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4.1 Introduction

The NAMD software, used by tens of thousands of scientists, is focused
on the simulation of the molecular dynamics of biological systems, with the
primary thrust on all-atoms simulation methods using empirical force fields,
and with a femtosecond time step resolution. Since biological systems of in-
terest are of fixed size, e�cient simulation of long time scales requires the
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application of fine grained parallelization techniques so that systems of in-
terest can be simulated in reasonable time. This need to improve the time
to solution for the simulation of fixed sized systems drives the emphasis on
“strong scaling” performance optimization that engendered this collaboration
between physical and computer scientists.

Performance improvements motivated by NAMD inspire abstractions, op-
timized implementations, and robust infrastructure in Charm++, and com-
plementary improvements to Charm++ enable the implementation of new
features in NAMD. The collaborative and synergistic development underly-
ing the NAMD project (started by principle investigators, Klaus Schulten,
Laxmikant V. Kale, and Robert Skeel, in 1992) has contributed to many im-
portant achievements in molecular modeling, parallel computing, and numer-
ical algorithms. As recognized in the 2012 IEEE Computer Society Sidney
Fernbach Award, jointly awarded to Kale and Schulten, NAMD has been an
important contribution to the scientific community.

In this chapter, we will discuss the motivation for biomolecular simulation
(§4.2), parallelization techniques for molecular dynamics (§4.3), the parallel
design of NAMD (§4.4), its application to ever larger scale simulations (§4.5),
overall performance (§4.6), and elaborate upon a few of NAMD’s applications
(§4.7).

4.2 Need for Biomolecular Simulations

The form and function of all living things originate at the molecular level.
Genetic information in nucleic acids encodes the sequence of amino acids for
proteins, which once assembled by the ribosome, fold into the specific three-
dimensional structures that enable their function in the cell.

Cellular proteins can be isolated, purified, and grown into crystals, from
which X-ray di↵raction can be used to determine the positions of the protein
atoms with great accuracy. Larger aggregates, such as the ribosome, can be
studied through cryo-electron microscopy, and the resulting coarse images
combined with high-resolution crystal structures to obtain atomic resolution
for the complete aggregate. While these experimentally determined structures
alone are of great utility in explaining and suggesting mechanisms for the
observed chemical and mechanical behavior of biomolecular aggregates, they
represent only static and average structures. The detailed atomic motions that
lead to function cannot be observed experimentally.

Physics-based simulations step in where experiment leaves o↵, allowing the
study of biomolecular function in full atomic detail. Although atomic inter-
actions are governed by quantum mechanics, the energies found in biological
systems are su�ciently low that chemical bonds are only formed or broken in
the reaction centers of catalytic proteins. As a result, atomic interactions in
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biomolecules can be represented via simple classical potentials for electrostat-
ics, van der Waals, and bonded interactions. While this simplification greatly
reduces the computational demands of simulations, many orders of magnitude
are required to extend size from atoms to cells and time from femtoseconds
to seconds.

Current state-of-the-art simulations may follow millions of atoms for mere
microseconds, often employing additional techniques to enhance sampling.
Smaller, longer-time simulations may follow the entire protein folding pro-
cess. Larger simulations allow the study of aggregates such as the ribosome,
which builds proteins in all cells and is a common target of antibiotics, the
chromatophore, which is the basic photosynthetic unit of plants, and the pro-
tein capsids of viruses, which bind to and penetrate the cell membrane to
enable the infection process. A recent example is the ground-breaking study,
published in Nature [256] that determined the structure of the HIV capsid,
based on a NAMD simulation with 64 million atoms.

4.3 Parallel Molecular Dynamics

Molecular dynamics (MD) simulations follow molecular systems ranging
from a few thousand to millions of atoms for tens of nanoseconds to microsec-
onds. When doing these simulations sequentially, the time period to be simu-
lated is broken down into a large number of time steps of 1 or 2 femtoseconds
each. At each time step, forces on each atom (electrostatic, van der Waals
and bonded) due to all other atoms are calculated and the new positions and
velocities are determined. The atoms are moved to their new positions and
the process repeats.

Parallelizing a MD simulation is challenging because of the relatively small
number of atoms and large number of time steps involved. Traditionally, three
di↵erent methods have been used to parallelize MD simulations: atom de-
composition, spatial decomposition and force decomposition [205, 206]. Atom
decomposition involves distributing the atoms in the MD simulation among
the processors evenly. Each processor is responsible for the force calculations
for its atoms. Spatial decomposition is similar except that the physical sim-
ulation space is divided up spatially to assign atoms to di↵erent processors.
Force decomposition, on the other hand, involves creating a matrix of force
calculations to be performed for pairs of atoms and assigning responsibility
for the calculation of a part of the matrix to each processor.

