ANL~ETD-71-07

TENTATIVE DESIGN GUIDE
FOR
CALCULATING THE VIBRATION RESPONSE
OF FLEXIBLE CYLINDRICAL ELEMENTS IN

AXTAL FLOW

by

M. W. Wambsganss
and

S. S. Chen

Engineering and Technology Division
Arvgonne National Laboratory
Argonne, Illinois

April, 1971

\

This report wWis puodumweountdwm {
sponsored by the ?J“nuod Siaiss Goysenment, Nelther |
the Unitsd States nor the United States Atomic Eaergy
Commission, nor say of thelr smployses, sne say of
thele contraciors, subcontractors, or their smployess,
T o eorenity o the” sccursey, com-
Habllity or respon: y for Y . -
of Md.l:op: of sny ln:omsu&al. t;pral::t::.,

product or process disclosed, or 2epeess s
would not infringe privately owned rights,




TABLE OF CONTENTS

Page
NOMENCLATURE : 4
ABSTRACT | 7
I. INTRODUCTION 7
II. RMS DISPLACEMENT RESPONSE 8
A. Equation of Motion 10
B. Parameter Study 11
C. Fundamental Vibration Frequency 15
D. Flow-Velocity-De:;endent Damping 16
E. Flow-Noise Excitation ' 16
F. Summary _ 19
I1I. AMPLITUDE DISTRIBUTION 20
IV. EXAMPLE OF APPLICATION ' 22
V. DISCUSSION 25

REFERENCES 26




LIST OF FIGURES
Title
Flexible cylindex in axial flow and coordinate system

Added mass coefficient (Qm) 88 & function of diameter
ratio (D/ad)

Effective diameter (X) as a function of v

Joint acceptance of the fundamental mede as a function
of v

Family of near-field mean-square spectra as a function
of § .

Equivalent viscous damping factor (Z;) as a function of
mean axial flow velocity (I} for a 0.5~-in.-dia,
46-7/8 ~in.-long brass rod with fixed-fixed ends

Typical probability density representation of displace-
ment of flexible cylinder vibrating in parallel-flowing
fluid (o = rms value = 2,34 mils; U = 16 ft/sec)

Page
9

9

12
12

13

17



NOMENCLATURE
Symbol Description
a Cylinder radius, in.
a, Empirical constant, sec/ft
ay Empirical comstant, seczlft2
b Axial location, in.
Cp Tangential drag coefficient
d Cylinder diameter, in.
dy Hydraulic diameter, ft B 'f?f' jzﬂ
d Tube inside diemeter, in, ' R I
£ Frequency, Hz B ’; L
f° Fundamentsl vibration frequency &f cylinder in static £luid, ﬁzi :
f1 Fundamental vibration frequency of cylinder, Hz ’
2 Cylinder length, in.
n Cylinder mass per unit length, (1b)(lec2)/ft2 :
) Random pressure cn cylinder surface, lb/in.2 )
r Resultant transverse displacement, in. o
t Time, sec
w Transverse dieplacement, in.
% Axial coordinate, in.
y Transverse digsplacement, in.
ytms Root mean square transverse displacement, in.
qn Added mass coefficlent
D Inside diameter of annular flow channel, in,
E Young's modulus of elasticity for cylinder material, lblin.2 f
H Frequency response (transfer) function for cylinder
1 Avea moment of inertias, in.4




Symbol

o o H w2 om o
, , ~

0

= or

Description

Joint acceptance
2.5 5,5
Empirical coefficient, (1b)(sec”'")/ft
Added mass of fluid per upit length, (1b)(sec?)/ft> .
Strouhal number (fdh/U)
Axial tension, 1b
Mean axial flow velocity, ft/sec

Mean convection velocity of turbulent eddies (% 0.8V), ft/sec

‘Modal constant

Modal constant

Strouhal number (mz/uc)

Damping factor in static fluid

Damping factor

Angle

Strouhal number €0,275 wd/U)

