
LLNL-TR-414570

Classification of HTTP Attacks: A Study
on the ECML/PKDD 2007 Discovery
Challenge

B. Gallagher, T. Eliassi-Rad

July 9, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Classification of HTTP Attacks: A Study on the
ECML/PKDD 2007 Discovery Challenge

Brian Gallagher and Tina Eliassi-Rad
Lawrence Livermore National Laboratory

P.O. Box 808, L-560, Livermore, CA 94551
{bgallagher, eliassi}@llnl.gov

Abstract

As the world becomes more reliant on Web applications
for commercial, financial, and medical transactions, cyber
attacks on the World Wide Web are increasing in frequency
and severity. Web applications provide an attractive alter-
native to traditional desktop applications due to their acces-
sibility and ease of deployment. However, the accessibility
of Web applications also makes them extremely vulnerable
to attack. This inherent vulnerability is intensified by the
distributed nature of Web applications and the complexity of
configuring application servers. These factors have led to a
proliferation of Web-based attacks, in which attackers sur-
reptitiously inject code into HTTP requests, allowing them
to execute arbitrary commands on remote systems and per-
form malicious activities such as reading, altering, or de-
stroying sensitive data.

One approach for dealing with HTTP-based attacks is
to identify malicious code in incoming HTTP requests and
eliminate bad requests before they are processed. Using
machine learning techniques, we can build a classifier to
automatically label requests as “Valid” or “Attack.” For
this study, we develop a simple, but effective HTTP attack
classifier, based on the vector space model used commonly
for Information Retrieval. Our classifier not only separates
attacks from valid requests, but can also identify specific
attack types (e.g., “SQL Injection” or “Path Traversal”).

We demonstrate the effectiveness of our approach
through experiments on the ECML/PKDD 2007 Discovery
Challenge data set. Specifically, we show that our approach
achieves higher precision and recall than previous meth-
ods. In addition, our approach has a number of desirable
characteristics, including robustness to missing contextual
information, interpretability of models, and scalability.

Keywords: Cybersecurity, pattern classification, ma-
chine learning.

1. Introduction

From a security standpoint, the World Wide Web is both
critically important and critically vulnerable. The Web is
critically important because it provides access to (1) crucial
services (e.g., e-commerce, banking, taxes) and (2) sensi-
tive data (e.g., financial, medical). The past decade has seen
incredible growth in the availability of online services and
information. According to recent estimates, 80% or more
of U.S. Internet users (i.e., hundreds of millions) make pur-
chases online [1, 3]. The Web is critically vulnerable be-
cause it is (1) inherently public and accessible and (2) in-
herently distributed. Recent studies have found that over
90% of Web hosts have serious vulnerabilities [9, 7] and 60
of the 100 most popular Web sites hosted or were involved
in malicious activity during a six month period in 2008 [8].

The types of attacks made possible by the Web are nu-
merous and varied, but generally involve attackers injecting
code into an HTTP request that can execute on the Web
server during the processing of the request. Such code can
allow an attacker to execute arbitrary commands on remote
systems. The havoc that an attacker can wreak on a vul-
nerable system is essentially unlimited. To give the reader a
feel for what is possible, Figure 1 describes a SQL Injection,
an example of an attack that can be embedded in an HTTP
request.

Our approach for dealing with HTTP-based attacks is
to identify malicious code in incoming HTTP requests and
eliminate bad requests before they are processed. In partic-
ular, we utilize the vector space model [6] used commonly
for Information Retrieval to build an effective classifier that
automatically labels requests as “Valid” or “Attack.” In case
of an “Attack,” our classifier also identifies the type of attack
in the HTTP request.

