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MiW
THE VIASOV-FLUD) MODEL WITH ELECTRON PRESSURE

by

R. Gerwln

ABSTRACT

The Vlasov-ion, fluid-electron model of Freldberg
for studying the linear stability of hot-Ion pinch con-
figurations is here extended to Include electron pressure.
Within the framework of an adlabatlc electron-gas picture,
It is shown that this model is still amenable to the
numerical methods described by Lewis and Freidberg.

I. INTROrUCTION

Freidberg has formulated a Vlasov-ion, fluid-

electron model for examining the linear stability

of hot-ion pinch configurations to low-frequency

perturbations. His closed, linear, homogeneous sys-

tem of equations reads (MKS units),

/
df

(Eo+^Bo) 3T S: d vj (1)

BX = V

' (E +w,B,)'dt'
o o

(2)

(3)

where f 4i.v +ej (r)| = f (e) is the equilibrium
o L 2 i o J o

ion distribution function, corresponding to density

n (r), pressure p (r), embedded in equilibrium elec-
o o -> -. -. -.
trie and magnetic fields E (r) and B (r). Hete, a

o o

particular ion at cine t hat mass mt> charge e, po-

sition r, and velocity v. The past'time orbit of

such an ion in the equilibrium fields define* the

trajectory ~r (t'), v <t'), traversed by the orbit

integral of Eq. (3).

The perturbation has been assumed to depend on

time through exp(-iu)t). The complex frequency UJ

constitutes the eigenvalue of the homogeneous lin-

ear system in Eqs. (1) through (3) when suitable

bou.idary conditions are required on the perturba-

tion Ci> The assumptions of low frequency, long

wavelength (« \ ), and small phase velocity (« c)

have been Invoked to justify quasi-neutrality and

neglect of displacement current.

In the derivation of Eqs. (1) through (3), the

electrons were regarded as a massless, pressureless

fluid. Therefore, the electron macroscopic velocity

u obeyed the equation

E + u x B « 0 . (4)

In spite of the negligible electron temperature,

Coulomb collisions of the electrons were also neg-

lected.

It is the purpose of this report to generalize

Eqs. (1) through (3) so as to include nonvanishing

electron pressure in an equation for electron mo-

mentum of the type given in Eq. (4). This must

then be supplemented by the energy equation, or

equivalently, the adiabatlc lsw. This local, fluid-

electron model must be founded upon "frequent"

electron-electron collisions.



We are concerned with gross perturbations of

the pinch, such that L ~ pinch radius, where L Is
x i

a characteristic length across the (basically theta-

plnch) magnetic field. Macroscopic drifts, as well

as guiding center drifts, are characterized by the
vion diamagnetic velocity, u ~ r j

h~ fc/L )v
thit where r. is the thermal-ion gyro-

radius, and v . , is the ion thermal velocity*

Within the spirit of the FLR ordering, we expect

that the pinch inhomogeneity plays a fundamental

role in the lew-frequency, large-scale perturbations

of interest. Therefore, we expect the perturbation
2

frequency to scale as u> ~ u /L ~(r,/L ) ID ., where
X X 1 X c l

<JUC1 is the ion gyro frequency. These FLR scalinga

have been freely used to estimate the importance of

various terms in our electron model, as described

later. However, no small iwii gyroradius expansion

is ever made in deriving our final set of equations.

For future reference, we now write Eqs. (1) and

(3) in a slightly different form. One defines a new

orbit Integral, S, by

S(r,v,t) s / mtv ^ / Ct (5)

and notes that S. of Eq. (3) can be written

rn^vg - S . (6)

Substitution of Eq. (6) into Eq. (1) then yields

ws

i*erc F (E ) represents the left side of Eq. (1)
eliil) j.

and is formally identical to the MHD force operator

for incompressible displacements* Equatlono (2),

(5). (7). and the definition of F,™ (* ) constitute
HHXf x

the linear, homogeneous system of equations that gov-

ern the perturbations of the hot-ion pinch configura-

tion.

