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THE VIASOV-FLUTID MODEL WITH ELECTRON PRESSURE

by

R, Gerwin

ABSTRACT

The Vlasov-ion, fluid-electron model of Freidberg
for studying the linear stability of hot-ion pinch con-
figurations 18 here extended to include electron pressure,
Within the framework of an adiabatic electron-gas picture,
it is shown that this model is gtill amenable to the
numerical methods described by Lewis and Freidberg,

I, INTROTMUCTION

l-‘reidber:g1 has formulated a Vlasov-ion, fluid-
electron model for examining the linear stability
of hot-ion pinch configurations to low-frequency
perturbations, His closed, linear, homogeneous sys-

tem of equations reads (MKS unita)},

u;l l(vma) x B + (WE)) x EJ+ v (T;‘l o)

it

of
- - - o 3
Loe [nogfuo +f(E°+va°) *® 5 d v; 2

By = Vx (€4E) 2
_ = . l-o - - 7 ¢
5y = 'ff';; (E twB ) dt” (3

where fo [%mivz-moo(r)] = fo(e) is the equilibrium
ion distribution function, corresponding to densitcy
no(;), pressure po(;), em.b;edied in :quilibrium &lec-
tric and magnetic fields Eo(r) and Bo(r). Here, &
particu_l'ar ion at time -t‘haﬁ wass o, , charge e, po-
sition r, and velecity v, The past-time orbit of
guch an ion in the equilibrium fields definew the
trajectory T (c'), v (t'), traversed by the orbit

integral of Eq. (3).

The perturbation has been assumed to depend on
time through eup(-iwt). The complex frequency w
constitutes the eigenvalue of the homogeneous lin-
ear system in Eqs. (1) through (3) when suitable
boundary conditions are required on the perturba-
tion —él' The assumptions of low frequency, long
wavelength (<< Xn), and small phase velocity (<< c)
have been invoked to justify quasi-neutrality and
neglect of displacement current.

In the derivation of Eqs. (1) through (3), the
electrons were regarded as a massless, pressureless
fluid., Therefore, the electron macroscopic velocity

° obeyed the equation
- - -t
E+uxB=0, (0

In spite of the negligible electron temperature,
Coulomb collisions of the electrons wera algso neg-
lected.

It 1s the purpose of this report to genaralize
Eqs. (1) through (3} so as to include nonvanighing
electron pressure in an equation for electron mo-
meptum of the type given in Eq. (4). This must
then be supplemented by the energy equation, or
equivalently, the adiabatic lew.
electron model wust be founded upon "frequent"

electron-electron collisions.

This local, fluid-
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We are concerned with gross perturbations of
the pinch, such that L ~ pinch radius, where L is
a characteristic length across the (basically theta-
pinch) magnetic field, Macroscopic drifts, as well
as guiding center drifts, are characterized by the
ion diamagnetic velocity, u.LN r I l Vohi

(r /L )vthi' where T, is the themal ion gyro-
radius, and vthi is the ion thermal velocity,
Within the spirit of the FLR ordering, we expect
that the pinch inhomogeneity plays a fundamental
role in the lcw-frequency, large-scale perturbations
Therefore, we expect the perturbation
frequency to scale as w ~ u.L/L.L «-(r::I./L.L)z Woys where
g is the ion gyvrofrequency, These FLR scalings
have been freely used to estimate the importance of
various terms in our electron model, as described

of interest,

later, However, no small i1.n gyroradius expansion
is ever made in deriving our final set of equations,

For future reference, we now write Eqs, (1) and
(3) in a slightly different form. One defines a new

orbit integrel, s, by

t 'dg

S(T,v,t) sj: m, Ve E’ ! )

@

and notes that S1 of Eq, (3) can be written
S, = m;-_g' -5 . (6)

Substitution of Eq. (6) intoc Eq. (1) then yields

(g)=-:l.uuef(£-*-wn)—sdv, &)

where me (EL) represents the left side of Eq, (1)
and is formally identical to the MHD force operator
for incompressible displacements. Equations (2),
(5), (7), and the definitior of F, (* ) constitute
the linear, homogeneocus system of equatiuns that gov-
ern the perturbations of zhe hot-ion pinch configura-
tion,

We now rewmark on a certain property of the or-
bit integral S, Eecause the past-time equations of
motion in the equilibrium fields have the form
dv’/at’= F(z',v", dr'/at’ = ¥/,1.e., because the
time t’ does not appear explicitly, it follows that

the past-tima, unperturbed orbit solutions will de-
pend only on the time difference (:-t’)., It s then
a trivial matter to show that the dependencs
exp(~iwt), sesumed for the perturbation quuntity
g @0, mpues & like time dependence of the orbit
integral S (r,v,t).
Finally, we remark on the relevarce of the elec-
tron and ion models that are to be used, The ZSayi-
lac full torus2 has had the following properties:

T1~1 keV, T ~ (1/2)keV , for the ion and electron
temperatures- and densities like n ~ 2 x 108 ¢ '3.