Atom and force decomposition have a high communication-to-computation
ratio asymptotically whereas spatial decomposition su↵ers from load imbal-
ance problems. NAMD pioneered the hybrid decomposition scheme in which
the processors holding the atoms and those calculating the forces are decou-
pled [128]. The parallelization scheme is a hybrid between spatial and force
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decomposition. Atoms in the simulation box are divided spatially into smaller
boxes and assigned to some processors. The force calculations for a pair of
sub-divided boxes are assigned to an arbitrary processor which can be di↵er-
ent from the ones holding the two boxes. The scheme is described in detail
in the next section. Similar parallelization schemes have been used in other
recent MD packages such as Desmond [31] and Blue Matter [70], and in the
scheme proposed by Snir [229].

4.4 NAMD’s Parallel Design

NAMD is one of the first scientific applications to use Charm++ as the
underlying runtime system. Over the last decade, NAMD development has
fueled Charm++ research and instigated new features and capabilities in the
runtime. In turn, NAMD has benefited from features such as dynamic load
balancing and section multicasts that are a part of Charm++.

NAMD has co-developed with Charm++, and served as a confirmation of
the utility of some of the features of Charm++, such as message-driven exe-
cution and load balancing. An early version of NAMD, which was a precursor
to the current version, was written in the mid 1990s. Two di↵erent versions
were maintained for some time: one was in PVM, and the other in Charm,
the C-based precursor to Charm++. The modularity benefits of Charm++

started becoming clear in comparing these variants, especially as they were
developed further. The PVM version needed to have a message-driven loop
explicitly in its code. Messages belonging to di↵erent modules were dealt with
in this one loop, and it had to keep track of the progress of di↵erent modules,
and even di↵erent instances of them (such as multiple sub-domains, compu-
tation objects, and long-range force calculation objects). In contrast, in the
Charm++ version, the objects belonging to di↵erent modules were cleanly
separated. They naturally allowed adaptive overlap of communication with
the computation across modules, yet required no breaching of abstraction
boundaries.

At the same time, the separation of objects from processors, which was
the hallmark of the original NAMD design, was very naturally supported
by Charm++’s object model. The separation of the collection of objects for
doing force calculations from the objects housing the atoms also allowed us
to (and required us to) do explicit load balancing. With such load balancing,
Charm++ was able to exploit an arbitrary number of processors within a
reasonable range. In other words, there were no restrictions on the number
of processors having to be a cube or even a product of three integers, as
was typically required in molecular dynamics applications based on spatial
decomposition.
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4.4.1 Force Calculations

Molecular dynamics simulations involve calculating forces on each atom
(electrostatic, van der Waals and bonded) due to all other atoms. A näıve
pairwise calculation of non-bonded forces between all pairs of atoms has a
time complexity of O(N2). In order to reduce this complexity to O(N logN),
forces are calculated explicitly only within a cuto↵ radius, rc. Beyond this
distance the forces are calculated by extrapolating the charge densities of all
atoms to a charge grid and using the particle-mesh Ewald (PME) [46] method.

NAMD uses a hybrid decomposition scheme that separates the distribu-
tion of data (atoms) from the distribution of work (force calculations). The im-
plementation of the hybrid decomposition scheme and independent calculation
of di↵erent types of forces is facilitated by the ability to create multiple sets of
chares in Charm++ that can be mapped independently to the processors. The
simulation box is divided spatially into smaller boxes called “patches” which
collectively form one set of chares (see Figure 4.1 which shows a simplified
two-dimensional simulation space). The number of patches can be less than
the number of processors in which case, the patches are assigned to a subset
of the processors. Force calculations between a pair of patches are assigned
to chares from another set called the compute objects, or just “computes”.
There are three di↵erent types of computes – 1. bonded computes that calcu-
late the forces due to bonds, 2. non-bonded computes, that are responsible for
calculating short-range non-bonded forces and 3. PME computes, responsible
for calculating long-range electrostatic forces.

FIGURE 4.1: Hybrid decomposition in NAMD (the square objects are
patches and the diamond objects are non-bonded computes)

Each non-bonded compute is responsible for the force calculations between
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a pair of patches (or a single patch in case of interactions between atoms
within a patch). Hence, each patch sends its atoms to several computes (nine
in case of the 2D decomposition shown in Figure 4.1, twenty-seven in case of
a 3D decomposition) whereas each compute receives atoms from two patches.
The sending of atoms from a patch to all its computes is done via a section
multicast that creates a “spanning” tree between the processor holding the
patch (root) and the processors holding the associated computes. Forces from
all computes to a given patch are also sent back along this tree.