He now remark on a certain property of the or-

bit integral S. Eecause the past-time equations of

motion in the equilibrium fields have the form

dv'/dt'= F(r',v'), dr'/dt' - v'.i.e., because the

time t' does not appear explicitly, it follows that

the past-tlmn, unperturbed orbit solutions will de-

pend only on the time difference (t-t')« It Is then

a trivial matter to show t'tat the dependence

ext>(~lwt), assumed for the perturbation quantity

g (r",t), implies a like time dependence of the orbit

Integral S (r,v,t).

Finally, we remark on the relevance of the elec-

tron and ion models that are to be used. The Ssyi-
2

lac full torus has had the following properties:

T ~1 keV, T ~ (l/2)keV , for the ion and electron

temperatures; and densities like n ~ 2 x 10 cm .

The observed instability growth time for an in = 1

perturbation is t _ «, (1/2) us.
pert.

From the above densities find temperatures, one

calculates an ion-ion collision time, t^ ~ 1 us

and an electron-electron collision time t ~0.1 tie.
ee

Therefore, a collisionless (i.e., Vlasov) model for

the ion gas is (marginally) relevant. Furthermore,
t « t . justifies a local fluid model for the
ee pert..

electrons. This is further Justified by the small

electron gyroradiuj compared to the pinch radius

(perturbation scale length) and by the small mean

free path A along the magnetic field (100 cm)

compared to the wavelengths of interest along the

field. (The most dangerous modes, according to both

MHD theory and the Scyllac experiment, have very long

wavelengths along the field. In the 4-m major

radius torus, toroidal mode numbers n » 0,1,2 have

been observed. These correspind to wavelengths j>

1000 cm).

Although there exists in Scyllac an equilibrium-

field characteristic length of ~ 40 cm in the toroi-

dal direction, the fact that this Is somewhat smaller

than \ may not be too Important for our local fluid

electron model, since it involves magnetic fields

only 0.05 times as large as the main theta-pinch

field.

The present model differs from earlier FLR treat-

ments (Kennel and Greene; Bowers and Haines ) in

two respects. First, no small ion gyroradius ex-

pansion is made here. Second, the electrons are

not assumed to be collisionless and hence obey a

Vlasov equation. Rp.ther, they are here described bv

a local fluid model which assumes ui < v and X

< jj , where u> and £ characterize the time and space

scales of the perturbation. This fluid model seems

more consistent with conditions In the Scyllac full

torus a3 described in Rei. #2. It is also more



consistent with conditions in the ZT-1 experiment.

II. BASIC EQUATIONS

He have Vlasov ions,

VJE » 0 ,
v

and we take the simplest possible fluid model for

the electrons, namely,

VP + ne (E-f«(B) = 0 . (9)

Electron inertia has been ignored because the fre-

quencies of interest are small against the electron

gyro- and plasma frequencies. In Eq. (9), u is the

electron macroscopic velocity, and F is the elec-

tron pressure, assumed scalar.

Equation (9), the electron momentum equation,

is to be supplemented by the electron continuity

equation, and the electron energy equation with

heat flux and ohmic dissipation ignored. Electron-

ion energy exchange is also ignored. This consti-

tutes a simple and convenient closure of the elec-

tron hierarchy of moment equations, and yields the

standard adiabatic law for the electron fluid. As

a special case (-y«=l), one can also obtain a con-

stant, uniform-temperature model.

The neglect of electron-ion friction in the mo-

mentum equation, and the neglect of the correspond-

ing ohmic dissipation in the energy equation have

been examined in detail. The required inequalities

prove to be

el
and

(1)

(it)

saciafied in Scyllac.

The neglect in the energy equation of electron

heat flux driven by electron temperature gradients

has been examined in detail. The required inequal-

ity proves to be

(ill)

"el

Here \ ~ X Is the electron mean free path for

90° Cc-ulomb deflectiona and L,, is a characteristic

length along the field. It is not clear that El*

(iii) will always be satisfied for the perturba-

tions of interest to us.

The neglect of electron-ion energy relaxation

In the electron energy equation proves to require

«.,/»J«(',/l)2 . (iv)

where r is a thermal-ion gyroradius. (Here, we

tlways use the FLR ordering, & ~ (r./L ) oj to es-

timate the perturbation frequency.) Inequality (Iv)

Is well satisfied for typical Scyllac conditions.