The observed instability growth time for anm= 1
perturbation is tpert. ~ (1/2) us.

From the above densities snd temperatures, one
calculates an ion-ion collisfon time, tu ~ 1 pus
and an electron-electron collision time l:ee~0.1 “B.
Therefore, a collisionless (i.e., Vlasov) model for
the ion gas is (marginally) relevant, Furthermore,
o << tpe rt. justifies a local fluid model for the
clectrons, This is further justified by the small
electron gyroradius compared to the pinch radius
(perturbation scale length) and by the small mean
free path A__ along the magnetic field (100 cm)
compared to the wavelengths of interest along the
field, (The most dangerous modes, according to both
MHD theory and the Scyllac experiment, have very iong
wavelengths along the field, In the 4-m major
radius torus, toroidal mode numbers n = 0,1,2 have
been observed, These corresrind to wavelengths >
1000 cm),

Although there =xists in Scyllac an equilibrium-
field characteriatic length of ~ 40 cm in the toroi-
dal direction, the fact that this is somewhat smaller
than ), may not be too important for our local fluid
electron model, since it involves magnetic fielids
only 0,05 times as lazge as the main thets-pinch
field. '

The present model differs from earlier FLR treat-
ments (Kennel and Gr:eene;3 Bowers and Haines[‘) in
two respects. First, no small ion gyroradius ex-
pansion is made here. Second, the electrons are
not assumed to he collisionless and hence obey a
Vlasov equation. Rather, they are here described bv
a local fluid model which assumes W < Vee and Aee
< 4., where w and g characterize the time and space
scales of the perturbation, This fluid model seems
more consistent with conditions in the Scyllac full

torus as described in Ref. #2, It 1is also more



consistent with conditions in the ZI-1 experiment.

II, BASIC EQUATIONS
We have Vlasov ions,

?+V-vf+e—(§"§')-vf=0 . 8y
€ m, 3

and we take the gimplest possible fluid model for
the electrons, namely,

> > >
vpe 4+ ne (EBEMxBY =0 , 93

Electron inertia has been ignored because the fre-
quencies of interest are small against the electron
In Eq. (9), u is the
electron macrosccpic velocity, and Pe is the elec-

gyro- and plasma frequencies,

tron pressure, assumed scalar,

Equation (9), the electron womentum equation,
is to be supplemented by the electron continuity
equation, and the electron energy equation with
heat flux and chmic dissipation ignored, Electron-
ion energy exchange 1s also ignored, This consti-
tutes a simple and convenient closure of the elec-
tron hierarchy of moment equations, and yields the
standard adiabatic lsw for the electron fluid, As
a special case (y=1), one can also obtain a con-
stant, uniform-temperature model,

The neglect of electron-ion friction in the mo-
mentum equation, and the neglect of the correspond-
ing ohmic dissipation in the energy equation have
been examined in detail, The required inequalities

prove to be

Yei <K Yee ()
and

Vet | Ye A (49

el ,

w c2

where Vet is the 90° Coulomb collision frequency
with iors, Wee is the electron gyrc:lfrequency, “’pe
is the electron plasma frequency, w = is & pertur-
bation time and L 1s a characteristic length across
the field. Inequtlity (11) means that the pertur-~
batfon time is mich shorter than the resistive dif-

fusion time, Both Eqs. (i) and (11) are well

satisfied in Scyllac.

The neglect in the erpergy equation of electron
heat flux driven by elcctron temperature gradients
has been examined in detail, The required inequal-
ity proves to be

)‘2
_;:Fe <«

Vel

(i11)

Here )\ee ~ )‘e i is the electron mean free path for

90° Cculomb deflections
length along the field, It is not clear thut E4.
(111) wiil alwayr be satisfied for the perturba-

and L,, is a characteristic

tions of iaterest to us.
The neglect of electron-ion erergy rel-xation
in the electron energy equation proves to require

(eslueg) << (57107 (iv)

where T, is a thermal-ion gyroradius, (Here, we
zlways use the FLR ordering, ¢ ~ (rilLl)z‘”ci’ to £5-
timate the perturbation frequency,} Inequality (iv)
is well satisfied for typical Scyllac conditions,

