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contact time, i.e., the time needed to
superheat the liquid

the time needed for a bubble to reach

the time needed for a bubble to reach
the radius Rm

temperature of the bulk liquid
temperature of the superheated liquid
saturation temperature

temperature of the solid, i.e., of the
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ABSTRACT

An analytical expression is presented which permits
the prediction of the critical heat flux density in}pool
boiling of saturated or subcooled liquids. The theore-
tical results are in good agreement with experimental
data.

The hydrodynanmic characteristics of transitional
boiling from a horizontal surface are analyzed; the
phenomenon is interpreted in terms ofvTaylor instability.
It is shown that the minimum heat flux is limited by the
effect of Taylor instability only; an equation is derived
which permits the prediction of this heat flux density.

The hydrodynamic characteristics & nucleate boiling
from a horizontal surface are analyzed. The similarity
between bubble formation at an orifice and bubble
formation in nucleate boiling is investigated. This
similarity indicates a relation between the diameter of
a quasi-sgtatic bubble departing from the surface and the
radius of the nucleating cavity. An equation is derived
also for the product bubble diameter times frequency of
bubble emigsion; the predicted values are in good
agreement with experimental data of Jakob. It is

possible thus to estimate the maximum frequency of the



release of single bubbles in nucleate boiling. The
similarity between nucleate boiling and the process of
gas bubbling from a porous surface is discussed. The
similarity indicates that the critical heat flux is a
- hydrodynamic phenomenon known as ''£looding'.

The nucleation from a solid surface is revieﬁed.

The analysis of available experimental data indicates
that the diameter of a nucleating cavity can be related
to-the heat flux density and to the superheat temperature
difference. Further experimental investigations are
needed.

The problem of bubble growth is discussed. It is
poiﬁted out that the original formulation of the problem
as given by Bosnjakovie and Jakob”contains the essential
features of the problem. The theory of Bosnjakovie and
Jakob is extended to include the effects of a non-uniform

temperature field.




INTRODUCTION

Developments in nuclear reactors and rocket engines
where exceedingly high heat transfer rates occur in
comparatively small areas, have focused attention on
boiling as a mode of transferring heat at. high flux
densities, To attain these high heat transfer rates by
forced convection would require excessively high velo=
cities with resulting high pressure drops. With
nucleate boiling,'however, they can be reached at much
lower bulk velocities. PFor this reasoﬁ extensive experi-
mental and theoretical studies of this phenomenon are
conducted in this country and abroad.

The phenomenon is complex because three different
regimes exist: nucleate, transition and film boiling.
The change from one regime to another is accompanied
by marked changes in the hydrodynamic and thermal
state of the system., These regimes are illustrated in
Figure I. When the temperature of the heating surface
is below the fluid saturation teﬁperature heat is
transferred by convection, forced or matural, depending
on the system, This‘non-boiling region (AB) has been
extensively investigated and equations have been derived

which permit the prediction of heat transfer rates.
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Nucleate boiling (BC) starts when the temperature of the
surface exceeds the saturation by a few degrees.
Adjacent to the surface a thin layer of superheated
liquid is formed in which bubbles nucleate and grow from
some preferred spots on the surface. The thermal
resistance of this superheated liquid €£ilm is greatly
reduced by the agitation produced by the bubbles. An
increase of the wall temperature is accompanied by a .
large increase of the bubble population causing in turn
a sharp increase of the heat flux., However, as the
temperature increases, bubbles become so numerous that
their motions intereact. Under these conditions the
nucleate heat flux reaches its peak. If the temperature
is further increased transition boiling begins.
Westwater and Santangello (1) have found that in this
region (CD) no liquid-solid contact exists. The surface
is blanketed by an unstable, irregular film of vapor
which is in violent motion. In transition boiling an
increase of temperature is followed by a decrease of
heat flux until a minimum value ié reached at which
point £11m boiling stéffﬁ. This new regime is charae-
terized by an orderly dischargé of large bubbles with a
regular frequency’aﬁd'af regular intervals. In the film
boiling region the heat flux increases with én increase

of temperature but at a much slower rate than in nucleate




boiling. Consequently, at high heat transfer rates the
temperature of the heating surface can exceed the melting
temperature and "burnout' acccurs. It is of great
practical interest to operate in the nucleate region
because of the favorable heat transfer. The problem ig
to‘aunid the "burnout'" phenomenon.

The temperatures of the wall in nucleate boiling
are quite low, for example, with boiling water the tem-
perature of the surface at the point C exceeds the fluid
saturation temperature by about 50°F at 14.6 psia and
by only l09F at 2000 psia. Therefore, in many designs
the exact surface temperatures are of secopdary
importance. This is especially true for constant heat-
input systems such as a nuclear reactor. The essential
information needed by a designer is the limit to the
heat transfer rates given by the eritical heat flux,
i.e., by the flux corresponding to point C. The tem-
perature at point C is relatively unimportant. An
investigation of the conditions leading to this masdmum
heat flux is therefore of practical and theoretical
interest. Such a study, as applied to a horizontal
plate, is reported in this dissertation. The studyvis
concerned with determining the limiting hydrodynamie

conditions which characterize nucleate and transitional



boiling. The critical heat flux (point C) and the
minimum heat flux (point D) are derived from these
hydrodynamic limits.

An understanding of the conditions ieading to the
changes in the regimes of boiling requires an under-
standing of the processes which characterize each
regime separately. Because of this, both nucleate and
transitional boiling are investigated and discussed.
The dissertation is divided into six chapters according
to the problem under consideration. Results of experi-
mental investigation of nucleate boiling are discussed
in Chapter I, which is, therefore, a review section.
The problem of bubble growth is discussed in this dis-
sertation because nucleate boiling is characterized by
the action of vapor bubbles. In Chapter II, the bubble
growth theory of Bosnjakoviec and Jakob is extended to
include the effect of a non-uniform temperature field.
In Chapter III, the hydrodynamic aspect of nucleate
boiling is analyzed; whereas the hydrodynamic aspect of
transitional boiling is investigated in Chapter 1IV. The
minimum and the eritical heat flux are analyzed in

Chapters V and VI respectively.




CHAPTER I
A REVIEW OF NUCLEATE BOTLING

The first systematic investigation of nucleate
boiling was undertaken by Jakob, Fritz and Linke, the
results of which were reported in a series of outstanding

papers (2, 3, 4, 5, 6). The high heat transfer rates in

" nucleate boiling were attributed to bubbles which induce -

locally a strong agitation of the liquid near the heating
surface. The effect of bubble agitation on the heat
flux was further investigated and confirmed by Gunther
and Kreith (7) and by Rohsenow and Clark (8).

Jakob and Fritz (2) noted that the high heat
transfer rates, which are caused b& local flow oscil-
lations that exist in the vicinity of growing and rising
bubbles, can be induced also by liquid jets flowing in
between rising bubble columns and impinging on the
heating surface. The total heat f£lux from the heating
surface to the liquid is the sum of such local heat
transfer rates. Consequently, in order to gain an
understanding of nucleate boiling it is necessary to
understand the local processes which are associated with

single bubbles. It is necessary thus to investigate



| three aspects of the problem: the nucleation of a bubble,
the growth of a bubble, and finally, thé.hydrodynamica
of a bubble departing from the heating surface. These: _
three aspects of the problem, which were investigated py
Jakob and co~-workers as well as by other investigatofs;

will be discussed in the sections which follow.

I-l. Nucleation from a Solid Surface

The effect of a surface on the process of'nuclgation
will be discussed in some detail because, as it will be
seen in the sections which follow, the conditions of the
surface determine the temperature at which the bubble
| will generate and, thus, determine the subsequent
history of a growing bubble.

It is'experimentally observed that in boiling
liquids bubbles nucleate at liquid superheat temperatures
which are considerably less than those which woﬁld be
predicted by classical nucleation theories. It is known,
also, that bubbles originate from specific nucleating
centers located on the heated surface. The question of
whether thesé nucleating centérs are roughness projections
or cavities in the surface was examined in detail by
Bankoff (9). ‘By comparing thé theoretical superheat
temperatﬁres whiéh‘ﬁbula be required to generate a bubble
ffom a flat or>proje¢ting surféce, with the superheats

which are observed in experiments, Bankoff concluded




that only pits or scratches which contain gas or vapor
are possible sites for nucleation. Thésé deductions
were conclusively verified by the experimental results\
of Clark, Strenge and Westwater (10).

The nucleation process from a cavity was investi-
gated by Jakob and co-workers (2, 3, 4, 5); by
Dzhandzhgava (11); Nesis (12); Courty and Fouét (13,
14); Ellion (15); Bankoff (9); Clark, Strenge and
Westwater (10); and by Griffith and Wallis (16). The
problem can be resolved into two parts: one, an inves-
tigation of the conditions necessary to entrap gas and/or
vapor into surface capillaries (pits or 5cratches) and,
two, an investigationAof conditions which would permit
the release of this vapor in the form of a bubble.

The process of entrapment of a gas and/or’vaporj
into a cavity and the related problem of investigating
whether this cavity will remain stable in time, i.e.,
whether or not the entrapped gas will diffuse and
whether the entrapped vapor can condense, are of
importance in an analysis of transient boiling and of
| boiling hysteresis. Since these latter two nrocesses
are not the topic of the present investigation, the
entrapment and the stability of a cavity will not be
discussed here. The reader is referred to the papers by

Courty (13), Bankoff (17, 18) and by Sabersky and

A



Gates (19) for a discussion and investigation of this
problem. An analysis of transient boiliﬁg will be
preéented in a future report where the entrapment process
will be taken up also.

We shall proceed with the discussion of the con-
ditions which permit the release of a gas or vapor from

a cavity, a problem which was f£irst analyzed by Courty

and Foust (13, 14) in this country and by Nesis (12) in

- Russia.

I-2. Bubble Generation from a Cavity

Consider an amount of gas or vapor which is
entrapped in a éylindrical capillary with vertical walls.
shown in Figures I-1 and I-2, which are reproduced from
Nesis! paper (12). When the liquid wets the soiid,
i.e., when the contact angle © , is less than 906

(FPigure I-1), the pressure in the éavity is given by:

PaR .20
r

where r is the radius of the curvature of the interface
and P; 1is the pressure in the iiquid. The maximum
pressure in the cavity occurs when the radius, r , is
minimum. In expanding from stage I to stage VI, the
minimum curvature occurs when the interface turns around

the corner. The minimum value of r , (rpin = r* ) is
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Figure I-1. Figure I-2.

Liquid Wets Liquid Does
the Solid Not Wet
the Solid

Nucleation from a Cavity

(These figures are reproduced from
the paper by Nesis (12).)
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equal then to the radius v, , of the cylindrical capil-
lary, thus r* = T, Consequently, if the cavity is to

be active, i.e., if it is to be a nucleating center, the
pressure within it must reach the maximum value, corres-

ponding to r = r*. Using Clausius-Clapeyron's equation:

R-p L

R, ———— I-2
T () =T, T (v, =)

\

This masdimum pressure difference can be felated to a
temperature difference. For a cavity which contains
only vapor, and for a uniformly superheated liquid, the
superheat temperature which will activate a cavity of

radius r_. , is given by Equations I-1 and I-2, thus

o

Te(ro)- Ty - 20 T(W-w) 1-3
r L

It should be noted here that T, is a characteristic of
the surface. 'Consequéntly, for a given cavity at a
given pressuré different staffing superheat temperatures
can be obtained by varying the ?élue of the surface
tension. ‘ | | | |

If the cavity contains both, vapor and gas, the
temperature of the superheated liquid, T, (r, ), will be

reduced by an amount corresponding to the partial

11
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pressure of the gas. |
When the cavity does not wet the solid ( e > 909),
the interface is concave (see Figure I-2), and the

pressure within the cavity is given by

P P 2@
= L - —

r
In expanding, the interface changes from concave to
convex; the maximum pressure occurs when the radius of
the convex interface establishes the contact angle @ ,
at the entrance of the cavity. Since the radius of
curvature, r , and the radius of the cavity, r, ,

are related by

x re
oin B

it follows from Equations I-1, I-2 and I-5 that with a
non-wefting liquid the cavity will be activated At a
lower superheat temperature difference T, - Te .
Similér deductions can be derived for conical
cavities, which were investigated by Courty (13),
Bankoff (17), and Wallis (16). Since the radius of
curvature of the interface in a conical cavity (see

Figure I-3) is given by
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- Pigure I-3.

Nucleation from a Conical Cavity
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-
Cos (O ~4)

the maximum superheat temperature will depend on the
contact angle 6 , as well as on the relative magnitude
of A and @ . |

The above considerations were verified recently
by Griffith and Wallis (16) in experiments which were
conducted by reducing the pressure on the system (note .
that this has the same effect as of uniformly super- |
heating the liquid). The results of these careful and
important experiments showed that when « <8 < 900
the temperature which activated a cavity of given radius
b P , Was given indeed by Equation I-3., However, when
the same experiments were performed by heating the
suwface it was found that the wall superheat temperature,
Ty - Te required to nucleate a bubble from the same
cavity was 20°F instead of 3°F as predicted by
'Equation I-3. Similar results were reported by Clark,
Strenge and Westwater (10).

Four conclusions can be drawn from these experiments
and from the analysis discussed in this section.

1) Pits and cavities which contain entrapped gas

or vapor are nucleating centers in boiling

i
;
N

R



from a solid surface.
2) The dimensions of the cavity‘are important in
the nucleating process from a heated surface.
3) For a given cavity size a larger superheat. is
required to nucleate a bubble in a non-uniform
than in a uniform temperature field.
4) The nucleating propensity of a surface will
depend upon the size distribution of cavities.
For a given surface this cavity distribution
will remain an invariant for variations of
pressure or of liquid properties. This
imporfantvfact was shown also by Griffith and
Wallis.
In the next section we shall discusé experimental
results which pertain to bubbles growing and rising from
a horizontal heated surface in nucleate, pool boiling,

i.e., in absence of forced convection.

I-3. The Dynamics of a Bubble Departing from a Hori-

zontal, Heated Surface

Following the nucleation from a cavity the bubble
grows in a Superﬁéatéd iiqﬁid film which exists adjacent
to the solid wall. Thé thiékness of this superheated
liquid £ilm is of the order of 10~ to 10-2 cm. (2, 3,
4, 5, 7, 20). The bubble remains attaéhed to the

surface until, at time tg, it reaches a characteristic

15
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diameter'Dd y and departs from the‘heating surface.

The departure is governed by the dynamicé-of the sur-
rounding liquid as well as by the buoyant and adheéion_
forces. The dynamic effect of the surrounding liquid
upon a bubble departing from the surface has not been
evaluated quantitatively yet. The problem wasranalyzed
by Wark (21), Fritz (22) apd by Nesié (12), whp con-
sidered a static'equilibrium between the buoyant and
adhesive forces. For such a static condition the
problem‘becomes an analogue to the problem of determining
the maximum volume of a sessile drop hanging from a
horizontal surface, a problem which was analyzed by
Bashfort and Adams (23). Using their numericalAresults,
Fritz (22) derived the following expression for the
diameter Dg s of a bubble departing from a horizontél

" surface, thus |

a /2

ﬂ‘(f..“ﬁ'v) ‘ 1-7

D, = 002089

where the contact angle 6., is measured in degrees.
The problem of bubble detéchment was investigated
experimentally by Jakob and Linke (5) and by Fritz and
Ende (24); From a detailed study of motion pictures of
steady boiling at low heat flux densities (of the order

of 20,000 keal/m?hr), Jakob and Linke (5) found that



diameters of departing bubbles Dy , are given by a
statistical distribution about a mean value. The values
of Dy varied from 1.5 mm to 4.5 mm with a maximum at
about Dg = 2.8 x 10~lem. This maxdimum value was in
agreement with the value predicted by Equation I-7 for
a contact angle of @ = 50°. 1t was observed also that
preceding the detachment, bubbles become elongated (see
Figure 1-4). Immediately after the detachment, i.e.,
after the elongated connection snaps, the lower surface
of the bubble reenters causing a deformation. Thus,
immediately after departure, the bubble takes first a
mushroom-like form and later a lenticular shape.

It was observed in these experiments that the
nucleation and bubble growth from a given nucleating
center is a periodic process. Following the departure
of a bubble the colder liquid comes in contact with the
solid and gets heated during a 'contact time", t, ,
at the end of which time another bubble is nucleated
from the same center. This new bubble grﬁws until, at
time tq s it in turn departs from the surface, and the
process is repeated. The contact time, t, , during
which the liquid in the &icinity of the nucleating
cavity becomes superheatéd was found to be appro:dmately
equal to the growth time t4 . Thus,}the total £frequency

of bubble emission
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Figure I-4.
Deformation of a Bubble Departing from
a Heated Horizontal Surface According to Jakob (3).
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tc + td ) 1-8

was found to be a constant for a given nucleating center,
although for different cavities a statisticél distribution
was observed. In the range of low heat flux densities,
i.e., in the rangevwhich was investigated by Jakob and
Linke and Fritz and Ende it was found that both the
diameter Dg , and the frequency £ , were independent

of the heat flux. The effect of increasing the heat

flux was to increasé only the number of active nucleating
centers., Consequently the product of the diameter Dy ,

and the frequency £ , is a constant,

:Dd.F =3 C.O'75t ' ‘ 1-9

 Recently a study of bubble dynamics in the entire
range of nucleate boiling with methanol was reported by
Perkins and Westwater (25). It was observed that the
average bubble diameter as well as the average frequency
rermained constant for heat fluxes up to 80% of the
critical heat flux. At higher flux densities both the

diameter as well as the frequency increased. In these

19
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experiments at high heat transfer rates the contact

time, t, , was found to be approximately zero, i.e.,

the bubblesvform immediately after each other. A

similar observation was reported by Donald and laslam (26).

This change of bubble generation from intermittent
to continuous was investigated by Yamagata and Nishi-
kawa (27). These experiments were carried out with
water at atmospheric pressure with heat flux densities
ranging from 6,000 to 18,000 kcal/m?hr. It should be
noted here that for water at atmos pheric pressure the
criticél heat f£lux is approximately lOs'kcal/mzhr.
From a study of their experimental data, Yamagata and
Nicghikawa classified bubbles into four groups, i;e.,
sphere tvpe, bell type, precession type and tandem
type. Figure I-5, which is reproduced from their
report, shows the different bubble forms.

The formation of sphere and bell type bubbles Qas
essentially identical, consequently they were classified
as "simple bubbles''; whereas the precession and the
tandem bubbles were called 'multiple bubbles' because
they were formed by bubble coalescence. All four bubble
types were generated intermittently. A contact’time,

t, » and a growth time, tgq , were observed for simple
bubbles. The product of Dy-f was constant for simple

bubbles, whereas the data for rmultiple bubbles showed a

(L
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Flgure I-5, Types of Vapor Bubbles Departing from

a Horizontal Heated Surface as Reported by
Yamagata and Nishikawa (Reference 27).




larger scatter. Simple bubbles‘were generated at lower
heat flux densities when a smaller number of nucleating
centers were active. Multiple bubbles were formed at i
higher heat flux density when the bubble columns were .
more numerous, Yamagata and Nishikawa noted that when
the heat flux is increased beyond a certain limit '"'the
bubbles were not generated intermittently, but formed

- a continuous vapor column. These whirls were often
generated at two or more spots interferring with each
ofher." Such an observed continuous vapor column is}
shown in Figure 1-5. It is important to note that
continuous vapor columns can be seen also in the high
speed movies taken by Perkins and Westwater.

We shall now summarize the experimental evidence
coﬁcerning the dynamics of bubbles departing from a -
horizontal surface in nucleate, pool boiling.

1) At low heat flux densities the mechanism
governing the departure can be approximated
by a quasi-static equilibrium betweén the
buoyant and adhesive forces. Consequently,
the statistical mean value of the diameters
can be approximated by Equation I-7.