Fluid viecosity, ftzlsec

Dimensionless frequency

Density of cylinder material, (1?:)(secz)/£t.4
Fluid density, (lb)(seczblfta

Variance of transverse displacement y, in.
Bending stress, lb/in.2
Fundamental mode
Effective nondimensional diameter
Prequency, rad/sec

Fundamental vibration frequency of cylinder in static fluid, rad/sec

Fundamental vibration frequency of cylinder, rad/sec



Descrigtiqg

Intensity of near-fleld mean~square spectral density in low-freqﬁéncy
range, (1bZ)(sec)/in.% R

Heag-square spectral density of near-field flow noise,
(1b%) (sec) /in. 4 o

Mean-square spectral demsity of cylinder dil;lacqhen:;:(1;;2)(aec) f

5




TENTATIVE. DESIGN GUIDE
FOR
CALCULATING THE VIBRATION RESPONSE
OF FLEXIBLE CYLINDRICAL ELEMENTS IN
AXIAL FLOW

by
M. W, Wambsganss and S. S. Chen

ABSTRACT

Many reactor and plant equipment components, such as fuel
pins, control rods, and heat exchanger tubes, are long, slender,
beam~1ike members which are exposed tt nominally axial ccolant
flow. The flowing coolant represents a source of energy which
can induce vibratory motion of these components. This design

- guide presents a relationship for calculating the root-mean-
square (rms) displacement of a flexible rod or tube in axial
flow:. The reiationship is based on the results of a parameter
study and 18 vaiid for components that can be apprcximated as
beams with either simply-supported or fixed-fixed ends. It is
given in terms of beam natural frequency, damping factcr, and
intensity of the mean-square spectral density of the pressure
field in the low-frequency range; all three are functions of mean
axial flow velocity. Empirical expressions are developed for
damping factor and intensity of the mean-square pressure spectrum.
With these, an empirical equation for rms displacement is written
vwhich 18 in terms of known quantities and, therefore, provides
a tool which can be used by designers. Since the equation is
based on experiments involving a smooth rod in flow with minimal
entrance effects; the predicted displacements should be inter-
preted and used with care. They are not conservative and, at
best, will represent the minimum response to be expected.

I. INTRODUCTION

Many reactor and plant equipmen:t components, such as fuel pins, control
rods, and heat exchanger tubes, are lcng, slender, beam-like members which are
exposed to nowminally axial coolant flow. The flowing coolant represents a source
of energy which can induce vibratory motion of these compoments. Experiments
have identified the displacement respouse of these components as a problem in
random vibration [e.g., 1]. The resulting motion is forced, the near-field
component of the flow noise (e.g., the random pressure fluctuaticns generated
by turbulent eddies in the flow) being the primary excitation mechanism.
Aralysis has shown [2] that instabilities caused by fluid-structure coupling are
not & problem: for typlcal reactor syptem geometries and coolant flow anvi-
ronments, the critical flow velocities associated with the onset of instabilicy
sre large relative to expected velocities.
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Several empirical relationships for component displacement have been
proposed [3-5], none of which satisfactorily predicts displacement response
for all conditions. One reason is the strong system dependence of the response;
turbulence levels, as effected by entrance conditions and flow channel

geometries, are important.

This design guide presents a thecretically derived relaticnship for
calculating the root-mean-square (rms) displacement of a flexible rod or tube
in nominally exial flow. The basic analysis assumes a pressure field which
is homogeneous in space; that is, the mean-square spectral density of the pressure
is the same at any point on the rod. The relationship is based on the results
of a2 parameter study; it is valid for component/systems which have parameters -
in gpecified ranges and which can be approximated as beams with either simply~
supported or fixed-fixed ends. The relationship is given in terms of rod
natural frequency, damping factor, and intensity of the neer-field spectrum in
the low-frequency range. All three are functions of mean axial flow velocity.

The flow velocity dependence of damping and intensity of the near-field i

spectrum are not very well understoed. This precludes direct application of

the theoretical equation. However, these features are being studied at Argoune
and preliminary experiments tené to verify the derived equation for rms response.
Based on this favorable agreement, the equation was solved for the intensity of
the near-field mean-square spectrum, and experimental measurements of rms dis-
placement and damping were used to develop an empirical relationship ‘for the

flow~velocity~dependence of the intensity of the near-field spectrum. With thié R

relationship, and en empirical expression for the flow-velocity~dependent
damping, an equation for rms displacement as a function of mean axial flow
velocity and system parameters was obtailned.