Thie electron model is presently being refined
to include not only the usual heat flux, but also
the various thermoelectric effects associated with
electron-ion collisions,

Finally, this entire system is closed by means
of Maxwell's equations for the fields, The longi-
tudinal part of the electric field is dealt with by
means of the parallel component of Eq. (9), together
with the quasi-neutrality assumption (i.,e., Pois-
son's equation), valid because the frequencies of
interest lie well below the plasma frequencies and
because the wavelengths of interest are mch longer
than a Debye length, The transverse part of the
electric field obeye the usual induction equation,

namely,
VXE = - 3B/3Ct . (10)

The magnetic field is given by Ampere's law,
vx B=u_ T, 1)

in which the displacement current has been



naglected. The latter is a low-frequency approxi-
mation that is valid when the characteristic velo—
cities are much less than the speed of light and
when the energy ctorage is primarily magnetic.
Ampere's law {s then connected back to the parti-

cles by a current density expressiown,

T=e [f;;fdav - n:;]
= ef(v-u)fdjv , (12)

vhere quasi-neutrality has been used,

If one cronses Eq. (11) with B, and makes use
of Eqs, (12) and (9), one obtains the basic equa-
tion of the Freidberg Vlasov-fluid model, analogous
to the equation of motion of ideal MHD, namely

- - —_ ve -
{WB) x B=u°e f(E+—£+vx 'B.)fdjv 1.(13)

I1I, EWILIBRIUM
The equilibrium Viasov equation for the ioms,
obtainable from Eq., (8), %cads

~ e - — =

vevE, + - (E #%B v f =0 . (14)
i v

We choose an isotropic solution of Eq. (14), of the

form

e f lmvz-l-eu!(;.:)-'=f
fo ol2 ™1 o J— O(e)

-
in which E = - W _ . (13)

Since the ions thus carry no current in equilib-
rium, tone first velocity moment of Eq. {(14) yields

VB, = BeE (16)

where the ion pressure tensor, ‘1:10 -fmiﬁf a3 .
)
is eagily ehown to be a scalar given by By ™ (1/3)
3
-[ LA Eod Ve
Substitution of Eq. (16) into the equilibrium
form of Eq. (9) yilelds

---nue;.ioei‘.-i ’ an

e+ 9P
o o o

eo 1o
which 1s identical to the equilibrium preszure-
talance equation of ideal MHD,

Hencaforth, we suppose fo is Marxwellian,

3
fo(e) =-n, (Gilx) exp (-e/‘r“) » (18)

with a uniform equilibriun temperature '1‘10. In Eq.
(13), aym '1/2’10' and o 1s the-.plrl:icle den: ey
on the set of points at which ¢°(r) = 0,

Por the electrons, we have Peo - noTeo' and ve
assume the electron equilibriuw tewperatuze, T , to
be also uniforu, We then define a useful symbol, 1,

by

r=T /[ (19)

T
eo {0 °
which proves to be a fundamental parameter through-

out,
Equation (17) now reads

(B #Ty)0m, = - B eu, X B, (20)

_.which shows that o is perpendicular to both Eo and
Bo' This has the immediate consequences that uy
*vn =0 and Eo * vu, = 0, Them, from the electron
continuity equation of tie equilibrium,

- -— -y -
ge(nu ) = Deu evn + n Veu < B Yeu .

These three basic properties of the assumed equilib-
rium will prove useful later,

'uo-VnO ~0; veu =03 B v, =0 (21)

Finaliy, we note for consiisteacy that the equi-
11brium form of Eq. (13) is

- - -
a oJ o ® Bo = “o(noep‘omeo)'

Subgtitution of Eq. (16) herein again yiclds
Eq. (17).



IV, PERTURBATIONS Nov one expremses the ficlds in terms of potentisls.