Section 2 describes the ECML/PKDD 2007 Discovery
Challenge, a data mining competition which we leverage
to ground our study with a specific data set, prediction
task, and previous classification approaches. Section 3 de-
scribes our approach to HTTP attack classification, based

GET /aGtJw@/eilrhEmt/ji4P3YjSxK42SNp.mdb?Fwhk3ee5
aihubyh=3oE4qR9&USasiweoolm6=7966609&VJ9ZB5sh
=p3105&era=mgmocha&nes=oNhsgr%7Cn&myeSoE=7077
49763&aeTes=soEl&UoBs0s3EK=fpsi9&lmttamn4Umty
Vt=rcs HTTP/1.1

Host: 155.248.216.206
Connection: 6ecgzh7t
Accept: audio/*, image/jpeg;q=0.8, text/xml;q=0.3
Accept-Charset: *;q=0.3
Accept-Encoding:
Accept-Language: *;q=0.6
Cache-Control: max-stale
Cookie: Stenn2auaasuhc7=8Hmdmha;9MbmhtTehmrorl=jw

lrqor%278St%5Bn7hi;0yrpN=o4ryo;EIstn=%27%
3B+EXEC+++master.dbo.sp_makewebtask +++%27
c%3A%5Cinetpub %5Cwwwroot %5C1kedvi.gif %27%
2C+++%27SELECT+ncrndh +++FROM++++9a+WHERE+
+++xtype %3D%27%27U%27%27%27;Je5zcVcC=dnhe
sirfiebaEbs

Date: Sun, 09 Jan 05 22:42:26 GMT
ETag: "Xe@NZhqvkk5C1Xc1F2i"
If-Unmodified-Since: Mon, 25 May 09 19:25:42 CET
If-None-Match: "VTukjGnFj0c41kNyOcw"
Authorization: Basic eTlpc2FuYnM6azZwYWgwaUU=
Range: 579614-07,76386-,8728-
Referer: /dt2rEobn/plxotun/xrad.conf
User-Agent: Mozilla/7.1 (compatible; i5d6n; Linux

i586; otietfsmd; Rosp07dec)
UA-Disp: 0171,5038,8
Transfer-Encoding: compress
Upgrade: 1s1ion/6.5, 4yih/6.3, rft/0.5, pefw/2.8,

Oksan/0.9

EXEC master.dbo.sp_makewebtask
'c:\inetpub\wwwroot\1kedvi.gif',
'SELECT ncrndh FROM 9a WHERE xtype="U"';

Figure 1. SQL Injection. The “Cookie” field of this
HTTP request contains an embedded SQL statement.
This SQL statement, when executed, reads data from
a database and writes it to a file that is publicly avail-
able on the Web and can later be retrieved by the at-
tacker.

on the vector space model from Information Retrieval. Sec-
tion 4 describes an evaluation of our method based on the
ECML/PKDD Discovery Challenge. Finally, Section 5
presents our conclusions.

2. The ECML/PKDD 07 Discovery Challenge

The ECML/PKDD 2007 Discovery Challenge was a data
mining competition held in conjunction with the 18th Eu-
ropean Conference on Machine Learning (ECML) and the
11th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD).

2.1 Objectives

The Discovery Challenge outlined two tasks related to
HTTP attack detection:

1. Classification of HTTP requests into attack types.
Submissions were to be judged on runtime perfor-
mance as well as classification performance.

2. Isolation of attack patterns. The goal of this task
was to identify (within an attack) the shortest string
that conveys the attack.

For our study, we focus on the first task: classification of
requests into attack types.

2.2 Data and Classification Task

The Discovery Challenge data was provided by chal-
lenge co-organizers LIRMM (Laboratoire dInformatique,
de Robotique et de Microelectronique de Montpellier,
FRANCE) and the LGI2P (Ecole des Mines dAlcs,
FRANCE); and was based on a dataset of real-world web
traffic in conjunction with Bee Ware. The data was divided
into a training set and a test set. The training set was made
available to challenge participants for experimentation prior
to submission. The test set was released only once the Dis-
covery Challenge was complete.

Each training and test instance in the data set contained
the full text of the http request, divided into the follow-
ing components: method, protocol, uri, query, headers, and
body. In addition, each HTTP request included the follow-
ing contextual attributes:

• Operating system running on the Web Server (UNIX,
WINDOWS, UNKNOWN)

• HTTP Server targeted by the request (APACHE, MIIS,
UNKNOWN)

• Is the XPATH technology understood by the server?
(TRUE, FALSE, UNKNOWN)

• LDAP database on the Web Server? (TRUE, FALSE,
UNKNOWN)

• SQL database on the Web Server? (TRUE, FALSE,
UNKNOWN)

Finally, each request was assigned one or more of 8 pos-
sible class labels (i.e., “Valid” + 7 attack types). Table 1
shows the sizes and class distributions of both training and
test sets for the Discovery Challenge.