2) Immediately after the departure a bubble

undergoes a deformation,

22




3)

4)

5)

6)

7)
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At low heat transfer rates bubbles are gener-
ated intermittently with a characteristic

constant £requency.
As the heat flux is increase the contact time,

t , decreases. Bubbles change from simple

c
to multiple type which are formed by a coa-

- lescence of several bubbles.

At high heat transfer rates the contact time
decreases until bubbles form immediately after
each other,

At still higher heat transfer rates the
diameters and the frequency of bubble formation
increase until a continuous vapor columm is
formed.

It appears that at low heat transfer rates the
effect of increasing the heat flux is to
increase the number of active nucleating
centers, ie., of bubble columns. Whereas

at higher heat flux denéity this effect
apbears-to change the bﬂbblevgeneratioﬁ from
an intermittént to é continuous process. The
characteristic of the phenomenon thus appears
to be a change from a column consisting of
single, rising bubbles to a continuous vapor

column, i.e., a vapor jet.
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I-4, The Relation Between Heat Flux Density, Surface

‘Roughness and Temperature in Nucleate Boiling

In the two previous sections we have reviewed the
nucleation of a single bubble from a cavity and the
departure of a bubble from a heated surface. In this
sectionhﬁe shall discuss the interdependence of the heat
flux density, surface roughness, superheat tempereture
difference and bubble dynamics in nucleate boiling. The
phenomenon will be described in more detail in order
that, in Chapter III, it may be more easily compared to
the process of a gas bubbling through a porous plate.
The discussion in this section is based to a large extent
upon a penetrating study of nucleate boiling which was
reported by Ceurty'(ls) and Courty and Foust (14).-

 Consider a surface with cavitiee which contain
some entrappedrgas or vapor and let the heat flux
density increase so that the temperature of the solid
surface exceeds thevsaturation temperature, i.e., the
liquid adjacent to the wall becomes superheated. At
gsome superheat temperature difference, T, - Tgy 2
few bubbles will start growing from some nucleating
centers located at random. At what particular*superheat
temperature this nucleation can start will depend, as
discussed in Section I-2, upon the dimensions of the

cavities, contact angle and the amount of entrapped -

I
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gaa or vapor. Consequently, surfaces with different
surface characteristics will have different "gtarting"
superheat temperatures. The heat flux starts deviating
-from.thevvalues corresbonding to natural convection when
few of these active bubble centers appear. If the heat
flux density is increased again, the éuperheat temper-
ature increases (though at a lower rate than in natural
convection), and the active bubbling sites become centers
of patches of more violent boiling. Courty and Foust
obgerved that, in nucleate, patchwise boiling, wide
variations occur in the temperature of the surface. The
areas covered with bubbles are considerably cooler than
the bubble-free areas. Also, widely varying temperature
readings were recorded by thermocouples located in the
éurface. The magnitude of these fluctuations were,
however, not reported. Since the original bubbling
centers are located at random, the patches of active
boiling are also randomly distributed.

Courty and Foust discussed two processes by which
patchwise boiling can be established around an active
nucleating center. The first is a pressure fluctuation
mechanism, and “the second is a vapor trapping process.
The pressure fluctuation mechanism bears similarity to
cavitation. During the bubble growth the liquid is

pushed away from the nucleating center; after the
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departure of the bubble, the liquid rushes back. These
oscillations of the fluid and the possibie vortex for-
mation with attendant pressure variations can induce
nucleation.

The-Second mechanism is a vapor-trapping process.
Suppose that in the vicinity of the active center are
cavities which are, originally, filled with liquid. The
bubble growing from the active nucleus may blanket some
of these neighboring cavities. After the bubble breaks
off, the liquid advances over the area which was
covered by vapor and may trap some vapor in the neigh-
boring capillaries. If the heating rate is sufficiently
high and the rate of penetration of the advancing liquid
comparatively slow, the liquid may become superheated
before it refills the capillary. Under these conditions
the neighboring capillaries may in turn become active
nucleating centers. It is seen that this process depends
upon the dimensions of the capillaries as well as upon
two rates, the rate of heating the liquid and the rate
of penetration of the liquid into cavities. This
problem was analyzed recently by Bankoff (18).

The process of seeding, i.e., of activating
cavities around the original active nucleating center,
will continue until, depending upon the heating rate,

the original nucleus can co-exist independently with

&
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another nucleus. The intermediately located nucleating
centers will be starved out. Such stafving of a nucleus
by a new active cavity was described recently by Clark,
Strenge and Westwater (10). At a given heat flux |
density the spreading of boiling patches will cease whén
there are no cavities, within the range of activation,
that can support a new bubble column at the prevailing
heating rate and superheat temperature, Ty = Tge
If the heat flux density is increased again, the

temperature of the non-bubbling, ie., the bare area
which surrounds the boiling patch, increases. GConse-
quently, within the range of activation new, smaller
cavities (which require higher superheats) can be
activated and at the higher heating rates additional
bubble columns can be maintained. This spreading
mechanism continues with increasing heat £lux densities
until the whole area is populated with nucleating
centers, i.e., with bubble columns.

| Two important>£acts should be stressed now. It
was observed already tiat the superheat temperature

difference, T, - Tg, at which bubbling starts depends

S’
upon the conditions of the surface. Different '"starting"

superheats are needed for different cavities. It was

' noted also that when boiling occurs in patches, the

increase of superheat temperature which follows an
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increase of the heat flux density depends on the size
distribution of cavities. Different sﬁpérheat temper-
atures are needed to activate new nucleating centers;‘
Thus in nucleate boiling, at moderate heating rates at
least, fhe réte of increase of the superheat temperatufe
T, - Té, with an increase of the heat flux deqsity
depends upon the characteristics of the surface. This
is shown on‘Figure I-6 which is reproduced from the
paper by Courty and Foust. It is seen that different
"starting'" superheat temperatures, different nucleate
boiling curves with different slopes can be obtained
with the same metal surface having different roughness'
characteristics. Thus,.the heat flux density is not ;
single valued function of the temperature. In order to
determine the relation between the heat £lux and the
temperature, the characteristics of the surface must be
specified.

The question which arises - whether this depe ndence
upon the surface roughness is a characteristic of the
entire nucleate boiling curve - is not resolved yet.
Experimental results of Jakob (5) and of Averin (28)
indicate that, for water at atmes pheric pressure;
nucleate boiling curves for surfaces of different
roughness merge when the heat flux density reaches a

value of 150,000 to 200,000 kecal/m?hr. Note that the
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FIGURE I-6, THE EFFECT OF DIFFERENT AMOUNTS OF
ROUGHNESS ON THE HEAT TRANSFER IN NUCLEATE BOILING
(h 2 g/ AT, BIU/MR FT2°F; N = BUBBLES/IN?),

TEIS FIGURE IS REPRODUCED FROM THE PAPER BY CLAUDE
CORTY AND ALLAN S. FOUST (13, 14).
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critical heat flux is 10% kcal/m?hr. The dependence of
the nucleate boiling curve upon the surface roughness

can be expected to manifest itself in the low flux
region because boiling in patches occurs at lower heat
flusx densities. Tﬁe merging of the nucleate boiling
curves could be interpreted then as a change in the
boiling process, i.e., the termination of boiiing in
patches. A large number of active nucleating centers
would tend to decrease the effects of different surface
roughness. It was discussed in the preceding section
that with increasing heat transfer rates bubbles change
from simple to multiple, and the bubble generation
'changes from an intermittent to a continuous process.

It is possible that with the spreading and the subsequent
disappearance of boiling patches a gradual change in- the
bubble types and in the bubble generation mechanism takes
place over most of the surface area. Such a change,
together_with the termination of boiling in patches,
could account for the change in the boiling process.

It appears also that the effect of the surface
roughness disappears for surfaces which have 'aged',
i.e., from which boiling was maintained over a period
of a week or so. The experiments of Jakob and Linke (4)
and of Zysina-lolozhen (29) indicated that both the

superheat temperature difference, Ty - T; , and the
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number of nucleating centers, n , approach a limit value
with prolonged boiling. These limiting values were
independent of the original roughness, but dependent

upon the metal of the heating surface. Zysina-Molozhen

noted that the number of nucleating centers and,

therefore, the superheat temperature, become constant
(for a given surface) once a stable oxide film has
formed. She made the following observation: "Evldently
the factor controlling the numerical value of the heat
transfervcdefficient in ordinary heating surfaces is

the thermal conductivity of the oxide film, which makes
1t impossible to determine the true value of the heat
transfer coefficient.'" Note that her statement implies
the uncertainty of determining the superheat temperature
Ty = Tgo for a given heat flux density. We shall return,
in Chapter III, to discuss this effect in connection
with the coupling of the thermal properties of the solid
and liquid during the transient temperature oscillations
which occur in boiling. Inithe.following we shall sum-
marize the discussion of this section.

1) The superheat temperature difference, Ty, - Ts'
at which nucleate ‘boiling sets in depends upon
the characteristics of the surface and upon
the amount of'gas and vapor which is entrapped

in cavities. The first nucleating centers are




2)

3)

4)

5)

6)

32

located at random.

At low heat transfer rates boiling takes place
in patches which are located around the firsf
nucleating centers.

During this non-uniform, patchwise boiling
spatial and time variations occur in the
temperature of the surface. |

In the boiling patches, growing and departing
bubbles strongly agitate the superheated £ilmg
colder fluid is brought in contact with the
heating surface resulting in high heat transfer
rates.

with an increase of the heat f£lux density,

the superheat temperature, T, - T, increases
so as to alter the number of nucleating sites.
The increase of active cavities and, therefore,
of the sﬁperheat, is such that the agitation
of the superheated £ilm due to all bubble
columns can accommodate the new heat flux.

In nucleate boiling, at moderate heat transfer
rates at least, the heat flux is not a single-
valued function of the temperature, In order
to determine the relation befween the heat
transfer rate and the temperature of the

surface, the characteristics of the surface
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must be specified.
7) It appears that, at higher heaf flux densities,
the effect of the surface roughness upon the
q - AT relation vanishes, indicating a more
uniform boiliné (disappearance of patches)
with a possible change in the types of bubbles
and in the bubble generation procesé (from
intermittent to continuous).
8) It appears also that the effect of the surface
roughness on nucleate boiling disappears once .
a stable oxdide film coats the surface. Under
these circumstances it appears that the
thermal conductivity of the oxide f£ilm becomes
the controlling factor.
In thie part of the dissertation we have discussed
~ the results of analytical and experimental investigations
which pertain to the nucleation process, to the hydro-
dynamics of bubbles departing from surface and to the
effects of surface roughness; We shall proceed, in

Chapter 1II, with the problem of bubble growth.




CHAPTER II

THE PROBLEM OF BUBBLE GROWTH

I1-l. The Dynamics of Vapor Bubbles in a Uniform

Temperature Field - Historical Baclkground

The growth of a bubble in a superheated liquid
was first analyzed by Bosnjakovic (30). According to
_ his theory the vaporization process is maintained by an
energy transfer from the superheated liquid to the
bubble interface. The temperature drop which maintains
this process is localized in a thin boundary layer which
surrounds the bubble. This model is shown on Figure II-l.
A relation between the bubble growth rate, the temperature
drop and the heat transfer coefficients is obtained from

an energy balance, thus

L (To"Ts) =' L Qv j’: ' II-1

The theory of Bosnjakovic was tested experimentally
by Jakob and co-workers (2, 3, 4, 5), Pruger (31) and
Fritz and Ende (24); good agreement was reported. In

the discussion of their experimental results Fritz and

Ende noted that, for a liquid which is initially uniformly
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S = thickness of the

To- T, = temperature
drop across

:

dR - Lo 4R
dt ?vdb

Liquid at temperature: T,

Figure II-l. Bosnajalcoiric's Ar-ialytical Model of
a Bubble Growing in a Uniformly
Superheated Liquid

thin boundary layer
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superheated, the bubble growth problem was similar to the

one dimensional, transient heat conduction problem, i.e.,

to -

AT _ 2T
dx* °t

t=0 : T(x0) = To-T;
II-2

]
o

tvo : T(oct)

The heat transfer coefficient for a growing bubble can be

obtained from the gradient at the bubble wall (x = 0), thus

{ (To “'Ts) - (.'.3_:;))(?-0 I1-3

The temperature gradient is obtained by solving Equation

1I-2, thus

('QT') __ TQ--TS .
X MX=o  \Tat
Substituting Equation II-3 and II-4 into Equation II-1,

the bubble growth rate is given by

L?v—é—& = K To-Ts 1I-5
dt rat |

Using high speed movies Fritz and Ende determined the

bubble growth velocity, and from Equation II-1 compufed
the heat transfer coefficient. This value was then
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compared to the value computed from Equations II-1 and
1I-43 the two values of h, thus determined, were found
to be in good agreement with each other. \

At first this agreement could appear as fortuitous,

The real bubble i1s spherical; its interface represents a

| moving boundary whereas the system described by Equation

1I-2 represents a semi-infinite slab with stationary
boundary. Also, the effects of liquid inertia and of
surface tension were neglected in the analysis., Never-
theless, subsequent more detailed studies & the bubble
growth problem only corroborated the theory of Bosnja-
kovic and the analysis of Jakob, Fritz and Ende which
contains the essential feature of the phenomenon.

The first mathematical formulation which took
into account the effects of liquid inertia, surfacé
tension, sphericity and of the moving boundary is due to
Plesset and 2wick (32, 33) and to Romie (34). The
problem is formulated by considering Rayleigh's equation

of motion:

II-6




Clausius-Clapeyronts equation:

Pw- _ _LS&

. = I1-7
T (t)-T T (Q..'," )
and the enefgy'equation: |
a[ 2T + 2 QI-] = oT + oF r
Lt rard 3 sl
. t” o : T(’; 0) = Tof'tg ' B I1-8

e

t>0 0 x(ZL)qp = LR

" T(ee,t) = To=Ts

The problem was analyzed in References 32, 33 and in
34;_35; The resultsAof'these_studies-wefe in agreement
with each other and with experimental déta reported by
Dergarabedian (36). It was found that during the growth
ofha bubble the effect of liquid inertia and of surface
tension are not important. Consequently, the growth of
a vapor bubble is governed by the heat transfer process.
Plesset and Zwick derived the following expression for

the bubble growth rate

Ta-Ts

m | II-9 | .

L?gv'i’ = V3 K




Whereas Forster and Zuber obtained

Le, R . I ¢ To-Ts 1I-10
_ ~ |”ﬂﬁt

It should be noted that, in both of these studies,
the assumbtion was made that the temperature drop is
localized in a 'thin boundary laver' near the bubble
wall.v Thus, the 'thermal boundary layer" assumption‘of
Besnjakovic was reintroduced in the problem.

Recently, Birkhbff, Margulies and Horning (37)
and Scriven (38) solved the energy problem (Equation
I1I1-8) without making recourse to the 'thin boundary
layer' approximation. It was shown that this assumption

is valid when the Jakob number* is large, that is when:

_4. _!To"‘Ts) Ce
Ja = Le, L_ > | | 1I-11

It was found also, that for large Jakob numbers the

bubble growth rate is given by Equation II-9.

e

* This dimensionless group was recently proposed by
§avic (39) to be referred to as the ' Jakob Number"
in honor of the late Professor Max Jakob.
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Comparing Equétion II-9 and II-lO-with,Equgtion
.II-S it is seen that, apart from a numérical consfant;
these equations are identical. A larger growth rate -
could have been expected for spherical bubbles than for
a plane interface because the temperature gradient at a

-

spherical surface is given by (40)

£u R iy
(a,. ),.ﬂ=(T° TS)[W_.F =1 11-12

1t follows for Equation II-4 and II-12 that the plane
approximation is wvalid when |

| -%@ « ! | | II-13

It is important to note that, for growing vapor bubbies,
Equation II-9 and Equation II-l0 indicate that the effect
- of sphericity is only to increase the gradient by a

constant factor whose value lies between 1 and Vg:

with T/2 an intermediate value,

We can conclude this section by noting that for
a growing vapor bubble the effects of liquid inertia
and surface tension are not impértant. The growth raée,
'i.e., the rate of evaporation is given by an equation

of the form:



———

To~Ts
e

Tat 1I-14

Le\vﬁ = b r
Where the value of the congtant is b =1 for '"plane"
bubbles, or b = /2 or V3 when correcting for the
curvature. The'mathematical formulation Originally
given by Fritz and Ende, and the theory_of Bosnjakovic
and Jakob contain, therefore, the essential feature of
the phenomenon. In the next section we shall extend the
theory of Bosnjakovic and Jakob to include the effect of

a non-uniform temperature field.

II-2. The Growth of a Vapor Bubble in a Non-Uniform

Temperature Field

In 1932 Jakob (3) described the heat transfer
process which occurs at the interface of a bubble growing
on a heated surface as follows: "It can be imagined
that'during the small explosion which starts the growth
of a bubble, the interface temberature, because of the
heat of vaporization, drops immediately from the
superheat temperature to the saturation temperature, for
example from 110°C to 100°C,. e o As a'cdnsequence of
the heat transfer from the liquid to the vapor bubble
the liquid envelope is being cooled progressively from

the inside toward the outer boundary; a temperature




boundary layer is created with a constantly decreasing
temperature drop. This thermal boundafy increases in
thickness until the thermal wave, which advances from
the vapor bubble interface into the liquid, has reached
the outer limit of the hydrodynamic boundary layer. The
decrease  in thickness of the hydrodynamic boundary layer
because of the evaporation at the interface ié, initi-
ally, a small fraction of the total thickness.' This
model is shown on Figure I1I-2,

It is important to point out now the difference
between the growth of a bubble in a uniformly superheated
liquid énd the growth in a non-uniform temperature field.
In a uniformly superheated liquid (see Figure II-1) the
thickness of the thermal boundary layer & , constantly
increases; however, since the liquid was initially at a-

the total temperature difference

uniform temperature Ty »

T, -Ts s across the thermal boundary remains constant.
In a non-uniform temperature field (see Figure II1-2) the
thickness of the thermal boundary layer S s also
increases as tﬁe thermal waves advance into the liquid.
However, in this case, since the initial temperature in
the liquid was not uﬁiform, the temperature drop‘across
the thermal boundary laver 8 , constantly decreases

aé § increases. In other words, whereas in a uniform

thermal field only one heat transfer process occurs,
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To  distribution in the |
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FIGURE II-2.a, INITTAL TEMPERATURE FIGURE II-2,b, TEMPERATURE DISTRIBUTION FOR
DISTRIBUTION A GROWING BUEBLE

FIGURE II-2, JAKOB'S ANALYTICAL MCDEL OF A BUBBLE GROWING
IN A NON-UNIFORM TEMPERATURE FIELD
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in a non-uniform temperature field two transfers of
energy take place. One is the heat trénsfer across the
- £ilm 5- 3 this process maintains the evaporation at-the
bubble interface. The second is the heat transfer to
the bulk liquid.

' The theory of Bosnjakovic and Jakob can be’
extended to include the effect of the non-uniform tem-
perature by making an energy balance per unit traﬁsfer
area. For a plane bubble the rate of evaporafion is

then given by:

L?,'R ‘: K ,E;:E_ —%b

{Tat

where the second term on the right hand side is the

II-15

heat transfer rate to the bulk liquid. For a uniformly
superheated liquid qp = 0 and Equation II-15 becomes
Equation II-5. 1In view of the results which were dis-
cussed in the previous section it can be expected that

a correction for the curvature can be made'by multiplying

the right hand side of Equation II-15 by b= /2 , thus

Lﬁvé = E[K —I;?ﬁ - q,bj 11-1§
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with b=l or b = 77/2 . The bubble radius is then given
by

R = b2 aTctf) _ 3, Vot \hr'otwn-w
T LRv KAT 2

In order to make use of Eqﬁation I1I-17 we nwust
determine the heat flux qy ,‘to(the bulk liquid.
Congider an instant just prior to the nucleation of a
bubble, A temperaﬁufe grédient exd.sts in the liquid
adjacent to the heating surface. It is this gradient
which transfefsvthe enerzy from the solid wall to the
liquid. Consider now the instant just after the nucle-
ation of a plane bubble. The effect of introducing,
locally, the vapor phase between the solid and the liquid
is to insulate, locally, the liquid from the heating
solid. Assuming that no‘great distortions and dis-
turbances occur in the liquid during this transition
insfant, the temperature:grédient'between the wvapor
interface and the iiqﬁid is épprbkimately equal to the
gradient which existed between the solid wall and the
liquid before the bubble was nucléated. In the sections

which'fqllow e Shall.idehtify therefore, with the

heat transfer rate from the heating surface, q . This

appears a rather drastic assumption; we shall justify
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it a posteriori in the sections which follow after we
examine the physical process in greater detail.

