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We present release-node quantum Monte Carlo simulations of 
the first row diatomic molecules and assess how accurately 
their ground state energies can be obtained with current 
computational resources. An explicit analysis of the fermion-
boson energy difference shows a strong dependence on the 
nuclear charge, Z, which in turn determines the growth of the 
variance of the release-node energy. We show that efficiency 
gains from maximum entropy analysis are modest and that 
extrapolation to the ground state is tractable only for the low Z 
elements. For finite temperatures we discuss what can be 
gleaned from the structure of permutation space for interacting 
Fermi systems. We then demonstrate improved efficiency in 
the exact path integral Monte Carlo treatment of liquid 3He by 
using importance sampling to deemphasize the contribution of 
long permutation cycles to the partition function.  
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Exact methods at T=0 

The fundamental goal in the field of ab-initio simulations is to perform 
electronic calculations to high accuracy or, even better, exactly. To simulate 
exact methods an exponentially increasing amount of resources seems to be 
needed, and thus in practice system sizes are often severely restricted. For 
example, two well-known methods which are in principle exact are 
configuration interaction and density functional theory. Here, the exponential 
computational complexity is manifest in the formulation of configuration 
interaction [1], and is less obvious in DFT where it arises as a problem in 
generating exact functionals [2]. As a result, practical uses of these algorithms 
do not yield exact results. 
 Release-node quantum Monte Carlo (RN-QMC) is a simulation method 
that allows the eigenstates of a Hamiltonian to be sampled without any 
systematic bias. The method is computationally expensive, however, and there 
are significant limitations to what can feasibly be simulated. For quantum Monte 
Carlo (QMC) calculations this has lead to the development of the popular but 
approximate fixed-node diffusion Monte Carlo (FN-DMC). Despite the 
possibility of improved accuracy, RN-QMC has only been used in a relatively 
limited number of simulations. Nonetheless there have been some notable 
applications and algorithmic developments. 
 One such application in which RN-QMC has been successful is the 
electron gas [3] where hundreds of electrons have been simulated without 
convergence problems. Convergence of a RN-QMC calculation is dependent on 
two decay parameters given by τ1 = 𝐸!! − 𝐸!! which determines the imaginary-
time growth of the variance, and τ2 = 𝐸!! − 𝐸!!which determines the slowest 
imaginary-time decay of the excited antisymmetric components relative to the 
fermion ground state. The energies EF

0, EB
0, and EF

1 are the fermion ground 
state, the boson ground state and the first excited fermion state, respectively. 
Hamiltonians in which the fermion-boson energy gap is small are well suited for 
RN-QMC simulations, and the free electron gas is one such Hamiltonian. 
Nuclear charge centers change the situation significantly such that relatively 
small atoms have large fermion-boson energy gaps. The largest molecular RN-
QMC calculations to date have been performed on systems of around 10 
electrons. However, even in these cases, convergence is not always attained. In 
the first RN-QMC calculations of molecules [4] several systems were simulated 
including H2O and Li2 molecules. Later RN-QMC calculations included systems 
such as HF [5] , LiH [6], and H2+H [7] in which RN-QMC was able to reach 
higher accuracies as a result of algorithmic modifications and increased 
computational resources. Our goal is to consider the range of Hamiltonians that 
can be practically simulated with RN-QMC with current computational power 
and modern algorithms. In particular we have applied the method to the 
simulation of the first row dimers with an accuracy goal of 10−3 [a.u.]. 
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Released node Quantum Monte Carlo 

 
 We can understand how RN-QMC achieves exact results by considering 
the eigenfunction expansion of the imaginary time propagator 

For ET = E0 the asymptotic, t → ∞, limit of this operator gives the ground 
state of the Hamiltonian. Technically a RN-QMC calculation is only converged 
in this limit, however in practice we consider a RN-QMC calculation converged 
when the slope of the release-node energy estimator is zero to within the 
statistical error. This occurs when the standard error of our energy estimate at a 
given imaginary time is larger than the final energy difference to be decayed in 
the asymptotic limit. As imaginary time increases with repeated application of 
the propagator in equation (1), all excited states decay relative to the ground 
state. If a trial function, 𝛹! 𝑋 , is used for importance sampling, the asymptotic 
distribution will be: 

 For a standard molecular Hamiltonian the ground state wave function is a 
boson state and the fermion ground state is an excited state of the Hamiltonian. 
Like all other excited states, it decays exponentially relative to the ground state 
with application of the imaginary-time propagator. In certain cases we can 
accurately measure the fermion ground state as it decays in imaginary time. To 
determine the fermion ground state we can make a projection onto the 
antisymmetric subspace during this decay process. 
 