As showmn by Freldberg,l there exists a conve- nanely,
nient choice of gauge to aid in oimplifying the
equations governing the perturbations from the equi-
1libzium configuration, This still proves to be the El - - ;itl' -8, . (25)
casc in the presence of electror -~essure, So we
shull firct derive the special g » condition, and -
then vee it in the sadiabatic elecicon fluid model By=vx x1 ¢ (25)
80 an to relate the electron pressure perturbation
to the other perturbation quantities of interest, Then El and 5'1 satisfy the induction equation (10),
Subsequently, all of these results will be employed and El satiefies V"ﬁl = 0, as desired,
to obtain the final form of the equations governing Substitution of Egs. (25) and (26) into (22)
small perturbscions from equilibrium, provides
IV-A. CHOICE OF GAUGE - Pa1 2 = - -

Dot the electron momentum equation (9) with 8. B,V (E:Z " ¢1) - 3?(51'30) M e B °. (20

w -
(—n§ +\z).s-o. Buc
Linesrize thia, (The subscript ''1" denotes s ?n'V x Al - v’(‘l x Fo} - 'AI x (so’uo)l

small perturbation quantity,)

v |@&EE, | - v [(chi'o)ﬁol

4 P n vp -
(n—‘i-——"-‘i—"+§l)-'n’+ ( :°+s)-§1-0.
oe noeno [ n° o

Note that (vpeos -io = 0 from Eq, (21).

- noav(Altuo) - uocv(AI-BO) (28)

in vhich we have made use of Egz, (233, (24), (21},
and V-8 = 0.

For the same reascn, n can be taken inside the Substituzion of Eq. {28) imto Eq. (27) gives
gradient operator of the vP,, term. Then we have

P
1 1 - 3 ,= o =
B,V (;E'é - al-nxl-uo) = (E:"‘“o“’) @ B) . (29

Pl - . . . °
V(%) + E B+ F B -0, 22
[+]

We choone to work in & gauge such that

Ajru fbl - Pellna& . (30)
W - -
F 2F +—L2a-0xb . (23)
o o ne oo It then follows that for the perturbations of inter-

est to us,
The second equation of (23) results from the
equilibrium form of Eq, (9). A =0, (31)
It is important to note that, due to the uni-

form equilibrium electron temperature,
In more detsil, we have an equation obtained

from eetting the RUS of Eq. {29) to zero, of the
UYx F =0, (24) form



(alamo'v)wl -0 ,

where "1 1s a perturbation quantity. As ve have no
interest whatsoever in that very special class of
perturbations that moves rigidly with velocity Uy

we must set wl a0,

This orthogonality of Kl to Eo allows the in-
troduction of a quantity El- anajogous to the MHD
displacement, Ly means of

+ _»
i = g* x Eo . 32

Scbatitution of Eq. (32) into the gsuge condition of
Eq. (30)yleids, with the help of Eq. (23),

TR wg --tL | (33)

THE ADIABATIC ELECTRON FLUID MODEL
for an electron fluid moving fn electric and

1v-B,
magnetic fields without viscosity, ohmic heating,
electron-ion energy exchange, or heat conduction,

the macroscopic energy equation can be reduced to

the form

3 - -
("a'? + u.v) P,+yPPu~0 . (34)

The equation of continuity for the electron masy

density, P ¥ @0, reads

3 - -
(3t + ys V)pe + peV e=0 (35

From these two equations, one obtains

3 = Pefa .=
(-é-;+u-7)Pe-y-p-;(a—t~+u-V)ge

which 1s equivalent to the adiabatic law in the form

» (36)

3 L - -v\ .
(a‘:*“' v) (Peae ) o . a1

wWhen Eq. (36) is linearized, and use 1o made of the

condition @ . Vo
o eo

cf the equilibrium electron temperatuze, vP /o -
ew  eo

= 0 and of the spatial uniformicy

const., then one obtains

2 +3.9) (r -YP“p e (v-1)u, WP ¢
at o el “p, " el *=uye VP, -038)
We note that the condition, y ~ 1, implies
Pel - ‘r“n‘l. i,e., no pgrturbations can arise in

the electron temporature whan y = 1,
The RHS of 2q. (38) is now transformed as

follous,

U,c VP wu +T Un_ =u 1P, =u
up- eo ¥1"%e0" % “ "1 """ 10 Y1° Ter

e
cé
'..
p——
<
il
-
o
+
3
13
o
g
1
&
[ ]
b
x
we

=~ neu x B *u_ (39)

vhere we have used equilibrium pressure balance, Eq,

(17).
The linearized version of the electron maomentum

equation {9) fcr small nerturbations reads
hd -
aeu; x 30 - - [vl’el + noe(il + Uy x il)
- - B
+ne@® +u <81 . (40)

If one scalar amultiplies this by Bo. one can vecover

Eq. (29). Substitution of Eq. (40) into Eq. (39)
produces

o R S

Y vpea it % (VPel + ncefl) 1)

when we use the result of Eq. (16) and (21) that
- -+ L d
uo-Eo = 0, Since uo-Vno = 0, Eq. (41) can also be

written
* e T + Pel. + B 1
v Peo i el WU v ;:; EIJ N (42)