Three di↵erent chare arrays are used for the PME computation which uses
a two-dimensional pencil decomposition of the charge grid for parallelization:
PMEZPencils, PMEYPencils and PMEXPencils. The patches communicate
with the PMEZPencils at the beginning and completion of each PME phase.
There are several line FFTs within the pencils in each direction and transpose
operations between pencils in di↵erent directions. Since this phase has a rela-
tively small amount of computation and intensive communication (due to the
transposes), it is often done every four time steps instead of every time step.

4.4.2 Load Balancing

The presence of di↵erent kinds of chares – patches, bonded computes, non-
bonded computes and three types of PME computes makes load balancing
a formidable task. However, the load balancing framework in Charm++ is
designed to handle multiple chare arrays in the application. The load balancing
framework is measurement-based and relies on the principle of persistence of
load. This principle assumes that the load distribution in the recent past is a
reasonable indicator of that in the near future. The runtime instruments all
the chares in the application for their execution times and also records the
communication graph between them. This graph is made available to the load
balancing framework to make migration decisions. Applications can plug in
specific strategies that exploit application-specific knowledge for a better load
balance.

In the case of NAMD, all chares – patches, bonded computes, non-bonded
computes and PME computes are instrumented for their execution time. The
total load on each processor is the sum of the execution times of all objects
that reside on it. The loads on each processor in the previous time steps are
used to make decisions about migrating the chares for better balance. Only the
non-bonded computes, which account for a significant fraction of the execution
time, are made migratable. The rest of the computes are assigned statically
during program start-up but their loads are considered when balancing the
migratable objects.

Load balancing in NAMD is periodic. Before the load balancer is invoked,
a few time steps are instrumented and that information is used for balancing
load for future time steps. The first time that load balancing is performed,
the algorithm reassigns all migratable objects. Subsequent calls perform a
refinement-based load balancing that minimizes migrations by preserving the
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previous assignments as much as possible. The load balancing strategy is a
greedy heuristic-based algorithm that creates a max heap of objects and min
heap of processors (based on their execution times) and maps objects itera-
tively starting with the heaviest ones to the least loaded processors.

The Charm++ runtime provides a detailed communication graph of the
chares involved in an application to the load balancer. The balancing algorithm
can use the communication information to minimize communication as well
as migration. This information is also used for optimizing the communication
on the underlying network topology in the case of torus machines such as
the IBM Blue Gene platforms [25]. An interconnect topology aware mapping
of the patches and computes in NAMD can optimize communication on the
network and minimize network congestion.

4.5 Enabling Large Simulations

The unprecedented growth in the size of parallel machines and the require-
ments of computational scientists to simulate molecular systems with tens to
hundreds of millions of atoms have put the scaling performance of NAMD to
test and resulted in significant improvements to the software to enable such
use cases.

4.5.1 Hierarchical Load Balancing

Traditionally (before 2010), the load balancing strategies in NAMD were
executed serially by collecting the instrumented data (loads and communica-
tion graph) on one processor. This becomes infeasible when running a large
molecular system or on a large number of processors or with a large number of
chares. Collecting the entire communicating graph on one processor and then
sending migration decisions out from it leads to a serialization bottleneck in
messaging. Storing this information in the memory of one node also becomes
infeasible. Finally, the serial load balancing algorithm running on one proces-
sor can take a very long time to execute while all other processors are idle,
waiting for the decisions. These factors motivated the use of a hierarchical
load balancing scheme in NAMD [258].

NAMD uses the hierarchical load balancing support available in
Charm++ [257]. In this scheme, the processors are divided into independent
groups that are arranged in a hierarchy forming a tree. The tree can have any
number of levels and an arbitrary number of children per node. Every node and
its immediate children at the next level form an autonomous group. Within
each group, a root node or group leader performs load balancing serially for all
processors within its group. At higher levels, group leaders represent the entire
sub-tree below them. Load information is first exchanged bottom up and then
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FIGURE 4.2: Improvements in load balancing time from using hierarchical
load balancing in NAMD on IBM Blue Gene/P (Intrepid)

load balancing is done in a top down fashion. Within each group, existing load
balancing strategies in NAMD such as comprehensive and refinement can be
invoked.

Use of hierarchical load balancers leads to significant reductions in the
memory consumption in NAMD and more importantly huge savings in the
execution time of the load balancing strategies. Figure 4.2 shows the reduction
in the time spent in the comprehensive and refinement load balancing strate-
gies simulating the Satellite Tobacco Mosaic Virus (STMV). On 16,384 cores
of IBM Blue Gene/P, the time spent in load balancing is reduced by more
than 100 times! This improvement is attained while retaining a high quality
of load balance achieved, so application performance is almost as good as that
with centralized load balancers.