This electron model is presently being refined

to include not only the. usual heat flux, but also

the various thermoelectric effects associated with

electron-ion collisions.

Finally, this entire system is closed by means

of Maxwell18 equations for the fields. The longi-

tudinal part of the electric field is dealt with by

means of the parallel component of Eq. (9), together

with the quasl-neutrality assumption (i.e., Pois-

soo's equation), valid because the frequencies of

interest lie well below the plasma frequencies and

because the wavelengths of interest are much longer

than a Debye length. The transverse part of the

electric field obeys the usual induction equation,

namely,

where v . is the 90° Coulomb collision frequency

with lors, a> is the electron gyrofrequency, u>
ce _j pe

is the electron plasma frequency, w Is a pertur-

bation time and L is a characteristic length across

the field. Inequality (11) means that the pertur-

bation time is much shorter than the resistive dif-

fusion time. Both Eqs. (i) and (ii) are well

VXE = - 3B/at . (10)

The magnetic field is given by Ampere's law,

V x B = H o J ,

in which the displacement current has been

(11)



naglected. The latter is a low-frequency approxi-

mation thac is valid when the characteristic velo-

cities are much leas than the speed of light and

when the energy etorage is primarily magnetic.

Ampere's law Is then connected back to the parti-

cles by a current density expression.

- nu*]

|"(v-u- e |(v-u)fd3v (12)

where quasi-neutrality has been used.

If one ciooses Eq. (11) with B, and makes use

of Eqs. (12) and (9), one obtains the basic equa-

tion of the Freidberg Vlasov-fluid model, analogous

Co the equation of motion of ideal MHD, namely

W e o + OTio " " V " o " "o s ?o " 5o ' ( X 7 )

which Is identical to the equilibrium pressure-

balance aquation of Ideal MHD.

Hencaforth, wa nuppose fo is Maswelllan,

"oo
(18)

with a uniform equilibrium temperature T, . In Eq.
— — — ^ — 1O

(13),
« /2T , and n is the particle den cy

?on the set of points at which $ (?) - 0.

For the electrons, we have P.

e
n T
o eo

and we

assume the electron equilibrium temperatute, TeQ, to

be also uniform. We then define a useful symbol, T,

by

* * Teo/Ti»
(19)

y (i +^l + ̂ 5 ) f dJv 1 .(13)

III. EQUILIBRIUM

the equilibrium Vlasov equation for the Ions,

obtainable from Eq. (8), saads

which proves to be a fundamental parameter through-

out.

Equation (17) now reads

(t +T. )7n_ » - n^eu. x §*_ , (20)

•V f = 0 . (14)
-i - " v

We choose an isotropic solution of Eq. (14), of Che

form

which shows that 7n is perpendicular to both u and
_ o ^o
B . this has the immediate consequences that u
o o
• 7nQ « 0 and B*o • Vno » 0. Then, from the electron

continuity equation of tne equilibrium,

V"o

in which E"
o 8 .o (15)

Since the ions thus carry no current in equilib-

rium, Che first velocity moment of Eq. (14) yields

These three basic properties of the assumed equilib-

rium will prove useful later.

u »vn - 0 ; 7'«o - 0 ; 0. (21)

(16)

where the ion pressure tensor, Pj — I n,Wf dv ,

is easily ehown to be a scalar given by P. • (1/3)
C ? 3

/

Finally, we note for consistency that the equi-

librium form of Eq. (13) is

Substitution of Eq. (16) into the equilibrium

form of Eq. (9) yields
Eq.

Substitution of Eq. (16) herein again yirlds

(17).



IV. PERTURBATIONS

As shown by Freldberg, there exists a conve-

nient choice of gauge to aid In simplifying the

equations governing the perturbations from the equi-

librium configuration. This still proves to be the

case in the presence of electron —essure. So we

ahull firjt derive the special g f condition, and

then vne It in the s41abatlc eleccon fluid model

so an to relate the electron pressure perturbation

to the other perturbation quantities of interest*

Subsequently, all of these results will be employed

to obtain the final form of the equations governing

small perturbations from equilibrium.

Nov one expresses the fields in terms of potentials,

namely.

