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KOMENCLATURB

Symbol Description

a Cylinder radius, in.

a. Empirical constant, sec/ft

2 2&2 Empirical constant, sec /ft

b Axial location, in.

c_ Tangential drag coefficient

d Cylinder, diameter, in.

dh Hydraulic diameter, ft

d. Tube inside diameter, in.

f Frequency, Hz

f Fundamental vibration frequency of cylinder in static fluid, Has

f. Fundamental vibration frequency of cylinder, Hz

ft Cylinder length, in.

2 2m Cylinder mass per unit length, (lb)(sec )/ft

2
p Random pressure on cylinder surface, lb/in.

r Resultant transverse displacement, in.

t Time, sec

w Transverse displacement, in.

K Axial coordinate, in.

y Transverse displacement,, in.

y Root mean square transverse displacement, in.

C Added mass coefficiento

D Inside diameter of annular flow channel, in.

2
E Young's modulus of elasticity for cylinder material, lb/in.'

H Frequency response (trannfai

I Area moment of inertia, in.

H Frequency response (transfer) function for cylinder

4



Description

Joint acceptance

Empirical coefficient, (Ib)(sec2'5)/ft5'5

M Added mass of fluid per unit length, (lb)(sec2)/ft2

5 Strouhal number (fd. /U)

T Axial tension, lb

U Mean axial flow velocity, ft/sec

Ufi Mean convection velocity of turbulent eddies (% 0.8U), ft/sec

6 Modal constanto

B- Modal constant

Y Strouhal number (u£/U )
c

C Damping factor in static fluid

Z. Damping factor

6 Angle

v Strouhal number (0,275 wd/U)
c

v. Fluid viscosity, ft /sec
n Dimensionless frequency

2 4
p Density of cylinder material, (lb)(sec )/£t

p f Fluid density, (lb)(sec2)/ft4

o" Variance of transverse displacement y, in.
2

cr Bending stress, lb/in.

$. Fundamental mode

X Effective nondimensional diameter

u Frequency, rad/sec

u Fundamental vibration frequency of cylinder in static fluid, rad/sec
o

to. Fundamental vibration frequency of cylinder, rad/sec



Symbol Description

• Intensity of near-field mean-square spectral density in low-frequeacy
° range, (Ib2)(sec)/in.4

• Mean-square spectral density of near-field flow noise,
p (Ib2)(8ec)/in.«

'•'• • • ' • • • • : 2

• Hean-square spectral density of cylinder displacement, (in. )(aec)
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ABSTRACT

Many reactor and plant equipment components, such as fuel
pins, control rods, and heat exchanger tubes, are long* slender,
beam-like members which are exposed to nominally axial coolant
flow. The flowing coolant represents a source of energy which
can induce vibratory motion of these components. This design
guide presents a relationship for calculating the root-mean-
square (rms) displacement of a flexible rod or tube in axial
flow. The relationship is based on the results of a parameter
study and is vaXid for components that can be approximated as
beams with either simply-supported or fixed-fixed ends. It is
given in terms of beam natural frequency, damping factor, and
intensity of the mean-square spectral density of the pressure
field in the low-frequency range; all three are functions of mean
axial flow velocity. Empirical expressions are developed for
damping factor and intensity of the mean-square pressure spectrum.
With these, an empirical equation for rms displacement is written
which is in terms of known quantities and, therefore, provides
a tool which can be used by designers. Since the equation is
based on experiments involving a smooth rod in flow with minimal
entrance effects, the predicted displacements should be inter-
preted and used with care. They are not conservative and, at
best, will represent the minimum response to be expected.

I. INTRODUCTION

Many reactor and plant equipment components, such as fuel pins, control
rods, and heat exchanger tubes, are long, slender, beam-like members which are
exposed to nouinally axial coolant flow. The flowing coolant represents a source,
of energy which can induce vibratory notion of these components. Experiments
have identified the displacement response of these components as a problem in
random vibration [e.g., 1]. The resulting motion is forced, the near-field
component of the flow noise (e.g., the random pressure fluctuations generated
by turbulent eddies in the flow) being the primary excitation mechanism.
Analysis has shown [2] that instabilities caused by fluid-structure coupling are
not * problem: for typical reactor syntem geometries and coolant flow envi-
ronments, the critical flow velocities associated with the onset of instability
*re large relative to expected velocities.