4.5.2 SMP Optimizations

Multicore nodes in parallel machines have motivated the design and imple-
mentation of a multi-threaded SMP runtime mode in Charm++ [173]. In this
mode, each Charm++ processing element (PE) runs as a thread as opposed
to an OS process in the non-SMP runtime mode. All threads (i.e. Charm++

PEs) belonging to the same OS process form a Charm++ “node”. The na-
ture of a single memory address space shared by Charm++ PEs on a “node”
enables several optimization opportunities.

Reduce Memory Footprint: Read-only data structures or immutable ones
(only written once) can be shared among Charm++ PEs on a “node”. Ex-
ploiting this opportunity can also lead to other benefits such as better cache
performance. In NAMD, optimizations are done to share certain information
such as the molecule object that contains static physical attributes of atoms
and map objects that track the distribution of patch and compute objects. Ta-
ble 4.1 shows the comparison of average memory usage per core when running
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NAMD in non-SMP and SMP modes on the Jaguar machine at Oak Ridge
National Laboratory, demonstrating the e↵ectiveness of reducing the mem-
ory consumption using SMP mode. In addition, we also observed much better
cache performance directly related with the memory footprint reduction [172].

No. of nodes 140 560 2240 4480 8960 17920
No. of cores 1680 6720 26880 53760 107520 215040

non-SMP (MB) 838.09 698.33 798.14 987.37 1331.84 1760.86
SMP (MB) 280.57 141.83 122.41 126.03 131.84 157.76
Reduction factor 2.99 4.92 6.52 7.83 10.10 11.16

TABLE 4.1: Comparison of average memory footprint between SMP and
non-SMP during simulation (12 cores per node)

Improve Intra-node Communication:Charm++ PEs on the same “node”
can also exploit the use of shared memory address space to improve the per-
formance of communication. Instead of making a copy of the message when
performing intra-node communication in the non-SMP mode, the Charm++

runtime simply transfers the memory pointer of the message in the SMP
mode. This optimization is transparent to the application and is embedded
in the runtime. Therefore, NAMD automatically enjoys the benefits from the
improved intra-node communication. In addition, considering faster commu-
nication within a “node”, if a message is sent to multiple PEs on the same
“node” from a PE on a remote “node”, we can optimize this communication
scenario by just sending one inter-node message and then forwarding this mes-
sage to destination PEs within a node. In this way, the expensive inter-node
communication is replaced with the more e�cient intra-node one. We refer to
this as node-aware communication optimization, and it is exploited as much
as possible in communication idioms such as the general multicast/broadcast
in the Charm++ runtime and NAMD-specific multicast operations [172].

Exploit More Fine-grained Parallelism: Several computation functions in
the NAMD PME phase have been observed to execute on a few cores on each
node with idle neighboring cores. To improve NAMD’s performance during
this phase, the fine-grained parallelism inherent in those computation func-
tions needs to be exploited and distributed among the idle neighboring cores.
OpenMP provides a language directive based approach to realizing this. Using
OpenMP threads in conjunction with Charm++ PEs on the same cores is not
straighforward because they are not aware of each other. We have developed a
“CkLoop” library for the SMP mode of Charm++ to use the Charm++ PEs
to mimic the responsibilities of OpenMP threads. [237] shows the performance
benefits from using this “CkLoop” library for the PME computation.

Reduce Usage of System Resources: In the SMP node, significantly fewer
OS processes are created in the parallel application. This implies that the
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usage of system resources which depends on the number of processes also
reduces. The benefit of such reduction is exemplified by the decrease in the
job launch time. When running NAMD on 224,076 cores of Jaguar where
Charm++ is built to rely on MPI to perform communication, mpirun takes
about 6 minutes to launch the job in the non-SMP mode where each core is
hosting a MPI rank. In comparison, in the SMP mode, each node is hosting
a MPI rank instead, covering 12 cores. As a result, mpirun then only takes
about 1 minute to launch the NAMD job.

4.5.3 Optimizing Fine-grained Communication in NAMD

As described earlier, most of the time in the PME phase in NAMD is
spent in communication. When scaling NAMD to large number of nodes this
communication in PME scales poorly and eventually becomes the major per-
formance bottleneck. Therefore, it is crucial to optimize this communication
pattern. Below, a few techniques for optimizing the PME communication are
discussed.

Increasing PME message priority. In NAMD, various types of mes-
sages play di↵erent roles in driving the program execution. For example, the
non-bonded function in the compute object is performed when the messages
containing atoms from its two patches arrive. Similarly, the arrival of PME
messages drives the FFT computation. When di↵erent types of messages are
queued to be sent or to be executed, the selection of messages to process first
can potentially a↵ect the overall performance. When the PME phase becomes
the the performance bottleneck, it is highly desirable to process the PME mes-
sages as soon as possible. In order to do this, we assign PME messages with
higher priority than other messages. Two techniques are applied to implement
this idea. On the sender side, messages with high priority are processed first.
Only after these messages are injected into the network, the other messages
get a chance to be processed. On the receiver side, instead of processing mes-
sages in a first-come-first-serve (FCFS) order, incoming messages are queued
in the order of priority. Therefore, the computation driven by messages with
high priority is performed first. With these two techniques, the delay of pro-
cessing PME messages is minimized which improves the overall performance
and scaling significantly.