(25)

(20)

Then E. and B, sBtlsfy the Induction equation (10),

and E, satisfies V*B. - 0, as desired.

Substitution of Eqs. (25) and (26) into (22)

provides

IV-A. CHOICE OF GAUGE

Dot the electron momentum equation (9) wit* B.

("nf +H J - B - O .

Linearize this. (The subscript "1" denotes a

small perturbation quantity.)

(7 P , 7 P n , \ / VP

Note that (TO >«f
eo o

0 froo Eq. (21).

For the sane reason, n coo be taken Inside the
o

gradient operator of the 7P , tera. Then we have

+ F »B,
o 1

where we defined

F 3 E + — —o o noe
- -

- u xB
o o

(23)

The second equation of (23) results from the

equilibrium form of Eq. (9).

It la Important to note that, due to the uni-

form equilibrium electron temperature,

- 0 . (24)

Cv
But

- "(*1 x V,

In which we have made use of Eqs. (23), (24), (II),

'•B - 0.
o

Substitution of Eq. (28) into Eq. (27) gives

and V-Bo - 0.

V*

We choooe to work in a gauge such that

(30)

It then follows that for the perturbations of lntc

eat to us,

V'o " (31)

In more detail, we have an equation obtained

from setting the RKS of Eq. (29) to zero, of the

form



- 0

where if- la a perturbation quantity. At we have no

Interest whatsoever In that very special class of

perturbations that moves rigidly with velocity u"o,

we oust set ij> " 0.

This orthogonality of H. to B allows the In-

troduction of a quantity (.i, analogous to Che tfiU>

displacement, ty means of

s . (32)

Substitution of Eo.- (32) into the gauge condition of

Eq. (30)yields, with the help of Eq. (23),

condition 5 . 7peQ - 0 and of the spatial uniformity

electr

const., then one obtains

cf the equilibrium electron temperature. «P h -
eo eo

.(38)

He note that the condition, y ~ 1, laplles

Pel -
 r

e o
n
e l» !•«.. no perturbations can arise In

the electron teaporaeure whan y " 1.

The RBS of S<l. (38) Is now transformed as

follows.

" lo

Zl- 157 (VPio + Weo) " S 7 "r 3

j. o
(33)

u «n cu x B • + Ttr n cu,•!o 1 o o

IV-B. THE ADIABATIC ELECTRON FLUID MODEL

^or an electron fluid saving in electric and

magnetic fields without viscosity, ohalc heating,

elect..-on-ion energy exchange, or heat conducclon,

Che macroscopic energy equation can be reduced to

the fora

- Y~ n eu x B *u , (39)

where we have U3td equilibrium pressure balance, Eq.

(W).

The linearized version of the electron aoaentuB

equation (9) fer sasil perturbations reads

(34)

The equation of continuity for the electron «•««

density, P C = men, reads

(I? + "• ')pe + "e"" " (35)

Prom these two equations, one obtains

(h+ »• 7)p
e • *T J (h+ »•')•». •

which is equivalent to the adiabatic law in the form

When Eq. (36) is linearized, and use in made of the

+ n,e(E + u x 8 )) .
1 o o o

(40)

If one scalar multiplies this by 8 , one can recover

Eq. (29). Substitution of Eq. (40) into Eq. (39)

produces

when we use the result of Eq. (16) and (21) that

u "E - 0. Since u *Vn - 0, Eq. (41) can also be
o o o o
written

u . op • - — — n eu •
1 eo 1+T o o (62)

Replacesent of %. by means of Eq. (25), and ure of

the gauge condition In Eq. (30) then yields



/ \ /p \

V 7Peo " " lif V \3F + V V) (re" - *l) ' (48)

Substitution of Eq. (43) i--.ro Eq, (38) produces,

after division by a e.

where we have again used the property u 'Vn

(44)

0.

Since the very special class of rigidly moving

perturbations that constitute nonvanlshlng solu-

tions cf the equation O/dt + u "V)^. » 0 are of no

consequence, this operator must be deleted from

each side of Eq. (44). Then, when we observe the

gauge result in Eq. (33), Eq. (44) becomes

el
YT n ,

(45)

Thus, Che troublesome unknown perturbation u,

has been removed ?rom Che problem so that the elec-

tron pressure perturbation is now finally expressed

in terns of our fundamental perturbation quantities

f,. and

"cl
(46)

where f,(r,v,t) is the perturbation of the ion dis-

tribution function and we have used quasi-neutral-

ity.