Several empirical relationships for component displacement have been
proposed [3-5], none of which satisfactorily predicts displacement response
for all conditions. One reason is the strong system dependence of the response;
turbulence levels, as effected by entrance conditions and flow channel
geometries, are important.

This design guide presents a theoretically derived relationship for
calculating the root-mean-square (rms) displacement of a flexible rod or tube
in nominally axial flow. The basic analysis assumes a pressure field which
is homogeneous in space; that is, the mean-square spectral density of the pressure
is the sane at any point on the rod. The relationship is based on the results
of a parameter study; it is valid for component/systems which have parameters
in specified ranges and which can be approximated as beams with either simply-
supported or fixed-fixed ends. The relationship is given in terms of rod
natural frequency, damping factor, and intensity of the near-field spectrum in
the low-frequency range. All three are functions of mean axial flow velocity.

The flow velocity dependence of damping and intensity of the near-field
spectrum are not very well understood. This precludes direct application of
the theoretical equation. However, these features are being studied at Argonne
and preliminary experiments tend to verify the derived equation for rms response.
Based on this favorable agreement, the equation was solved for the intensity of
the near-field mean-square spectrum, and experimental measurements of rms dis-
placement and damping were used to develop an empirical relationship for the
flow-velocity-dependence of the intensity of the near-field spectrum. With this
relationship, and en empirical expression for the flow-velocity-dependent
damping, an equation for rms displacement as a function of mean axial flow
velocity and system parameters was obtained.

The equation is in terms of known quantities and, therefore, provides a
tool which can be used by designer-analysts to predict rms displacements of
flexible rods in annular water flow. However, since the equation is based on
experiments involving a smooth rod in flow with minimal entrance effects, the
predicted displacements should be interpreted and used with care. They are not
conservative and, at best, will represent the minimum esponse to be expected.

This design guide will be updated as results from the studies of damping
and flow-excitation continue to become available.

II. RMS DISPLACEMENT

A flexible cylinder in axial flow and coordinate system is shown
schematically in Fig. 1. Since the problem is one of random vibration, the
quantities of interest are the rms value of the response and the amplitude
distribution. The notion of the cylinder is two-dimensional because it is
equally likely to respond in any direction. We will consider motion in the y-
direction as defined in Fig. 1.

Mean-square displacement is readily obtained from the mean-square spectral
density of the displacement by integration over the frequency:
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<y2(x,t)> - j * (x,(o)du , (1)
Jo y

since mean-square spectral density Is simply the frequency distribution of the
mean-square,; the symbol < > denotes a time average. On the assumption that
the integration implied in Eq. (1) can be performed, prediction of the rms-
xesponse then requires mathematical characterization of the mean-square spectral
density of the displacement.

A. Equation of Motion

The equation for small lateral motion of a flexible rod in axial flow
was formulated by Paidoussis [6]. Damping and a distributed random pressure
loading were included in a subsequent analysis [7], where the response was
represented in series form as a superposition of normal modes, yielding a serias
representation of the mean-square spectral density of the displacement. Theory
[7] and experiment [1] have shown that less than 5% of the energy is contained
in other than the fundamental mode; therefore, a one-mode approximation is
sufficient.