Training Set Test Set
Total Requests 50,116 70,143

Valid Requests 35,006 (70%) 42,006 (60%)
Attacks 15,110 (30%) 28,137 (40%)

Cross-Site Scripting 12% 11%
SQL Injection 17% 18%
LDAP Injection 15% 16%
XPATH Injecction 15% 16%
Path traversal 20% 18%
Command execution 23% 23%
SSI attacks 13% 12%

Table 1. Characteristics of Discovery Challenge train-
ing and test sets. Note that percentages of attack
types do not sum to 100% since some request in-
stances are examples of more than one attack type.

2.3 Submissions

Over 25 groups registered for the Discovery Challenge,
but only two submitted final results. According to Raı̈ssi
et al. [5], most researchers failed to submit results because
they found that traditional data mining approaches were un-
successful and felt that a specialized knowledge of attack
detection was required to adequately address the problem.
The two groups that submitted results took very different
approaches to the problem.

Pachopoulos et al. [4] tried two different approaches.
Approach #1: Extract binary features from the HTTP re-
quest data, perform feature selection, and then apply C4,
a standard supervised-learning decision-tree algorithm, to
build a classifier. Approach #2: Use the string represen-
tations of the various HTTP fields directly as features for
input to a Support Vector Machine using a String Kernel.
The authors abandoned the SVM approach in favor of the
C4 approach after the former failed to deliver satisfactory
performance.1 The binary features used as input to C4 are
based on the presence or absence of a number of attack in-
dicators, derived manually by the authors.

The approach of Exbrayant [2] is based on constructing a
language model that is used to define HTTP attack patterns.
The author notes that attack patterns consist of sequences
of keywords, variables, and symbols. Thus, the approach
derives rules based on such sequences that can be used to
identify the beginning and end of attack strings in HTTP
requests. The core of this approach involves extracting and
evaluating potential rules. Once this is done, it is straight-
forward to classify a candidate request based on whether it
matches a given rule.

1Pachopoulos et al. [4] used WEKA’s implementation of C4 and
SVM [10].

3. A Vector Space Model For Traffic Classifica-
tion

The vector space model was proposed by Salton et al. [6]
as a way to efficiently index and compare text documents
for information retrieval applications. In this model, a text
document is represented by a weighted term vector, where
terms with higher weight are considered to be more impor-
tant or representative.

Although an HTTP request is semi-structured (i.e., in-
formation is divided into specific fields), the idea behind
our approach is to ignore this structure and simply treat a
request as unstructured text. This allows us to treat HTTP
request classification as a document retrieval problem.

3.1 Learning

We train our classifier as follows:

• Merge all requests of a particular attack type into a sin-
gle text document. This gives us a corpus of 8 docu-
ments (i.e., “Valid” + 7 attack types).

• Documents are tokenized by whitespace, ‘+’ charac-
ters, and URL encoded characters (e.g., “%20”).

• Tokenized documents are then represented as term
vectors, where weights for each term are calculated us-
ing tf-idf [6]. A tf-idf weight consists of two compo-
nents: tf, the term frequency and idf, the inverse docu-
ment frequency. The tf component rewards terms that
occur frequently in a document, whereas the idf com-
ponent penalizes terms that also occur in many other
documents.

For term t and document d in corpus D, tf-idf is de-
fined as:

tfidf(t, d) = tf(t, d) · idf(t) (1)

tf(t, d) =
count(t, d)∑

v∈d

count(v, d)
(2)

idf(t) = log
|D|

|{d ∈ D : t ∈ d}|
(3)

where count(t, d) returns the number of occurrences
of term t in document d.

3.2 Inference

Once trained, we apply our classifier to a new incoming
HTTP request as follows. Incoming requests are treated as
queries, which are converted to term vectors as described
above and then compared against each of the 8 attack type
term vectors. The request is then assigned the attack type
that provides the best match (i.e., the class of the “docu-
ment” most relevant to the “query”).