The equation is in terms of known quantities and, therefore, provides a ;1:

tool which can be used by designer-analysts to predict rms displacements of
flexible rods in annular water flow. However, since the equation is based on -
experiments involving a smooth rod in flow with minimal entrance effects, the

predicted displacements should be interpreted and used with care. They are not U;if:y

conservative and, at best, will represent the minimur . esponse to be expected.vh&f

This design guide will be updated as results from the studies of damping; fﬂ ”E

and flow-excitation continue to become available.

IT. RMS nrsrmcmm‘.m

A flexible cylinder in axial flow and coordinate system.is shown
schenatically 4in Fig. 1. Since the problem ie one of random vibration, the
quantities of interest are the rms value of the response and the ampxitude
distribution. The motion of the cylinder is two-dimensional because it 18 iy
equally likely to respond in any direction. We will consider motion iu the y-
direction as defined in Fig. 1. . o u

Mean-square dieplacement is readily obtaines from the mean-square speccral
density of the displacement by 1ntegration over. the frequency.
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<y2(x.t)> = r ¢y(x.w)dw » (1)

c

since mean-square spectral density is simply the frequency distribution of the
mean-square: the symbol < > dencotes a time average. On the assumption that

the integration implied in Eq. (1) can be performed, prediction of the rms-
response then requires mathematical characterization of the mean-square spectral
density of the displacement.

A. Equation of Motion

. The equation for small lateral motion of a flexible rod in axial flow
was formulated by Paidoussis [6]. Damping and a distributed random pressure
loading were included in a subsequent analysis [7], where the response was
represented in series form as a superposition of normal modes, yielding a seriss
representation of the mean-square spectral density of the displacement. Theory
[7] and experiment [1] have shown that less than 5% of the energy is contained
in other than the fundamental mode; therefore, a one-mode approximation is
sufficient. ’

We will further assume that the convecting random pressure field is
homogeneous in space; that is, its mean-square spectral density is the same at
every point on the surface of the cylinder. Using a phenomenological model
proposed by Corcos [8], and the best features of the existing data describing
the convection and correlation decay of turbulent boundary-layer pressure '
flucc?ations, the mean-square spectral density of the displacement can be written
as [7

8,(x,0) = X228 () [HGx,0) 267G @)

The first term in the product on the right side is described as dimensionless
"effective diameter;”™ it embodies the decay of the circumferential correlation
of the pressure fleld. The second term, called the “joint acceptance,” is a
weighted cross-spectral density of the convecting pressure field; it represents
the “effectiveness™ I he pressure in exciting a mode of the rod. The third
tern is the mesn-square spestral density of the pressure field measured at a
point. The fourth term is the frequency response function (transfer function)
for the eylinder and is given by

2 -1/2
Bez,0)| = [0/ 01+ WILG? - D + 62?2 ®

The lest term is the fundamental mode; for fixed~fixed ends, it can be
approximated by the classic normal mode

91 (x) = cosh(4,73 x/2) - cos(4.73 x/*) - 0.983[sinh(4.73 x/2)
- 8in(4.73 x/2)] (4a)

and for simply-supported ends, it is given~by
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¢1(x) = /2 sin(mx/%) . (4b)

The added mass of fluid (M in Eqg. (3)) is generally assumed to be equal to

the mass of fluid displaced by the cylinder; this is valid for a cylinder
submerged in an "infinite" fluid. However, for a cylinder vibrating within a
bundle, or in close proximity to a wall, boundary effects are important as
they influence the added mass. A theoretical analysis of a cylinder vibrating

in a compressible fluid annulus has been performed [9]. The results are
expressed in the form

M= qmpf(nd2/4) R (5)

where qm is the added mass coefficient given in Fig. 2.

