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NUMERICAL ALGORITHM 

If the nonlinearity of Eq. (7) did not exist, the element force/displace
ment relations [Eq. (4)] for each element in a given problem mesh or structure 
could be merely assembled by means of the direct stiffness method and the 
resulting set of equations solved. Mathematically: 

[K] {U} = {F} 

where [K] 

{u} - l by 3N vector of displacements at each of the N nodes, 

{F} 1 by 3N vector of forces at each of the N nodes (typically 
gravitational forces vertically or those due to tectonic in-situ 
stresses horizontally) . 

( 8) 

However, due to the nonlinear equations, the solution procedure implied by 
Eq. (8) is recast as: 

where [K] the stiffness of the structure consisting of the linear portion 
of the stiffness for all element types, 

{u.} = l by 3N vector of displacements at iteration i, 
1 

* [K ] the nonlinear part of the stiffness of the structure evaluated 
for displacements at the i- l iteration. 

(9) 

The linear portion of the pillar and room stiffness is obtained by taking 
a power series representation of the exponential term of Eq. (7). In this 
manner, the stiffness components for the room and pillar elements in the [K] 
matrix are calculated with the maximum tangent modulus (modulus at c = c*). 
Therefore, the incremental displacement resulting at each iteration (Ui - Ui _ 1 ) 
is guaranteed to be a monotonically decreasing function of the number 
of iterations. 

The iteration procedure of Eq. (9) is repeated until a specified number of 
iterations has been performed or until a maximum relative tolerance on displace
ment change has been satisfied at every node. Relative tolerance for this 
program is defined as: 

Maximum 
U

J.· j 
- u. 1 

l 1-
j 1' 2 I 3' •.. '3N (10) 

where j the displacement equation number, 

i the iteration number. 



Equation (9) is solved with a direct solver for banded s~netric matrices. 
Repeated iterations are accomplished by continually re-evaluating the right-hand 
side of Eq. (9) and performing the appropriate load vector modification and 
back-substitution for the new displacements. 

EXAMPLE PROBLEM 

This section illustrates the input and results for a typical example 
problem and demonstrates how the results may be interpreted. The example 
problem consists of three lanes 2 m high by 6 m wide located 20 m below the 
surface (see Figure 5). The lanes or rooms are separated by 4 m wide pillars. 
By taking advantage of the mechanical symmetry about the vertical plane through 
the center of the central room, only one half of the configuration need be 
modeled. The discretization chosen for the evaluation of the subsidence is 
illustrated in Figure 6. The model is extended in the positive horizontal 
distance to such a position that the right-hand end will not influence the 
results near the rooms. Due to the mechanical symmetry, the left-hand side of 
the model is not free to rotate or translate horizontally. In the region of 
the rooms, the "coarsest" discretization possible has been used. In the pillar 
region separating the two modeled rooms, several pillar elements could have been 
used rather than a single element with an appropriate increase in the number of 
overburden elements. 

.. ;-. 
• • • 0 ' ~ • ~ '.' • '. f> ·.' '·.' •• 

XBL 809-1976 
Figure 5. Underground lane section. 

Two cases will be presented for this model. Firstly, the model is 
evaluated with fully excavated rooms (i.e., the room elements have zero 
strength). Secondly, the rooms will be assumed to be backfilled with a low
strength material. The assumed stress/strain response of the overburden and 
room and pillar materials is shown in Figure 7 and the remaining material 
properties are given in Table 1. Note that the pillar and room material has 
been given a density of zero. Within the program the vertical stress due to the 
weight of the pillar and room elements is not included in the force/displacement 
equations. Rather, the mean vertical stress due to the weight of the pillar or 
room (one half the height of the element times the density) is merely added to 
the vertical stress induced by the overburden prior to printing of the output. 
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D Overburden 

Rooms 

~ , ~ Pillars 

Figure 6. Discretization of underground lanes. 
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Figure 7 Stress/strain response for model materials. 

XBL 809-2065 
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TABLE l, MATERIAL PROPERTIES F'OR EXAMPLE PROBLEM 

Region co A. * E G \) p N E 

(MPa) (MPa) (MPa) (MPa/m) 

Overburden ~ 3000 1200 0.25 ~ 0.027 ~ -
Pillar 3 - ~ 0.25 100 ~ 2 0.02 

Room 0/1.5 ~ ~ 0.25 50 ~ 2 0.04 

Since horizontal forces between pillars are not explicitly taken into 
account in the program, the influence of confinement can be approximated as 
follows. In pillar elements that will experience little horizontal confinement 
(elements between rooms), input the uniaxial stress/strain response of the 
material. In pillar elements that will experience horizontal confinement 
(elements removed from the rooms), input the stress/strain response of the 
material at the estimated confining pressure. 

The surface displacements for the two cases are shown in Figure 8. The 
vertical displacements from the computer output are reduced by the amount of the 
vertical displacement over the "pillar" region without rooms beneath. In other 
words, the vertical displacement in Figure 8 is that which would result only 
from the excavation of the rooms. Since the computer output displacements are 
for nodal locations that are at a depth of one-half the height of the over~ 
burden element, the horizontal surface displacements are calculated as: 

where X = horizontal displacement at the top surface of the overburden element, 
s 

X. horizontal displacement 
1 

at the nodal location, 

e. rotation at the nodal location (positive clockwise). 
1 

The three forces which act on the overburden element at each end (see 
Figure 2) each produce a horizontal stress at the top surface of the overburden 
element. This horizontal stress at end "l" of the element may be calculated as: 

. H 
b • H • L b b 

and at end "2" of the element as: 

F • H 
82 b 

2 · I 
b 
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where compression is taken as positive. The horizontal stress at the top sur
face of the overburden element will be numerically the same for either end of 
the element. 
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Figure 8. Surface displacements, 

The components of the horizontal stress arising from each of the three 
forces is illustrated in Figure 9 for both cases of the example problem, The 
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superimposed total horizontal stress is shown in Figure 10. Note that a tensile 
stress of about 0.1 MPa occurs at a distance of about 18 m from the center of 
the three-room configuration. 
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Figure 10. Total horizontal stress at the overburden surface. 

In the example cases presented (with and without backfill) 31 and 32 
iterations, respectively, were required to achieve a relative tolerance of 10- 3 

on displacements. Each example problem required 0.32 seconds of CPU time on a 
CDC 7600. The computer program is written with a dynamic storage feature that 
changes required core for the specific problem at execution time, further 
reducing the cost of operation. At nominal commercial rates, the cost of 
executing each example problem would be approximately $0.45. 
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CONCLUSIONS 

An inexpensive alternative to the conventional finite element method has 
been presented for evaluating subsidence problems in materials with nonlinear 
stress/strain behavior. Application of the model to a typical subsidence 
problem has demonstrated the capability to reproduce the essential charac
teristics of subsidence observed both in more sophisticated finite element 
calculations and in the field. 
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