‘It is seen that Equation II-L7 relates the bubble
radius to the superheat temperature (AT = Ty, - Tg and
the heat flux which exist locally around a nucleating
center. It was discﬁssed in Chapter I that, in nucleate
bbiling at low heat f£lux density, both the temperature
of the surface and the heat transfer rate vary over the
heated area. The values which are usually reported are
average-values. It is known also from the experiments
of Jakob and Linke (5), of Ellion (15) and of Treschov
(41) that the diameters of bubbles departing from br
collapsing on a heated surface follow a distribution
curve., Therefore, if we.introduce‘into Equation II-17
the average heat flux and superheat we can expect to
prediet only the growth of an average bubble and not
of a specific bubble (uniéss it cqincides with the
average one) whose growth was recorded on a motion
picture., Xeeping thié facﬁ‘in mind we shall examine
£irst the growth of a bubble in a liquid whose bulk

is at saturation temperature.
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II-3. The Bubble Growth in Liquids at Saturation

Temperature

In this section the bubble growth rate predicted
by Eduation II1-17 will be compared to experimental
results reported by Fritz and Ende (24) and by Zmola
(42). In Section I-3 the eﬁperiments of Jalob and
Linke (5) were discussed; in these experiments the
diametefs of bubbles departing from a heated surface
varied between 1.5 mm and 4.5 mm with a maximum at
about Dy = 2.8l x 10-l cm. Because Jakob and Linke
did not report the values of the superheat temperature
Ty - Ty and the heat flux density q , Equation II-17
cannot be used for comparisom with their results. This
can be done, however, with thé data for water reported

by Fritz and Ende which is tabulated below.

TABLE II-1

Experimental Data of Fritz and Ende

Bubble q T~-T t t D
Number Kecal v, c d d
hrm2 Cc sec sec cm
BML 19000 9 0.0225 0,023 5.42 x 10-%
BM3 19000 9 0.0025 0.018 4.04 x lo-1

BR8 19000 9 0.01675 0.020 4.64 x 10~1
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Inserting the above wvalues of superheat temperature
Ty - Tg heat flux q, and time at departure tq into
Equation II-17 the corresponding diameters at departure

for two values of the constant b are given below.

TABLE II-2

Diameters at Departure Predicted

by Eduation II1-17

Bubble Dd (cm) Dd {cm)
Number b 1 b ™
- -
M1 2,91 x 10°1 4.58 x 1071t
BM3 2.68 x 10-1 4.13 x 10°L
BRS 2.76 x 10t 4.33 x 10t

It is seen that the predicted values are in better
agreement with experiments when the correction for the
sphericity is taken into account. This couldvhave been
expected because for large bubbles the liquid laminae
over the bubble are stretched thus increasing the tem-
perature gradients. We note, however, that even if
this correction was not included, the predicted values
for the 'plane' bubble, i.,e., b = 1, are in agreement
with the average value observed by Jakob and Linke,

ioe;, Dd = 2-81 X lol Cm.
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In order to investigate whether'Equation I1-17
is in agreement with experimental data over a longer
time interval we can compare it to the experimental
data reported by Zmola (42) and shown on Figure II-3.
For these experiments the heat flux was q = 9,6 x 107
Btu/hr £t2, and the superheat temperature T,~Tg = 9.4°F,
Inserting these values into Equation II-17, the pre-
dicted growth rate for b = W /2 is shown on Figure II-3
also.

To the writer's knowledge no other experimental
data for liquids at saturation are available in the
literature for further comparison. On the basis of
present results it appears'that at atmospheric pressure,
at low heat flux densities, and for liquids at saturation
temperature, Equation II-17 with b = Ti'/2 approximates
experimental data adequately.

The agreement of Equation II-17 with experimental
data indicates some areas.for further investigation and
offers interesting ppssibilities. We shall discuss
some of them before proéeéding with the analysis of

the growth and collapse of bubbles in subcooled liquids,
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II-4. Masxdmum Bubble Diameter and the Thickness of

the Superheated Liquid Film

Tt is seen from Equation II-16 that the bubble

will stop growing when

\[Tat = AT
Tag S 11-21

That is, when the diffusion length becomes equal to the
thickness Xg , of the superheated liquid film ad jacent
to the heating surface. The maximum bubble diameter
is given then by

aTeq «aT

= 11-22
Do L& 9

which is equivalent to:

Dm _ 4TcE II-23

Xg Le,

This.is not surprising since it is in energy balance -~
nil novi sub sole. Consider a surface area A, and a
liquid £ilm of thickness X5y adjacent to it, If this
liquid fiim is superheated by A T degrees the internal
energy of the liduid is given by: AXg A TC Qi: If all
this stored energy is used for vaporization, thevmaxiﬁﬁm

distance the vapor front can advance is given by:
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AD,LQ =AX aTce | I1-24

It followé from Equation 1I-23 that, in boiling, the
significance of Jakob's number is that it represents
the ratio of the maximum bubble radius to the‘thicknesa
of the superheated liquid film. |

For the experiments of Zmola, Equation II-23
rpredicfs a maiimum radius Ry = 36.6 x 10-3 in., which
would be reached when R = 0. It is interesting to
note that the growth curves on Figure II-3 show almost
zero velocity at t = 20 x 10-3 sec.; indicating a defi-

ciency of energy available to maintain the vaporization

process.

II-5. The Thickness of the Superheated Liquid Film

The nucleation from a cavity was discussed in
Section I-2; it was noted that the dimensions of a
cavity is important in the nucleation process from a
heated surface, The fesults of the previous section
indicated the importance of the thickness of the super-
" heated liquid f£ilm. Both the nucléation and the thickness |
of the superheated film affect the dynamics of é bubble.
One is lead therefore to investigate whether or not a

relation exists between the diameter Do = 2r, , of the R



cavity and the thickness of the superheated f£ilm given
by

T =T,
\ q, I1-26

Xg = K
For the experimenﬁs of Griffith and Wallis (16) the
superheat which initiated boiling was: T -‘T8 = 20°r,
and the heat flux was q = 40,000 Btu/hr ft2, Substi-
tuting these values into Equation I1I-26 the film
thickness becomes X, = 2.39 x 103 in. The diameter of
the cavity.in the experiments of Griffith and Wallis
was Dc = 2,7 % 10”2 in. Such a close agreement is rather
surprising. To explore further this relation the experi-
mental data for pentane and ether reported by Clark,
Strenge and Westwater (10) are reproduced on fhe fol-
lowing table together with the corresponding values of
XS computed from Equation II-26. Tor some pits two
values of the superheat temperature were reported; the
second was the observed value whereas the first one was
corrected to smooth the data.' The accuracy of the heat
£lux density q, and of the superﬁeat temperature EW-TS,

were not evaluated for these experiments.
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TABLE II-3

Comparison of Computed Film Thickness with the Diameters

of Active Cavities in Westwater-Strenge's Experiments

Diam or - AT q X,
Site width Btu .
: in. of hr £t2 in.
Pit .
1 0.,0003 14 13400 0.0010
2 00,0003 50 8100 0.0057
3 0.00088 23-35 12300 0.0019-0,0029
4 0.0082 12 5400 0.0021 '
5 00,0018 11-19 2600 0.0040-0,0068
6 0.0018 23~35 12300 0.0017-0,0024
7 0.0020 22«30 13000 0.0017-0,0023
8 - 0.0022 23-35 12300 0.0018-0.0029
9 0.0022 27-42 15600 0,0017-0,0026
10 0.0023 14 4900 0.0026
11 0.0025 21~-31 13200 0.0015-0,0022
12 0.0026 27=-41 15600 0,0017-0,0025
13 0.0033 10 3400 0,0028
Scratch
1 0.00008 50 8100 0,00058
2 0.00018 14 8900 0.0015
3 0.00044 2335 12300 0.0017-0,0027
4 0.00075 13 17600 0.00069

It is seen from the above table that,with exception
of Pits Mo. 1 and No. 2, the computed thickness‘xs,.
appears to be of the same order as the diameters of
active cavities D,. For scratches such an agreement
is not indicated.

A relation between D, and Xy such as that indicated

by these experiments offers interesting possibilities
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in an analysis of boiling heat transfer and initial
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boiling transients. We shall note oniy one here.

Since the diameter of a cavity is a characteristic
of the surface, a relation between D, and Xg implies
that for a given heat flux the local superheat temper-

ature T, - T is determined by the diameter of the

S,
active cavity. In steady boiling at low heat transfer
rates, a known distribution of cavities would permit

then a derivation of an equation relating the average

superheat temperature to the average heat flux.

in view of the indicated relation between the cavity

diameter and the thickness of the superheated liquid
film, and in view of the possibilities that this
relation offers, it appears that further experimental

and theoretical investigations are warranted.

II-6, Implications and Limitations of the Model

In this section will be discussed some impli-
cations and limitations of the extended Bosnjakovic-Jakob
model. 1In order to bring these implications and limi-
tatioﬁa into focus we shall describe first the actual
physical process. This brief description is based on
an excellent discussion of the bubble growth problem
given by Ellion (15).

A thin superheated liquid £ilm with a steep
temperature profile exists adjacent to the heating

surface. Following the nucleation, the bubble starts

55




56

growing in this superheated liquid £ilm. The bubble
is, initially, hemispherical; it is probable that the
bottom of the bubble is separated from the wall by a
thin layer of liquid since the viscous and adhesion
forces in the liquid prevent the bubble from wiping the
wall clear of water and the evaporation rate may not be
gufficiently large to evaporate any appreciable
thickness of 1iquid at the bubble base. Ellion was not
able to verify the existence of this thin f£ilm because
of the limited resolution of the camera lens. In view
of the presence of the nucleating cavity, the existence
of a "dry'" point appears probable also. .

The superheated liquid f£ilm that was initially
above the nucleating cavity is pushed away from the
wall by the bubble, see Figure I1I-4, As the bubble
grows, the film becomes stretched and this results in
higher temperature gradients. Heat is removed from the
displaced superheated £ilm by conduction and convection
to the bulk liquid and by evaporation at the bubble
interface. Lvaporation occurs also at the base of the
bubble. The rate of evaporation and, consequently, the
rate of growth decreases as the superheated f£ilm
becomes cooler. As the bubble decelerates the momentum
that was stored in the liquid and the buoyant force

tend to pull the bubble away from the surface. Because
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Figure II-4. The Probable Bubble Form and
the Appro:d.mation of the Model
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of the adhesion forces and the resistance to motion the
bubble becomes deformed. If the bulk liquid is at
saturation temperature the bubble will depart from the
surface; if it is subcooled the bubble will collapse.
It is seen from this brief description that a
complete analysis of the bubble growth problem on a
heated surface should take into account the hydrodynamic
aspect aé well as the energy aspect of the problem.
Since the process takes place in such a vicinity of
the solid surface it is apparent that the viscous
effects of the liquid as well as the inertial shoﬁld be
retained in the analysié. In addition; because of the
liquid-vapor intefface and of the solid-liquid-vapor
interface, both the surface tensiaﬁ and the contact
angle bécome important. Because evaporation takes
Place over the entire interface the energy equation
should take into account the transfer of energy from
the wall to the liquid and the interface in the regions
QAP and OCP, during the entire bubble lifetime. As a
consequence of this energy transfer the temperature
distribution in the solid in the region OPQ wiil not
be uniform. Thus, the problem involves two energy
equations, one for the solid and the second for the
liquid with a matching problem along an unknown moving

boundary.




In view of the complexity of the problem any
agreement of predicted growth rates by the simple model
with experimental data is rather surprising. It can be
seen from Figure II-4 that the model considers only the
energy transfer in the region ABC. -The motion of the
interface depends only on the amount of stored energy

which existed originally in the superheated film.

The limitations of the model now become apparent,
The model cannot take into account any temperature
change due to heating after the growth has started,
i.e., after the vapor has insulated locally the liquid
from the solid. Since the regions QAP and OCP are not
congidered, the effect of additional heating during the
growth process is not accounted for. We note, however,
that it appears that this restriction could be removed;
it will be discussed in a future report. Because the
hydrodynamic effects’were not considered, the effect
of the distortion of the bubble on the temperature
field is.neglected.

It is seen from these limitations that if amy
agreement is to be expected the effect of evaporation
in the regions QAP and OCP should be small when com-
pared to the evaporation in the region ABC. To achieve
this, two conditions must be satisfied. First, the

transfer area in the regions QPA and OPC should be
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small in comparison with the transfer area ABC. Second,
the raﬁe of vaporization in the region ABC should be
fast so that any change of the temperature field in the
regions QPA and OPC, caused by heating during the growth
process is small. The effect of the bubble distortion
on the process of vaporization in the region ABC will
be small if the distortion occurs at the end of the
growth process. In view of the agreement of predicted
growth rates with exmperimental data it appears that
either these conditions were satisfied, or that the
effects of various assumptions tend to compensate each
other.

Another important limitation should be noted
before closing this section; it is concerned with the
"thin thermal boundary la&er" assumption. It was noted
in Section II-l1 that for a growing bubble this assumption
is valid when the Jakob number is larger than unity.

The assumption will be satisfied also for a collapsing
bubble as long as the thickness of the thermal boundary
layer is smaller than the bubble radius (see Figures II~-1l
and 1I-2), For sufficiently emall radii, however,
Equation II-12 indicates that an equation which is

based on the "thin boundary' assumption will underestimate
the collapse rate. This question appears to be important

for bubble dynamics in subcooled liquids, a topic which




is taken up in the next section.

II-7. Dynamics of a Vapor Bubble in a Subcooled Liquid

Bubble dynamics in a subcooled liquid was inves-
tigated experimentally by Gunther and Kreith (7) and
by Ellion (15) in a non-flow system, and by Gunther (43)
and by Treshov (41) in a flow system. The problem was
investigated also analytically be various researchers.
The growth problem in a non-uniform temperature field
was analyzed by Griffith (44) and by Saviec (39). An
analysis of 2 bubble growing and collapsing in a sub-

cooled liquid was reported by Bankoff and Mikesell

(45, 46). The time needed for a bubble to reach the
maximum radius before collapsing was considered by
Forster (47). The collapse of a bubble in a uniformly
subcooled liquid was analyzed by Plesset and Zwick (48),

The condensation rate of a wapor bubble which is intro-

duced in a subcooled liquid was discussed by the

writer (49). In'thé‘following, the growth and collapse
rates predicted by the extendedaBosnjékovic-Jakob model
will be compared to the experimenfal results of Gunther
and Kreith and of Ellion. |
Ellion's experiméntsrwerevperforﬁed with water
at atmosphefic pressure; Figufeé 47, 49, 53 and 57 from
Ellion's dissertation are reproduced in this Chapter

as Figures II-5, 6, 7 and 8. Figures II-5 and 1I-6
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show the effect of increasing the heat flux density
from 5.29 x 10° Btu/hr £t2 to 11.5 x 10° Btu/hr £t2
at a constant bulk liquid température Ty, = 1359F, i.e.,
at a constant subcooling of Tg - Tp = 77°F. Whereas
Figures II-7 and II-8 show the effect of}iﬁcreasing the
bulk liquid temperature'from Ty, = 78°F (Tg - Ty, = 134°F),
to T, = 177°F (T, - Ty, = 35°F), at a constant heat flux
density of 7.79 x 10° Btu/hr £t2, It can be seen from
these figures that a given average heat flux and
average temperature variations occur in the dynanics
of different bubbles. Ellion noted that, because of
 these large variations, an agreement closer than 25%
should not be eipected- The large changes which are
indicated by these figures point to the importance of
local conditions which exist in the vicinity of a
nucleating center and, consequently, to the statistical
nature of the overall process when an ensemble of nucle-
ating centers, i.e., of bubbles, is considered.

| We shall compare now the growth and collapse
rates predicted by Equation II-17 with Ellion's experi-
mental data. It is seen from Equation II-16 that the

maximum radius R, is reached when,




FIGURE II-5, ELLION'S EXPERIMEKRTAL DATA (REFERENCE 15)
FOR BUBBLES GROWING AND COLLAPSING IN SUBCOOLED WATER

qQ ® 5.29 x 105 Btu/hr £t2, T, = 135°F, T,-T; = 77°F
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FIGUEE II~6. ELLION'S EXPERINENTAL DATA (REFERENCE 15)
FOR BUBBLES GROWING AND COLLAPSING IN SUBCOOLED WATER

q = 11.5 x 105 Btu/hr £42, T, = 1350F, T,-Tp, = 77°F
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FIGURE II-7. ELLION'S EXPERIMENTAL DATA (REFERENCE 15)
FOR BUBBLES GROWING AND COLLAPSING IN SUBCOOLED WATER
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FIGURE II-8, ELLION'S EXPERIMENTAL DATA (REFERENCE 15)-
FOR BUBBLES GROWING AND COLLAPSING IN SUBCOCLED WATER

a4 = 7.79 x 10° Btw/hr £t2, Ty = 177°F, T Ty = 35%F
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at

NTatm = K—I"qfli 11-27

The radius vs. time relation given by Equation II-17 can

be expressed in terms of the maximum growth time t_, thus

o 2 (To-T5YC @ 4 V'E‘ bt
Rebp = [ ™

The masxdmum bubble radius is then given by:

R = b (Te=Tec Vratm B
™ 10 L&

It is advantageous to introduce a dimensionless radius
given by R/Rm and a dimensionless form is obtained from

Equation II-28 and II-29, thus
R L ‘/1’,‘ [2-.. V_t: ] 11-30

Equation II-30 is plotted on Figures II-9, 10, 11 and 12
together with Ellion's data showm on Figures 1I-5, 6,
7, and 8 respectively. The advantage of normalizing the

data becomes apparent.
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FIGURE II-9, COMPARISON OF EQUATION II-30 and II-33 WITH ELLION'S
EXPERIMENTAL DATA SHOWN ON FIGURE II-5
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It appears from these figures that Equation II-30
adequately approximates the growth process. It is seen,
also, that the model is not adequate for predicting the
collapse'stage. The reason for this inadequacy can be
understood in terms of the discussion of the preceding
section,

The inertia of the liquid and fhe buoyant force
tend to pull the bubble away from the surface, causing
a deformation of the bubble after it reaches the maximum
radius. This deformation and motion of the bubble
increase the thermal gradients causing a faster conden-
sation. As the vapor condenses the thermal boundary
layer increases, whereas the radius decreases. Conse-
quently, the ''thin boundary layer approximation
becdmes progreésiveiy worse. Because the curvature
increases with a decrease of radius, it is seen from
Equation II-12 that the thermal gradients increase
enabliﬁg faster condensation rate than predicted by the
thin boundary approximation. Heat transfer and conse-
quently, the condensation rate during the collapse is
enhanced also by the turbulence of the liquid, as noted
already by Griffith (44) and by Bankoff and Mikesell (45).

Let us examine now the significance of these
favorable heat transfer conditions. As the vapor condenses

at the bubble interface latent heat is liberated and the R



temperature of the interface ihcreases; Unless this
energy is transferred to the bulk liquid the rate of
condensation will decrease. High heat transfer rates to
the bulk liquid thus minimize the temperature_variations
at the interface and in the vapor due to the latent heat.
Thus, when large thermal gradients are present it apm ars
permissible to consider, in the limit, an isothermal
collapse process. For an isothermal process the inertia
of the liquid becomes important.