 The antisymmetric projection is problematic for many Hamiltonians. The 
release-node method is an example of a transient algorithm since the fermion 
ground state is decaying exponentially in the limit of large imaginary time. The 
release process is initiated with the introduction of a nodeless guide wave 
function, 𝛹! 𝑋 , such that the walkers will equilibrate to the boson ground state. 
During this process an antisymmetric trial wave function is used to project out 
the antisymmetric signal. This causes a sign problem that manifests in the 
simulation as exponentially growing noise in the release-node energy estimate. 
 
The release-node energy can be calculated in a similar form to the FN-DMC  

(1) 

(2) 

(3) 
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This estimator involves the sum of positive and negative terms, given by the 
sign of the trial wave-function as seen in the term R = ΨT(X )/ΨG(X ), which is 
the reweighting factor for the guiding wave function. The weight of the ith 
walker is calculated as  

where the product is over all previous positions the walker has traversed. The 
terms EL

T and EL
G are the local energies of the trial wave-function and the 

guiding function respectively. The form of the local energy is given by  
EL

G,T = Ψ−1
G,T HΨG,T. It can be shown that the variance of the transient energy 

E0
RN is proportional to a growing exponential with imaginary time [8,9]:  

The release-node estimate for the energy will start decaying from the FN-
DMC energy, and eventually it will become flat, while the variance will 
continue to grow as given in equation (4). The convergence rate from the FN-
DMC energy to the fermion ground state energy is different for each of the 
component eigenstates present in the fixed-node wave function. Ideally one 
would like a fast decay of the fermion excited states, and a slow increase of the 
variance, i.e. (E1

F −E0
F ) >> (E0

F −E0
B). In this ideal situation one can hope to 

sample E0
F at a large imaginary time with relatively small variance. 

€ 

 

Fermion-boson gaps 

 The actual cost of a RN-QMC calculation is somewhat complicated by 
the introduction of a trial wave function. A good trial wave function can 
significantly decrease the contamination from the excited states, improving the 
convergence of the release algorithm. In the limit that the trial wave function has 
the correct nodal structure, FN-QMC gives the ground state energy and RN-
QMC will be flat as a function of imaginary time. Therefore generating high 
quality RN-QMC results involves a balance of computing the best wave 
function possible and running release-node for as much imaginary time as 
possible. Once a trial wave function is optimized and put into a release-node 
calculation it is the growth of the variance as a function of imaginary time that 
prevents a calculation from converging. It can be seen from equation (5) that this 
is independent of the trial wave function. 
 
 With this behavior of the variance it is important that the excited states 
decay away before the simulation is overwhelmed with noise. For the first-row 
dimers, excluding Li2, we have estimated the amount of time needed to converge 

(4) 

(5) 
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our starting FN-DMC starting wave functions11 to an accuracy greater than 10−3 
[a.u.] will be greater than 1 [a.u.]−1. A more accurate estimate of the 
convergence times is dependent on the magnitude of the excited state 
components of the FN-DMC wave function. Since the rate of growth of the 
variance is determined by the fermion-boson energy gap, it is important to 
understand how a Hamiltonian influences this energy gap. We recently made 
some calculations of the fermion-boson energy differences for the first-row 
dimers shown in Table I. The fermion energies are calculated from FN-DMC 
and the boson energies are calculated with unrestricted Diffusion Monte Carlo 
(DMC) using nodeless guiding wave functions. The boson energies are 
measured without any systematic errors, while the fermion energies have 
systematic errors corresponding to errors in the nodal surfaces. These systematic 
errors are estimated to be much smaller than 1 [a.u.] and are much smaller than 
the scale of the fermion-boson energy differences. The fermion-boson energy 
differences cover a range of about two orders of magnitude across the first-row 
dimers. As previously mentioned, we would like to simulate at least 1 [a.u.]−1 of 
imaginary time during the release process, however the size of these fermion-
boson gaps imply that the variance will grow to intractable sizes for most of the 
first row dimers well before 1 [a.u.]−1 of simulation time. 

 
 In a recent RN-QMC study of the first row dimers [10], for a given set of 
trial wave functions [11], we were able to achieve an accuracy of 10−4 [a.u.] for 
Li2, however we were not able to achieved our desired accuracy of 10−3 for any 
of the other first row dimers. 