IV-C THE SOLUTION FOR f^

The linearized Eq. (8) reads

in which we noted that v»B,-V->f vanishes for our
i. v o

choice (15) of the solution fQ.

The solution of Eq. (47) that is unstable

(Im(oi) > 01 and vanishes In the distant past can be

written

where the integration Is over the Ion trajectories

in the equilibrium fields E and B .
o o

But

(49)

+e0o] Is a constant of the motionand e s [(i/2

along the unperturbed orbit, so Eq. (48) becomes

(50)

Next E. is expressed by the potentials A. and 0,.

We then have

' / (•=•

£ - v- dt'

It Is now convenient to define a new perturbation

potential A, by

s Pel/noe (52)

Moreover, the combination (0, - Jt.) has, so far,

proven to be significant, so we shall Introduce this

combination In Eq. (51).

(•1-"1)e
3f

+ e J (?.V7T1)'dt
<



dt' . (53)

+ ftp / d3vfoS1 (59)

Next, we introduce the gauge result in Eq. (33) and Define

note that vl, = - v x B -|̂  . Then Eq. (53) becomes

fo - V no (60)

+ *- K2 / [v ( V*v] ' d t ' •
For convenience, we shall define orbit Integrals,

S n s e / ( v w , ) ' « ' (SSa)

and rewrite S from Eq. (55a) as

irx + lae J i ^ ' dt' .

Then Eq. (59) becomes

(61)

l ~ eJ &m(*o+"*j\ ' d t

and write f as

{ 5 5 b >

<»>

According to Eq. (45), TT1 is to "oe determined

by

vT n
•eo 1

(57)

This expression, derived solely from the elec-

tron model, becomes useful provided an independent

eq uation can be devoloped for n . This is done

in the following section.

IV-D THE EQUATIONS FOR n. AND Itj

At this point, we utilize the Maxwellian form

of f as expressed In Eq. (16~. Then

If2
(58)

Integration cf Eq. (56) over velocity space then

yields

/
3 * i ^ ' ' / " ^ ^ k

d vlj it 1 dt + iasj d vf Sll . (62)

Note that it, Is independent of the particular

velocity v and that /d3vfQ » 1. Then cultlply Eq.

(62) by YT
cc/

e BC a s to introduce Eq. (57). (Recall

that T = T R/T. .) The result is an equation rela-

ting it to 'f . This equation Is found to be

dS_

(63)

In which we have Introduced another orbit integral,

Sn ,by

(64)

IV-E. TEE EQUATION I OR ̂  ANALOGOUS TO THE EQUATION

OF THE MOTION FOR THE MHD DISPIACEMENT

Equation (13), linearized, reads



(65)

In which we noted that (v«f,)f (c) Integrates to

zero. Ue note chut

The vector-potendal part of the £ -tern of Eq. (68)

ylexda

e f ( ? , ) . £ d3v - lueS.n - luen t x t . ( 7 1 )

J 1 A O 1 O O JL O

The scala:-potfcntial part of the E -term of Eq. (68),

together with the V^-term, yields

(66)

and, ueing Eq. (37).
V (« i'

?
o
) no e

£ °1 Te
n e

Vn n,
2

vn

SubBfitutlon of Eqs. (56), (66), and (67) Into

Eq. (65) yields

(68)

Consider the RHS of Eq. (68). Since ?f /3

- f /T. , the C -F term of the 3f /3e Integra]
o io i. o o

yields

Vn

where we used the fact that

(69)

n e? « VP + VP .
o o eo eo

(70)

where

7(C 'Foel + f P eVnl u o j. o o

- -
£ -VP ) + c ̂ F en —
i. o x o o n

o

P = P., + P
o lo eo

(72)

(73)

and we have used the gauge resilt of Eq. (33), and

the presuure-balance equation (70).

Finally, in the Integral on the RHS of Eq.