Substitution of Eq. (2) iato Eq. (1) vields
St = 2 [ Pl @ a2 )
o

Using the phenomenological model of Corcos [8] and experimental results pre-
sented in the literature, the functions x(w) and Jl(w) were obtained by
integration [7]). They are plotted as functions of the Strouhal numbers

v(= 0.275 wd/U;) and yv(= wl/U.) in Figs. 3 and 4 respectively. In Fig. 4,
Jy(v) 1s plotted for fixed-fixed and simply-supported ends.

Mean square spectral densities of the near-field flow noise have been
msecasured, using a method in which the low-frequency acoustic noise is nulled
out in the pressure differencing [10]. Representative results [11] are
reproduced in Fig. 5, where the frequency has been scaled with the Strouhal
number S(= £q,/U).

Prediction of rms displacement response requires mathematical charac—
terization of x, Jj, and 9,; substitution of these quantities into Eq. (6);
and integration over the frequency. Although the integration 1is not particularly
difficult to perform on a computer, it will be shown that from the results of a
parameter study a simplified relationship can be developed for rms response
of typical reactor components and fluid enviromments,

B. Parameter Study

Three different Strouhal number relationships have been utilized in
the normalization of the mean-square spectra, and in representation of the
effective diameter and joint acceptance associated with the random pressure
field; they are respectively

§Ss= fdh/U , 1

a v = 0,275 wd/Uc X €2
an

v o et/ . J
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Since the first-mode response is dominant, the cylinder will respond primarily
to frequencies in the range of its first natural frequency, hence the Strouhal
numbers associated with this frequency locate their respective range of

effectiveness,

From Figs. 3 and 4 observe that in the Strouhal number ranges (0.0l <
v < 0.6) and (10 < y < 1000), the functions x(v) and Jf(v) can be approximated
by straight lines of slopes 0.5 and -1.0 respectively. On log-log plots, these
linear relationships imply the approximate power function relationships

Cxv) = 1,392 | 000 <v<o0.6 , (8)
2 -1
Jy0(v) = 0.22 v , 10 <y <1000 . 9)

From Fig. 5 observe that for a given mean axial flow velocity, the near-field
spectrum is relatively flat out to a "break frequency.” Therefore, in the
Strouhal number range (S < 2,5) we can write

o(S) = ¢°(U) y S<2.5 , (19)

where ¢° is the intensity, or magnitude, of the near-field mean~square spectrum,

To summarize: Based on these observations, the following approximate
relationships can be written which are valid for values of parameters which
satisfy the specified ranges,

£d "

h
0 () = 9,(0) X
x() = 0.68 wa/u)M2 , 0.4 <22 au
c

z
3@ = 0470/ "2, 10 < 2% < 1000
1 ¢ Uc

On substituting Eqs. (11) into Eq. (6), the frequency dependence of the
effective diameter (x) and joint acceptance (J;) cancel, and the mean-square
pressure epectral density, being independent of frequency over the specified
range, can be brought outside the integral. If we let n = ”/”1' and further
substitute Eq. (3) into Eq. (6), the resulting equation becomes

1

dn :
d a2

3 2
(0.102)d"¢ (U)é;(x) =
<yz(x.t)>- 3 L J 2 2 2
o (1=n")" + 4gyn

(H-I-m)zzwi

The integral in Eq. (12) can be evaluated as n/(4%,) by introducing a complex
variable and employing the residue theorem; whereupon Eq. (12) becomesg

(o.oso)a%f(x)
2 3 oo u . a

) (13)
0a) “rwi g,

<5 (x,t)> =




The flowing coolant gives rise to fluid-structure coupling, resulting
in an effective axial loading which is flow velocity dependent {7]. This
contribution to the resultant axial load (additional contributions arise from
initial prelovad or are caused by differential thermal expansion under operating
conditicns) effects the natural vibration frequency (w; in Eq. (13)), and we
can write w; = w;(U). Additionally, effective system damping has been shown

to be flow-velocity-dependent [12]; comsequently, g, = &,(U).