Replacesent of ‘-E.1 by means of Eq. (25), and uee of
the gauge condition in Eq. (30) then yields



e T 3 - \ Pel
Y vl’eo " T Tor Rt E" Yo® V/ n.e - ¢1

Substitution of Eq. (43) into Bq, (38) produces,
after division by n,2,

@rﬁ.v)(ﬁﬂ-ﬁ%l’).
at o n e e n
o o
ctyl) = [ 4T ey Eﬁl-
YU (et e %) (44

where we have again used the property ;o‘v“o =0,
Since the very special class of rigidly moving
perturbations that constitute nonvanishing solu-
tions of the equation (3/9t + ZO-V)QJI = 0 are of no
congequence, this operator must be deleted from
cach side of Eq. (44).

gaugo result in Eg, (33), Eq. (44) becowmes

Then, when we observe the

P YT n
el co el T
ne T e n (-1) 1+t ZJ.'FO * (45)

Thus, the troublesome unknown perturbation ;1
has been removed “rom ¢Che problem so that the elec~
tron pressure perturbation is now finally expressed
in terms of our fundamental perturbation quantities

-

EJ. and

INEEN .ff1d3v . 6)

where fl(;,;.t) is the perturbatfon of the fon dis-
tributfon function and we have used quasi-neutral-
ity,

IV-C THE SOLUTYON FOR fl

The linearized Eq. (8) reads
-> e - - N - .e— N
[g-:- + 50 S G v;] TEEE . O

in which we noted that ;XEJ 'V;fo vanishes for our

choice (15) of the solutieon f °°
The solution of Eq. (47) that is unstable

(Im() > 0] and vanishes in the digtant past can be

written

[ e ) ae’
fl-.“ij(‘il vE) e’ , (48)

where the integration is over the ion trajectories

in the equilibrivm fields ’é'o and B .
But

vt = (afolae)(ni;) (49)

and ¢ = [(1/2 miv2+e¢°} 1s & constant of the wotion
along the unperturbed orbit, so Eq. (48) becomes

= s .
!1 =3¢ f&f(El v’ dat” . 50

e

Next El is expressed by the potentials Al and (bl.
We then have

’

t T4
- - g 20 20 =L . 3. ’
£ e (v 2 -9 v¢1) at

t as, 2w\’
- fo e 1. ’
e2f (““"‘1 T ) de

ege o .a_fgf~.~- ' ge?
ale Se e 3¢ (v Al ¢1) dae, (51)

It is now convenient to define a new perturbation
potential ﬂl by

Ty = Pellnoe . (52)
Moreover, the combination (qsl - ﬂl) has, so far,

proven to be significant, so we shall introduce this
combinativn in Eq, (51),

L fédn 9 )
- - afo afo 1} de
= @rpe SR +ed® f ("‘dc)

t
afo e P
+ iwe _ae (¢l L4 Al) ét

3f LIPS
= @)-myde gt e 5 ,r (v-Vrrl)' de’



£
+ ve 30 3 0 f (8y-m,veR)) ! ae’ (53)

Next, we introduce the gauge result in Eq. (33) and

note that veA, = - v X -ﬁo'EJ.’ Then Eq. (53) becomes

1

=2 E e afo 3fo
o § k?oeat-: tese

(3-v )’ at’

t
a_f‘.’ 2. - - = ’ ’
ruwell2 [E.L ERE R K (54)

For convenience, we shall define orbit integrals,

t
8g = ef (v-vnl)' ac’ (55a)
5, = ef [’g’ -(i-" B )] i (55b)
and write f1 as

=7 3_ 3fo afo
£ g?oeae Se SytwsSs . (56)

Azcording to Eq. (45), Ty is to be determined

n, = ;"—°n—1+(y-1) = F, (s

o

This expression, derived solely from the elec-
tron modei, becomes useful provided an independent

equation can be devoloped for 0. This 1is done
in the following section,
IV-D THE EQUATIONS FOR nl AND 11:1
At this point, we utilize the Maxwellian form
of fo as expressed in Eq. (18", Then
afo _ |
de fo/ Tio ° 8

Integration cf Eq. (56) over velocity space then
yields

1 . 3
n= - IE ?oeno +f d VfOSV
io 4

+1w f dSvtoslf . 59
Define

£ = folno . (60)
and rewrite sv from Eq. (55a) as
’ ’
en, + m-afﬂ’- a’! . (61)