It was shown already by Plesset and Zwick (48)
that, for'bubbles collapsing in a liquid at uniform
temperature, the thermal effects on restricting the
collapse rate are.unimportant. Consequently, only the
inertial terms in Rayleigh's equation of motion are of
significance. The inertial effects were used by Bankaf £
and Mikesell (45) to explain both the growth and the
collapse Qf a bubble in a subcooled liquid. We shall

examine the inertia effeét in terms of the extended
Bosn jakovic-Jakob model.

Assuming spherical symmetry, the liquid inertia
can be taken into‘account by combining Rayleigh's equation
of motion, EQuation'II-é, with thé_eﬁergy:eqﬁation. As
an analogy to the bubble growth ﬁrobiem in a uniformly
superheated liquid, the bubble growth and collapse

equation for a subcooled liquid becomes:
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where the term dP/dT is given by Clausius-Clapeyron
equation; With the term q = 0, and b = T /2, Equ-
ation II-31l is reduced to the equation which describes
the growth of a bubble in a uniformly superheated.
liquid; an equation which was analyzed already in
References 32, 33 and 34, 35.

During the growth process, the effects of the
inertia and of the surface tension are small in com-
parison with the heat transfer effect. Consequently,
during the.growth the left hand side can be neglected,
and Equation II-31 is reduced to Equation II-17. As the
bubble radius goes through the maximum, the right hand |
side of Equation II-3l changes signs and becomes negative.
In this domain then, the liquid inertia cannot be neg-
lected. It was noted already thét, because of the
combined effects of liquid.turbulence and of bubble
cufvature, the cbllapse stage could be approxdmated by
an isothemmal process. Neglecting the effect of surface
tension, Rayleigh's equation for an isothermal process

becomes: i)
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RR +2 R = -A?P _ const

2. el‘ ' 11“32

The solution of this equation for the initial conditions

glven by: t =0, R = Rm, R = ‘0, ‘can be obtained from

Lamb (50), thus Y34
| / _Z_.._» dy
£ JEY
tea ] 3 1I-33
y g R
3, ! dy
(1=-yH*h
where:
- R
R, ‘ 1I-34

and t, is the time needed for the total collapse. Equ-
ation 1I-33 is plotted on Figure II-9, 10, 11 and 12; the
initial time fbr collapse was taken to corréspond to t»
in order to satisfy the initial‘conditions. The agreement
appears satisfactory. Note that the large variations in
experimental data shown on these figures pdint out the
poor reproducibility of the data and'the statistical nature
of the process. '
In c1051ng, we note. that if a bubble is suddenly

introduced in a subcooled 1iqu1d or 1f the saturation
temperature of the llquld is suddenly increased (by in-
creasing the pressure), then, 1n1t1ally, the thickness of
the thermal boundary layer is much smaller than the bubble
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radius. Under these conditions, as discussed in Reference

49, the initial collapse rate will be given by:

0
LR 2. T ls=h 11-35
¢ Yrat

We shall surmarize now the results presented in this

chapter.
1) It appears that experimental data for bubbles

growing and collapsing in a subcooled liquid
can be approximated by considering the growth

and collapse process separately.

2) The growth process is governed by the rate of
heat transfer to the bubble wall. The experi-
mental data can be approximated by gfowth
rates obtained from the extended Bosnajakovic-

Jakob model.
3) The collapse stage can be approximated by the

solution of Rayleigh's equation for an iso-

thermal process.

4) The growth and collapse equations thus obtained

are matched at the maximum bubble radius.

5) The large variation of experimental data point
ouththé'poor reproducibility of the data and

the statistical nature of the process.

6) Experimental data tend to indicate that the
diameter of an active cavity can be related to g:)

the thickness of the superheated liquid film.
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CHAPTER 111
HYDRODYNAMIC ASPECTS OF NUCLEATE BOILING

Two aspects of bubble dynamics, the nucleation
and the growth, were discussed and analyzed in the pre-
ceding chapters.- It was seen that the growth equation
can predict the dynamics of a bubble while it is stili
attached to the surface. However, the analysis cannot
predict when and how the bubble will depart from the

surface. The mechanism of nucleate boiling was

 discussed in Chapter I. It was noted that growing and

departing bubbles agitate the superheated liquid £ilm;
thus, colder‘liquidvis brought in contact with the
heating surface resulting in high heat transfer rates. -
Since this renewal rate depends upon the rate at which
bubbles depart from the surface, the heat transfer rates
in nucleate, popl boiling will depend upon the mechanism
which governs the departure of bubbles. This mechanism
of heat transfer and the dependence of the heat flux
upon the frequency of bubble emission was described and
used by Jakob- and co-workers (2, 3, 4, 5) in their
analysis of nucleate boiling. It was taken into account

also in the studies reported by Rohsenow (51, 52),
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Kutateladze (53), Kruzhilin (54, 55).and Sterman (56, 57),
among others. Indeed, an analysis which would omit from
consideration the mechanism of vapor removal from the
heated surface can be considered as incomplete. This
statement is supported by the recent experiments of
Siegel and Usiskin (58) which were conducted in a
gravity-free field. The importance of the graVity in
removing_the vapor from the surface and thus its in-
fluence on nucleate, pool boiling was clearly demon-
strated.

In this chapter we shall analyze the problem of
vapor removal. It will be seen that the phenomenon of
a bubble growing from a nucleating center, and its
subsequent departure from the horizontal surface bears
a strong similarity to a gas bubbling from a horizontal
orifice. This similarity and some known facts concerning
the frequency of bubble emission from an orifice will
permit an estimate of the frequency of bubble generation
in nucleate pool boiling. It will be seen also that the
hydrodynamic aspects of nucleate pool boiling are similar
to those which characterize the process of a gas bubbling
through a porous plate. This similarity, and the hydro-
dynamic instabiiity (usually referred to as "flooding"),
which occufs when a gas is forced to bubble through a

perforated plate or a sieve-tray, will help us gain an
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understanding of the basic nature of the phenomenon
which induces the change from nucleate to transitional
boiling and thus creates the critical heat flux in

boiling heat transfer.

I11-1, The Similarity Between Bubble Formation at an

Orifice and Bubble Formation in Nucleate Boiling

The problem of bubble formation at a submerged
orifice has received much attention. For detailed infor-
mation concerning this problem théireader is referred to
the studies reported by Krevelen and Hoftijzer (59),
Siemes (61, 62), Hughes and co-workers (63), Davidson
and Amick (64) and Silberman (65), among others.

Seimes (61, 62) and Davidson and Amick (64)
presented a detailed study of the regimes of bubtle
formation from a given orifice as a function of the gas
flow .rate. In what follows we shall summarize their

results; the quoted sections are taken from Reference 64,

Static Bubbling Region.. At very low gas flow rate the

bubble formation is a problem of hydrostatiés. The
diameter of a bubble can be determined by considering
the balance of the buoyant and adhesion forces at the
orifice. Denoting by r,, the radius of the orifice,

the bubble diameter is given approximately by




Da = ['2 o 8 173 I11-1
‘ ‘3—((’.&%)
Davidson and Amick noted that stationary bubbles could
not be formed at orifices larger than about 0.7 em. In
Chapter IV we shall see the reason for this. 1In this
regime the bubble diameter is independent of the gas
flow rate. ‘The frequency of bubble_emission inecreases
with the gas flow rate. Bubbles rise with constant
velocity. !'"Therefore for a given orifice the center-to-
center spacing of the rising bubbles is inversely
proportional to fheir frequency. At low frequencies
the liquid at the orifice may be assumed to éome to rest
before each bubble escapes. The bubbles are identical

at any given point early in their rising path.'

Transgition Region. "At higher flow rates the bubble

volume increases sharply as the frequency levels of tﬁe
spacing between bubbles has decreased, and each forming
bubble_is affected by the presence of the preceding
bubble, perhaps through the mechanism of a liquid vortex
at the orifice. The bubbles now start to form into pairs
although still forming individually at regular time

intervals at the orifice. A bubble will appear to hover

80



NN

above the orifice until the next bubble emerges, and the
two bubbles will remain together as they fise. This
pattern is repeated by the next two bubbles, and so on
indefinitely."

Incipient Coalescence. '"As the flow rate further increases,

the members of a bubble pair touch each other. This con-
dition may be called 'doublet formation'. Thé first
member of the doublet usually assumes a hemispherical
shape, and the second bubble is elongated vertically;

the assembly resembles a mushroom,'

Coalescence. "Further flow-rate increase causes the

second bubble to penetrate the first one appreciably.
Under other conditions the first bubble absorbs part of

the second and leaves the residue as a small satellite."...

Coalescence at the Orifice. 'Coalescence takes place

clqsér and closer to the orifice as the flow rate
increases. A flow rate is finally reached at which the
bubbles coalesce,rightvat.the orifice, the first bubble
having no time to rise before the second emerges. Under
these conditions it will appear that the frequency of
bubbles rising from the orifice has suddenly been halved,"

Double Coalescence. '"As. the flow rate further increases,

the large coalesced bubbles themselves undergo coalescence

as they rise. This may be called 'double coalescence.'

8l
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Af this stage the f£fluid is usually quite turbulent and
the gas seems to issue from the orifice as a continuous
Jet."

The reader should compare now the above des-
cription to the discussion presented in Section I-3.
Indeed, if the expression "increaéing the gas flow rate
were changed to "increésing the heat flux density', it
would appear as if Davidson and Amick were describing
‘the bubble formation in Yamagata and Nishikawa's exper-
iments of nucleate boiling, see Figure I-5.

It appears thus that both the types of bubbles
and the bubble formation regimes in nucleate boiling
and in gas bubbling through a submerged orifice are
hydrodynamically similar;

In the section which follows we shall make use
of this apparent similarity to predict the frequency of

bubble emission in nucleate boiling.

III-2, The Frequency of Bubble Emigsion and the Value

of the Product: Bubble Diameter Times Fre-

quency in Nucleate Boiling

_ It was notedvin Section I-3 that during the
departure bubbles deform. The rate of rise of bubbles
was analyzed by Pebels and Garber (65). The wvelocity
of rise for deformed bubbles was found to be constant

and independent of the size. It was found that the data




for sixteen liquids could be described within + 3% by

the relation

Uy = x.\s[q"”":“ez)]‘/“

b

I1I-2

This equation was derived analytically by Frank-Kamenetsgkii
also (66), During the process of quasi-static bubble
formation, '"simple bubbles' depart under the action of
gravity only. It can be expected that, under these
circumstances, the velocity of rise in the vicinity of
the heated surface will be approximately equal to
Equation 11I-2. Before proceeding further we shall
verify this statement. Jakob (3, 67) has reported that
the velocity of rise of a bubble immediately after
departure is U, = 17 cm/sec. For water at saturation
temperature, Equation III-2 predicts a velocity of rise
U, = 18.6 cm/sec.

Jakob and Linke (4)>found that while the bubble
still adhers to the surface its center of gravity rises
with almost the same velocity with which the bubble
later rises when it leavésfthe surface. This observation

implies that the foliSWing relation is approximately valid
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I+ follows then from Equation I-9 and Equation III-3

Va

that

I1I-4

Dy f = —2 TRt
f¢+ td L Q{‘

The maximum frequency of bubble emission occurs
when bubbles touch each other, i.e., when the contact
time t, is zero. For a spectrum of diameters Dy,
Equation III—4 then gives the corresponding frequéncy
spectrum. |

The product D4-f appears in almost every analysis
of nucleate boiiing (4, 5, 51, 52, 53, 54, 55, 56, 57).
It was discussed in Section I-3 that this product was a
constant for a nucleating center. For different liqﬁids
the average value of Dd-f was found té be of the same
order of magnitude. Consequently, Jakob and Linke (5)
proposed that a constant value of Dj-f = 77 mm/sec be
assigned to this product, whereas Fritz and Ende proposed
a value of 95 mm/sec. We shall compute this vaiue now.

Jakob and co-workers (2, 3, 4, 5, 24, 67) have
observed that in their experiments the contact time t,

was almost equal to the time at departure td' Taking
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te equal to t&, Equation 1I1I-4 becomes

Y
Df - LIS M}“ 1T1-5

I B

For water at saturation at one atmosphere Equ;
ation III-5 gives a value of 93 mm/sec, whereas for
methanol and carbon tetrachloride it predicts 73 mm/sec
and 64 mm/sec respectively. On Figure III-1l, which is
reproduced from References 3 and 67, Equation III-5.

(for water) is compared with experimental data of Jakob
and co-workers. On the same figure are plotted experi-
mental data of Yamagata and Nishikawa (27) and of
Westwater and co-workers (L, 25). The agreement appearsv

to be satisfactory.

III-3. A Possible Relation Between the Diameter of a

Quasi-Static Bubble and the Diameter of a Cavity

The indicated similarity between bubble formation
at orifices and bubble formation in nucleate boiling
offers an interesting poséibility for further investi-
gation, It was noted that for low gas flow rates the
diameter of a departing,. quasi-static bubble was given

by Equation III-l. It was observed in Section I-3 that
| at low heat transfer rates in nucleate boiling the bubble
formation can be considered as a quasi-static process.

If the bubble growing from a nucleating center is
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FIGURE III-1, THE RELATION BETWEEN THE FREQUENCY
OF BUBBLE EMISSION AND THE DIAMETER OF A BUBBLE
DEPARTING FROM A HORIZONTAL SURFACE
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prevented from wiping the wall clear of water (see
discussion in Section II-6), it could be assumed that

in nucleate boiling the radius of the cavity could be
substituted for the radius ry, of the orifice in Equ~-
ation III-1. This would enable us to compute the
spectrum of diameters of departing bubbles in terms of
the spectrum of cavity diameters. We cannot test this
assumption because no experimental data are available,
This can be done somewhat indirectly for the experiments
of Fritz and Ende (24)4and of Zmola (42), who reported
the values of D;. No data was given however for cavity
dimensions D, = 2 r,. The analysis in Section II-5
indicated a possible relation between the'diameter of
the cavity D, and the thickness of the superheated liquid
film X_. 1If we substitute Xs/2 from Equation II-26 for

r, in Equation III-1, it follows that

Vs
- T
D, =[S KA I11-6

?(fl'ﬁo _ak

On Table III-l the experimental data of Zmola are tabu-

lated together with the computed value of Dj.

87




88

g

TABLE III-~1l

Comparison of Equation III-6

with Experimental Data of Zmola

AT q Dq Dgq
OF Btu in (Equation III-6)
hr £t2 in
9.4 9600 30 x 10-3 32 x 10-2
9.4 9600 31 x 10-3 32 x 10=3
9.4 9600 34 x 10~3 32 x 10-3

The same is done on Table III-2 for the experiments of

Fritz and Ende and of Jakob and Linke.

TABLE III-2

Comparison of Equation III-6 with Experimental Data of

Fritz and Ende and of Jakob and Linke

Fritz and Ende Jakob & Linke Equatioﬁ
"I1I-6

AT ¢ Dyg D D
oC Kecal cm c% _c%

hr m2 (average value)
9 19000 5.42 x 10-{_ 2.81 x 101 2.15 x 10-1
9 19000 4.04 x 10~ 2.15 x 10-1
9 19000 4.64 x 10-1l 2.15 x 101

It is seen that the computed values are of the
same order as the measured one. In view of the possi-
bilities which a relation of this kind could open, it
appears that further experimental investigations are

warranted, *i)
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III-4. On the Similarity Between llucleate Boiling and

Flow of a Gas Bubbling Througsh a Perforated

Surface.

We shall discuss in this section the similarity

which exists between nucleate boiling and a gas bubbling
through a perforated or porous surface. From this simi-
larity and from some phenomena which occur in fluidized
bubble~bed apparatus, the mechanism leading to the

critical heat flux in nucleate boiling will become

apparent. .
The problem of a gas bubbling through a porous

surface has received much attention recently. The

reader is feferred to the papers by Verschoor (68),
Siemes (60, 61), Kolbel and Siemes (69), Siemes and
Borchers (70) and Houghton, Mclean and Ritchie (71) for

detailed discussion and additional references. It was

suggested already by Kolbel and Siemes that experiments

performed with bubble-beds, i.e., with a gas flowing

through a porous plate, may be used to help our under-

standing of nucleate boiling. Such experimental studies

of two-phase flow phenomena conducted with perforated

and porous surfaces were recently reported by Petrik (72)

and by Wallis and Griffith (73).
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We shall first examine the relation between the
gas flow rate and the pressure drop across the porous
surface; the discussion is based on the studies reported
in References.Gl, 70 and 71. Take a capillary of a
given radius r,, the pressure difference which is
lrequired for the formation of a bubble is given by
Equation I-l1. Thus the problem of initiating the
bubbling process in nucleate boiling and from a porous
plate are identical.

Congider now the effect of increasing the gas
flow rate. At low gas flow rates only few of the
largest pores are bubbling. As the gas flow increases
the pressure diffefence increases and an increasing
number of smaller pores become active. Vershoor noted
that in addition to these mew pores coming into action»
the first ones are yielding larger bubbles. Smaller
pores can be brought into action also by reducing the
surface tension of the liquid. The porosity of the
surface determines the slope of the curve. This can be
seen on Figure III-2, which is reproduced from Ref-
erence 70,

The reader should compare now the experimental
‘fesults listed above to the discussion, given in
Section I-4, of the effect of surface roughness ﬁpon the

relation between the heat flux density and superheat
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is reproduced from the paper by Siemes and Borchers, 70)
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temperature difference T, - T, in nucleate boiling.

If, as it was suggested in Section III-1, "gas flow

rate'" is substituted for 'heat flux density'", both
descriptions are alike. DNote that through Clausius-
Clapeyron's equation the superheat temperature difference
can be expressed in terms of a pressure drop.

We shall now examine some hydrodynamic charac-
teristics of fluidized bubble-beds. For additional
information the reader is referred to the excellent
study of Siemes. The flow process of gas bubbling,
through a porous plate is characterized by two distinct
flow regimes, At low gas flow rates a so-called "laminar"
regime exists, whereas a 'turbulent" regime is associated
with high gas flow rates. At low gas flow rates few pores
are active. Bubbles of constant volume rise with a
constant velocity without interacting. At these low gas
flow rates an increase of flow rate results hostly in an
increase of the number of acﬁing pores, i.e., of the
bubble population. At still higher rates both the popu-
lation and the bubble volumes increase and bubbles start
interacting. This process continues until, at a critical
gas flow'rate, the flow changes to a turbulent process.
Houghton and co-workers (71) observed that this change
in the flow regimes is associated with bubble coalescence.
If the gas flow rate is still further increased large

plugs of gas are formed.




The distinct difference betweén these two flow
regimes is shown on Figure 2 in Reference 69. It was
noted that hydrodynamically, nucleate boiling is similar
to the process of a gas bubbling from a porous or per-
forated plate. Indeed, if Figure 2 from Reference 69
is compared to the photographs of nucleate boiling which
'were published by Westwater and co-workers (1, 25), no
difference can be seen, The "lamiﬁar" regime corresponds
to nucleate boiling at low heat transfer rates, whereas
the "turbulent" regime corresponds to the region close
to the critical heat fluxz. It appears thus that the
critical heat flux is characterized by a change in the

flow regime. We shall explore this statement further.

II1-5. The Phenomenon of '"Flooding'

The change of flow regimes and, consequently,

of the operating conditions is not a characteristic of
fluidized bubble-beds only, but is a phenomenon which
occurs in the performance of other apparatus. It has
been recognized that the liquid and gas throughput in
packed columns is subject to aﬁ upper limit above which
the column ceaées tb operate.satisfactorily és a counter-
current device. This u@per'limit is designated either

as the '"loading" or the "flooding" point. For a given
apparatus "flooding"‘is determined by both gas and liquid

rates. At any given gas rate there is a definite liquid
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rate above which a packed column will f£flood. Similarly,
at any given liquid rate there is a definite gas rate
above which the column will flood.

