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ABSTRACT 
 
Computer simulations and empirical studies of the core structure of single dislocation in 

bcc metals over the last few decades have made enormous contributions to interpret many 

abnormal mechanical behaviors of bcc metals: tension/compression stress asymmetry, 

high Peierls (friction) stress for the motion of screw dislocations, and strong strain-rate 

and temperature dependence of yield and flow stresses at low temperatures [1].  

However, the single-dislocation core model remains inconclusive to elucidate a peculiar 

anomalous slip behavior of bcc metals, which occurs on planes for which the Schmid 

factors are fifth and sixth in the order of largest Schmid factors for the {110} <111> slip 

systems, and for which the resolved shear stress is less than half that on the (101) [111] 

primary system.  Note that the anomalous slip behavior is also known as the violation of 

Schmids law, which states that plastic deformation of a single-crystal metals would 

begin on a slip system (a combination of the slip plane and the slip direction) when the 

resolved shear stress on the slip plane and in the slip direction reached a critical value 

(i.e., critical resolved shear stress).  The resolved shear stress () is given by  =  cos  

cos , where  is applied stress,  is angle between the stress axis and the normal to the 

slip plane, and  is angle between the stress axis and the slip direction.  The factor cos  

cos  is usually called the Schmid factor (m). Schmids law in general is well obeyed by 

close-packed face-centered cubic (fcc) and hexagonal closed-packed (hcp) metals, which 

deform by slip in close-packed directions on planes that are close-packed planes.  Body-

centered cubic (bcc) metal is however not a close-packed structure, which deforms by 

slip in the most closely packed direction: <111> on a number of different planes 



 

belonging to the <111> zone such as {110} and {112} planes.  Figure 1 shows an 

example of the operation of anomalous slip in a Mo single crystal oriented with the stress 

axis parallel to a nominal “single-slip” orientation of [ 2  9 20], in which (101) [111] is 

the primary slip system that has a maximum Schmid factor (m = 0.5) and requires the 

lowest stress to operate among the twelve {110} <111> slip systems. TEM examination 

of the dislocation structure formed on the (101) primary slip plane reveals that in addition 

to the (101) [111] slip system, the coplanar (101) [111] slip system which has a much 

smaller Schmid factor (m = 0.167) is also operative.  Although numerous and intensive 

studies have been conducted for the last four decades since Duesbery first reported the 

occurrence of anomalous slip in Nb single crystals in 1967 [2], the governing 

mechanisms remain elusive. Results of numerous studies [3] have indicated that the 

anomalous slip in bcc metals in general occurs in ultrahigh-purity crystals with large 

sample sizes (> 3 mm) deformed at low temperatures; it accompanies a high work-

hardening rate and fine and planar slip traces. This is in contract to a low work-hardening 

rate in association with coarse and wavy slip traces when the anomalous slip disappears 

at elevated temperatures.  It is noteworthy that coarse and wavy slip traces appear when 

both {110} <111> and {112} <111> slip systems become operative. Progress has been 

made recently on obtaining crucial evidence to rationalize the anomalous slip behavior of 

bcc metals through careful TEM observations of dislocation substructures evolved in the 

primary and anomalous slip planes of single-crystal Mo compressed at room temperature.  

Critical results are presented here to elucidate the underlying mechanism for the 

anomalous slip.  
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Fig. 1.  (a) A bright-field TEM image showing the operation of the (101) [111] anomalous slip 

system in a [ 2  9 20]-oriented Mo crystal. (b) A list of Schmid factors for the {011} <111> slip 

systems in the [ 2  9 20]-oriented test sample. 
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