Then Eq. (59) becomes

n
1.1 {?? 3
—- - Fe+e fadveEn
0, Tio ,,.r o1l
3 A 14 14 3~
+1mefdvf n ) de +1mfdvfosl}. (62)

Note that L is independent of the perticular
velocity-\.r and that fd3vi'° = 1. Ther multiply Eq.
(62) by ﬂeole 80 a8 to introduce Eq. (57). (Recall
that T = Ten/TiO.)
ting x, to ¥ . This equation is found to be

i

The result is an equation rela-

a5
ey w1 F oy XL [ 83
TR Bl vl S el
{[Sn + (1/e)Sl]£°} 63

in which we have introduced another orbit integral,
S s by

sﬂs_/; nla’ . (64)

IV-E, THE EQUATION FOR E ANALOGOUS TC THE EQUATLON

OF THE MOTION FOR *HE MHD DISPLACEMENT
Equation (13), linerrized, reads

an) [(vxio) x B+ (s EOJ




- 2 3
- ef (fomao)fla v

- P n
+ef(el+n:1.n:°n1)td3v , (65)

L0 which we noted that (Giil)fo(e) integrates to
zero, We note that

vP m
el o

— P M e (66)

ne 1 1 a,
and, ueing Eq. (57),
Teo , ™ Teo, Mo, M 1, Y.
ne n, ¢ n, n, o ya e o

lmo - -
=3 ;;- [ - (y1) 3= jyo § °F ] . (67)

Substitution of Eqs. (50¢), (66), and (67) {atc
Eq. (65) yields

'Fit-'

N L(WBO)SBI-#- (WBI):BO:]

3fo .3

(F 4%, )(2 Foe + SHus)) 125 87V

™
2 x1 o I 7. 3
+§({sl+vnl+ o (ﬁl+wr ‘Lifo)]fodv.
(68)
Consider the RHS of Eq. (68), Since 2f lac -

- f /T1 , the € -F term of the of /3: 1ntegtal
yields

Bfo 3
e [t b e -T—Fofo o,
Vno -+ -+
= = (1+1) ;\-o— (El-noel-‘o) (69)
where we used the fact that
noefo =V 4V, . o)

The vector-potential part of the E -term of Eq. (68)

1
yieids

3. - 2 (1)
e I(EI)A fod v iuexlno 1wen°CL x Eo .

The scalav~potential part of the El-term of Eq. (68),

together with the an-term, yields
>
3
e f[{21)° + ¥ml £ d’v = - eV (e -m In,
= - v( oF
- CL °)noe
¢ *Fne) +F Fev
» - -
EL unoe EL oe ao

n

o
- - v(c VP )+ gJ_-Foeno rest (72)
]
where
P 2P, 4P » (73)

and we have used the gauge result of Eq. (33), and
the presiure-balance equation (70).

Finally, in the 5—2 integral on the RHS of Eq.
(68), we use Eq. (63?, thus replacing the
("1' Ex'fs) combination by an expression involving
the o:bit integrals S11 and Sl'

Considering all of the above, Eq. (68) can ve
rewritten as follows.

=— [(ano) x B + (szl) x Bo] + vu;i.vpo)

Vno - -
+ 17— veF n
n, 1 oo

3k
e f(l-‘o +v x Ba)(s‘7 + 1w51) T d’v

% iwen £ x B
oL -]

iwe =i .
Y no

T 3
1——m 'g‘(s,T + (We)s;] £ a7,

(74)
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Here, we have used a factor n, to convert fo back
to fo in the last term on the RHS of Eq. (74).

Next, we shall convert from the Sl-formalism
to the S-formalism, as described in the introduc—
tion, Eqs, (5) and (6). This 1s done as follows.
From Eq. (55-b), we have

=

t
_ I - ST
s —e-Lj[gi(F°+va°)Jdt

o
t ve, \’ t N\
- io Y dv ri
= e . de +f ‘m, - §de
T.[.: (g 1 noe ) A (! i dt)
=-e'r!t (E*E) dt’ + € n ¥
o L © L 1
t - dg 4
L ’
- L (miv- ac | 4e . (75)

where we have used Eq. (16),
Let us define the following orbit integrals,

t
= f (El'eio)'dc' . (76a)

A N,
u Ve ==} de » (76b)

Then Eq. (75) becomes

S Ej"‘f" -5 . on
Upon substitution of Eq. (77) into Eq. (74), we
note that the (El -3) term makes no contribution to
the (Y-1) term of Eq. (74); whereas in the Jf lae
integral, it makes a contribution, —-iwen EJ. XB R
which exactly cancels another such term on the

right side of Eq. (74). Now Eq. (74) can be written
n
- [+ g =
me(gl_) o u, gl-noeFo
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-ef(l? +3xn)(s + 1w [+s; - sT) ae°d3