Persistent communication for FFT. For most applications in Charm++,
when messages are sent on the sender, the memory to store the message on
the destination is usually unknown. Only when the message arrives at the
receiver, the corresponding memory is allocated for it. However, in scientific
applications, we have observed that there is ‘persistent’ communication, which
means that the communication partners and message sizes for one transaction
do not change across time steps. There are two possible benefits of exploiting
this persistent communication. First, we can save the time to allocate/free
memory on the receiver. The other benefit is to better exploit the underlying
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network if it supports remote direct memory access (RDMA). Without using
persistent communication, three steps are required to send a message on the
RDMA network. First, a small control message including sender’s informa-
tion is sent to the receiver. Based on the information in this small message,
the receiver performs a RDMA ‘get’ transaction to transfer the real data. An
ack message is sent back to the sender to notify the completion of the data
transfer. Compared with this, using persistent communication, the sender has
the information of receiver so that a direct RDMA ‘put’ can be issued to
transfer the data. Hence, the small control message is avoided. In NAMD,
we implemented the communication in PME with persistent messages. A 10%
performance improvement is observed when running a 100-million-atom sim-
ulation on the Titan machine at ORNL.

4.5.4 Parallel Input/Output

As we started to simulate very large molecular systems with tens of millions
of atoms using NAMD on hundreds of thousands of processors, we found that
the input/output (I/O) in NAMD, i.e., loading molecular data at start-up
and outputting atoms’ trajectory data to the file system, became a major
roadblock. Since existing parallel I/O libraries such as HDF, netCDF etc. do
not handle NAMD file formats, we chose to implement parallel I/O natively
in NAMD. One main advantage, enabled by the asynchronous message-driven
programming model of Charm++, is that we can then optimize for writing
trajectory data frame-by-frame, overlapping with the computation on other
processors during the simulation.

Traditionally, NAMD loads and processes all molecular data on a single
core before broadcasting the data to all other cores. Although this approach is
adequate for moderately large molecular systems, it does not scale to molec-
ular systems with several million atoms due to the inherent sequential exe-
cution. For example, it requires nearly an hour and about 40 GB of memory
to initialize a 100-million-atom STMV simulation on a single core of an Intel
Xeon (1.87 GHz) processor. To address this issue, we first developed a com-
pression scheme by extracting “signatures” of atoms from the input data to
represent the common characteristics that are shared by a set of atoms. To-
gether with atoms’ “signature” input, a binary file containing the information
of each atom, constructed from the original input file, is fed into the native
parallel input scheme described as follows.

A small number of processors are designated as input and output proces-
sors. Considering P “input” processors, one of them first reads the signature
file and then broadcasts this to all other input processors. P is usually smaller
than the total number of processors and can be automatically tuned to opti-
mize for the memory footprint and performance. After the initial broadcast,
each of these P processors loads 1/P of the total atoms starting from indepen-
dent positions in the binary file. Then they shu✏e atoms with neighbor input
processors according to molecular grouping attributes for later spatial decom-
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FIGURE 4.3: Parallel Output Timeline of a 2.8-million-atom Ribosome Sim-
ulation on Jaguar (Cray XT5)

position. Comparing with the sequential input scheme, for the 100-million-
atom STMV simulation, this parallel scheme with 600 input processors on
Jaguar (Cray XT5 at ORNL) completes the initialization in 12.37 seconds
with an average memory consumption of 0.19 GB on each input processor, a
⇠300⇥ reduction in time and a ⇠200⇥ reduction in memory footprint!

We faced similar performance and memory footprint challenges in the out-
put of trajectory files, but with an additional one posed by maintaining fast
execution time per step under tens of milliseconds in case of frequent out-
put. Similar to the parallel input scheme, with a tunable number of “output”
processors, each output processor is responsible for the trajectory output of
a subset of atoms. Furthermore, we have implemented a flexible token-based
output scheme in which only those output processors that have a token could
write to the file system in order to handle I/O contention on di↵erent parallel
file systems. Reaping benefits from Charm++, the file output on one processor
can potentially overlap with useful computation on other processors as clearly
illustrated by Figure 4.3 showing the tracing of a single-token-based output
scheme. In the figure, the output activity represented by the light gray bars
clearly overlaps with useful computation (dark gray) on other cores spanning
multiple time steps.