(68), we use Eq. (63?, thus replacing the

(n , £ "F ) combination by an expression involving

the o;tlt Integrals S^ and S,.

Considering all of the above, Eq. (68) can DC

rewritten as follows.

Vn ^ _
+ T — 2 . c -eF n

no x o o

Sir

+ luen C x B
o i o

Vn
f d3v

(74)



Here, we have used a factor n to convert f back
o o

to fQ in the last term on the RHS of Eq. (74).

Next, we shall convert from the S1-formalism

to the S-formalism, as described in the introduc-

tion,. Eqs. (5) and <6). This is done as follows.

From Eq. (55-b), we have

o*_

^l !^2 -Jtt_ /*
V n 1+YT J* no

- S)f/v (78)

where we have defined the incompressible MHD force

operator by

• • . • ' •
i*<*v» vl

5/OTo> (79)

and we note here that P is the sum o£ the elec-
o

tron and ion pressures. Furthermore,

(75)

where we have used Sq. (16).

Let us define the following orbit integrals.

B
o) (80)

as in ideal MUD.

Next,, ize use Eq. (61) with Eq. (64), namely.

(81)

SB=

s *

j (? -eE^'dt' .

Then Eq. (75) becomes

TS
E • s

(76a)

t' • < 7 6 b )

(77)

Upon substitution of Eq. (77) into Eq. (74), we

note that the (t^'v) term makes no contribution to

the (Y-l) term of Eq. (74); whereas in the 3fo/3e

integral, it makes a contribution, -luien 5̂  *B ,

which exactly cancels another such term on the

right aide of Eq. (74). Now Eq. (74) can be written

This is to be substituted into Eq. (78) with i^ ex-

pressed by means of Eq. (63). The 3fo/3e term on

the RHS of Eq. (78) then reads

3f

I io Vlno v

(82)

From Eq. (63) with Eq. (77), we have

»n eFo o n en. - - 1+T

10



- Ill)

(83)

Upon substitution of Eq. (83) into Eq (82) and

(82) into Eq. (78), we note [with the help of Eq.

(70)] that the F Q term of Eq, (83) yields a term

which exactly cancels the Vn /a term on the LHS of
o o

Eq. (78). Taking Ehis into account, Eq. (78) can

now be written as follows.

'W3D<v eF
ill)

io

_ _

He note that this equation of motion for | is

formally identical to Eq, (7) of Che cold election

model, there is, at thin stage, no explicit depend'

ence upon (T /T ) or upon the electron-fluid adis-

batlc index, y. To close the system, we must now

develop an equation of motion for the composite or-

bit integral,^ <r\ v, t).

6/d\ [(F

- iai'
- 1 "*

- S)

(84)

At this point, it is convenient to define a

composite orbit integral^/, by

IV-F. CLOSING THE SYSTEM; THE ECOATIOB OF MOTION

FOR THE ORBIT INTEGRAL^

We refer to Eq. (85) and Cake the total time

derivative of edalong an unperturbed ion orbit. Use

of Eqs. (64) and (76) then produces

dt dt dt

d = S - TSE - eSn . (85)
«eE - er.

o 1
(90)

He further observe that the F and Vn terms of Eq.
o o

(84) can be usefully combined because
for «.,, we now invoke Eq. (63), or better, Eq. (83)

divided by nQ.

VP. *• VP Vn

nT • " 7T
o io no

Then, after a little algebra, Eq. (84) takes the

form

Because of the result of Eq. (88), we s-a that the

F term of Eq. (91) exactly cancels the l o term of

Eq. (30). Therefore, Eq. (90) becomes

- iuje ^ J . (87)

Finally, va observe that, for Maxwellian ions

in equilibrium, df /3e = - f /T. , and also note
o o io

that

We note that for T = 0, the result of Eq, (92)

reduces to the cold-electron result in Eq. (S).

Thus, Eq. (89) relating ̂  to^f is now closed

by Eq, (92) relating^to £ .

We recall that the operator, d/dt, here means

= Eo(l+T) (88) dt + — (1* )vo ~ (93)

Then Eq. (87) simplifies further r.o and we note (r,v,t), and (r,t).
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V. COMPUTATIONAL METHODS

The pair of equations (89) and (92) Is amen-

able to the same kind of numerical treatment thet

was found applicable to the zero temperature

electron-fluid model.5 We shall no» Siow this ex-

plicitly.