We will further assume that the convecting random pressure field is
homogeneous in space; that is, its mean-square spectral density is the same at
every point on the surface of the cylinder. Using a phenomenological model
proposed by Corcos [8], and the best features of the existing data describing
the convection and correlation decay of turbulent boundary-layer pressure
fluctuations, the mean-square spectral density of the displacement can be written
as [7]

*y(x,u) - x
2(<o)4(u))4p(»)|H<x,co)|

2^<x) . (2)

The first tern in the product on the right side is described as dimensionless
"effective diameter;" it embodies the decay of the circumferential correlation
of the pressure field. The second term, called the "joint acceptance," is a
weighted cross-spectral density of the convecting pressure field; it represents
the "effectiveness" i.-£ ".he pressure in exciting a mode of the rod. The third
term Is the mean-square spectral density of the pressure field measured at a
point. The fourth term is the frequency response function (transfer function)
for the cylinder and is given by

|H(x,u))| - [d/(M + m)3[(uj - w 2 ) 2 + 4s2w2u>2f1/2 . (3)

The last term is the fundamental mode; for fixed-fixed ends, it can be
approximated by the classic normal mode

^(x) - cosh(4.73 x/£> - cos(4.73 %/") - O.983[sinh<4.73 x/S,)

- sin(4.73 x/a)l ; (4a)

and for simply-supported ends, it is uiven by
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x . (4b)

The added mass of fluid (M in Eq. (3)) is generally assumed to be equal to
the mass of fluid displaced by the cylinder; this is valid for a cylinder
submerged in an "infinite" fluid. However, for a cylinder vibrating within a
bundle, or in close proximity to a wall, boundary effects are important as
they influence the added mass. A theoretical analysis of a cylinder vibrating
in a compressible fluid annulus has been performed [9]. The results are
expressed in the form

M - Cmpf Ord
2/4) , (5)

where C is the added mass coefficient given in Fig. 2.
m
Substitution of Eq. (2) into Eq. (1) yields

<y2(x,t)> - *J(x) | x2(«)jJ(u)*p(o))|H(x,a))|
2daj . (6)

Using the phenomenological model of Corcos [8] and experimental results pre-
sented in the literature, the functions x(<"0 and j|(u) were obtained by
integration [7]. They are plotted as functions of the Strouhal numbers
v(« 0.27S ud/Uc) and Y ( - U & / U C ) in Figs. 3 and 4 respectively. In Fig. 4,
JJ( Y ) is plotted for fixed-fixed and simply-supported ends.

Mean square spectral densities of the near-field flow noise have been
measured, using a method in which the low-frequency acoustic noise is nulled
out in the pressure differencing [10]. Representative results [11] are
reproduced in Fig. 5, where the frequency has been scaled with the Strouhal
number S(- fdh/U).

Prediction of rms displacement response requires mathematical charac-
terisation of x» Jj.» and *p; substitution of these quantities into Eq. (6);
and integration over the frequency. Although the integration is not particularly
difficult to perform on a computer, it will be shown that from the results of a
parameter study a simplified relationship can be developed for rms response
of typical reactor components and fluid environments.

B. Parameter Study

Three different Strouhal number relationships have been utilized in
the normalization of the vean-square spectra, and in representation of the
effective diameter and joint acceptance associated with the random pressure
field; they are respectively

s - fdh/n

iv - 0.275 ud/U \ (7)
and
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Since the first-mode response is dominant, the cylinder will respond primarily
to frequencies in the range of its first natural frequency, hence the Strouhal
numbers associated with this frequency locate their respective range of
effectiveness.

From Figs. 3 and 4 observe that in the Strouhal number ranges (0.01 <
v < 0.6) and (10 < y < 1000), the functions x(v) and J|(Y) can be approximated
by straight lines of slopes 0.5 and -1.0 respectively. On log-log plots, these
linear relationships imply the approximate power function relationships

X(v) - 1.3 v1/2 , 0.01 < v < 0.6 , (8)

i - 0.22 Y"1 t 10 < Y < 1000 . (9)

From Fig. 5 observe that for a given mean axial flow velocity, the near-field
spectrum is relatively flat out to a "break frequency." Therefore, in the
Strouhal number range (S < 2.5) we can write

4(S) - *o(U) , S < 2.5 , (10)

where 4 is the intensity, or magnitude, of the near-field mean-square spectrum.