4.6 Scaling Performance

NAMD is run on a variety of supercomputer platforms at national super-
computing centers in the U.S. and elsewhere. It has demonstrated good strong
and weak scalability for several benchmarks on di↵erent platforms. The plat-
forms vary from small memory and low frequency processors like the IBM
Blue Gene machines to fast processors like the Cray XT5 and XK6. The size
of molecular systems ranges from benchmarks as small as IAPP with 5570
atoms to an STMV system with 100 million atoms. Table 4.2 lists the various
molecular systems (and their simulation details) that were used for obtaining
the performance numbers presented here.
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System No. of atoms rc (

˚

A) Simulation box Time step (fs)

ApoA1 92224 12 108.86⇥ 108.86⇥ 77.76 1
F1-ATPase 327506 12 178.30⇥ 131.54⇥ 132.36 1
STMV 1066628 12 216.83⇥ 216.83⇥ 216.83 1
Ribosome 2820530 12 264.02⇥ 332.36⇥ 309.04 1
100M STMV 106662800 12 1084⇥ 1084⇥ 867 1

TABLE 4.2: Simulation parameters for molecular systems used for bench-
marking NAMD

Performance for various molecular systems: Figure 4.4 shows the
execution time per step for five molecular systems running on an IBM Blue
Gene/P (BG/P). ApoA1 and F1-ATPase scale well up to 8,192 cores while
the bigger systems of STMV and Ribosome scale up to 16,384 cores. The
100 million atom system has demonstrated scalability up to almost the entire
machine at Argonne (Intrepid, 163,840 cores). The simulation rate for ApoA1
at 16,384 cores of BG/P is 47 nanoseconds per day (ns/day) or 1.84 ms per
time step. The simulation rate for the 100M STMV system at 131,072 cores
is 0.78 ns/day or 111.1 ms per time step.
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FIGURE 4.4: Performance of NAMD on IBM Blue Gene/P (Intrepid)

Performance on various machines : Figure 4.5 presents the execution
times for the 1 and 100 million atom STMV systems on di↵erent machines:
Blue Gene/P, Ranger and Cray XK6. The 1 million system scales well on the
di↵erent platforms (left plot). The best performance is achieved on the Cray
XK6 with much faster cores and a high-speed interconnect compared to the
BG/P. At 16,384 cores, the execution time is 2.5 ms per step (simulation rate
of 34.6 ns/day). The benchmarking results for the much bigger 100 million
atom STMV running on the Blue Gene/P, Blue Gene/Q and Cray XK6 are
shown in the right plot. NAMD demonstrates excellent scalability for this
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Machines Nodes Cores Atoms Time
per Core (ms/step)

Blue Gene/Q 4096 65536 1.4 0.683
Cray XC30 512 8192 11.0 0.526

TABLE 4.3: Time step of running ApoA1 with PME every 4 steps on Blue
Gene/Q and Cray XC30

molecular system on the Blue Gene/Q and XK6 with good performance at as
many as 262, 144 cores.
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FIGURE 4.5: NAMD performance on several machines

Extreme strong scaling of NAMD. One needs to execute a billion time
steps to simulate 1µs in the life of a biomolecular system! Further, a particular
system being studied has a fixed size i.e. a fixed number of atoms. So, in order
to do the simulations faster, one needs to carry out a single time step as fast as
possible. What are the current limits of such strong scaling? Recently, we were
able to simulate a time step in about 500µs. This corresponds to a simulation
rate of 170 ns/day. Given the amount of communication, coordination and
critical-path-bound work one has to do in each time step, such numbers are
impressive, and are a testament to NAMD’s innate performance orientation,
as well as the design of the machines themselves.

Table 4.3 shows the best performance we have achieved for ApoA1 with
PME every 4 steps on IBM Blue Gene/Q and Cray XC30. On Blue Gene/Q
there are fewer than two atoms per core and we are really pushing the scaling
limit using extremely fine-grained decomposition. On Cray XC30, in part due
to new Cray Aries interconnect, better performance is obtained on fewer nodes.
In both cases, the time per step is below one millisecond, which brings us closer
to the goal of simulating longer time scales in the life of biomolecules.
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FIGURE 4.6: The size of biomolecular systems that can be studied using
all-atom molecular dynamics simulations has steadily increased from that of
Lysozyme (40,000 atoms) in the 1990s to the F1F0-ATP Synthase and STMV
Virus capsid at the turn of the century, and now 100-million atoms as in the
spherical chromatophore model shown above. Atom counts include aqueous
solvent, not shown. (see Color Plate 4.)

4.7 Simulations Enabled by NAMD

NAMD is distributed free of charge as both source code and convenient
pre-compiled binaries by the NIH Center for Macromolecular Modeling and
Bioinformatics at the University of Illinois. NAMD is a popular program
with over 50,000 registered users in the past decade, over 16,000 of whom
have downloaded multiple versions of the program. NAMD has been cited in
over 5,000 publications and is one of the most used programs at NSF-funded
supercomputer centers. NAMD development is driven by the projects of the
NIH Center, examples of which are presented below.