The mechanism of "flooding" in a sieve-tray dis-
tillation tower was recently described by McAllister,
McGinnis and Plank (74). Among other effects, "flooding"
resulted from a cohplete lifting of the liquid from the
tray f£loor ahd gsubsequent carry-over of all the liquid
on the tray as entrainment.

The generality of the "f£looding" phenomenon was |
best discussed by Elgin and Weiss (75) and we shall quote
now their description of the mechanism.

"It ig believed desirable to emphasize here the
generality of flooding and to visualize it as a requisite
consequence in any apparatus in which one fluid passes
discontinuously through an immiscible second one. The
flooding of the packed tower is a special case of this
general viewpoint. Bubble-cap, sprhy, bubble, or f£ilm
type gas-liquid or liquid-liquid towers exhibit flooding
in essentially the same manner. Preliminary visual
laboratory studies of the flooding of such equipment
indicate no fundamental or radical difference in the
operative mechanism producing flooding. A difference
in the visual behavior of such equipment arises from

differences in the phase initially discontinuous. The



behavior of an evaporator or vaporizer operated at an
excessive heat rate for its diameter or a tube containing
a column of water into which air is bubbled at an in-
creasing rate ig believed to be an evidence of the same
basic phenomenon.

| "The general character of flooding is visualized
as follows: As pointed out the holdup of any discontin-
uous phaée. passing through another, whether the latter
is in motion or not, necessarily increases with its rate
of £low since its linear velocity in the continuous is
less than proportional to the rate at which it enters.
That its holdup must eventually approach the free volume
or cross section of the apparatus and result in a ten-
dency for it to become continuous and displace the phase
initially continuous is obvious. The continuous phase,
if in countercurrent motion, retards the passage of the
discontinuous through frictional drag to a greater or
less extent. An increase in the holdup of the latter
follows. This in turn results in a corresponding increase
of holdup. Since the countercurrent velocitigs are
mutually interdependent; the effect is multiplied at a
rapidly accelerating~pace with further increase in volume
of either phase fed to the apparatus and must eventually
cﬁlminate in flooding. When the flooding point is

reached, either of two things may happen. Depending
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upon the rate of passage of the continuous phase if made
discontinuous in the other and its corresponding holdup
at the relative volume flow rates at vhich flooding has
occurred, either the discontinuous phase is reversed,
and the only evident change is a transition say,from

a spray to a bubble device; or if the flow conditions
are such fhat the corresponding holdup of each would be
sufficient to fill the available volume, a competition
results and either is discharged more or less violéntly
from one or both ends of the apparatus. Both conditions‘
occur in packed tower or a spray type liquid-liquid
tower. Only the latter situation is observed in a £ilm
type or a bubble type gas-liquid tower. The first may
be regarded as flobding with respect to liquid, the
second to gas.'

We can interpret now the critical heat flux as
the-region where vapor and liquid compete for the free
volume. It is a hydrodynamic phenomenon like other
"flooding'" phenomena. We may expect, therefore, that.
it will occur when the velocity of the vapor phase reaches
a critical value. Like in the experiments of McAllister
and Plank (74) the liquid will be pushed away from the
surface and the whole system will oscillate at some
characteristic frequency. In Chapter VI we shall determine

the critical velocity of the vapor phase, and this fre-
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quency. In the next section we shall discuss the
heretofore proposed correlations of the critical heat

£lux,

III-6. Previous Empirical Correlations of the Critical

Heat Flux

The observation of Elgin and Weiss which was
quoted invthe preceding section is, to the knowledge
of the writer, the first reference in the literature
which interpreted the critical heat flux és a hydro-
dynamic phenomenon. The first correlation of expeti-
mental data of the critical heat transfer rates which
used the concept of‘"fldoding" was reported by Bonilla
and Perry (75).

The correlation of experimental data for column

flooding are plotted in terms of two dimensionless

groups

Ti}= fg;'u& o III-7
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where Ugv Uy, and ?g’ -?I‘are the superficial velo-
cities and densities of the gas and liquid phase respec-
tively; whereas m and g are the hydraulic radius and the
acceleration due to gravity. To apply the above dimen-
sionless groups to the critical heat £lux, Bonilla and
Perry substituted the group q/L R ,, for Ug» and

?1/ Ry for Ug/UL. . The hydraulic ?adiug was expressed
in terms of the diameter Dy given by Equation I1-7. The

correlation was expressed thus in terms of

. (%/e) &

Ty =
- i T Y2 I11I-8
.Q‘ 212{ [m-eﬂ
T, = %
4 3

The experimental values of the critical heat flux q,

for boiling binary liquid mixtures, were inserted in
Equation III-8, and the data was plotted on a log-log
scale using 'ﬁ'3 and 1?4 as coordinates. From the
results Bonilla and Perry concluded, "“The points do not
fall too far from the flooding line." However, in their
subsequent publications this approach to the critical

heat flux was not pursued further.



The view that the critical heat flux marks a
transition from one regime to another haé adopted by
Kutateladze (78, 77), Borishanskii (36; 79), Sterman
(56), and by Rohsenow and Griffith (8¢). The analysis
of Kutafeladze will be discussed in greater detail
beéause he was responsible for the investigation and
interpretation of the critical heat f£flux as a hydrody-
namic phenomenon.

Kutateladze noted (78, 77), "At heat transfer
rates close to the critical heat f£lux, the amount of
vapor forming on the surface is so large that it is
impossible to consider separate nucleating centers
and separate bubbles. Consequently, in this case the
meaning and the concept of the frequency of bubble
generation is lost . . . the essential feature of the
theory of the phenomenon can be derived if one assumes
that the crisis in the boiling process is purely a
hydrodynamic phenomenon: the destruction of stability _
of two-phase flow existing close to the heating éurface."
According to this view the change from nucleate to
transitional boiling occurs when the velocity in the
vapor phase reacbes a critica} value. Starting from
the non-linegr Euler equation_of motion and the energy
equation he derived by dimensibnal analysis, the fpllowing

equation for the ecritical heat flux in pool boiling of
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liquids at saturation:

4 = Coust.

L (e,‘)”-[fm—e«)l‘/"'—' K 1119

The constant K‘was determined from experiments

_and its value was found to be
% = O.lt 1II-10

The same equation, using dimensional analysis but a |
different'thought model, was re~derived by Sterman (56).

It is interesting to note here that the diﬁen-
s%onless groﬁp K defined by Equation III-9 is equal to
thé square root of the dimensionless group Tf3 defined
by Equation,III-B;‘ | |

In two recent papers Borishanskii (88, 79)
extended Kutateladze's analysis to include the effect
of viscosity. 1In the discussion he pointed out several
interesting aspects of nucleate boiling closé to the
critical heat fluxx, These comments are worth repeating
here. According to Borishanskii the continuous exdstence
of steady heat transfer rates in the neighborhood of the
critical nucleate heat flux leads to the conclusion that
there exdists a direct steady movement of liquid toward

the heating surface and of vapor away from it. Because
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of the density difference between the two phases,
Borishanskii reasoned that a large part of a cross-
sectional area close to the heating surface is occupied
by vapor rather than by liquid, Therefore, near the
heating surface one can consider a two-phase boundary
layer whose thickness is of the order of a disengaged
bubble. This two-phase boundary region may be visua-
lized as consisting of liqﬁid étrcams flowing toward
the surface and surrounded by vapor. The shapes of the
vfilaments of liquid as they flow towards the wall are
not well defined because of the inherent randomness in
the bubble dynamics and coalescence in the nucleate
regime,

At low nucleate boiling heat transfer rates the
discrete phase appéars as a vapor bubble surrounded by
a mass of liquid; whereas close to the critical heat
flux it is, rather, a liqﬁid stream filement bounded by
a group of bubbles. The change £fom nucleate to transi-
tidnél boiling occurs when the steady flow of the iiquid
toward the wall is disrupted,‘i.e., when at criticél
velocity of the vapor phase the ‘liquid streams are
destroyed. Borishanskii noted further that: "This
problem seems mmalogous from a theoretical point of
view to the disturbance of steady flow of a liquid

stream in gas which moves coaxially with it. The
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solution of the problem leads to a relationship between
the increment of the oscillation and the wave length.
Further analysis of the equation for the limiting case
of stable flow leads to the conclusion that the critical
boiling point corresponds to the éstablishment of a
definite geometrical structure of fhe two-phase-bouhdary
layer.'" Borishanskii, therefore, considered tﬁat the
phenomenon was to be explained by analyzing the stébility
of a liquid jet surrounded by a moviﬁg, coaxial, vapor
phase. From the equation which determines tﬁe amplitudei
of the wave and from the energy equation he established,
by dimensional analysis, two similarity criteria:' K _
given.by Equation III;é as previously found by Kutateladze,

and N, given by
3
e qTh

N - - y
M- "

I1I-11

By plotting K versus N he found the following approximate

relation:

-0, 4
K=101 +4 N III-12

T



In order to establish the above correlation, 117 experi-
mental data points were used. The experimental data
represent the following liquid-solid combination: Water
boiling on a graphite surface (B}), ethanol, benzene,
n-heptane, and n-pentane boiling on a chromium plated
surface (82), ethanol (83) and water (84) boiling from
a nichrome surface. The viscosity of the liqﬁid appears
in Equation III-12 only in the additive correction factor
N. Inasmuch as the deviation from a horizontal line is
small it can be seen from Figure III-3, that the effect
of the viscosity is also small. |

Good agreement with experimental data was achieved,

also, by the correlation proposed by Rohsenow and Griffith
(89):

L‘fé I [ e..é-vev]

I1I-13

The value of the constant-ci= 143 £.p.h., which has
dimensions of a velocity, and the exponent m = 0.6 were
determined from experimental data by plotting q/L Cv
versus the buoyancy term QL - Q v/ ?v.

Equations III-9 aﬁd III-13 are remarkable for
three reasons. We note first that they do not relate

heat transfer to a temperature difference. Also, they
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FIGURE III-3. CORHELATION OF DATA FOR VARIOUS LIQUIDS AT THE
CRITICAL HEAT FLUX DENSITY IN POOL BOILING.

This figure is reproduced from the report by Borishanskii (79,80).
The solid line (Equation III-12) is his best fit curve to 117 data
points. The two dashed lines represent the upper and lower bounds
on K (Equation VI-13) derived by the considerations in the paper.
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do not depend upon the thermal and transport properties
of the liquid. And, we note their striking simplicity.
These characteristics of Equations II1I-9 and II1I-13 are
surprising when an interpretation of the phenomenon is
gought in terms of the conventionai convective heat
transfer concepts where the thermal and transport pro-
perties of the liquid are of pafamount,importance. 1t
is not surprising, however, if the critical heat flux
is interpreted as a hydrodynamic phenomenon of '"f£looding'
which occurs at a dritical velocity of the vapor phase.
| This statement is confirmed when Equation III-13 is
compared to the equation which gives the critical; i.e.,
the limiting, vapor velocity at which a bubble-cap
column £loods (8%).

: ?.,-?v VZ
U = K {7__] ITI-14

where U, is the maximum permigsible velocity, in feet
per second, based on the area of the bubbling section of

the plate and K is an'empiricalfconstant.




III-7. Nucleate Boliling and the Region of the Critical
| Heat Fluoe o
. In Chapter I we have reviewed experimental results
of nucleate boiling. 1In the preceding sections of this
chapter, nucleate boiling and the process of a gas
bﬁbbling:through a liquid were compared and two simi-
larities were analyzed. We have considered fifst the
similarity which'exisfs between a gas bubbling through
an orifice and bubbles growing from a nucleus in boiling.
Following this, we have considered the similarity which
exists between nucleate boiling and a gas bubbling
through a perforated surface. |
By making use of the first similarity and of

some known facts concerning the frequency of bubble
emission from an orifice, an equatioﬁ (Equation III-4
or III-5) was derived for the product D4-f in nucleate
boiling., It is possible thus, from Equation III-4, to
estimate the maximum frequency of emission of simple
bubbies in nucleate boiling. The first similafity indi-
cated also the possibility of expressing the diameter
Dy of a simple bubble departing from the heated surface
in terms of the radius of r, of the nucleating cavity.

| The second similarity, i.e., the similarity
which exdsts between nucleate boiling and the process of

a gas forced to bubble through a perforated surface,
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indiceted the basic“netufe’of the phenomenon which‘
indﬁces the change from"nucleate to transitional boiling.
It Waa seen thet.the“criticel heat flux ie a hydrodynamic
phenomenon. It was conciuded also that existing cor-
relations (cf Equation III 13) can be understood only
if the critical heat flux is interpreted as a "flooding"
phenomenon. |

| In this section we shall integrate the discussion

given in Chapter I with the results presented in the

. preceding sections of ﬁhis chapter; We shall attempt

thus to form a composite picture of nucleate pool boiling
from a horizontal surface. o

Consider fhe effect of increaeing the heat flux
density on the mrocess of boiling. At low heat flux
densities nucleate boiling takes place in patches. In
these patches of nucleate boiling '"simple'* bubbles ere
generated (see Figure III-4.a). From a given nucleating
center bubbles depart with a regular frequency end with
a constant diameter. The product of the diameter and
the frequency can be approxlmated by Equatlon III-4
To a dlstrlbutlon of nucleatlng cavitles of different
dimenslons-there corresponds probably a distribution of
departing bubbles-having different diameters and dif-
ferent frequencies: of emlssion. The velocity of bubble

rise in the vicinity of the surface can be approximated




Figure II1I-4. Schematic Representation of the
Process of MNucleate Boiling
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by Equation III-2. As bubbles grow and depart the liquid
is agitated. At regﬁlar time intervals in the vicinity
of a nucléétingxcenter colder liquid is brought in
contact with the heating surface, thus resulting in hiéh
local heat transfer rates. The process of bubble gener-
ation and, consequently, the process of local heat
transfer are intermittent. The sum of such high local
heat’transfer_rgtes results in an average total heat
flux density which is higher than in a non-boiling
system. ' |

_ As the heat flux density is increased the
patches of nucleate boiling spread, i.e., the bubble
population increases. In addition to the new active
nucleating centers the first active ones are generating
"multiple' bubbles (see Figure III-4.b). The process of
spreading of patches of nucleate boiling continues with
an increase of the heat flux density until the whole
surfaée is covered with active sites.

The bubble popﬁlatian continues to inérease with
increasing heat flux densities; LThe frequency of bubble
emigsion increases ﬁntil.bubbles:follow each_other; ie.,
the contact time}is almost zero, For a given bubble
diameter the maximum frequehcy'can be estimated from
Equation III;4. Under these éondifions coaleséence of

bubbles takes place. Consequently, from some nucleating
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centers continuous vépor columns, i.é., vapor Jjets, are
generated. At some distance from the surface these
vapor jets break up into large bubbles (see Figuré I1I-
4.c). It is probable that further increase of the heat
flux density resulte mainly in increasing the nﬁmber of
these continuous vapor columns, although the bubble
population will keep increasing also.

The vapor velocity in these jets increases with
inereasing heat £lux density. The process continues
until at some critical velocity of the vapor two neigh-
boring jets start iﬁteracting, i.e., become unstable.
The liduid stream between the two jets ig interrupted, -
andkfhe‘eteady flow of the liquid toward the surface
ceases (see Figure III-4.d). Using the expression of
Elgin and Wéiae the vapor and the liquid start competing
for the free volume and "flooding' starts.

For a horizontal surface the interaction of the
Jets occurs at a random place. Thus, at random location
on the surface a large patch of vapor is formed (see
Figure ITI-4.e). 1In order to distinguish the patches
of nucleate boiling which appear at low heat flux
denaities from the large patches of vapor which appear
in the region close to the eritical heat flux, we shall
refer to the latter oneca as patches of transitional

boiling. Such a patch insulates the surface locally.
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Consequently, for a constaﬁt heat flux density the tem-
perature of the surface increases. This causes the rate
of evaporation to increase and results in higher vapor
velocities in other jets. These, in turn, become unstable,
gstart interferring with each other and patches of transi-
tional boiling appear at a compounding rate. Using, again,
the expression of Elgin and Weiss the effect of the in-
stability is multiplied at a rapidly accelerating pace.
Thus in the region of the critical heat flux a small
inerease of the heat flux density results in a large
inqrease of the surface temperature. Consequently, in
the q = A T plane there exigts a plateau across which
boiling changes from the nucleate to the transitional
boiling regime. |

The patches of transitional boillng are
hydrodynamlcally unstable; this problem will be analyzed
in the chapter which follows. In collapsing, i.e., when
the vapor-liquid interface of a patch approaches the
heated surface, large rates of evaporation occur and
the interface is pushed violently back. The process is
similar to explosions or bursts of vapor. Similarly to
the '"flooding" of sieve-trays, in the region of the
critical heat flux, the liQuid is pushed away from the
surface and the whéle system oscillates at some charac-

teristic frequency.
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Once the patches of transitional boiling cover
the:wholé gurface, transitional boiling sets in. The
problem of transitional boiling is taken up in the
chapters which follow. It will be seen that aiwell
defined geometry is the characteristic of transitional
boilipg; Therefore, an analytical solution of the
problem can be attained (86, 87,,88). In nucleate
boiling the flow configuration is not well defined. As
noted by Barishanskii, *the form of the liquid streams
differs considerably since it i1s determined by the not
well regulated order of the cémbination of wvapor bubbles."
It was observed in Reference 88, that given a field
equation and no geometrical data, Kutateladze and
Borishanskii found it necessary to use dimensional
analysis, which is the best that can be done under the
circumstances and which reduces the problem to the

determination of an empirical constant.

ITI-8. Nucleate Boiling Heat Transfer - Methods

of Analysis

In this closing section of thé chapter on hydro-
dynamic aspects of nucleate boiling we shall discuss
briefly two méthods of analyzing the proceés of heat
transfer:in nucleate boiling. Correlations of experi-
mental data which are based on finding empirical

relations among dimensionless groups will not be discussed e



here. This approach to the problem as &ell as the
correlations which have been proposed are discussed in
Reference 88,

It was discussed in the preceding sections that
heat transfer rates in nucleate boiling are the result
of local effécts which are created by bubbles growing
and departing from the heated surface. Consequently,
an analysis must consider both the effect of bubble
population and the mechanism of vapor removal.

The problem can be analyzed either by considering
the transport of enthalpy across an imaginary boundary
located in the liquid, or by considering the mechanism
of energy transfer at the heating surface. A complete
analysis cannot be carried out at present because both
methods require information on the bubble populatiqn;
this information is not available yet. In what follows
we shall only outline these two methods of analysis and
cite the contributions and suggestions which were
advanced by various researchers.

The transport of enthalpy which was considered
by Sterman (56) and by Treschov (20) is an energy
balance: the enthalpy;transported by one bubble,‘multi-
plied by the frequency of emission and by the number of
bubbles per unit area, is equated to the heat flux

density, thus.
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whefe~the bar refers to mean values.

The second method of analysis was proposed

III-15

by

Kruzhilin (54, 55) and by Rannie (47); they considered

the heat tfansfer process at the heating surface.

It

was noted that, because of the growth and departure of

a bubble, colder liquid is periodically brought in

contact with the heeting surface. Thua in the vicinity

of a nucleatind center large temperature gradlents
created periodically, conductlon is increased and

becomes the dominant heat transfer process.

are

The analysis is formulated (54, 55) by consid-

ering the amount of energy which is transferred from ‘

the heated surface (x = 0) during a contact time t,,

across an area element F. This area F is the segment

of the.total heated surface which is influenced by

action of one nucleating center, i;e., it is the

the

"influence domain" of one.bubble. The amount of energy

Q', which is transferred by the action of one nucleating

centef,_becomes“thus
Tai'tg

\ T
Q'- ] . JK%)MdMF
ta F

I11-16
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The total amount of energy Q, which is transferred from
the surface, is obtalned by multiplying Equation II1-15
by the total number of nucleating centers. |

In order to make use of Equation III-15 it is:
necessary to evaluate the gradient (?Tyax)xao. This
temperature gradient will be determined, as in similar
trangient conduction problems, by the coupling of the‘,
thermal fields which exdst in ﬁhe solid and in the liquid.
It will depend-thus upon the thermal properties of both
the solid and the liquid. The iﬁportance of the thermal
characteristics of the solid on nucleate boiling heat
transfer were discussed by Rohsenow, Sabersky and Snyder
(47). The observation made by Zysina-Molozhen, which
was quoted in Section I-4, only adds supporting evidence,
It was discussed by Griffith (44) that when the temper-
ature of the heated surface remains approximately
constant during the process of intermittent heat transfer,
the temperature distribution in the liquid during the
contact time t,, can be'approximated by the sdlutionvof
Equation II-2, The inatanténeoﬁs temperature gradient
is given then by Equatioﬁ'II-A.