To summarize: Based on these observations, the following approximate
relationships can be written which are valid for values of parameters which
satisfy the specified ranges,

* (u>) - * (U) , - ~ < 2.5 '
p o U

- 0.68 (wd/U,)*'* , 0.04 < ̂  < 2.2 / (11)
c '

r 1 / 2 , io < |p < looo j
c /

On substituting Eqs. (11) into Eq. (6), the frequency dependence of the
effective diameter (x) and joint acceptance (Jj) cancel, and the mean-square
pressure spectral density, being independent of frequency over the specified
range, can be brought outside the integral. If we let n • w/wj, and further
substitute Eq. (3) into Eq. (6), the resulting equation becomes

» (0.102)d3* (U)4>2(x) f» .
<y2(x,t)> § — ^ j 5-fJ J-J • (12)

The integral in Eq. (12) can be evaluated as TT/(4CJ> by introducing a complex
variable and employing the residue theoroa; whereupon Eq. (12) becomes

, (0.080)d3*J(x)
<yZ(x,t)> 5—=± » (U) . .. (13)
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The flowing coolant gives rise to fluid-snructure coupling, resulting
in an effective axial loading which is flow velocity dependent [7]. This
contribution to the resultant axial load (additional contributions arise from
initial preload or are caused by differential thermal expansion under operating
conditions) effects the natural vibration frequency (u>j in Eq. (13)), and we
can write Uj • (^(U). Additionally, effective system damping has been shown
to be flow-velocity-dependent [12]; consequently, Cx - CjOO.

The rms displacement can then be written in the form

<0.0180)dla5*.(x)*°*5(U)

y ( x U )
a t h n ) £0.5 f1.5 ( u ) 50.5 ( u )

where the frequency (fj), damping factor (?i), and intensity of the near-field
flow noise spectrum (*o) are functions of mean axial flow velocity and are
discussed below.

C. Fundamental Vibration Frequency

The natural vibration frequency can be obtained from the equation of
motion by neglecting damping effects and assuming a fundamental mode shape.
For end conditions which give rise to a symmetric fundamental mode, the
fundamental frequency of vibration is given by [7]

EI I *,*:*dx + (MIT- T) I *,*V dx(MU2- T) J
• ft

<S>1 d x

On using the normal modes given by Eqs. (4a) and (4b), and performing the
indicated integrations, one obtains

, BJEI r 9 -,2-

(of - -2 1 f 1 + B, (I - MU2) ~ ] , (16)
A (IHin)ir L x JS1J

or

I (EI + ejTJT) J

where f0 is the fundamental vibration frequency in static fluid, given by

.2( T,2\l + 9,11- .
9 ( T ,
f2 - —52 z l + 9,11- . (18)0 4 7 2 4 V 1E1 I
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For simple-supported end conditions: Bo • IT and 6j - 0.101 ; and for fixed"
fixed end conditions: 0O - 4.73 and &1 » 0.0246 .

D. Flow-Velocity-Dependent Damping

The flow-velocity-dependence of system damping associated with the
vibration of a flexible cylinder subjected to nominally axial flow has been
identified [1] and studied preliminarily [12]. Results show a significant
increase in damping factor with increasing mean flow velocity; therefore,
this effect should be accounted for in predicting rms displacement response.

Flow-velocity-dependent damping is being studied in more detail [13].
These studies involve the use of an electromagnetic exciter assembly* with
coils mounted in the wall of the test section, to apply a harmonic force to
the cylinder. For selected mean axial flow velocities, forcing frequency
is varied and an effective damping factor is computed from measured frequency-
response curves. Two different measurement methods are used: (1) a modal
magnification factor method, with constant force and with constant displacement;
and (2) a frequency-bandwidth method.

Figure 6 is a typical plot of measurements made on a 0.5-in.-dia,
47-in.-long brass rod with fixed-fixed ends. The data show: (1) the flow-
velocity-dependence of damping; (2) good agreement between the different
measurement methods; and (3) good repeatability of measurement (Runs 1 and 2
were performed on different days).

The effects of end restraint, vibration frequency, and Reynolds number
are also being investigated. In general, the data obtained thus far can be
fitted with a quadratic equation of the form

51<U) » Co + a2U + a2U
2 , (19)

where Co is the effective viscous damping factor in stagnant fluid and
includes internal damping and external damping associated with friction at
the supports. Values of the coefficients aj and a2 given on Fig. 6 are
typical of those being measured.