In the year 1999, NAMD enabled the study of the photosynthetic purple
membrane of Halobacterium salinarium, simulating a hexagonal unit cell con-
taining 23,700 atoms distributed over protein, lipid membrane, ion, and water
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components [20]. The simulations were used to study how proteins in the
membrane capture light energy to pump protons across the membrane. The
di↵erence in proton concentration thus established provides energy source that
another membrane protein, adenosine triphosphate (ATP) synthase, stores as
chemical bonds in ATP for transport and utilization in other processes in the
cell [239]. Beginning in 2001, much larger (327,000 atoms) NAMD simulations
of ATP synthase were used to study this process. In 2002, a NAMD simu-
lation of a membrane containing aquaporin proteins revealed the mechanism
by which aquaporin water channels permit water and other neutral molecules
to cross the membrane while preventing the passage of protons and charged
molecules [240]. Thus, aquaporins solve the important problem of maintaining
a proton gradient to drive ATP synthesis while allowing water to pass.

In 2005, NAMD enabled the first all-atom molecular dynamics study of a
complete virus particle [72]. Satellite Tobacco Mosaic Virus (STMV), a small
and well studied plant virus, was simulated as a complex of over one million
atoms of protein, nucleic acid, and water. By studying the stability of the
complete virion and its isolated components, the simulations illustrated that
previous speculation that STMV assembly was mostly capsid protein-driven
was likely incorrect, and that instead the the virus’s genetic payload recruits
capsid proteins into a shell around itself.

By 2012, this initial work on virus simulation had matured such that the
human HIV virus capsid could be studied, enabled by NAMD simulations on
petascale supercomputers such as the “Blue Waters”, a Cray XE6 at Illinois.
Initial 10-million-atom simulations of a cylindrical HIV assembly have now
been extended to a 64-million-atom simulation of the full HIV capsid [256].
Similarly, the earlier studies of photosynthesis have progressed to models of
a complete photosynthetic unit, a pseudo-organelle called the chromatophore
consisting of several hundred proteins embedded in a spherical lipid mem-
brane [222]. Planned simulations of the chromatophore will exceed 100 million
atoms.

4.8 Summary

NAMD is the first science application to use Charm++ as its underlying
parallel framework. The Charm++ and NAMD collaboration has come a long
way and has benefited both programs immensely. Performance improvements
motivated by NAMD have inspired abstractions, optimized implementations,
and robust infrastructure in Charm++, and complementary improvements
to Charm++ have enabled the implementation of new features in NAMD.
NAMD is one of the best scaling parallel molecular dynamics packages and
portable to almost any architecture by virtue of using the Charm++ runtime.

NAMD is installed at major supercomputing centers in the U.S. and
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around the world and is used by many research groups for their simulations.
The study of the influenza virus (A/H1N1) and the HIV capsid are testimony
to the impact of NAMD in the field of biophysics and drug design.
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Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock,
D. Munshi, P. Naselsky, P. Natoli, H. U. Nørgaard-Nielsen, F. Noviello,
S. Osborne, F. Pasian, G. Patanchon, O. Perdereau, F. Perrotta, F. Pi-
acentini, E. Pierpaoli, S. Plaszczynski, P. Platania, E. Pointecouteau,
G. Polenta, N. Ponthieu, L. Popa, T. Poutanen, G. W. Pratt, J.-L.
Puget, J. P. Rachen, R. Rebolo, M. Reinecke, M. Remazeilles, C. Re-
nault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, M. Ros-
setti, J. A. Rubiño-Mart́ın, B. Rusholme, M. Sandri, G. Savini, B. M.
Schaefer, D. Scott, G. F. Smoot, J.-L. Starck, F. Stivoli, R. Sun-
yaev, D. Sutton, J.-F. Sygnet, J. A. Tauber, L. Terenzi, L. To↵olatti,
M. Tomasi, M. Tristram, L. Valenziano, B. Van Tent, P. Vielva, F. Villa,
N. Vittorio, B. D. Wandelt, J. Weller, S. D. M. White, D. Yvon, A. Zac-
chei, and A. Zonca. Planck intermediate results. I. Further validation of



272Parallel Science and Engineering Applications: The Charm++ Approach

new Planck clusters with XMM-Newton. Astronomy and Astrophysics,
543:A102, July 2012.

[205] S. J. Plimpton and B. A. Hendrickson. A new parallel method for
molecular-dynamics simulation of macromolecular systems. J Comp
Chem, 17:326–337, 1996.

[206] Steve Plimpton. Fast parallel algorithms for short-range molecular dy-
namics. J. Comput. Phys., 117(1):1–19, 1995.