1‘“1{';, f(eS + 13, -S)fdv (78)
]

where we have defined the incompressible MHD force
operator by

FWD(E;) = ;—; [(v x B) x By + (WB) x no]

+ v(gl-vpo) , (719

and we note here that Po is the sum of the elec~

tron and ion pressures, Furthermore,

-V:K

B 1

] =vx € x ) (80)

as in ideal MHD,
Next, we use Eq., (61) with Eq. (64), namely,

- . 81)
Sg = emy + lweS (

This is to be substituted into Eq. (78) with m ex-
pressed by means of Eq. (63). The Bfolae term on
the RHS of Eq. (78) ther reads

ef (ro +vx no) (s\7 + w[rsE-sJ),g-:—" &
I~ e./. (Fo + v x Bo) (eﬂl) (- Ti':';)dsv

+1wef (Fo+vx Bo} (eSﬂ+TSE-S)-:':—°'d3v

2 of

o - ,—r——i'? n.n_ + dwe [ (F B )(eS +¢s,_,-s)-—- ey .
1
° (82)

From Eq. (63) with Eq. (77), we have

- I F ;
l"o?’ﬂl . E_L'noefo




- o Y & {(esﬂ+TsE - s) £ |-
(83)
Upon gubstitution of Eq. (83) into Eq {82) and
(82} into Eq., (78), we note [with the help of Eq.
(70)] that the F_ term of Eq. {83) ylelds a term
which exactly cancels the Vnolno term on the LHS of

Eq. (78). Taking this into account, Eq. (78) can
now be written as follows.

oF
mm(g ) -=-—-1w—ﬁ—1+w ay [(es + 15, -S)f]

k) - oo Bfo
+ .‘I.wefd v [(FOMBO)(eSIT + ‘I‘SE - 8) 'Se—

-le © yT

3
dvi(es + v5_~S)E ] -
Y By lyr % E o

(84)
At this point, it is convenient to define a
compogite orbit integ:al,,d, by

ed=s-1,-e . (85)

We further obgerve that the ;o and Vno terms of Eq.
(84%) can be usefully combined because

ei'. -+
n_eF VPiof-VP n

=2 2. 20 w0 —2 (141), (88)
Tie Polic Ty0 "y ’

Then, after a little algebra, Eq, (84) takes the

form

iu:/dv(df)

o &) = 72

14
3 G B (1]
- tue f v [‘Fo*“‘“o)dae] . 8D
Finally, we observe that, for Maxwellian iomns
in equilibrium, afolae = - fo/Ti.o' and also note

that

Fo = Eo(H‘r) . (88)

Then Eq. (87) simplifies further ro

of
- 3 - -
Fyp(8,) = - ive f dv [(zomnozds—é‘i} < (89)

We note that this equation of motion for E ie
formally identicsl to Eq. (7) of the cold eiectfon
model, There 18, at this stage, no explicit depend-
ence upon (TelTi) or upon the clectron-fluid adie-
batic index, y, To cloge the syetem, we must now
develop an equation of motion for the composite or-

bir integral, of (7, ¥, t).

JV-F. CLOSING THE SYSTEM; THE ECUATION OF MOTION

FOR THE ORBIT INTEGRAL.ed
We refer to Eq, (85) and take the total time

derivative of d along an unperturbed ion orbit., Use
of Eqe. (64) and (76} then produces

-

af o B By o %
dt “de " Tdt dt i dt

- -+
- "rg~L -eEo - eny (90)
for H, s we now invoke Eq, (63), or better, Eq, (83)
divided by n X

R,
emy = - 1y 8% * Lo ir Pudey . oD
Recause of the result of Eq. (B8), we s~e that the
;o term of Eq. (91) exactly cancels the Eo term of

Eq. (30). Thevefore, Eq. (90) becomes

- dE . ~
ﬂﬂ m, Ve a-t-—\ - diw T# fdav (JEO) . (")

dc i

We note that for « = 0, the result of Eq. (92)
reduces to the cold-electron result in Eg. (5).
Thus, Eq. (89) relating _f-;' todie now closed
by Eq, (32) relatingd:o E . +
We recall that the ope#atoi:, d/dt, here means

2 - d0+ Vv _ + S (F 4B ) (93)
- 0O o bd
T i v

&
=]

and we note thatdnd (;,:r’,:), and E = E (T,t).
L 1
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V. COMPUTATIONAL METHODS

The pair of equations (89) and (92) is amen—
able to the same kind of numerical treatment that
was found applicable to the zero tomperature
electron-fluid 111:»'1&1.5 We shall now giow this ex-
plicitly,

Suppose we write Eq, (92) in the foru

(-iw + [DHOT] . = mi;r'-(-1.0){'?;"7)_5'_L (9%)

where D is the phase-space-convective part of the

total time derivative (the Liouville operator) and
I is a linear operator on45frepresenting yT(1+yT)-1
times the integral of Eq. (92). Together, Egs.