More specifically, for each incoming request, we calcu-
late a probability distribution over the possible classes as
follows:

P (A = a|R) = α · simcos(a,R) (4)

where A is a random variable representing attack type
(i.e., class), a is specific assignment of A (i.e., a spe-
cific attack type), α is a normalizing constant to ensure∑

a P (A = a|R) = 1, R is the incoming HTTP request,
and simcos is the cosine similarity function, defined as fol-
lows:

simcos(a,R) =
~a · ~R
‖~a‖ · ‖~R‖

=

∑
t∈a∩R

tfidf(t, a) · tfidf(t, R)√∑
t∈a

tfidf(t, a)2 ·
√∑

t∈R

tfidf(t, R)2

(5)

Based on the probability distribution calculated in Equa-
tion (4) above, a class is assigned according to the following
decision rule:

class(R) =

{
V alid if P (A = V alid) > T
argmax

a
P (A = a|R) otherwise

where the decision threshold T is set based on 10-fold
cross-validation performance on the training data set.

3.3 Time Complexity

Our approach to HTTP attack classification is quite ef-
ficient. For completeness, we discuss the complexity of
both learning (i.e., training the model) and inference (i.e.,
applying the model). However, complexity of inference is
of primary importance since learning can occur offline and
infrequently, whereas inference must occur in real-time as
requests are processed.

3.3.1 Complexity of Learning

Training our model involves calculating a tf-idf weight for
each term in each request in our training data set. In a single
pass through the training set, we can calculate count(t, d),∑

v∈d count(v, d), and idf(t). Then, using these compo-
nents, the complete tf-idf weights can be calculated on a
second pass.

Therefore, the complexity of the learning algorithm is
O(K) where K is the total number of tokens in the training
set. In other words, learning is O(|D| · Ld) where Ld is the
average length of documents in D.

3.3.2 Complexity of Inference

Inference is similar to learning except that: (1) we have only
a single request q instead of a full training set and (2) in
addition to calculating tf-idf weights, we must also calculate
simcos. Since simcos depends only on the term weights,
which can be calculated in O(|q|) time, the full inference
algorithm for 8 attack classes runs in O(8 · |q|) = O(|q|)
time. Note that since every token in the request must be
read by the server anyway in order to process the request,
we cannot expect to process requests in less than linear time.

4. Evaluation

This section describes our evaluation of the tf-idf attack
classifier with respect to the ECML/PKDD 2007 Discovery
Challenge. We perform experiments to evaluate the classi-
fier’s performance on the Discovery Challenge training set
as well as its ability to generalize to the separate Discovery
Challenge test set.

4.1. Experimental Methodology

In order to evaluate the performance of our attack clas-
sifier on the Discovery Challenge training set, we divide
the set into 10 disjoint folds and perform 10-fold cross-
validation. To evaluate the generalization performance of
our classifier, we replicate the setup of the Discovery Chal-
lenge, training on the full training set and then evaluating
on the full test set.

We compare our results to those reported in the individ-
ual studies of the Discovery Challenge participants [2, 4]
as well as the organizers’ report on the results of the Dis-
covery Challenge competition [5]. The official performance
measures used in the Discovery Challenge are the standard
information retrieval metrics of precision, recall, and F1
score. In addition, we report accuracy (for attack vs. non-
attack) and area under the ROC curve (AUC). For the full
8-class task, we calculate AUC as a weighted average of the
1-vs-rest AUC scores over all classes.

Classifier
tf-idf LM C4

Training Set Only
Accuracy > 0.99 - 0.77
AUC > 0.99 - -
Precision > 0.99 0.98 -
Recall > 0.99 0.93 -
F1 > 0.99 0.96 -
Discovery Challenge (Train/Test)
Accuracy 0.94 - -
AUC 0.97 - -
Precision 0.98 0.82 0.50
Recall 0.88 0.78 0.47
F1 0.93 0.80 0.48

Table 2. Summary of results for all classifiers and ex-
periments. Our approach is identified as tf-idf, LM is
the language modelling approach of Exbrayat [2] and
C4 is the decision tree based approach of Pachopou-
los et al. [4]

4.2. Results

Table 2 summarizes the results for all experiments and
classifiers. We see that our tf-idf based approach delivers
high performance across tasks and consistently outperforms
the competing approaches.

Figure 2 shows the results of our tf-idf attack classi-
fier using 10-fold cross-validation on the full training set.
We produce a precision-recall curve by varying the deci-
sion threshold T . We see that the tf-idf classifier produces a
near-perfect precision recall curve.