The rms displacement can then be written in the form

(0.0180)a%*%, (x)02*> )

(14)
) 293613 0y 73 )

yms (xlu) =

where the frequency (£,), damping factor (%;), and intensity of the near-field
flow noise spectrum (%,) are functions of mean axial flow velocity and are

discussed below.

C. Fundamental Vibration Frequency

The natural vibration frequency can be obtained from the equation of
motion by neglecting damping effects and assuming a fundamentsal mode shape.
For end conditions which give rise to a symmetric fundamental mode, the
fundamental frequenecy of vibration is given by {[7]

S . 2
EI j ¢1¢1vdx + (MU~ T) j 6,9 ax
w2 - [ - ) . (15)

(u-'m)I 42 ax
[« ]

On using the normal modes given by Eqs. (4a) and (4b), and performing the
indicated integrations, one obtains

4

B8 EL 2
wi - [1 +8,(T - Mu2) ;-I , (16)
(M+m) 2
or
2.2
8. MUZ2
£2) = £2 [ 1-—2 2-] ; a”
(EI + 8,12%)

where £, is the fundamental vibration frequency in static fluid, given by

4

g8 B1 2

2=t i I ae
41" (Mim) 2

15
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For simpl:=-supported end conditions: Bo = mand B; = 0,101 ; and for fixed-
fixed end conditions: By = 4.73 and 8, = 0,0246 .

D. Flow-Velocity-Dependent Damping

The flow-velocity-dependence of system damping associated with the
vibration of a flexible cylinder subjected to nominally axial flow has been
identified [1] and studied preliminarily {12]. Results show a significant
increase in damping factor with increasing mean flow velocity; therefore,
this effect should be accounted for in predicting rms dlsplacement response,

Flow=-velocity-dependent damping is being studied in more detail [13].
These studies involve the use of an electromagnetic exciter assembly, with
coils mounted in the wall of the test section, to apply a harmonic force to
the cylinder. For selected mean axial flow velocities, forcing frequency
is varied and an effective damping factor is computed from measured frequency-
response curves. Two different measurement methods are used: (1) a modal
magnification factor method, with constant force and with constant displacement;
and (2} a frequency-bandwidth method.

Figure 6 is a typical plot of measurements made on a 0.5-in.-dia,
47-in.~long brass rod with fixed-fixed ends. The data show: (1) the flow-
velocity-dependence of damping; (2) good agreement between the different
measurement methods; and (3) good repeatability of measurement (Runs 1 and 2
were performed on different days).

The effects of end restraint, vibration frequency, and Reynolds number
are also being investigated. In general, the data obtained thus far can be
fitted with a quadratic equation of the form

cl(U) =g, +tal+ a2U2 . (19)

where [, 1s the effective viscous damping factor in stagnant fluid and
includes internal damping and external damping associated with friction at
the supports. Values of the coefficients a; and a, given on Fig. 6 are
typical of those being measured,

E. Flow-Noise Excitation

The near-field component of flow noise, in particular the random
pressure fluctuations generated by turbulent eddies, has been identified as the
primary axcitation source in the parallel-flow~induced vibration of flexible
rods [e.g., Ref. 10]. The resultant convecting random pressure field is
chazacterized via a phenomenological model representing the cross-spectral
density of the pressure field [8]. This model was used in deriving Eq. (14)

for the rms displacement.

A number of independent studies of flow noise in air and water have
been performed in which the mean-square speciral density of the pressure fileld
vas measured. In all instances, the data taken at high frequencies are in good
agreement, but the low-frequency apectra vary widely. In general, it can be
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concluded that reliable results are not available in this frequency range

(£ < 300 Hz). However, this is precisely the range of interest for flow-
induced wotion studies of many reactor components (or flexible rods simulating
reactor components), since it encompasses the range of first-mode natural
frequencies at which the components predominantly respond.