Table I. Fermion Boson energy gaps for the second row dimers.  Boson 
ground states are measured without any systematic errors with DMC, 

while the fermion energies are taken as the estimated exact values from 
reference [11].   A ll energies are in Hartree. 
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Improving Release Node 

 While performing RN-QMC on better wave functions will always lead to 
better results, there are several methods have been proposed to reduce the 
computational cost of RN-QMC – some of which have the promise of removing 
the exponential scaling of the algorithm. In this section we consider a few of the 
more promising techniques which are imaginary time projections and walker 
cancellation. 
 Projection techniques are based on sampling quantities during the release 
process, other than the RN-QMC energy estimator, to project out the ground 
state energy. It is known that some of these quantities, which are called 
imaginary time correlators, have simple imaginary-time dependence of the 
eigenvalue spectrum.  After generating samples of a correlator of interest, we 
can fit the data and extract out the ground-state energy. The benefit of such an 
approach is that a highly accurate estimate of the ground-state energy might be 
possible with a limited amount of imaginary-time data. The idea of fitting 
imaginary time data is a general concept that has been applied very broadly in 
computational physics and other fields [12]. As far as applications of this for 
RN-QMC calculations, only the LiH molecule and various model Hamiltonians 
have tested these ideas [6,13,14]. 
 Projecting out the ground state energy with this imaginary time data is 
equivalent to performing an inverse Laplace transform. The inverse Laplace 
transform is known to be sensitive to noisy data and we used a Maximum 
Entropy technique in our calculations to reduce our sensitivity to noise. We 
showed significantly better results than our standard release-node calculations 
[10], as we were able to generate ground state energies for Li2, Be2, and B2 with 
this approach. However, due to the nature of the inverse Laplace transform, our 
results were too noisy to properly project out ground state energies for the rest of 
the first row dimers. Our analysis suggests that these projection techniques that 
rely on inverse Laplace techniques, although more efficient that standard RN-
QMC, do not get around the exponential scaling of the problem and practically 
can not be applied to larger systems. 
 Cancellation techniques provide an alternative route to improving on the 
efficiency of the RN-QMC method. It has been demonstrated that, by allowing 
walkers of opposite sign to annihilate each other, cancellation can slow down 
the growth rate of the error. To date, this approach has been applied to a number 
of problems with varying success [15]. In addition, cancellation has also been 
applied in molecular calculations for linear H-H-H and H2 [16]. A recent study 
demonstrating promising behavior of the technique in high dimensional systems 
is worth noting [17]. 
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Exact methods at finite temperature 

Path integral quantum Monte Carlo (PIMC) methods have provided 
significant insights into the low temperature properties of bosonic quantum 
liquids and solids (see e.g. [18]). And while the approach can, in principle, be 
applied to simulate the full many-body partition function for fermions as well, a 
sign problem occurs for temperatures below the T → ∞ limit. As a result, 
enforcement of Fermi symmetry for all but the smallest finite temperature 
systems has in practice required the invocation of an uncontrolled approximation 
in the form of a restriction on the phase space of the path integral in order to 
prevent sign changes [19,20]. In this section we discuss what is known about the 
nature of the sign problem at finite T and describe an approach for reducing its 
effects. 

PIMC methods work by sampling a product of approximate high 
temperature (short imaginary time) density matrices (Green functions) exp[-βĤ] 
= exp[-(β/M)Ĥ]M just as in ground state QMC methods like DMC. The 
differences between the methods arise mainly from the fact that sampling of a 
fixed finite temperature ensemble imposes a periodicity on the permuted 
coordinates in β, i.e.  

 

where the sum is over the symmetric group and P[R] represents a permutation of 
the many-body coordinate R. In ground state methods this periodicity formally 
only exists at Rβ→∞, and antisymmetry may be imposed by an explicit projection 
at each time slice as described above. In canonical PIMC, however, the β 
periodicity of P[R] requires that permutations be sampled explicitly and so 
configuration space typically consists of complete paths Y={R,R1,R2,…,RM-1} 
where RM-1 must be connected to P[R] by the high temperature density matrix 
exp[-(β/M)Ĥ]. The sum over permutations in e.q. (6) is clearly the source of the 
sign problem in finite temperature PIMC. However, the explicit representation 
of permutations as linked polymers and in particular the connection between the 
length of a permutation (i.e. the number of particles participating in a single 
closed loop) and the kinetic energy leads to some interesting and useful 
observations about the structure of permutation space and, consequently, the 
finite T sign problem as well. 

The structure of permutation space 

While there are N! possible permutations of N particles, the symmetry group can 
be further organized into subsets of topologically equivalent diagrams [21,22]. 

(6) 
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Figure 1 shows representative members from the five equivalences classes of the 
Symmetric group for four particles, S4. It is easy to see that if each of these 
classes was equally probable, the sum over all of them would indeed be zero 
and, as a result, the antisymmetric ‘signal’ embedded in the partition function 
would disappear. At any finite temperature, however, each equivalent 
permutation sector will have a different mean energy and therefore a different 
probability and the total contribution to the antisymmetrized partition function 
will be nonzero. For this reason one might be so bold as to say that at finite 
temperature there is not a sign problem but merely a “sign annoyance.” 