E. Flow-Noise Excitation

The near-field component of flow noise, in particular the random
pressure fluctuations generated by turbulent eddies, has been Identified as the
primary excitation source in the parallel-flow-induced vibration of flexible
rods [e.g., Ref. 10]. The resultant convecting random pressure field is
characterized via a phenouenological model representing the cross-spectral
density of the pressure field [8]. This model was used in deriving Eq. (14)
for the rms displacement.

A number of independent studies of flow noise in air and water have
been performed in which the mean-square spectral density of the pressure field
was measured. In all instances, the data taken at high frequencies are in good
agreement, but the low-frequency spectra vary widely. In general, it can be
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concluded that reliable results are not available In this frequency range
(f < 300 Hz). However, this is precisely the range of interest for flow-
Induced notion studies of many reactor coaponents (or flexible rods simulating
reactor components), since it encompasses the range of first-mode natural
frequencies at which the components predominantly respond*

The difficulty with measuring the low-frequency behavior of the
near-field flow noise is caused primarily by the masking effect of extraneous,
low-frequency acoustic noise. To circumvent this difficulty, a measurement
method utilizing pairs cf diametrically opposite, miniature, pressure trans-
ducers, flush-mounted on the surface of a rod, was developed [10].In
operation, the near-field mean-square spectra and rms pressure are computed
from the pressure-difference signal, using the subtraction process to null
out the far-field (acoustic) contribution to the flow noise. Typical results
are given in Fig. 5, where the frequency has been scaled with a Strouhal
number.

Equation (14), which describes rms displacement, is based on the
assumption that for a given flow velocity the intensity or magnitude of the
near-field spectrum •„ is constant out to a Strouhal number S of about 2.5.
From measurements made to date, this appears to be a reasonable assumption,
although there are some variations as can be seen from Fig. 5.

It would be desirable to characterize the flow-velocity-dependence of
the intensity of the near-field spectra. However, attempts at scaling the
Intensity with a function of mean axial flow velocity have not been entirely
successful [10]; additional study Is required.

The experimental studies of damping at Argonne include ~ ,<surements
of the rms rod displacement induced by the flow •xcitatl' ., «*nd the resonant
frequency. Therefore, having experimental values for fj(U), Sj(U), and
yrB8(A/2,U), and knowing the dimensions and material properties of the rod,
Eq. (14) can be solved for #O(U). Preliminary computations show that the
Intensity is approximately proportional to the mean axial flow velocity raised
to the fourth pcwer, and decreases with decreasing hydraulic diameter.
Considering the small magnitude of the quantities involved, and the diffi-
culties in making the associated measurements, the agreement between computed
intensities and those measured with an instrumented test element [10] is
good. This good agreement serves to validate the model and the derived
relationship for rms displacement given by Eq. (14).

Based on the preliminary results from the above-mentioned analysis, the
intensity of the near-field mean-square spectra in the low-frequency range and
on the surface of a "smooth1* rod in annular water flow can be characterized by
the empirical relationship

•o(0) » K
2d-|u* , (20)

where

K 2 % 3.16 x 10"10(lb2)(sec5)/(in.*)(ft7)
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Equation (20) is tentative, since it is based on limited values of dn (0.5 < dj,
< 1.5) and only one rod diameter; additional investigation is planned.

F. Su—ary

Prediction of the rms response of a flexible rod in nominally axial flow
requires a random-vibration analysis. A one-mode approximation to a series
solution was shown to be sufficient, and a representation of the mean-square
spectral density of the displacement was obtafned utilizing a phenomenological
model to characterize the ̂ onvecting random pressure field. A parameter study
gives rise to approximations which permit evaluation of the Integral in the
equation for mean-square displacement. A relationship for rms displacement
* (Eq. (14)) is obtained as a function of natural frequency, damping factor, and
the intensity of the near-field mean-square spectrum in the low frequency range;
these three variables- are functions of mean axial flow velocity.