Figure 3 shows the results of several classifiers on the full
Discovery Challenge problem (i.e., train on the full training
set and test on the full test set). For, the tf-idf attack classi-
fier, we show the full precision/recall curve. The circle rep-
resents the precision and recall obtained using the decision
threshold T derived from our cross-validation experiments
on the training set. We see that the tf-idf classifier outper-
forms both competing approaches in terms of both precision
and recall.

For all of the results presented so far, the classifiers
had access to the contextual information described in Sec-
tion 2.2 (e.g., operating system, web server, etc). Figure 4
shows the results of an experiment where this contextual
information is unavailable. Since the tf-idf classifier does
not rely on contextual information, its performance is un-
changed when this information is unavailable. However,
without context, the performance of the other approaches
degrades dramatically.

Figure 5 shows classifier performance on individual at-
tack types. The tf-idf classifier demonstrates consistently
high performance (i.e., F > 0.75) over the range of attack

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

ci
si

o
n

Recall

HTTP Attack Classification

Figure 2. Training Data Results. 10-fold CV on
training data. Circle represents decision threshold T
for reported results.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

ci
si

o
n

Recall

Precision and Recall

Decision Trees

Language Modeling

TF-Based°°°°

°°°°

Figure 3. Discovery Challenge Results. Train on
training set, evaluate on test set. Circle represents
decision threshold T for reported results, derived from
training data.

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

Performance with and without Contextual Information

Decision Trees

Language Modeling

TF-Based

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

With Context Without Context

F
-m

ea
su

re

Performance with and without Contextual Information

Decision Trees

Language Modeling

TF-Based

Figure 4. Effect of Context. F1 performance of clas-
sifiers with and without contextual information.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

Performance by Attack Type

Decision Trees

Language Modeling

TF-Based

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

Performance by Attack Type

Decision Trees

Language Modeling

TF-Based

Figure 5. Attack-type Performance. F1 perfor-
mance of classifiers for specific attack types. The per-
formance of TF-based approach is more consistent
across attack types.

types. Other methods perform poorly (i.e., F < 0.5) for at
least some attack types.

Another advantage of the tf-idf based classifier is that
it produces models that can be read and interpreted by a
human analyst. More specifically, the model consists of
a list of “keywords” for each attack type, ranked in order
of relevance (i.e., tf-idf weight). Table 3 shows the top
five keywords in the training and test sets for each of the
8 attack classes. Those familiar with the specific HTTP at-
tacks will recognize many of the top terms for the 7 attack
classes. Note that the terms associated with the Valid (i.e.,
non-attack) class are less meaningful and have correspond-
ingly lower tf-idf weights. This is because Valid is basically
a catch-all category that combines all requests that do not
contain one of the 7 attack types. Therefore, we would ex-
pect little consistency among the set of Valid requests.

Finally, Figure 6 demonstrates the effect on the tf-idf
classifier of pruning the number of terms in our vocabu-
lary. Since classifier runtime scales with the length of the
term vectors, we can considerably improve runtime perfor-
mance by limiting the number of terms we consider. Fig-
ure 6 shows that we can achieve good classification per-
formance with a very small term vocabulary (e.g., only the
top 3 tf-idf weight terms for each attack class). Note that
as we reduce the vocabulary size, we observe an increase
in precision and a decrease in recall. We expect this intu-
itively because: (1) the presence of the very top terms is a
strong indicator of class membership, so false positives de-
crease and (2) we are removing a number good terms, so
false negatives increase. Note also that we can always ad-
just our decision threshold T to re-balance precision and
recall as required by our application.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

Performance with Pruned Vocabulary

Precision

Recall

F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All Top 100 Top 10 Top 3

P
re

ci
si

o
n

Recall

Performance with Pruned Vocabulary

Precision

Recall

F1

Figure 6. Performance with Pruned Vocabulary.
Precision and recall of TF-based classifier as we re-
duce the size of the vocabulary we consider (top-k
terms for each class). TF-based classifier is robust
small vocabulary sizes.

5. Conclusions

We propose a novel approach to HTTP attack classifi-
cation based on the vector space model from information
retrieval and demonstrate the effectiveness of our approach
by applying it to the ECML/PKDD 2007 Discovery Chal-
lenge problem.