The difficulty with measuring the low-~frequency behavior of the
near-field flow noise is caused primarily by the masking effect of extraneous,
low-frequency acoustic noise, To circumvent this difficulty, a measurement
method utilizing pairs ¢f diametrically opposite, miniature, pressure trans-—
ducers, flush-mounted on the surface of a rod, was developed [10]. Im
operation, the near-field mean-gquare spectra and rms pressure are computed
from the pressure-difference signal, using the subtraction process to null
out the far-field (acoustic) contributfon to the flow noise. Typical results
arebgiven in Fig. 5, where the frequency hes been scaled with a Strouhal
number,

Equation (14), which describes rms displacement, is based on the
assunption that for a given flow velocity the intensity or magnitude of the
near~field spectrum ¢, is constant out to a Strouhal number S of about 2.5.
From measurements made to date, this appears to be a reasonable assumption,
although there are some variations as can be seen from Fig. 5.

It would be desirable to charscterize the flow-velocity-dependence of
the intensity of the near-field spectra. However, attempts at scaling the
intensity with a function of mean axial flow velocity have not been entirely
successful [10]; additional study is required.

The experimental studies of damping &t Argonne include - . ssurements
of the rms rod displacement induced by the flow excitati~, and the resonant
fthuency. Therefore, having experimental valuea for £ (U). g,(0), and

rus(%/2,U), and knowing the dimensions and material propertie- of the rod,
Bq. (14) can be solved for $,(U). Preliminery computations show that the
intensity is spproximately proportional to the mean axial flow velocity raised
to the fourth pcwer, and decreases with decrsasing hydraulic diameter.
Considering the small magnitude of the quantities involved, snd the diffi-
culties in making the associated messursments, the agreement between computed
intensities and those measured with an instrumented test eiement [10] is
good., This good agreement serves to validate the model and the derived

relationship for rms displacemsnt given by Eq. (14).
Based on the preliminary results from the above-mentioned analysis, the

intensity of the near~field mean-square spectra in the low-frequency range and
on the surface of a "smooth” rod in annular water flow can be charscterized by

the empirical relationship
s () = k%204 | 20)
where

%% % 3,16 x 1071%10%) (sec®)/ (1n. H (£
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Equation (20) is tentative, since it is based on iimited values of dy (0.5 < dp
< 1,5) and only one rod diameter; additional investigation is planned.

F. Summsry

Prediction of the rms response of a flexible rod in nominally axial flow
requires 8 random-vibration analysis. A one-mode approximation to a series
solution wag shown to be sufficient, and a representation of the mean-square
spectral density of the displacement was obtafned utilizing a phenomenological
model to characterize the :onvecting random pressure field. A parameter study
gives rise to approximations which permit evaluation of the integral in the
equation for mean=-square displacement. A relationship for rms displacement

" (Eq. (14)) 1is obtained as a function of natural frequency, damping factor, and
the intonsity of the near~field mean-square spectrum in the low frequency range;
these three variables are functions of mean axial flow velocity.

The flow~velocity-dependence of natural frequency is obtained from
analytical considerations, and is given by Eq. (17). The natural frequency is
also a2 function of axial load, which may vary under operating conditionms.

Damping increases with mean axial flow velocity. Although the energy
dissipation mechanism is not fully understood, a quadratic equation as given
by Eq. {19) seems to satisfactorily represent flow-velocity dependence as
measured from experiments.

The flow-velocity-dependence of the intensity of the near-field spectra
is the least understood of the three quantities. However, for a smooth rod
in annular water flow, Eq. (20) is a reasonable approximation.

Substituting Eqs. (17), (19), and (20) into Eq. (14) yields the following
expression for rms displacement of a flexible rod in annular water flow, with
minimal entrance turbulence:

(0.0180)l(d1'5d;‘502¢1(x)
yrns(x’u) - ~ - 8 MU222 0.75
(0-¢1-5 1 ]
(em) (¢ +a1U+aU) Z'L
(EI + BITE )J

(21)
where

s 2.56 x 10~3(1b) (sec2*?) /£t .