The flow-velocity-dependence of natural frequency is obtained from
analytical considerations, and is given by Eq. (17). The natural frequency is
also a function of axial load, which may vary under operating conditions.

Damping increases with mean axial flow velocity. Although the energy
dissipation mechanism is not fully understood, a quadratic equation as given
by Eq. (19) seems to satisfactorily represent flow-velocity dependence as
measured from experiments.

The flow-velocity-dependence of the intensity of the near-field spectra
is the least understood of the three quantities. However, for a smooth rod
in annular water flow, Eq. (20) is a reasonable approximation.

Substituting Eqs. (17), (19), and (20) into Eq. (14) yields the following
expression for rms displacement of a flexible rod in annular water flow, with
minimal entrance turbulence:

(0.0180)Kd1*5dJ#5U2*1(x)
y <x,U) ~ L ~

0 5 1.5 2.0.'Au*:>fx*:>(M+m)(c + a,U + aoU ) "O O 1 £

(21)
where

K » 2.56 x 10"3(lb)(sec2#5)/ft5*5 .

For a simply-supported rod

Bj - 0.101, <j>1(x) - & sln(mE/&) , 0 < x < ft ;

and for a fixed-fixed rod

fil - 0.0246
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^(x) - cosh<4.73 %/Z) - cos(4.73 x/l) - 0.983[sinh(4.73 x/Jt)

- sin(A.73 x/&)] , 0 < x < % .

In application, it is necessary:

(1) To assume or measure the damping factor (?o) in stagnant fluid.

(2) To assume values for &\ and a2 based on independent studies of
damping (a! - 2.4 x lOT* sec/ft, and a2 - 3.4 x 10"

6 sec2/ft2

are typical values). If they were to be measured, ens might just
as easily measure y^g. ,

(3) To assume a value for the axial load T, or to calculate it from
Eq. (18), using a measured value of natural frequency in static
fluid. •

The remaining quantities are known from the system geometry and the material
properties of the rod.

Amplitudes are of primary importance, since the mode of failure most
likely will be fretting or wear. However, for those cases in which stresses are
of concern, they are easily obtained from displacements .is given by

<22>^ 2

or, in terms of midpoint displacement as given by

Ed*"(x) '
A • '""• 'I) , (23)

where a prime (') denotes differentiation with respect to x. Values for the
mode shape $j, and its second derivative <j>", are tabulated in Ref. 14.

III. AMPLITUDE DISTRIBUTION

Absolute values of amplitude are meaningless because we are dealing
with a random vibration phenomenon. Therefore, we have developed a relationship
to predict the rms displacement response. Although this information is
useful, a complete description of the random signal requires knowledge of the
probability law describing the amplitude distribution. For example, two random
motions can have the same rms displacement, but one could experience peak
amplitudes significantly greater than the other and/or more frequently per
given sample length.

Displacement-time histories from a number of different flow tests have
been processed on an amplitude-distribution analyzer. The shapes of the
curves obtained suggest a normal or Gaussian distribution. As shown in Fig. 7,
which is a typical probability density representation of vibration amplitude,
the normal probability law approximate* the data quite well.
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of flexible cylinder vibrating in parallel-flowing fluid
(o- = rms value = 2.34 mils; U = 16 ft/sec)
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Based on this agreement, we can assume a normal distribution for the
distribution of vibration amplitude in a given direction, and write the
probability law as

r . / \ 2 T

I , (24)

which implies a mean value of zero (a is the standard deviation, and for a
zero mean value is equal to the rms value). The probability that an observed ;.
value of displacement will range between -yo and yo is determined by the A;>
integration Z

(25)

The normal probability integral has been evaluated and is tabulated in various
sources [e.g., Ref. 15]. Several values are listed below:

n
0.5

1.0

1.5

2 .0

2.5

3.0

P[-n < y < n ]
0.383
0.683
0.866
0.954
0.988
0.997

Observe the probability of 0.997 that the absolute vibration amplitude will
be less than 3a; that is, 99.7% of the time the amplitude can be expected to
be less than 3a, or 3yOT8. Such information is useful in fatigue and wear
studies and in determining if impacting with adjacent components or support
members may occur.