Suppose we write Eq. (92) in ths form

where D is the phase-space-convective part of the

total time derivative (the Liouville operator) and

I is a linear operator on^jf representing yKH-yr)

times the integral of Eq. (92). Together, Eqs.

(89) and (94) are identical to the equations dis-

cussed by Ref. (5), except that the operator D is

now replaced by [D+ioiI]. Consequently, the work of

Ref. (5) may be directly applied to the present

model provided that the Liouville eigenfunctiors

and eigenvalues of Ref. (5) are reinterpreted as

eigenfunctions and eigenvalues of the operator

(l/i)[D+i*dI]. The eigenf unctions and eigenvalues

of this extended operator, [D+iuI], have a simple

physical interpretation, as we now show.

Consider Eq. (63) with 1? = 0. It reads

(-ion + [D+iuiI]) Sn = 0 (95)

and is precisely the equation defining the eigen-

values (to) and eigenfunctions of Che operator

Since 1? = 0, there are no magnetic per-

turbations, and an examination of the derivation

that leads to Eq. (63) or Eq. (95) shows that these

equations are nothing more than a statement of

quasineutrality, ngl = n u = n r Consequently, we

are dealing with the long-wavelength version of

Poisson's equation in the absence of magnetic per-

turbations. In other words, the eigenvalue problem

defined by Eq. (95) represents the purely electro-

static disturbances supported by the equilibrium

pinch configuration. As an example, one can con-

sider a uniform plasma with perturbation wave vector

along Bo> Then Eq. (95) can be shown to yield the

dispersion relation for ion-acoustic waves.

It is important to emphasize the Idealized na-

ture of these electrostatic modes. They do not,

by themselves, exist in the real physical system

any more than do the other expansion functions of

Ref. (5), namely, the eigecfunctfons of the opera-

tor ? „ _ . Nevertheless, both classes of expansion

functions, the MUD modes, and the electrostatic

modes have clear physical meanings.

To summarize, Ref. (5) has outlined a numeri-

cal approach for solving Eqs. (89) and (92) when

T - 0. Our adiabatic electron gas model can be

solved with the same formalism when 1 ^ 0 , One

merely replaces the expansion in Liouville eigen-

functions of Ref. (5) by an expansion in the purely

electrostatic modes of the configuration.

VI. COHCHJSION

Assuming uniform equilibrium electron and ion

temperatures, and treating the electrons as an adia-

batic gas without macroscopic inertia, we have de-

rived a pair of equations that govern small pertur-

bations from the arbitrary equilibrium pinch config-

uration, namely,

- m.v- (-iuH-V'V)? - iu> T*?-

Here, £ = i /n and D is the convective pert of
o o o

the orbit derivative in phase space.

The pressure term in F,_, now contains the sum
rlHD

of the equilibrium electron and ion pressures, and

we recall that T = T It, . The electron adiabatic
eo io

index is y.

When we set the equilibrium electron tempera-

ture to zero, the above equations recu.e to those of

Freidberg, and Lewis and Freidberg, When T 4 0,

one finds a new term in the ^/-equation, but the

numerical methods described by Lewis and Freidberg

can still be applied to this more complete model.

The model of D'Ippollto and Davidson also in-

cludes electron pressure effects, and also makes no

small Ion gyroaradius expansion. However, it deals

only with collia.Lonleso (Vlasov) electrons, and is

therefore not ~;itable for treating low-frequency,

long-wavelength modes for which ID < v , i < . .
ee ee * u

The present fluid electron model, however, applies

Just when these inequalities ars satisfied. More-

over, these conditions are consistent with those re-

cently observed in the Scyllac full torus experi-

ment.
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Finally, we mention that the ad.abatic elec-

tron model described here has now been extended to

Include electron heat conduction along the magnetic

field. The above formalism remains valid but V now

becomes a complex-valued, known function of posi-

tion, r(r). When heat conduction id (locally)

small, P -*• Y. and when it Is large, r •*• 1.
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