For a simply-supported rod

81 = 0,101, ¢1(x) = /2 sin(mx/2) s, 0 <x < ;

and for a fixed-fixed rod
By ™ 0.0246
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¢1(x) = cosh(4.73 x/2) - cos(4.73 x/R) - 0.983[sinh(4.73 x/R)
- gin(4.73 x/2)] , 0 <x <& ,

In application, it is necessary:
(1) To assume or measure the damping factor (;,) in stagnant fluid,

(2) 7o assume values for 81 and a, based on independent studies of
damping (a, = 2.4 x 10~* sec/ft, and a, = 3.4 x 1076 sec?/ft?
are typical values). If they were to be measured, cne might Just -
as easily measure Ypng. | -

(3) To assume a value for the axial load T, or to calculate it from
Eq. (18), using 2 measured value of natural frequency in static
fluid.

The remaining quantities are known from the system geometry and the material
properties of the rod.

Amplitudes are of primary importance, since the mode of failure most
likely will be fretting or wear. However, for those cases in which stresses are
of concern, they are casily obtained from displacements as given by .

2 :
"y (x,0)
[0, (x, 0], = 55 = (22)

or, in terms of midpoint displacement as given by

[Ed¢"(x) N

[Oy(X.U)]rm D Yems(5/2:0) (23)

where a prime (') denotes differentiation with respect to x. Values for the
mode shape ¢,, and its second derivative ¢?, are tabulated in Ref. 14.

I1I, AMPLITUDE DISTRIBUTION

Absolute values of amplitude are meaningless because we are dealing
with a random vibration phenomenon. Therefore, we have developed a relatioaship
to predict the rms displacement response, Although this information is
useful, a complete description of the random signal requirez knowledge of the
probability law describing the amplitude distribution. For example, two random
motions can have the same rms displacement, but one could experience peak
amplitudes significantly greater than the other and/or more frequently per
given sample length.

Displacement-time histories from a number of different flow tests have
been processed on an amplitude-distribution analyzer. The shapes of the
curves obtained suggest a normal or Gaussian distribution. As shown in Fig. 7,
vhich 18 a typical probability density representation of vibration amplitude,
the normal probability law approximates the data quite well.
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Fig. 7. Typical probability-density representation of displacement

of flexible cylinder vibrating in parallel-flowing fluid
(o = rms value = 2.34 mils; U = 16 ft/sec)
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Based on this agreement, we can assume a normal distribution for the
distribucion of vibration amplitude in a given direction, and write the
probability law as

Py(y) =

exp [_ 3 (xf'! . | (24)

2T o

which implies a mean value of zero (o is the standhrd deviation, and for a
zero mean value is equsl to the rms value). The probability that an observed.

value of displacement will range between -y, and y, is determined by the ) s
integration , v e

Pl < < ] [yo ()d 1 [yo 1\2.6
Yo 2 YISV I " Pylysdy = exp | = z Y .
° © -y T V21 o -y L z (o)

° 3 (25)

The normal probability integral has been evaluated and is tabulated in various
sources [e.g., Ref. 15]. Several values are listed below:

n P[-n Sysal]
0.5 0.383

1.0  0.683

1.5 " 0.866

2.0 . 0.954 -
2.5 0.988

3.0 0,997

Observe the probability of 0.997 that the absolute vibration amplitude will
be less than 30; that is, 99.7% of the time the amplitude can be expected to
be less than 30, or 3yppg. Such information is useful in fatigue and wear
studies and in determining if impacting with adjacent components or aupport
members may occur. :

IV, EXAMPLE OF APPLICATION

Consider the case of a long, slender tube concentrically located within
a containment tube and subjected to coolant flow; system dimensions and
material properties are given in Table I. The end conditions can be approximated
as fixed, and axial loading will be assumed negligible. The problem: ¥ind the
flow~induced, rms displacement of the midpoint of the tube.