Our term-frequency based classifier has a number of de-
sirable properties.

• It performs favorably in comparison with existing
methods.

• It is efficient, running in time proportional to the size
of an incoming request. Increased efficiency can be
achieved with minimal classification-performance im-
pact by pruning the term vocabulary.

• It produces understandable models.

• It is impervious to missing contextual information.

• It is simpler and more general than existing approaches
(i.e., it does not rely on a domain-specific language
model or a feature-set).

6. Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.

Training Data Test Data
LDAP had* 0.005844 had* 0.004065
Injection objectclass 0.003944 objectclass 0.003861

*o 0.003872 *o 0.002828
brien* 0.003872 brien* 0.002828
netscaperoot 0.001978 displayname 0.002616

Command .. 0.003871 .. 0.003558
Execution dir 0.003546 /c 0.003229

/c 0.003328 dir 0.002507
– 0.001650 – 0.001733
../winnt/system32/cmd.exe 0.001612 ../winnt/system32/cmd.exe 0.001678

Path .. 0.016041 .. 0.016415
Traversal . 0.005513 . 0.008600

virtual 0.002526 virtual 0.001427
– 0.001713 – 0.000968
include 0.001263 file 0.000927

SSI – 0.006241 – 0.006003
Attack virtual 0.003719 statement 0.002167

include 0.001859 odbc 0.002167
statement 0.001275 virtual 0.001967
odbc 0.001275 progra 0.000810

SQL ** 0.003874 ** 0.005199
Injection select 0.000883 statement 0.001163

statement 0.000832 odbc 0.001163
odbc 0.000832 – 0.000807
union 0.000805 union 0.000674

XPATH path 0.005394 path 0.005449
Injection count 0.005108 count 0.005072

child 0.003756 text 0.002616
text 0.002421 comment 0.002093
position 0.002200 child 0.001065

Cross-Site document.cookie 0.006498 document.cookie 0.006504
Scripting alert 0.004298 alert 0.004287

javascript 0.003463 javascript 0.003449
document.location.replace 0.003209 document.location.replace 0.003208
url 0.001644 http 0.002411

Valid 13224 0.000061 dddddd 0.002054
(No Attack) 213.191.153.150 0.000057 lkl 0.000969

9055,045,32 0.000055 large–majorite*des membres 0.000751
27260320301 0.000054 ministre-de-l-enseignement-superieur 0.000265
13.228.134.190 0.000054 tehgghgjty 0.000259

Table 3. Top terms for each attack type, sorted by tf-idf weight.

References

[1] eMarketer. Where are all the online shoppers go-
ing? http://www.emarketer.com/Article.
aspx?R=1004909, 2007.

[2] M. Exbrayat. Analyzing web traffic: A boundaries signa-
ture approach. In Proceedings of the ECML/PKDD’2007
Discovery Challenge, pages 53–64, 2007.

[3] iCrossing. How america searches: Online retail.
http://www.icrossing.com/research/
how-america-searches-online-shopping-2007.
php, 2007.

[4] K. Pachopoulos, D. Valsamou, D. Mavroeidis, and M. Vazir-
giannis. Feature extraction from web traffic data for the ap-
plication of data mining algorithms in attack identification.
In Proceedings of the ECML/PKDD’2007 Discovery Chal-
lenge, pages 65–70, 2007.

[5] C. Raı̈ssi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, and
M. Teisseire. Web analyzing traffic challenge: Description
and results. In Proceedings of the ECML/PKDD’2007 Dis-
covery Challenge, pages 47–52, 2007.

[6] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Commun. ACM, 18(11):613–620,
1975.

[7] Web Application Security Consortium. Web
application security statistics project 2007.
http://www.webappsec.org/projects/
statistics/wasc_wass_2007.pdf, 2008.

[8] Websense Security Labs. New research: Web 2.0 and “legit”
web sites are latest playground for information-stealing
computer criminals. http://investor.websense.
com/releasedetail.cfm?ReleaseID=324871,
2008.

[9] WhiteHat Security. Whitehat website security statis-
tics report. http://www.whitehatsec.com/home/
assets/WPStatsreport_100107.pdf, 2007.

[10] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