(89} and (94} are identical to the equations dis-
cussed by Ref., (5), except that the operator D is
now replaced by [D+iwI},
Ref. (5) may be directly applied to the present
model provided that the Liouville eigenfunctiors
and eigenvaiues of Ref, (5) are reinterpreted as
eigenfunctions and eigenvalues of the operater

(1/1) [DHiwIl,
of this extended operator, [D+iwI], have a simple

Consequently, the work of

The eigenfunctions and eigenvalues

physical interpretation, as we now show,
Consider Eq, (63) with E =0, It reads
L

(-iw + [D+iwI]) s, =0 (95)

and is precisely the equation defining the eigen-
values (w) and eigenfunctions of the operator
{DHoI). Slnce_g' = 0, there are no magnetic per-
turbations, and an exarination of the derivation
that leads to Eq. (63) or Eq. (95) shows that thesge
equations are nothing more than a statement of
quasineutrality, n, 41 = .
are dealing with the long-wavelength version of

= n Consequently, we
Poisson's equation in the absence of magnetic per-
turbations. In other words, the eigenvalue problem
defined by Eq. (95) represents the purely electro-
static disturbances supported by the equilibrium
pinch configuration. As an example, one can con-
sider a uniform plasma with perturbation wave vector
along -ﬁo' Then Eq. (95) can be shown to yield the
dispersion relation for ion-acoustic waves.

It 1s important to emphasize the idealized na-

ture of these electrostatic modes, They do not,

by themselves, exist in the real physical system

12

any more than do the other expansion functions of
Ref, (5), namely, the eigerfunctions of the opera-
tor FHHD‘ Nevertheless, both classes of expansion
tunctions, the MHD modes, and the electrostatic
modes have clear physical meanings,

To summarize, Ref, (5) has outlined 8 numeri-
cal approach for solving Egqs, (89) and (92} when
Te = 0, Our adiabatic electron gas model can be
solved with the same formalism when T, ¥ 0. One
merely replaces the expansion in Liouville eigen-
functions of Ref, (5) by an expansion in the purely
electrostatic modes of the configuration,

Vi. CONCLUSION

Aspuning uniform :quilibrium electron and ion
temperatures, and treating the electrons as an adia-
batic gas without macroscopic inertia, we have de-
rived a pair of equations that govern small pertur-
bations from the arbitrary equilibrium pinch config-

uration, namely,

B (B ) = - dve fd?r [(E +wB ) efaf /ae]

MHD ") o o o

(-20tD) of = m Ve (-mnfv"v)'g'JL - o g 7 AR

Here, Eo = fo/no and D is the convective pert of
the orbit derivative in phase space,

The pressure term in FMHD now contains the sum
of the equilibrium electron and ion pressures, and
we recall that v = Teo/Tio‘ The electron adiabatic
iudex 1s y,

When we set the equilibrium electron tewmpera-
ture to zero; the above equations rec..e to those of
I-‘reidberg,l When Teo 40,
one finds a new term in the ,d-equation, but the
numerical methods described by Lewis and Freidberg
can still be applied to this more complete model,

The model of D'Ippolito and Davidarm6 also in-

and Lewis and Freidberg.s

5

cludes electron pressure effects, and also makes no
small ion gyroradius However, it deals

only with collisionless (Vlasov) electrons, and is

expansion,

theref:re not suitaeble for traating low-frequency,
long-wavelength modes for which w o uee’ ree € l" .
The present fluid electron model, however, applies
Just when these inequalities ars satisfied, More-
over, these conditions are consistent with those re-
cently observed in the Scyllac full torus experi~

mnt.z



Finally, we mention that the ad. abatic elec-

tron model described here has now been extended to

include electron heat conductlon along the magnetic

field,

The above formalism remains valid but y now

beccmes a complex~valued, known function of posi-
tion, I'(f). When heat conduction 14 {locally)
small, I’ + vy, and when it 1s large, T + 1.7
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