IV. EXAMPLE OF APPLICATION

Consider the case of a long, slender tube concentrically located within
a containment tube and subjected to coolant flow; system dimensions and
material properties are given in Table I. The end conditions can be approximated
as fixed, and axial loading will be assumed negligible. The problem: Find the
flow-induced, rms displacement of the midpoint of the tube.
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TABLE I

Data for Sample Problem

Tube

Outside Diameter (d)

Inside Diameter (d.)

Length (£)

Material: stainless steel

Density (p)

Young's Modulus (E)

Containment Tube

Inside Diameter (D)

Coolant

Hater

Density (Pf)

Velocity (U)

0.4 in.

0.3 in.

96 in.

15.6 Ub)(sec2)/ft4

28 x 106 lb/in.2

1.5 in.

1.94 (Ib)(sec2)/ft4

40 ft/sec

The following calculational steps are required:

(1) Hydraulic diameter (dh)

. „ 4 (Flow Area)
(Wetted Perimeter)

4TT(D2 - d2)

4(D + 1) " D "

dh - 0.0917 ft

(2) Mass per unit length of tube (m)

m - p[w(d2 -

m - 5.96 x 10"3(lb)(sec2)/ft2

(3) Added mass per unit length of fluid (M)

From Eq. (5)

M - CmP£(ird
2/4)

For D/d - 3.75, we read C - 1.15 froo. Fig. 2 and obtain

M - 1.95 x 10"3 (Ib)(sec2)/ft2
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(4) Moment of inertia (I)

I - »r(d4 - d*)/64

I - 4.14 x 10"8 ft4

(5) Natural vibration frequency in stagnant fluid (f )

From Eq. (18), with no axial preload (T - 0),

f __^ f El ™2

For fixf.d-fixed end conditions Bo - 4.73 and

f * 8.1 Hzo
The next step is to compute the Strouhal numbers fodh/U, a>od/Uc, and

(i>o&/Uc> and verify that the values fall within the ranges specified in Eqs. (11),
for which the analysis is valid. From the above computations,

u « 2irf - 50.9 rad/sec;

Uc is the convection velocity of the pressure field and is approximately 0.8 U;
therefore,

U - 0.8 U - 32 ft/sec .c

The Strouhal numbers are

f d./U - 0.019 ,o n

and

u> d/U - 0.053 ,o c

"o*/Uc " 12#7

From Eqs. (11) we see that the values lie within the range over which the
approximation is valid.

For displacement at the midpoint, x - A/2, and *1(«./2) • 1.588, as
obtained from Eq, (4a) or Ref. 14. Let us assume: (1) the effective viscous
damping factor in stagnant fluid Co is 0.008; and (2) the flow-velocity-
dependence of damping is that given in Fig. 6; therefore a, * 2.44 x 10'** sec/ft,
and a2 - 3.44 x 10~

6 eec2/ft2. Substituting these values into Eq. (21), we
compute

as the expected flow-induced, rms displacement of the tube for a coolant flow
velocity of 40 ft/sec.
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V. DISCUSSION

Equation (14), which describes the rms displacement response, is
derived from a theoretical analysis using the results of a parameter study to
simplify the solution. It is applicable in the design evaluation of many
reactor system components which are subjected to nominally axial coolant flow,
specifically those with parameters satisfying the Strouhal number ranges
specified in Eq. (11). It is also applicable to pipes conveying fluid.

The primary difficulty associated with direct usage of Eq. (14) is that
the system and flow-velocity dependence of the intensity of the near-field
•ean-square spectra in the low-frequency range of interest is not known. There-
fore, since near-field flow noise is strongly system dependent, accurate
prediction of displacement requires measurement of the pressure field in a
prototypic assembly closely simulating the geometry and flow paths of the real
system. However, the' pressure measurements are difficult to perform; moreover,
if a prototypic assembly was available, one might as wel.l measure displacement
response directly.