When the energy equation for the liquid adjacent
to the heatihg éuffacejcan'bg'abproximated by Equation
II-2, the problemvof intermittent heat transfer in

nucleate boiling becomes similar to the system which is




described by the 'discontinuous film model." This model
was developed and used by Highbie (89); Dankwerts (90)
and Hanratﬁy,(gl) to describe the exchange of mass,
momentum and energy at a boundary. According to this_
theory, masses of fluid can be visualized as moving to
and from the wall causing a continual change of the
fluid in contact with the wall. When a mass of fluid
come s in contact with the solid, its éurféee layer
immediately attains the témpérature.of the wall. It .
remains in contact with the wall for a period of time
toy during which energy is transferred from the wall
to the liquid by'conduction. The problem is similar
to the héating_éf a block of metal. After the contact
time t,, the mass of fluid is replaced and the process
ig repeated. ’ ‘
| The problem is formulated by considering the
inatantaneous temperature gradient, in this insténce
it is given.by Equation II-4, 1If all fluid masses had
the same contact time to, the average, i.e., fhe
measured héat flux density'would be

te
U | & (To=T) g 2 (Ti-Ts)

1. Vrat VTrat,
o .

I11-17
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However, different liquid masses will have different
contact times. The effect of the variations is taken
into account by considering the probability P( t)d te
that a fluid mass has a contact time between t, and
t + dt,. The average heat flux is obtained by inte-

grating over all variations, thus
o0

- (t. 2 K(va'Ts)iit
C_t /¢ ) Vﬂ‘atc ©

I11I-18

Q

It i8 seen from this brief discussion that the

system which is described by the "discontinuous £ilm
model”" resembles the process of intermittent heat
transfer which takes place in nucleate boiling. An
investigation along this line will be given at a later
date. Here we note that this approach can be readily
applied to transitional boiling. It will be seen in
the. chapters which follow that, in contrast to nucleate
pool boiling where the frequency of bubble gmission

and therefore the contact times are given by a distri-
bution curve, in transitional boiling to a given heat
flux densgity there correspohds one frequency. Thus, in
transitional boiling Equation III-18 is reduced to
Equation III-17 which permits an'analytical solution of

the problem (87, 88).
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CHAPTER IV

HYDRODYNAMIC ASPECTS OF TRANSITIONAL BOILING

The region of the critical heat flux was discussed -

in thevpreceding chapter. It was observed tﬂat when two
vapor jets start interferring with each other the flow of
liquid tqward the surface is interrupted and a:patch of
vapor, i.e., a_patéh of transitional boiling, is formed.
The region of the critical heat flux is characterized
thus by the presence of both nucleate and transitidnal;
boiling. When.pafches of transitional boiling cover
the whole surface transient boiling sets in. We shall
analee,in.this chapter the hydrodynamic aspects of
transitional boiling. The first analytical investi-
gation of the characteristics of transitional boiling
was febbrted in Reference 86; the problem was investi-
gated further in Reference 88.

In transitional boiling the heating surface is
separated from the liquid phase by an unstable irregular
film of vapor. The process is hydrodynamically unstable,
becausé‘the acceleration is direéted from the less dense
to the more dense medium. An undefstanding of the pheno-

menon requires therefore an understanding of the mech-
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anism of hydrodynamic instability, a topic which is taken

up in the section which follows.

IV-1. Stability of a Plane Interface - Mathematical

Formulation

The problem of hydrodyﬁamic stability of a plane
interface has received much attention. The reader is
referred to the treatise by Lamb (50) and in particular
to the recent monograph by Birkhoff and Zarantonello
(92) for a detailedidiscussion'of the prqblem. In what
follows we shall summarize the results which are per-
tinent to the problem under consideration. The discussion
ig based on studies which were reported by Taylor (93),
Lewis (94), Allred and Blount (95), Bellman and Pen-
nington (96) and by Birkhoff (97, 98).

When two liquids of different dengities and having
a common interface are accelerated in a direction perpen-
dicula: t6 the boundary, any small i:regularity of the
interface will tend to change in.shape. " The interface
is stable, i.e., the irregularities‘will tend to smooth
~out in tﬁne,kif the acceleration is;directed from the
denser to the lighter fluid. 'Thé interface is unstable,
i,e.+ the irregularities of the interface will grow with
time,  when the acceleration is-dirgcted from the lighter
to the heavier medium. A familiar example of this

phenomenon is a glass of water turned upside down. The
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air-wafer interface instead of remaining plane as it
falls will tend to form long liquid spikes which subse-
quently disintegrate into drops. An instability of this
kind is referred to as "Taylor instability" becaﬁse, as
pointed out by Birkhoff and Zarantonello, 'the first
clear formulation of this principle was due to Sir
- Geoffrey Taylor»(93), who'also inspired its_experimental’
confirmation by Lewis.' (94) |
The problem was formulated mathematicallyvby
Kelvin (Reference 50, Page 458) using potential theory.‘
Consider a plane interféce at Y = 0 separating the vapor
' in Y < 0 and the'liquid.inix > 0., let an infinitesimal
perturbation of this interface be given by o

| {(wt=-mx) :
= He , | -1

Under the usual perturbation approximation the frequency
equation of the interface becomes (Réference 50, Page

459, Equation 2)

Q}x”a (T/hﬂs - 3‘(ﬁf*ev)gz'

P IV-2
(R LV .+€
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The condition of stability is that W be real; when
tw becomes imaginary the disturbance W , given by
Equation IV-1, will grow exponentially with time., The
wave length can be expressed in terms of the wave

number ™ , thus,

| 2 |
A= = 1v-3

Equation IV-2 indicates that the disturbances of the
interface can be stable or unstable according to whether
the wave length is shorter or longer than a critical
value. This critical value is obtained by equating

Equation IV-2 to zero, thus

YL [é;;m‘\ - -4

Equations 1IV~-1 and IV=-2 indicate the existence of a
continuum of unstable pefturbations; eachfof which has
its own growth rate. Because of the exponential nature
of the instability the wave length which maximizes

- W 2 will be the '"most dangerous", i.e., it will result
in a disturbance which has the mbsf rapid growth. Dif-
ferentiating © 2 with respect tO-ﬁhe wave mumber M ,

the '"most dangerous' wave length then becomes (96):
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Aer = 2T [ *}3(:;&)1 " e

Substituting Equation IV-5 into Equation IV-2, the

maximum value of - W 2 becomes

- 2 HR-¢) [ ‘}(ﬁ—e.,)] .

(7% ] m - TV
3 ?..-i-?v 3¢ V-6

The most unstable disturbance is obtained from Equation

IV-1 and IV-6, thus
At mx
q' = AL € &€
M IV-7

where

p - [zae) M]‘/‘*
3 @+ T IV-8 |

The comparison of these theoretical results with experi-

mental data is discussed in the section which follows.
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IV-2. Stability of a Plane Interface - Experimental
Results
We shall first note some phenomena which can be

interpreted in terms of Taylor instability. It was
observed by Bellman and Pennington (96) that, 'This
phenomenon explains the hanging of water drops on the
underside of a horizontal surface, such as a deiling.
Such é droplet is undergoing an upward acceleration of
980 cm/se02 and will tend to drip because of Taylor
instability unless its effective wave length is about

A(ﬂ.= 1.73 ecm. Droplets of larger diameter will tend
to drip, while smaller ones will tend to hang." Another
evidence is cited by Lamb (50) and Milne-Thompson (99)
who point to experiments "in which water is retained by
atmospheric pressure in an inverted tumbler whose mouth
is closed by a géuze of sufficiently fine meshes.'' The
mesh size should not exceed A g1/2.

| It was noted in Section III-1 that Davidson and
Amick (64) reported '"... stable stationary bubbles could
not be found at an orifice-hajing a diameter of 0.79 cm,
but stable bubbles formed at an orifice of 0.64 cm."
The reason for this becomes apparent when Taylor insta-
bility is considéred. For water the critical wave
length /\Ol is 1L.73 cm; because of probable fluctuation

at the orifice or in the liquid, the orifice diameter

123




124

of 0.79 cm was too close to the value of A o1/2 for
the stability to be maihtained.

| The occurrence of capillary waves in stable £ilm
boiling has béen reported and described by Bromley (100)
‘and by Westwater and Santangelo (1). In a recent paper
Chang (101) observed that in stable f£ilm boiling the
bubble spacings computed from Equation IV-4 afe in
agreement with experimental fesults reported by West-
water and Santangelo (1).

‘The analytical prediction of Taylor and of Bellman
and Pennington Were‘verified by the experiments reported
by lewis (94) and by Allred and Blount (95)._ These
experiments were conducted to determine the growth'of
sinusoidal perturbations with wave length N at a
liquid-gas interface, accelerated at a = 30g - 75 .8
over a distance of 5 N -15N . Lewis (94) concluded
that '"the instability is made up of the following stages:

1) '"An exponential increase in amplitude as
given by the first order theory until the
amplitude is about 0.4 A .
2) "A transition stage during which the amplitude
increases from 0.4A to 0.75A vandv the
- surface disturbance cﬁangeS‘to fhe form of
round-ended columns of air penetrating into

the liquid, which forms narrow upstanding e



| columns in the interstices.

3) "A final stage of penetratibn through the
liquid of the columns at a uniform velocity
proportional to a-g "

Two additional stages to be expected are discussed

by Birkhoff (97); these are:

4) "A stage in which the boundaries of the air
columns will deform irregularly under the
influence ofFHelmholtz instability and thg
growth of vorticity, until

5) 'the mixing zone separating the two fluids
is turbulent, and must be analyzed (like
turbulence) by statistical methods.'

For detailed information concerning Taylor instability
the reader is referred to this excellent report by
Birkhoff.

The initial exponential growth rate as predicted
by Taylor's theory was verified further by the experiments
of Allred and Blount (95). They observed also that during
the final stage of deformation (Stage 3), the interface
consists of spikes of heaVy liduid extending into the
light fluid, and of rounded regions which may be thought
of as bubbles-of lighter fluid rising into heavier fluid.
The spacing of these spikes, i.e., the effective '‘wave

length'" was found to be in good agreement with the "most
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dangerous" wave length given by Equation IV-5. It is
important to emphasize here that this equation was
"derived from two-dimensional considerations.

| Lewis (§4) reported that the growth rates during
the asymptotic stége can be predicted from an eqﬁation,
derived by Davies and Taylor (102), for the rise of a
large bubble:

'
-U=_32:E'_~%]/L » Iv-9
S

where r is the radius of curvature of the bubble vertex.
Similar conclusions for the asymptotic growth were
réported by>Allred and Blount (Reference 95, Page 1ll)*.
The asymptotic‘growth rate of Tayvlor instability was
investigated also theorétically in the recent papers by
Garabedian (103) and by Birkhoff and Carter (104).

In this and the preceding section we have briefly
sutmarized results of theoretical and experimental inves-
tigations of Taylor instability. It will be seen in the
gsections which follow that transitional boiling is closely

related to this instability.

~ % See also Reference 97, Page 16 and Page 31,

N
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IV-3. Westwater and Santangelo's Description of

Transitional Boiling

The only quantitative, experimental investigation
of transitional boiling in the literature was reported
by Westwater and Santangelo (l). It is fortunate to
have as a guide for theoretical analvsis the resuits of
these and other outstanding experiments reporfed by
Professor Westwater and his co-workers. Westwater and
Santangelo give the following description of transition
boiliﬁg.

"Most prior workers have failed to realize that
this boiling is entirely different from both nucleate
bbiling and film boiling. No active nuclei exist. In
fact, no liquid-solid contact exists either. The tube
is completely blanketed by a film of vapor, but the
film is not‘smootﬁ nor stable. The film is irregular
and in violent motion.

"Vapor is formed by sudden bursts at fandom
locations along the film. Liquid rushes in toward the
hot tube, but before the two can touch, a miniature
explosion of vapor occurs and the liquid is thrust back
violently. The newlg formed slug_of vapor finally
ruptures, andvthe‘surrounding liquid again surges toward

the tube. The proceass is repeated indefinitely.

127




128

"One observer of these high speed motion pictures
has expressed an opinion that occasional liquid-solid
contact does occur during transition boiling. If so,
these contacts are rare and exceedingly short. The
present Write:s do not believe theré is a real contact.‘

o "The frequency of the vapor burst is surprisingly
ﬁigh.' For an over-all T - T_ of 133°F ( and of

4\:.164 Btu/hr £t2 °F) each inch bf the photographed
side of the tube exhibited 84 bursts per second. .The
burst occurs so suddenly and ﬁnexpectedly that even in
slow motion they resémble explosidns.

- "If the temperature is increased still further,
the blanket becomes thicker and more stable., ... The
increase of vapor thickness results in a better damping
of the explosive burst until finally a thick rather
‘gtable film results and no more bursts occur. This is
the beginning of f£ilm boiling."

The minimum heat flux, i.e., point D on Figure I
is described by Westwater and Santangelo as follows:

‘"As vapor gathers at the top of the tube, a rod-
like mass forms along the top of the gntire length of
tube. At first the rod is smooth and rather uniform in
thickness, although faint movements occur constantly.
As the gas rod increases in volume, peaks and valleys

form until the upper boundary becomes sinusoidal in shape.




The entire rod ruptures, between all the naoles, and a
horizontal row of bubbles rise side by’side. After the
rupture, the whole process is repeated.‘ One cycle
requires 0.06 second when the over-all temperature
difference is 184°F.

| "A second gas rod ruptures at points directly
under the centers of the last releasedAindividual
bubbles. This means that the even-numbered rows of
bubbles are displaced sideways by a half space from the
odd-numbered ones. Viewed from the side the bubbles
are similar to marchers arranged in triangular spacing
rather than-the conventional square spacing.'

In the section which follows we shall relate

these observations to the discussion which was presented
in the preceding section. We shall thus interpret

transitional boiling in terms of Taylor instability.

IV-4. The Hvdrodvnamic Instability of Transitional
Boiling

Consider a vapor patch in transitional boiling

from a horizontal surface (see Figure IV-l.a). The
1iqﬁid.vapor intgrface is hydrodynamically unstable
"because the acceieration is directed from the vépor to
the liquid. Tt can be expectéd'that, because of agi-

tation, the interface has random initial perturbations,
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Figure IV-1 Schematic Representation of
the: Process of Transitional Boiling
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distributed over a spectrum of wave lengths.

It Waé seen in Section IV-2 that the growth rates
and wave lengths which are obtained by two-dimensional
considerations are in good agreement with experimental
results. It appears, therefore, that the essential
characteristics of the physicalvprocess are well
described by two-dimensional equations. In view of fhe
above agreement we shall, in what follows, make use of
this two-dimensional thought model. The analysisvcan
be easily extended to three dimensions. Indeed, the
three-dimensional frequéncy equation was published by
Maxwell (Reference 50, Page 461).

It was seen in Section IV-l that for a two-
dimensional system all perturbations with wave lengths
longer than the critical one, i.e., than Ay, are
unstable, For an interface which has randomvinitiél
perturbafions it can be expected that, because of the
initial exponential growth,vwave lengths near the '"most
dangeroué" one, i.e., near /\02, will be the first to
achieve finite observable amplitude. In line with the
experiments‘of Lewis and of Ailred and Blount, the
interface will consist of sﬁikes“df liquid and of rounded
regions similar to cylindrical BubbleS’whiéh rise into
the liquid. Therefore, QS'a*COnséquence of Taylor

instability a definite geometrical configuration in




transitional boiling can be expected (see Figure IV-l.b).
This chépe'of the interface is sham by the photograph
on Figure 10.4 in Reference 105. For a two-dimensional
system this geometry should be characterized by distur-

bances with wave lengths in the spectrum

Aov £ Ao &« Aor | | IV-10

In-contrast to ngcleate boiling, where the dis-
turbances of the superheated liquid £ilm originate at
- randomly distributed nucleating centers, in transitional
boiling the disturbances occur away from the surface and
are selected by the properties of the f£fluid field.

In_their downward fall the spikes approach the
heated surféce and rapid evaporation occurs. As liquid
evaporates from the spikes the vapor flows in the region
between two spilkes. It was noted that this region
resembles rising bubbles (see Figure IV-l.c). The same
form of the interface is shown by the photographs on
Figure 7, Reference 1; and on‘Figures 3.6, 3.7, 3.8,
v aﬁd 3.9 in Reference 95. These and other photographs
are reproduced in Reference 88. Thus in transitional
boiling because of Taylor instability a release of

bubbles at regular intervals can be expected.
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As a row of bubbles is released an unstable
interface is formed again. Because of the downward flow
of the liquid a spike will be formed now underneath the
released bubble and the process is renewed (see Figure
IV-1.d). The successive rows of bubbles will appear
displaced therefore by half a wavé length (seeAFigure
IV-1l.e). To quote Westwater and Santangelo, hthe
bubbles are similar to marchers arranged in triangular
spacing." This spacing is shown by photographs on
Figure 8, Reference 1, and on Figure 14.3, Reference 106,

The alternate interchange of position between
the spikes and the rounded cylindrical bubbles beafs
similarity to the phenomenon known as Faraday's cris-
pations which is discussed by Rayleigh (107). We shall
quote his déscription of the phenomenon. When a hori-
aontal plate on which liquid is spread is set to vibrate,
"the motion of the liquid interface consists of two sets
of stationary vibrations superposed, the ridges and
furrows of the two sets being perpendicular to one
another and usually parallel to the edges of the plate
e . « At one moment the rldges form a set of parallel
and equldlstant 11nes, the interval being A . Midway
between theée are the lines which represent, at_that
monrent, the position of the fﬁrrows. After a lapse of

a 1/4 period, the surface is flat; after another 1/4




period, the ridges and furrows are again at their
maximum development but the positions.are exchanged."

In the region of transitional boiling close to
the critical heat flux,.the rates of evaporation are |
high. Cdnsequently, the release of bubbles will resemble
emell explosions or bursts of vapor (see Figure IV-1l.f).
A similar form of the interface is shown by‘photographs
on Figures 4 and 5 in Reference 1 and Figure 5.6 in
Reference 95.  The mushrooming of the-interface,during
the growth of Taylor'instaﬁility was'observed in the
e¥periments by'Allred end Blount who noted: "It seems
reasonable to ascribe this effect ﬁo the Helmholtzv
instability, in view of the fact that the necessary
velocities for the production of Helmholtz instability
are present." A similar effect can be expected to take
place in trensitional boiling at high heat flux densities
when large rates of evaporation occur,’i.e., when the
velocities in the vapor phase are large. This aepect
of fhe problem will be analyzed in Chapter VI. |

It was observed that the geometry of the interface
iﬁ transitional boiling is determined by the properties
of the fluid field. Inasmuch as the factors which
influence the "most daﬁgerous" wave length will remain
constant at a given pressure, it can be expected that,

in transition boiling, changes in heat transfer rates
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are associated with changes in the frequency of bubble.
release, i.e., of the vapor bursts. The critical heat
flux and the minimum heat f£flux correspond, therefore, to
the maximum and the minimum frequencies of the system,
At a given heat flux the process of transitional boiling
can continue indefinitely; it is therefore thermaily
stable. However, it is hydrodynamically unstable;
indeed, it is this instablility which is the cause of

the phenqmenon‘ o »

In this chapter we have qualitatively analyzed
the hydrodynamicxaspectS‘oﬁ transitional boiling. It
was seen thatexperimental results of transitional.
boiling can be understood and interpreted in terms of
Taylor instability. We shall summarize now the results
of this chapter.