[207] C. Power, J. F. Navarro, A. Jenkins, C. S. Frenk, S. D. M. White,
V. Springel, J. Stadel, and T. Quinn. The inner structure of ⇤CDM
haloes - I. A numerical convergence study. Monthly Notices of the Royal
Astronomical Society, 338:14–34, January 2003.

[208] D. Reed, J. Gardner, T. Quinn, J. Stadel, M. Fardal, G. Lake, and
F. Governato. Evolution of the mass function of dark matter haloes.
MNRAS, 346:565–572, December 2003.

[209] D.K. Remler and P.A. Madden. Molecular Dynamics without e↵ective
potentials via the Car-Parrinello approach. Mol. Phys., 70:921, (1990).

[210] E. R. Rodrigues, P. O. A. Navaux, J Panetta, and C. L. Mendes. A
new technique for data privatization in user-level threads and its use in
parallel applications. In ACM 25th Symposium On Applied Computing
(SAC), Sierre, Switzerland, 2010.

[211] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Alvaro
Fazenda, Celso L. Mendes, and Laxmikant V. Kalé. A comparative anal-
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Mendes, and Laxmikant V. Kalé. Optimizing an MPI weather forecast-
ing model via processor virtualization. In Proceedings of IEEE Interna-
tional Conference on High Performance Computing (HiPC 2010), Goa
- India, 2010.

[213] D. Romero, B. Meeder, and J. Kleinberg. Di↵erences in the Mechanics
of Information Di↵usion Across Topics: Idioms, Political Hashtags, and
Complex Contagion on Twitter. In Proceedings of the 20th International
World Wide Web Conference (WWW 2011), 2011.

[214] Michiel Ronsse and Koen De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM Trans. Comput. Syst., 17(2):133–
152, 1999.



Contagion Di↵usion with EpiSimdemics 273

[215] H.G. Rotithor. Taxonomy of dynamic task scheduling schemes in dis-
tributed computing systems. In Proceedings of IEE: Computers and
Digital Techniques, volume 141, pages 1–10, 1994.

[216] J. J. Ruan, T. R. Quinn, and A. Babul. The Observable Thermal and
Kinetic Sunyaev-Zel’dovich E↵ect in Merging Galaxy Clusters. ArXiv
e-prints, April 2013.

[217] Ruth Rutter. Run-length encoding on graphics hardware. Master’s
thesis, University of Alaska at Fairbanks, 2011.

[218] J. K. Salmon and M. S. Warren. Skeletons from the treecode closet.
Journal of Computational Physics, 111:136–155, March 1994.

[219] Yanhua Sun Sameer Kumar and L. V. Kale. Acceleration of an
Asynchronous Message Driven Programming Paradigm on IBM Blue
Gene/Q. In Proceedings of 26th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), Boston, USA, May 2013.

[220] Osman Sarood and Laxmikant V. Kalé. A ‘cool’ load balancer for par-
allel applications. In Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[221] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David
Montoya, and Scott Cranford. Open|speedshop: An open source in-
frastructure for parallel performance analysis. Scientific Programming,
16(2-3):105–121, 2008.

[222] Melih Sener, Johan Strumpfer, John A. Timney, Arvi Freiberg, C. Neil
Hunter, and Klaus Schulten. Photosynthetic vesicle architecture and
constraints on e�cient energy harvesting. Biophysical Journal, 99:67–
75, 2010.

[223] D. Shakhvorostov, R.A. Nistor, L. Krusin-Elbaum, G.J. Martyna, D.M.
Newns, B.G. Elmegreen, X. Liu, Z.E. Hughesa, S. Paul, C. Cabral,
S. Raoux, D.B. Shrekenhamerd, D.N. Basovd, Y. Songe, and M.H.
Mueser. Evidence for electronic gap-driven metal-semiconductor tran-
sition in phase-change materials. PNAS., 106:10907–10911, (2009).

[224] S. Shende and A. D. Malony. The TAU Parallel Performance Sys-
tem. International Journal of High Performance Computing Applica-
tions, 20(2):287–331, Summer 2006.

[225] S.A. Shevlin, A. Curioni, and W. Andreoni. Ab Initio Design of High-k
Dielectrics: LaxY1�xAlO3. Phys. Rev. Lett., 94:146401, (2005).

[226] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Oh-
fuchi, Y. Sasaki, K. Kobayashi, T. Hagiwara, S. Habata, et al. A 26.58
tflops global atmospheric simulation with the spectral transform method



274Parallel Science and Engineering Applications: The Charm++ Approach

on the earth simulator. In Proceedings of the 2002 ACM/IEEE confer-
ence on Supercomputing, pages 1–19. IEEE Computer Society Press,
2002.

[227] D. Siegel. Social networks and collective action. Americal Journal of
Political Science, 53:122–138, 2009.
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