TABLE 1
Data for Sample Problem
Tube
Outside Diameter (d) C.4 in,
Ingide Diameter {d i) 0.3 in.
Length (%) 96 in,
Material: stainless steel
Density (o) 15.6 (1b) (sec®) /£t
Young's Modulus (E) : 28 x_106 lb/in.2
Contaimment Tube
Inside Diameter (D) 1.5 in,
Coolant
Water
Density (og) 1.94 (1b)(sec?)/st”
Velocity (U) 40 ft/sec

The following calculational steps are required:

1)

(2)

&)

Hydraulic diameter (dh)

- 4 (Flow Area)
dh (Wetted Perimeter)

2 _ .2
_lmgb-dz_ -
Q"o+ g ~D-d

d'h = 0.0917 ft

Mass per unit length of tube (m)

m = p[n(a2 - a)/4]

m = 5.96 x 10~3(1b) (sec?)/£t2

Added mass per unit length of fluid (M)

From Eq. (5)
= 2
M mef(nd /4)
For D/d = 3,75, we read Cn = 1,15 fron Fig. 2 and obtain

M=1,95x 10~3 (1b) (sec?)/ft2

23
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{(4) Moment of inertia (I)

I= (d - a‘i‘)/sa
I=4.14x 108 £eb

(5) Natural vibration frequency in stagnant fluid (fo)

From Eq. (18), with no axial preload (T = 0),

2
£ = 80 [ EI ]1/2
o 2”'2 M+ m)

For fixad-fixed end conditions By, = 4.73 and
£f = 8,18z
o
The next step is to compute the Strouhal numbers fodn/U, wed/Uy, and

w,2/Uc, and verify that the values fall within the ranges specified in Eqs. (11),
for which the analysis is valid. From the above computations,

w, = wao = 50,9 rad/sec;

U, is the convection velocity of the pressure field and is approximately 0.8 U;
therefore,

Bc = 0,8 U= 32 ft/sec .
The Strouhal numbers are

fodhlU = 0,019 ,

u.\od/Uc = 0,053 »
and

[ 2,“ = 12.7 .
o c

Prom Eqs. (ll1) we see that the values lie within the range over which the
approximation is valid,

For displacement at the midpoint, x = %/2, and ¢,(2/2) = 1,588, as
obtained from Eq, (4a) or Ref. 14, Let us assume: (1) the effective viscous
damping factor in stagnant fluid i, is 0,008; and (2} the flow-velocity-
dependence of damping 18 that given in Fig. 6; therefore a, = 2.44 x 10~" gec/ft,
and a, = 3.44 x 1076 sec?/ft2. Substituting these values into Eq. (21), we

compute
Yemg = 3.1 mils

as the expected flow-induced, rms displacement of the tube for a coclant flow
velocity of 40 ft/sec.
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V. DISCUSSION

Equation {i4), which describes the rms displacement response, is
derived from a theoretical analysis using the results of a parsmeter study to
simplify the solution. It is applicable in the design evaluation of many
reactor system components which are subjected to nominally axial coolant flow,
specifically those with parameters satisfying the Strouhal number ranges
specified in Eq. (11). It is also applicable to pipes conveying fluid.

The primary difficulty associated with direct usage of Eq. (14) is that
the system and flow-velocity dependence of the intensity of the near-field
mean-gquare spectra in the low-frequency range of interest is not known. There-
fore, since near-field flow noise is strongly system dependent, accurate
prediction of displacement requires measurement of the pressure field in a
prototypic assembly closely simulating the geometry and flow paths of the real
system, However, the pressure measurements are difficult to perform; moreover,
if a prototypic assembly was available, one might as well measure displacement

response directly.

Equation (21) is an empirical relationship for rms displacement derived
from Eq. (14) and based on experiments involving a smooth, flexible cyliader in
annular water flow. It 18 in terms of known quantities and is, therefore, easily
used by designers. However, since it is based on results from a smooth cylinder
in flow with minimal entrance effects, the computed rms response represents a
lower bound on the actual displacement. It is the response the designer can
expect in a system designed for minimum turbulence by streamlining flow paths and
providing isolation from external, structural-borne vibrations. The upper bound
will depend on the system.

In addition to providing insight into the response problem and a “feel"
for the magnitude of the displacement induced by near-field flow noise, the
results can be useful in design evaluation. For example, if the response
computed from Eq. (21) exceeds the allowable response determined from considera-
tions of damage and failure mechanisms, the designer will know immediately that

his design must be revised.
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