1) As a consequence of Taylor instability a

definite geometrical configuration can be
expected in transitional boiling. For a
two-dimensional system this geometry is
characterlzed by disturbancea with wave
length in the spectrum. »
2) As a consequeﬁce of the exponential character
of the instability it can be expected that
the interface takes the form of spikes of

heavy liquid moving downward and of rounded
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regions of lighter fluid'moving upward.

3) As a consequence of the definite geometrical
configuration a release of bubbles‘from the |
interface aﬁ regular intervals can be expected.
For large evaporation rates thefreléase of a
\bubble.will appear as a burst.

4) Because of the release of vapor and of Taylor

_ ingtability the process exhibits, also, a
periodicity in time. The phenomenon is
hydfodynamically unstable but thermally stable.

5) Inasmuch as the factors which influence tﬁe

‘geometry’remain invariant, it can be expected
'that,-in transitional boiling, changes in
heat transfer rates are associated with
Chahges,inkfrequency'only. The critiecal heat
flux and the minimum heat f£lux correspond,
therefore, to the maximum and the minimum
- allowable frequencies of the system.

In the chapters which follow, the problem will |

be formulated mathematically and the results quantitatively

compared to experimental data.

i



CHAPTER V

THE MINIMUM HEAT FLUX DENSITY IN TRANSITIONAL BOILING
FROM A HORIZONTAL SURFACE

The geometrical regularity and the periodicity
of the process of transitional boiling was discussed
in fhé}preceding chapter. If was noted that inasmuch
as fhe geometry should remain invariant, changes of heat
transfer rates should be associlated only with changes
of the frequency of the system. The phenomenon thus
bears a similarity to a release of bubbles from a set
of orifices of fixed geohetry but with a variable fre-
quency. VAlthough, at first, this similarity appears
to be rather tenuous the agreement of the detail and
the gross characteristics of the idealized system with
experimental data seems to support it. The problem is,
therefore, to determine the geometry of '"orifices' and
the maximum and minimum fréqﬁenc& of the releases.
According to the hypothesis, these frequencies should
correspond to the maximum (ecritical) and to the minimum
heat transfer rates in transitional boiling from a
horizontal surface. In this chapter we shall analyze

the minimum heat f£lux density; the critical heat flux
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density is taken up in Chapter VI.

v-1, Minimum Heat Flux Density - Formulation and

Solution of the Problem

In order to formulate the problem a simplifying
idealization must be made concerning the form of the
vapor slugs which are released from the vapor. liquid
interface. Westwater and Santangelo observed (see
Section IV-3) that the disturbed vapor liquid.interface:
breaks at the nodes. It‘will be agsumed therefore in
what follows that the vapor slugs can be approximated
by spheres of radius

R = As Covel
| 4
For the two dimensional thought model* it follows from
Equation 1IV-10 that the diameter is given within the
limits |

o y. |
e TRl

* See Section IV~4 for the discussion concerning the
two-dimensional approximation.

e
e
X



The mass of vapor associated with one vapor slug is

, °3 ’
Gae,,g_gf(_g\_) v-3

Denoting the frequency of bubble: release by £, the
number of bubbles released per unit time is

) V-4

where a+b is the area of interest. The vapor flow rate

m =

a.b
N A
per unit area is obtained from Equation V-4 and V-3,

thus

M T Ao
TV g J v-5

Thé heat transfer is obtained from an energy balance.
In transitional boiling of liquids at saturation the
only energy requirements of the system is the energy
needed to generate the vapor flux density given by
Equation V-5, Therefore  the heat transfer:rate"from

a horizontal'surface in transitional boiling of liquids

at saturation is
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q = L,sz‘; /\o{- V-6

At a constant presgsure the'geometry does not change;

Equation V-6 can be written as
6" = ((ousfu’l )f_ V-7

The problem now is to determine the frequency of
" bubble release f£,for the miniﬁum heat flux density. 1t
was discussed in the preceding chapter that at the min-
imum heatvflux the rates of evaporation are low,
congequently in this region small velocities in the
vapor phase can be expected. In the absence of dynamic
effects of the vapor phase, the féte of penetration of
the rounded vapor regions into the liquid (see Figure
IV-l.¢) cannot be faster than that which is predictéd'
by Taylor instability. In other words, at the minimum
heat flux in transitional boiling from a horizontal
surface, the frequency of release of bubbles from the
vapor-liquid interface cannot be slower than that which
would be expécted.by considering the. effect of Taylor
instability only. The relation between the frequency

of bubble release £, and the rate of penetration of the

S

interface d 1| /dt, then becomes Ty
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V-8

- dy
a d

2
Ao dt

The above relation implies that bubbles follow
one another very closely in a strip of width A 0!
which extends from the heating surface into the liquid
(see Figure IV-l.e). The photograph on Figure 14-3 in
Reference 106 confirms the validity of this approxi-
mation. | | |

To make use of Equation V-8 we have to determine
the value d@ Y /dt. It was discussed in Sections IV-1l
and IV-?, that the growth of Taylor instability passes
through several stages. During the initial stage the
grbﬁth:rate_can be predicted from the linearized theory,
whereas during the final stage.the rate of growth can be
approximated by Equation IV-9. We shall express the
frequency in terﬁs of both growth rates. '

Consider the '"mort dangerous' wave length A‘Oz-
If the amplitude Ho, of the disturbance Y , was known
then Equation iV—?-éouldeé ﬁééd to estimate the time
which is requiréd for the disﬁufbaﬁcé to reach a value
of W= A 02/2. This method was used by Birkhoff
(Reference 97, Pége 41) in analyzing the penetration of
a disturbance. Howéver,'in boiling the values of Hj

are not reported. In order to estimate the initial rate




of growth we shall make use of the experimental obser-
vation of Lewls (94) that the amplitude inereases at an
exponential rate until it reaches a value of ] = 0.4\

- (see Section IV-2). From Equation 1IV-7 the rate of
growth during the initial stége is given by: |

= /G 1)w’ ‘ V-9

During the exponential growth the disturbange ﬂ.m
increases from an infinitesimally small value to approxi-
mately 0,4 A.oz. The averagé velocity corresponding to
this average disturbance is

—

dy ,_/5 9_;_.1/\.::. v-10

Substituting Equations V-10 and IV-8 into Equation V-8,

the estimated frequency of bubble release becomes

; 04/, 043 48 ev)]"[e(ﬁ -e,) }

C+ V-11
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From Equations V-6 and V-1l the estimated minimum heat

flux density is then given by

¢ = te I amfac_1% SIRTRY L )] o'

2} He-& Q&*ar

or

. leT (To4Vi\[Tace-&n%
¥ ve "'( (™ )( (?'-*?v)v‘] v

We shall now use the growth rate of the final
stage, i.e., Equation IV-9 to estimate the frequency

and the heat flux density. Including the effect of
buoyancy in Equation IV-7.-and substituting Equation V=1

for the radius of curvature r,, Equation IV-9 becomes

u =%[ Ao ‘x(ﬁ-@I T v




The frequency is obtained from Equation V-l4 ahd'V-B,

thus,

Ad

$z[1(e-€v ‘V". - v-lsv

Because of the spectrﬁm of‘unstable disturbances, the
“wave length in the above expression .can be determined
between.the limits given’by~Equétion IV-10, i.e., by
Equations IV-4 and IV-5. It follows from Equation V-15,
IV-A and IV-5 that the frequency can be determined
within the limits - B

eI e

V-16

are ey A Uy
{ 41[1‘&?) L (He-e) 1"

Consequently the period can be egtimated within the |

range

‘ T ‘el
z {w &) M(%Les-ev)\]’ E

"~

V—17

Vl]/z.

| e 2
£ 310 9{€.-0) " 1(&-@.,1
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Equations V-4 and V-16 give‘the range of the
minimum heat flux, thus |
. i
L?v IAOZ-_ 3(?0."&‘ L L n
48 3 {- € Ap;} €944
vV-18

o & LOT Ao 2[%E%) 1 1%
9 v48 L3( ﬁ-v /\dz]_

Hence from Equations IV-4 and IV-5 it follows that

le I 0 [Ta@=)]™ £ g
24 3 f{L =

| \ V-19
< LRI IE O Tyt

o

By comparing Equation V-19 to V-13 and Equation V-16 to
V-1l, it is seen that they exhibit identical dependence
upon physical properties. These equatibns vary only in
the values of the numerical constants; the variations
being of the order of unity. We note also that the
above equations are of the same form as those which
have been reported in Reference 86 and 88. The latter
ones were derived by considéring the similarity between
the oscillations of the interface in transitional

boiling and the Faraday's crispations, a similarity
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which was noted in Section V-4,
In the section which follows we shall compare

theoretical predictions to experimental data.

V-2, The Minimum Heat Flux Density - Comparison of
| Analytical with Experimental Resgults

In the following, the theoretical predictions are
-compared with experimental data for boiling methanol
at atmospheric pressure reported by Westwater and

Sentangelo (1).

The Diameter of Bubbles at the Minimum Heat Flux

Analysis ’ Experiment
. (inches) (inches)
Equation V-2 0.2 =D £0.345 0.2 <D <£0.36

The Period at the Minimum Heat Flux

Analysis Experiment

(éeconds) (seconds)
Equation V-1l T =1/f£ = 0.052 0.06
Equation V-17 0.048 ¢ T & 0.063
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" The Minimum Heat Flux in Transition Boiling

Analysis , ' _Expgriment
(Btu/hr £t2) | (Btu/hr £t2)
Equation V-13 _q = 8740 . q = 5470
Equation V=19 5500 £ q & 7100

1t appears from the above comparisons that this
simple‘idealized system exhibits the detalled and
general features of the observed phenomanon. The
spectrum of bubble diameters as détermined from exper-
iments tends to support the original assumption
concerning the spectrum of unstable disturbances and
the approximation related to the form of the vapor
slugs. The frequency of bubble release and the minimum
heat flux density determined from the theory.afe in
close agreement with experimental data, Thus, the
deseription and statements concerning transition |
boiling which were shown, in the preceding chapter, to
be in qualitative agreement are also in quantitative
agreement with experimental data. 

It should be noted that thié agreement was achieved
by two dimensional considerations; further experiﬁents
should indicate whether a three dimensional ﬁodification

1s necessary. Further experiments in transitional




boiling should be performed in order to investigate,
in detaii, the growth of a disturbahce durihg both the
exponential stage and the final stage of penetration.

" Wa shall prdé:eed.with an analysis of the vérit:'l.‘cal
heat flux. | '

it



CHAPTER VI

THE CRITICAL HEAT FLUX IN BOILING
FROM A HORIZONTAL SURFACE

The region of the critical heat flux was discussed
in Section III-7. It was seen that the phenomenon occurs
at some critical velocity in the vapor phase when the |
vapor jets start interferring with each other. It was
seen also that because of the spreading of the patches
of transitional boiling the region of the critical heat
flux corresponds to a plateau in the q =aAT plane. This
region is clearly shown by the experimental results of
Perkins and Westwater (25). Consequently, an analysis
of the eritical heat flux can be undertaken at either
end éf this plateau. Because the flow configuration in
“nucleate boiling is not well defined, an analysis of the
critical heat flux performed by considering nucleate
boiling is reduced to dimensional analysis. It was seen
in the preceding chapter that, because of Taylor insta-
bility, a definite_geometricél configufatién can be
expected in transitional.boiliﬁg. We: shall make use of
this defined geometry aﬁd éﬁélyzé; therefore, the critical

heat flux by considering transitional boiling.

149




Vi-1l. 1The Critical Heat Flux - Formuiation and Solution

of the Problem

It was dilscussed in the preéeding chapter.that in
transitional boiling at high flux densities the release
Qf‘bubbles appears like wvapor expldsions; As the inter-
’face rushes toward the surface répid evaporation starts,
the interface is pushed violently back, anhd the vapor is
releabed in the form of explosive jets (see Figura IVQI.f).
"The'prOCese»is repeated indefinitely and, as in "flboding",
the whole system oscillates at soﬁe characteristic fre-
quency.v In Section IV-4 the observation of Allred and
Blount was quoted which related the mushrooming form of
the interface (see Figure IV-1.f) to Helmholtz instabil-
ity. A similar effect can be expected to take place at
the critical'ﬁeat flux when, because df the large ratés of
evaporation, thé velocity of the vapor phase is large.
Thus, at the critical heat flux the dYnamié.effect of the
vapor phase upon the motion of the interface becore s
important. This is in contrast to fhe minimum heat flux
where this dynamic effect is negligible. Whereas the
minimum heat flux is characterized by Taylor instability
only, the critical heat f£lux is characterized by the
combined effeéts of Taylor and Helmholtz instabilities.

In order to formulate the problem . it is necessary to

'determine in what way these instabilities manifest
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themselves and interact.

It was noted that the phenomenon of transitional
boiling, because of Taylor instability, bears similarity
to a release of bubbles with wvariable freduency from a
set of regularly spaced orifices of f£ixed geometry. 1In
accordance with the hypothesis, ét the critical heat flux
the frequency reaches a maximum and the release resembles
explosive vapor jets. 1In view of Taylor instability we
are lead, therefore, to consider vapor columns of width,

/\0/2, spaced Ao units apart. In view of Helmholtz

instability we have to investigate the stability of such

a jet. In accordance with the previous analysis the-
gtability of a two~dimensional system is invegtigated
again. |

Consider a coordinate system in which the direction
y is parallel.to the surface and z is perpendicular to the

surface, Let the plane y = 0 denote an interface between

the vapor leaving the heated surface and the f£luid rushing

°

toward it. For a vortex sheet which oscillates under the
influence of surface tensidﬁ, the propagation equation of

a small disturbance is given by Lamb (505 and Milne~Thomson
(99)1 | o

C.L= O_m _ Q‘. Qv 1_ (uv.’u‘)z
e"-&. ?v (?.,*Qv)

Vi-l




The conditidn'éf,etability 18 that C ehall be real,
The velocity in the liquid phase is obtained from
the continuity

quv = . UL ‘ ' - VI-=2 |

Substituting U;, from Equation VI-2 into‘Equation Vi-1
the critical veloecity in the vapor phase is then obtained;
thus : L o )
| ue /
Uy = [E_“.:_. [_&_]

" O+ % - VI-3

It is noted that if, in‘é'threefdimensional ?roblem, the
continuity eduation was corrected for the areaa'occupiéd
by the vapor and the liquid, the right hand side of
Equation VI-3 would be multiplied by the factor
Q (l16-T)4 QV'W/ fa.(“"v). The value of this factor is
unity and it is omitted therefore.
Wé.have»tO'determineﬂnow.the value of the wave
~number m in Equation VI-3. Rayleigh (107) has examined
the stability of a circular gas Jjet in a 1iquid. For a
disturbance'wifh'axial symmetry the instabilify-occﬁrs
only for disturbances whose wave length is longer than
the circumfgrence of the jet. Thus, the critical wave

length is given by
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A= 2T R

where R is the radius of the jet. If the jet is to break
into spheres, it can be expected that the wave lengths
will be of the same order of magnitude axially as circum-
ferentially. Expressing therefore the wave number m in
Equation VI-3 in terms of the wave length A\ y given by

Equation VI-4, the critical vapor velocity then becomes

‘.
[&+&] vi-3

In Appendix I, the above equation is derived by

Y
vva[th

considering the stability of a circular Jet. It was

assumed that the radius R, of the vapor column was given
by AMNa/2; substituting this value in Equation VI-5 it
follows that |

% o
Thv= [e\, | [‘e’._%'é,'-! L vie

The mass flow rate associated with one vapor

column is:
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G - e"r(%?)kuv VI-7

Thg vapor mass flow rate per unit area is obtained from

Equations VI-6 and VI-7, thus

N- evl[ﬂ [&_{ﬂ vx-a

Expressing the wave length Ae in Equation V1I-8 in terms

of the wave number mg,, it follows that

‘Q-: WMo h Q. ' .
e 0 24 Vﬁ o B ! oy V-9

For liquids at saturatioh temperaturefthe only energy
_requirement'of the system is the energy needed to generate
‘the vapor flux density given by Eduation Vi-9, Théreforer.
the critical heat flux density in pool.boiling from a

horizontal surface is o v .

Yo \
| - L e A
9= L& \['?5."1"': {¢w'] {m(ﬂ

VI-10
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It was seen in Section V-2 that expervimental} data
supported the assumption concerned with the spectrum of
unstable disturbances given by Equation V-2. Because of
this spectrum the wave mumber m, can be determined within

the range
| ‘o .
4 (€~ l’v)] 7/ Mo 3, {3(&“& ] VI-11
- g 3T , |

The critical heat flux density is determined therefore
within the limits: |

Levg‘;% [G’?G’s‘ev] [_Q,;fev 2 Q>

,v1-12

I .}.- ——r L@ [0"“6-'«’)

L& 24 \ow (3 S A [?,_+
.Equation Vi-12 can be writteﬁ as
' - ’/44 ‘/7_
v L (f-@ ) 2 >,
T e e M

'/?. Vi-13

G y" L [ Mgr?v /]/4{ {:QVI

where

VIi-14
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and

r 3 4 12 | .
J( = -','I:L ar (3),4, =° VI-15

The algebraic mean is, therefore
K = 0,138 - VI-16

A convenient average value for the criticai heat flux can
be obtained by replacing m, in Equation VI-10 by the
upper limit obtained from Equation VI-11l, and by apprbxi-
mating the numerical constant 3/ \J-Z_T? - by unity. The
resulting équation is given by

q - 14 Le, [0’%(&“?\/‘] . ] YI-17

ﬂ.*-?w
The value of the numerical constant in this case is:

I 0.1314 |
X = 24 | VI-18

In the section which follows, the theoretical

results will be compared with e:cpérimental‘ data.



ViI-2. The Critical Heat Flux - Compérison of Theoretical
with Experimental Results '

If is assumed that in'transifional boiling changes
in heat transfer rates are associated with changes of
 frequenecy only. We shall verify this assumption first.
According to this postulate and to Equation V-7, the
following relation should hold in transitional boiling:

b =& VI-L
> &
where the subscripts 1 and 2 refer to two different
operating conditions. |

Westwater and Santangelo have reported that for an

overall temperature difference T, - T, = 133°F, and a

heat transfer coefficient h = 164 Btu/hr £t2 OF, the

frequency was 84 bursts per second per inch length of tube. .

Whereas at a heat flux of q = 5470 Btu/br £t2, the
frequency was 22 bursts per second per inch length., Sub-
stitﬁting these values into Equation VI-19 it follows
that

4 _ 21800 _ 39g

%L s470

: ‘ : .‘ . VIi-20
. _ 8 _ 3.3

7:. z :
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‘ As a further check of the hypothes:.s the ratio of
the frequencies computed from the analysis will be com-
pared w::._th the ratio of the ma:dmum and mlnimum heat flux
determined from experiments.

- The frequency of the bursts of vapor at the
critical heat flux is obtained from the equation of con-
tinuity |

(A’) fe = '(L}f) Uy

VI-21

hence

{. = 2. Uy
e Ae VI-22

Substituting Equation VI-6 into Equation VI-22 and neg-
lecting the density ratio € +¢Qy /€ it follows that

_ 3 ro4qlh
fo = o ?\','KJ VI-23

The two frequencies which correspond to the disturbances
’/\01 and /\02 are obtained by substituting alternately
Equation IV-4 and IV-5 into Equation VI-23, thus

VI-24

L= e [m(fcm]'/‘*
col ﬁ-“. Aot Qv'l.

e
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(L6 11 j‘V"J(ﬂ.~?v)]V4
oL T i (3)% A2 | @2

VI-25

The corresponding frequencies at the minimum heat flux

are given by Equation V-16; thus, after some rearrangement

qu = A..‘E—Tr ___l. [U’S(Q-Vv)]'/a
3 ]\ou : el'.l. | g

7]

Vi l |
2 far (3) L [Teife®l) o

Fmoz. T Ty Ao QL':.