In practice, while the number of equivalence classes grows roughly as N7/2 
[23] – much more slowly than the N! number of enumerated permutations -- the 
contribution to the partition function of neighboring high order sectors (i.e. those 
consisting of long permutation cycles) becomes nearly identical at even 
moderately low temperatures. As a result, if the partition function is sampled 
directly, most of the simulation time will be spent generating configurations that 
will ultimately cancel each other out.  

 

 
Figure 1: Diagramatic representation of the equivalence classes of the symmetric 
group for 4 particles, S4, the number of elements in each class (top), and the sign 
of the contribution of members of each class to the partition function (bottom).  

In addition to recognizing the relative importance of low order permutation 
sectors, it is instructive to examine the connection between the order of a 
permutation sector and the mean kinetic energy. Intuitively, long permutations 
impose a weaker constraint on the paths of participating particles since a path 
consisting of ν particles only need return to its starting point after imaginary 
time νβ. As a consequence, in an isotropic system longer permutation cycles 
will, on average, have lower kinetic energy than short ones. For the 
noninteracting gas this connection is especially clear as the contribution to the 
partition function from ν permuting particles is equivalent to the single particle 
partition function at a lower temperture Z1(ν/T). As a result, the mean energy of 
paths in each permutation sector is monotonically decreasing with the order of 
the sector. For fixed particle number, the virial theorem tells us that this trend 
must hold for systems with pairwise interactions as well. 

Motivated by these observations we have recently explored the possibility 
of improving the efficiency of PIMC simulations applied to Fermi systems by 
using importance sampling to limit the time spent evaluating nearly degenerate 
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permutation classes. The approach is relatively straightforward. Starting with the 
recently developed continuous-space worm algorithm [24,25] to efficiently 
sample permutation space, we employ standard importance sampling techniques 
to modify the probability of moves that change the permutation sector. Sampling 
of long permutation cycles is penalized by reducing the probability of 
attempting moves that will extend the length of a permutation while the 
acceptance probability of such moves is increased to maintain detailed balance. 
The net result is that low order permutation sectors (those with only a few short 
permutation cycles) are sampled a great deal and high orders very rarely. In 
addition, the energy of each equivalence class is binned separately so that the 
final expectation value for the energy is taken by summing over the mean 
energy in each class multiplied by the probability of being in the class 
Finally, using the knowledge that both the mean energy per sector Eg and the 

probability of occupying each sector ng are monotonically decreasing functions, 
an improved estimate of the mean energy is obtained by fitting Eg and ng to 
smoothly decaying functions E[g] and n[g].  The 𝜎!,! in eq (7) represent the 
statistical error in the energy and probability density respectively in each sector 
while 𝜎!,! are the error resulting from fitting energies and probability density 
over all sectors using a model.  This step can in principle introduce a systematic 
error but it is not strictly necessary.  We also note that since sampling is 
performed in the grand canonical ensemble, the chemical potential, 𝜇, is a 
parameter.  In the results for 3He below we have fixed 𝜇 so as to match the 
known experimental density.  A more detailed account of this “exchange 
truncated grand canonical PIMC method” will be presented elsewhere [26]. 

 
Results of a simulation of N=66 3He particles using the Aziz potential [27] 

Figure 2 Results of Exchange Truncated Grand Canonical PIMC applied to 
liquid 3He. Our results (solid circles) agree well with experimental data (dashed 

line) down to temperatures well below the 3He Fermi temperature. The 
improvement over the approximate restricted path integral method (+ symbols), a 

25% difference in energy per particle at 0.5 K, is evident. 

 

(7) 
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and the approach outlined above are shown in Figure 2. Our results for the 
temperature dependence of the energy are in very good agreement with 
experiment. In contrast, it can be seen that the restricted path approach [19] 
suffers from a comparatively large systematic error. Also of note is that we are 
able to obtain results well below the Fermi temperature of 3He despite the fact 
that, in principle, exact treatment of the partition function requires sampling of 
66! ~ 1092 permutations and ~6000 equivalent permutation groups.  

Conclusion 

We have applied the RN-QMC method to the first row dimmers in an 
attempt to quantify the level of accuracy obtainable for all-electron chemical 
systems with this approach using current resources. Our results indicate that 
release node projections can be converged for up to ~ 10 electrons with an 
accuracy of at least 10-3. We find that while maximum entropy analysis of the 
imaginary time decay significantly improves estimates of the ground state 
energy, it does directly not solve the problem of the poor scaling of the 
computational cost of RN-QMC for a fixed error bar with Z. For finite 
temperatures we reviewed some of what is known about the nature of the sign 
problem and presented results of a new scheme for taking advantage of the 
structure in permutation space by neglecting contributions from long 
permutation cycles. An open area for future research in this area involves the 
generalization of our approach to inhomogeneous systems. 
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