Equation (21) is an empirical relationship for rms displacement derived
from Eq. (14) and based on experiments involving a smooth, flexible cylinder in
annular water flow. It is in terms of known quantities and is, therefore, easily
used by designers. However, since it is based on results from a smooth cylinder
in flow with minimal entrance effects, the computed rms response represents a
lower bound on the actual displacement. It is the response the designer can
expect in a system designed for minimum turbulence by streamlining flow paths and
providing isolation from external, structural-borne vibrations. The upper bound
will depend on the system.

in addition to providing insight into the response problem and a "feel"
for the magnitude of the displacement induced by near-field flow noise, the
results can be useful in design evaluation. For example, if the response
computed from Eq. (21) exceeds the allowable response determined from considera-
tions of damage and failure mechanisms, the designer will know immediately that
his design must be revised.



26

REFERENCES

1 . Wambsganss, M. H., and Boers, B. L., Parallel-Flow-Induced Vibration of a
Cylindrical Rod, ASME Paper No. 68-WA/NE-15 (December 1968).

2. Paidoussis, M. p . , vibration of Flexible Cylinders with Supported Ends,
Induced by Axial Flow, Proc. Inst. Hech. Engrs. 180 (PC 3J), 268-278 (1965-
1966).

3. Basile, D., Faure, J . , and Ohlmer, E., Experimental Study on the Vibration
of Various Fuel Rod Models in Parallel Flan, Nucl. Eng. Design T_, 517-534
(1966).

4. Paidoussis, H. P. , An Experimental Study of Vibration of Flexible Cylinders
Induced by nominally Axial Flow, Nucl. Sci. Eng. 35, 127-138 (1969).

5. Reavis, J. R., Vibration Correlation for Maximum Fuel-Element displacement in
-Parallel Turbulent Flaw, Nucl. Sci. Eng. j»8, 63-69 (1969).

6. Paidoussis, H. P. , Dynamics of Flexible Slender Cylinders in Axial Flow,
Part I: Theory, J. Fluid Mech. 26 (Pt. 4 ) , 717-736 (1966).

7. Chen, S. S. , and Wambsganss, H. W., Response of a Flexible Rod to Near-Field
Flow Noise, Proc. Conf. on Flow-Induced Vibrations in Reactor System Compo-
nents, Argonne National Laboratory, Hay 14 and 15, 1970, ANL-7685, pp. 5-31.

8. Corcos, 6. M., Resolution of Pressure in Turbulence, .7. Acoust. Soc. As. 35,
192-199 (1963).

9. Chen, S. S. , and Wambsganss, M. W., Parallel-Floa-Induced Vibration of Fuel
Rods, Paper to be presented at the 1st Int. Conf. on Structural Mechanics in
Reactor Technology, Berlin, Germany, Sept. 20-24, 1971.

10. Wambsganss, M. W., and Zaleski, P. L., Measurement, Interpretation and Charac-
terization of Nearfield Flam Noise, Proc. Conf. on Flow-Induced Vibrations in
Reactor System Components, Argonne National Laboratory, May 14-15, 1970,
ANL-7685, pp. 112-140.

11. Wambsganss, M. W,,, Near-field and Far-field Noise, Reactor Development Program
Progress Report for July 1970, ANL-7726 (August 1970), pp. 134-136.

12. Wambsganss, M. W., and Zaleski, P. L., Flow-Velooity-Dependence of Damping in
ParalleUFlow-Induced Vibration, Trans. Am. Nucl. Soc. 12(2), 839-840 (1969).

13. Wambsganss, M. W., Damping and Virtual Mass, Reactor Development Program Progress
Report for January 1971, ANL-7776 (February 1971), pp. 86-88.

14. Bishop, R. E» D., and Johnson, D. C , Vibration Analysis Tables, Cambridge
University Press„ Cambridge, 1956.

15. Dwight, H. B.» Tables of Integrals and other Mathematical Data, 3rd e*. Macmillan
Company, New York, 1957. Table 1045, p. 275.