The ratio of the frequencies of vapor release at the
critical and minimum heat flux densities are then given by

_{.i‘: = -q-— _@;
o 2T J Qe | Vi-28

and

20 V3 ¥ @ . vi-29

F\
oL
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The critical and the minimum heat flux densities
for boiling methanol were reported by Westwater and
Saﬁtaﬁgelo (1). Substituting the theoretical and experi-
mental values in Equation VI-19 the following result is

obtained ‘
| Analysis Experiment
Equation VI-28 £,,; = 35.3 = q erit o 172000 - 31.4
Equation,VI-ZQ £ao2 = 20.6
Em.02

It appears from this comparison and from Equation
VI~201tﬁat experimenfal resﬁlts tend to'support the hypo-
thesis that in transitionél boiling changes of heat
transfer are associated with changes of frequency only.

We shall compare now the critical heat'flux‘densitiés
predicted by the theory with‘eXperimental'daté. Inasmuch
as the square root tefm in Equatidns VI-1l2 and VI-17 is
close to unity except in the neighborhood of the thermo-
dynamic critical state, it is seén'that both Equations
III-9 and III-12 are of the same form as Equation VI-12,
The agreement of the heat transfer rates predicted by
Equation I1I-9 with experimentél data was discussed in
Section III-3; this agreement ié shown also on Figure III-3.
Therefore, for a comparison of the present analysis with

experiments it suffices to compare the value of the &y
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coefficients K determined analytically with the values
determined by Kutateladze and Borishanskii from experiments.

Analysis Experiment
Equation VI-13 0.12 ¢ K = 0.157 Kutateladze
K = 0,16
Equation VI-17 K = g% = 0,131 Borishanskil
K = 0,13

The values ofrthe constant K given by the theoretical

Llimits | . |
T 2. =0157 3 012 =T 3_ _L
15 Vaw o 72 K qui?r(wV'*

are indicated on Figure III-3.

In Figure VI-1 the heat transfer rates predicted
by Equation VI-l7 are compared with experimental data
for water by Kazakova (108). Another comparison with
experimental data for ethanol reported by Cichelli and
Bonilla (82) is shown on Figure VI-2,

It appears from the above comparisons that this
simple idealized system exhibits the defailed and general
features of the phenomenon., It is interesting to note
that the analysis prédicts'an inherent uncertainty in
determining the exact heat flux.' Ihe width of this
uncertainty band is approximétely + 14%. 1t follows from
the theory that a certain irreproducibility of the experi-

mental results can be expected. The scatter of experi-
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mental data is often reported iIn the literature.
In the following section the analysis will be
exteﬁded to transition boiling of subcooled liquids.

Vi-3, The Critical Heat Flux in.Pool Boiling of a
| Subcooled Liquid

Equations VI-12 and VI-17 which predict the
;cfitical héat flux were determined from stability consid-
Terations and an energ& balance for liquids at saturation
temperature. To extend the anélysis to subcooled liquids
}fa basic assumption will be made: The change from nucleate
to transitional boiling is determined only by the hydro-
dynamic stability; in pool bbiling, i.e., in the absence
of a forced flow, the change occurs when the vapor f£lux
attaihs a given value. Therefore, if the liquid is at
saturation aﬁd the viscosity is neglected, the heat
_transferred across the solid surface is equal to the
energy required for the generatioﬁ of that particular
.vapor.masérflow. Since the stability is the mechanical
‘agpect of the problem it will be unéffected by whethér the
liquid is subcooled or not, but wiil depend oniy on the
mass transport. However, as the heat flux across the
.solid surface is determined by an energy balance it will
depend on the subcboling.- Therefore all energy requirements
will appear as additive terms to the_energy needed for

the generation of the critical vapor flow. The problem
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is reduced now to the determination bf energy requifementa
associated with a boiling, subcooled liquid. |

In transitional boiling the vapor-liquid interface
is at saturation temperature: when the bulk liquid is
subcooled, the problem is to determine the energy trans-
ferred from the interface to the bulk liquid. It was
discussed in the preceding sections that in transitional
boiling vapor is periodically released from the interface.
Because of this release both the interface and the tem-
perature distribution are periodically renewed. The '
process can be described,thereforevby»the "discontinuous
film model" which was discussed in Section III-8. If the
assumption is mo de that the ''contact time' is short com-
\pared to the ratio of the.scale of turbulence to the
intensity of turbulence, the energy will be transferred
mainly by conduction. This is equivalent, therefore, to
the assumption that the "depth of penetration® is small
compared to the ''scale of turbulence.' Assuming a plane
intérface.the energy problem is described by Equation II-2.
In transitional boiling to a given heat flux there
corresponds a given frequency. Consequently, the average
heat £lux from the interface to the bulk liquid is given
by Equation IIi-l?-(insteadvof Equation III-18), thus

4 = 2w (Ts-To) ' VI-30

VTatT
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where T is the period. 1In References 87 and 88 thé
equations which correspond to Equations II-4 and VI-30 of
this dissertation were multiplied by the factor b = /2
(see~Se¢tion 1I-1) in order to account for the distortion
of the interface. Experimental data of Kutateladze and
Schneiderman (109) indicate that this correction is not
needed. The factor b is omitted therefore from Equation
Vi-30. Expressing the period in terms of the frequency
given by Equation VI-24, Equation VI-30 becomes

q = ¢K (-ESV:'__TL V—f.:m Vi-31

The heat transferred across the solid surface is obtained
again from an energy balance, i.e., by adding Equations
VI-1l7 and VI-31l. Consequently the critical heat flux in
subcooled, pool boiling from a‘horizontal surface is

given by

qC.S. = Lev T [U'ze!frev] 2 STa-Tn.) fé:ou V=32



where

+Ya
o= L L [S3-&) -
{ T YIr Ae [ Qi'r ] Vi-33

y |
Now = 2T [g({e‘.@)l - | VI-34

In Figure VI-3 the heat transfer rates predicted
by Equation VI-3l are compared to the experimental data
reported by Gunther and Kreith (7) for water boiling at
atmospheric pressure from a horizontal surface. A com-
parison is shown also with experimental results for
ammonia and carbon tetrachloride reported by Bartz (110)
and by Ellion (15). The experimental data of Kutateladze
and Schneiderman are reported as the ratio qc.sub/qc.sat'
In order to predict this ratio we divide Equation VI-32

by Equation VI-17, thus

1

q ’ | SRS v Y
c.Swb | + ZK(B_-T:'-)[F; 24 [ & \v:-ss

e sot Via T & l9g(e-%
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On Figures VI-4 and VI-5, Equation VI-34 is plotted
together with the experimental data of Kutateladze end
Schneiderman. The agreement appears to be gatisfactory.
It should be noted that the interface in subcooled
boiling is not plane, and the treatment of the interface
as though it were a plane is introduced as the simplest
idealization. However, it will follow that no matter
what geometry is postulated, the form of thé resulting
solution is unchanged and only the numerical constant
will be affected in Equation VI-33. This change will
‘alter each of the slopes of Figures VI-3, 4 and 5 in the
same way. The group K ﬁﬁv will still determine the
relative slopes for different liquids and the retios of
the slopes will be unaffected by the numerical constant.
The agreement shown by Figures VI-3, 4 and 5 concerning
absolute as well és relative slopes serves to indicate
that the conception of the process is proper. Similar
remarks apply to the use of a "contact time."
| As a closing remark we note that in some exper-
iments, in order to maintain the subcooling, the liquid
is circulating slowly. The velocity of circulation is
low, so that the process can be considered pool boiling.
When the subcoéliﬁg is ldw; bubbles will depart from
the interface and will be removed by the circulating

liquid. The mass of vapor is replaced by an equivalent
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mass of liquid which, as the bulk temperature is subcooled,
has to be heated up to saturation temperature first before
the evaporation‘can occur. From Equation VI-l?.'the'

critical vapor mass flow rate is giveh by

S e L[ Tg;(ﬁ;eﬂ]y‘"

oy VI-36
The enthalpy change A H, bf the liquid thus becomes
A _ 1r (ﬁ-?v] ]c. T-T

Because in the experiments of Gunther and Kreith and of
Kutateladze and Schneiderman the liquid dfd not circulate,
Equation VI-37 was not included in the energy balance.
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SUMMARY AND CONCLUSIONS

Chapter 1. - A Review of Nucleate Boiling

The problems of nucleation from a solid surface and
the dynamics of a bubble departing from the heating
surface were considered. The characteristics of nuclegte

boilling and the relation between the heat f£lux density,

‘the éurface roughness and the liquid superheat temper-

ature difference were discussed. It was seen that, in

- nuecleate boiling, the heat flux density is not a single‘

valued function of the temperature; in order to determine
the q ~ T relation it is necessary to specify the char-

acteristics of the surface.

Chapter 1I.- The Problem of Bubble Growth

- The problem of bubble growth in a superheated liquidj
was discussed. It was pointed out that the original
conceptual and mathematical formuiation of thé problen
as given by Bosnjakovic and Jakob contain the essential
features of the phenomenon. , v

The theory of Boshjékovic and Jakob was extended to
include the effects of a non-uniform temperature field;
the growth rates predicted by Equations II-17 and II-30

are in satisfactory agreement with experimental data.
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These equations are not adequate for predicting the
collapse of a bubble in subcooled boiling. Experimental
data indicate that the'coilapse can be approximatedlby |
an isothermal process; it can be predicted by the |
solution of Rayleigh's equation, i.e., by Equation II—33.
Experimental data for bubbles growing and collapsing in
subcooled boiling can be approximated therefore by
considering the growth and collapse process separately.
The growth and collapse equations are matched at the

masximm bubble radius.
1f a bubble is suddenly introduced into a subcooled

liquid, or if the saturation temperature'iS'suddenly’
increased (by increasing the pressure), then, initially,
the thickness of the thermal boundary layer is much
smallex than the bubble radlus. Under these conditlons
the bubble collapse rate is given by Equation 11-35.
Experimental data tend to indicate that the dianeter
of an active nucleating cavity can be related to the
heat flux and superheat temperature by the simple
relation given by Equation II-26. Further experimental

investigations are needed to verify this relation.

Chapter III. - Hydrodynamic Aspects of Nucleate Boiling

The similarity between bubble formation at an
orifice and bubble formation in nucleate boiling was

pointed out and discussed. Using this‘similarity an



equation (Equation III-4 or III-5) was derived for the
product bubble diameter times frequenc& of hbubble emission
in nucleate boiling. Equation III-5 was shown to be in
good.agreemeﬁt with experimental data. From Equation
111-4 it is poseible to éstimate the maxitmum frequency
of bubble'release in nucleate boiling. The similarity
also indicates the possibility of relating (by Equation
III-1 or III-6) the diametar, Dy, of a bubble departing
from a heated horizontal surface to the radiué, Toy of
the nucleating cavity. From such a relation it would
be possible to estimate the spectrum of departing bubbles
in termé of a distribution of nucleating cavities.
Further experiments are needed to verify this relation.

Tha hydrodynamié aspects of nucleate boiling and
the region of the critical heat flux were analyzed. It
wés seen that nucleate boiling at low heat flux densities
1s characterized by the presence of single bubbles;
whercas the region of the critical heat f£lux is charac-
tériéed by the presence of vapor columns and large patches
of vapor,

The similarity between nucleate boiling and the
bubbling of a gas from a pofqus.plate'was discussed.
This similarity indicated thaf the change from nucleate
to'transitiongl bo;ling}is a'hydrédynamic phenomenon

known as '"flooding'. It occurs when the stability of
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two-phase flow ia disrupted. It was concluded thaf
exlsting correlations of experimental data can be
understood only if the criticél‘heat flux is interpreted

as a "flooding' phenomenon.

Chapter IV. Hydrodynamic Aspécts of Transitional Boiling

The hydrodynamic stabiiity ofvé.plane interféée was
analyzed and experimental results pertaining to Taylor
ihstabilify were discussed. The hydrodynamic éspacts of
. transitional boiiing were qualitatively analyzed and the
phenomenon was interpreted in terms'of Taylor instabilify.
It was concluded that, as a consequence of Taylor insta-
bility, a defiﬁite geometrical configuration can be
expected in transitional'boiling. As a conseqﬁence of
this definite geometfical.configurafion, a release of
bubbles occurs at regular intervals. At a constant
pressure the factors which infiuence the geometry remain;
invariant. Gonsequently; in tranaitional boilihg; changes
in heat transfer rates are associated only with changes
in the frequency of bubble relecase. The critical heat
flﬁx and the minimum heat flux in transitional boiling
.qorrespond, therefore, to the maximum and minimum

allowable frequencies of the system.

)
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Chapter V. - The Minimum Heat Flusx in Transitional

Boiling from a Horizontal Surface

The diameters of the vapor slugs in transitional
boiling were estimated by considering the critical and
the "most'dangeroﬁs" wave length (Equation V-2) given by
Taylor instability. It was noted that, at the minimum
heat flux density, the dynamic effect of the wvapor phase
upon the motion of the interface is small, It was con-
cluded therefore that the rate of penetration of the
vapor into the liquid cannot be faster than the rate
which would be predicted from Taylor instability. Because
this rate of penetration is initially exponential and
later reaches a constant value, two equations (Equation
V-11 and V-1.6) were derived for the frequency of bubble
release. Using the two frequencies andlmaking an energy
balance, two equations (Equation V-13 and V-19) were
derived for the minimum heat flux density in transitional
boiling. The theoretical results were found to be in

good agreement with experimental data.

Chapter VI. - The Critical Heat Flux Density from a

Horizontal Surface

The critical heat flux density was analyzed by
considering transitional boiling. Because of large
evaporation rates, at the critical heat flux, the

dynamic effect of the vapor upon the motion of the




1iquid-vapor interface isgimportant. The.problemxwéa
formulated by considering the combined effect of Taylor

and Helmholtz_inatabiiitiesn Analytical expreséipns'weré .

derived which permit the prediction of the critical heat
‘flux dené£ty in pool boiling éf'saturated.or subcooled ‘_
liduidsp- The numerical values of the empifical_conatants
which appear in the Kutateladze and Borishanskii criteria
for the critical heat £lux are derived from the theory.
The theoretical results are in good agreementlwithv

‘experimental data.
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APPENDIX A

The Stability of a Circular Jet

The stability of a cylindrical flulid columm under
the action of capillary force was analyzed by Rayleigh
(106, 111), Considering only the inertia of the liquid
inside the column, the angular frequency of an axially'-

symmetric disturbance is given by:

gt
ot o TmR [ (mR) =] T (W)
¢' R Lo (mR)

.where Q' is the density of the fluid within the column;

m is the wave number of the disturbance andAR is the
radius of the jet. This case would correspond tov a liquid
jet disintegrating in air. When the inertié of the fluid
outside, rather than the fluid inéide; the column is

important, the angular frequency is given by:

(= TR [ 1= (mRT] K (R
¢ R | K,(mﬁ)

A=2
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where g is the density of the surrounding medium' this
case corresponds to the dierupt:.on of a jet of air under
water. Since the modified Bessel function of the second
kind is given by

‘ 7{0(})‘: @ e o . A.;'

it is seen that in both'problems the cylindrical column
becomes unstable when mR < 1. i.e., when the wave length
)\ exceeds the circumference of 2 MR of the jet.
The inertial effects of both Jet and surrounding
medium were considered by Christiansen (112, 113), When
the densities of both fluids are taken into account the

angular frequency is given by

2+ GmR [ (mR*=]
e [Q._Io(WR) e Ke(m®) 1
| fo("'m'- 'f(,(“‘ﬂ_

A=4

An analysis of the effects of Helmholtz instability
upon the disintegration of a liquid jet in air was reported
by"Weber (114). In his paber the inertia of the jet only
was taken into acccunt, i.e., the inertia of the sur-
rounding medium was neglected. In what follows the

stability of a cylindrical column will be investigated
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and the inertial effects of both mdia as well as the
effect of Helmholtz instability will be cqnsidered.

let a cylindrical jet of radius R flow with velocity
u' in the direction of the vertical z axis. Denote by
superscript prime the medium inside the jet. The equatior_x
of the disturbed boundary is given by '

r= R+3(},f) - A5

where the disturbance % is of the form

{(wl -=m3)

e de o A-6

The problem is formulated by considering the equations of
continuity for the two flow fields

g ! N

2 4, . i ?-—(-b + = Q

;5';7- * e dr 'o's‘-' A=7
2%+ L 24 + 2% 2 0

ort r ar 5_“ A-8




subject’to»thetboundary:conditibns:"

r=0: 'i%_?_' a0

re R —3%' = é—?

r==R - 2% _ ‘c-‘-—ts-
ro t

rees: & finte

Ao

A-10

A-1l1

A-l2

A-13

where\l/Rc“and 1/Rz are the curvature in the transverse

and axial sections respectively. Fron Lamb (Reference 50,

Page 473) the sum of the principal}curvature is

-L - ——

l L
Re Ry R R 93

g ¥y
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The pressures P! and P satisfy Bernouilli's equation thus:

ToH (B @Y
' 'y L\, (2%) |
:(t‘._._ ?_;__ZL[(_L(—%:)-P(%—) ]+caurt aets

The solutions of Equations A-7 and A-8 which sétisfy the

kinematic conditions, i.e., Equations A-9 through A-l2,

| ke
'.. ) (_.._.-U) Io{""") *g et m}) .
- A-17
I.(mR) -
‘ (UtoM})
i) Kolmr) ¢ o0 A-18

Ko(WR)

The frequency equation is'cbtained b& satisfying the
dynamic conditions, i.e., Equations A-13 through A-16
-thus
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T{tmut ] | qT,(mI @ U)m fI{(ma; -
(5 T Io(mll ( S 7((”'1)( ).A19

jWe note that for u! = 0, Equation A-19 is reduced to
“Equation A-4. with. u' =0 and_neglecting the inertia- of
’the-- surrounding liquid, -’:I;';é.,. ? = 0, Equation A-19 ¥
reduces to Eqixation A-1; with Q' = 0 it reduces to
Eéquati‘oti A-é.

EScpénding and rearranging Equation A-19 it follows

that |
w _ <'I:‘-‘_ [(\’I" ek W+ gKe'T* U"ll
" e[*qx R ,,—~¢1< - A
where
1% o Le(mri
T.(m)
W Ko(mR) Aol
K. (mR)
W. I [(mR) -
R*m



The first term on the right-hand side may be called the
mean velocity of the flow. Relative to this there are

waves travelling with velocities +C, given by

N
eF . TLmRI=] el rreyt '™

'RL”“Le'I¥—€3<i) ( C'I¥—Q1(¥]L | A-22

We note that if the density € , of the surrounding

medium is small compared to the density (", of the jet,

Equation A-22 becomes

R o[ (MR) =11 * e,
C. - R X
=73 Trvs T t¥ A-23
Rm[e'L”] 'l

which is the equation derived by Weber. For the present
problem the density of the jet 6' ' is much smaller than
the denaity of the surrounding liquid; Equation A-22 can

be simplified, thus

Ko (wa)
K‘o (wR}

CL= "IN L(M’R)L—-i] | 72,(04«1].

u't
¢R mR l ](o(»1‘a)

- e.fo(“"”
e (mA

A=24
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For large values of mR, i.e., for short waves, Equation
A-24 becomes |

L Vo o .
C = G‘:_/_Y:) - (’V A-25

! 3
which is of the same form as Equation VI-l. The condition
of stability is that C shall be real. It is seen from
Equation A-24 that if mR = 1 the motion is unstable for
any vapor velocity. The critical-condition is then.given
by

b A ’ ]

3 G [(mRY =11 T, (mR)

u :
e'R m R T. (mR) A-26

With mR = 2, Equation A-26 becomes

-U'. * = _G‘—GT;R A=27

which is of the same form as Equation VI-5.
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