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An Evaluation of a Structured Overlapping Grid
Implementation of FCT for High-Speed Flows∗

J. W. Banks and J. N. Shadid

Abstract This study considers the development and assessment of a Flux-Corrected
Transport (FCT) algorithm for simulating high-speed flows on structured overlap-
ping grids. This class of algorithm shows promise for solving some difficult highly-
nonlinear problems where robustness and control of certain features, such as main-
taining positive densities, is important. Complex, possibly moving, geometry is
treated through the use of structured overlapping grids. Adaptive mesh refinement
(AMR) is employed to ensure sharp resolution of discontinuities in an efficient man-
ner. Improvements to the FCT algorithm are proposed for the treatment of strong
rarefaction waves as well as rarefaction waves containing a sonic point. Simulation
results are obtained for a set of test problems and the convergence characteristics
are demonstrated and compared to a high-resolution Godunov method. The prob-
lems considered include smooth manufactured solutions, isolated shock and contact
discontinuities, a modified Sod shock-tube problem, a two-shock Riemann prob-
lem, the Shu-Osher test problem, shock impingement on single cylinder, irregular
Mach reflection of a strong shock striking an inclined plane, shock impingement on
multiple fixed and movable cylinders, and an idealized Z-pinch implosion problem.
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1 Introduction

Many physical systems are well described mathematically by systems of conser-
vation laws. Typical examples might include fluid flow around a body, condensed
phase explosives, astrophysical phenomenon, or high energy density physics appli-
cations. A large number of such systems have the property that discontinuous solu-
tions can arise in finite time even from smooth initial data. These discontinuities can
be of a linear (e.g. contact wave) or nonlinear form (e.g. shock wave). Numerical
methods need to balance the often competing requirements of accurately approxi-
mating these two types of discontinuities while at the same time requiring higher
order accuracy in smooth regions of the solution. This balance has been one of the
primary drivers behind the development of modern simulation tools. Methods strik-
ing such a balance are often referred to as high-resolution methods and they require
the use of limiters (switches) that choose between a number of different numerical
stencils. For some flow regimes, this type of limiting has been found to be essential
to obtain robust schemes. Many, if not most, of the high-resolution techniques have
their roots in the 1970’s with ideas originally developed by Boris and Book in con-
nection with flux-corrected transport (FCT) [11, 12, 13]. In the intervening years,
FCT has been applied to a wide range of challenging applications, for examples
see [14, 56, 39]. Recently, the developments of Kuzmin et. al. [39] towards alge-
braic flux correction as well as implicit methods have produced a renewed interest
in FCT as a useful numerical method for many applications.

The scope of the current study is to review work performed in [6, 8] in extending
the FCT method for compressible flow simulations into the context of overlapping
grids which are used to represent geometric complexities as well as ensure mesh
regularity [17, 31, 32, 7]. The overlapping grid method is quite general and can be
used to generate computational meshes for complex geometries [3, 16, 46] without
the use of unstructured meshes, cut cells for embedded boundaries, or overly con-
torted globally mapped grids. FCT has not been used extensively for overlapping
grids and the current study brings together some of the work in that field.

This work examines implementation details for FCT applied to structured over-
lapping grids. We include a discussion about the extension of FCT to moving over-
lapping grids. A series of test problems demonstrates the properties of the method
for practical simulations and compares the results with those from a high-resolution
Godunov method. Reference to the results presented in other studies such as [24, 48]
gives a good understanding of the relative merits of these various high-resolution
shock capturing schemes. This comparison is particularly useful for cases where
Riemann solution based strategies are not viable because of the complexities of the
governing equations. Such is the case for some relativistic flows, for example, and
the FCT method may be attractive in this context provided an appropriate low order
method can be devised without resort to Riemann solutions. As in [8], FCT can also
be useful for problems with extreme jumps in density and pressure where traditional
high-resolution methods may fail due to unphysical states such as negative densi-
ties. We overview this work and present the prototype Z-pinch implosion model as
well as simulation results from the FCT method.
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The remainder of the chapter is structured as follows. In Section 2 the governing
equations are presented. In Section 3 the FCT algorithm is presented and the devel-
opment for structured overlapping grids is summarized. This section also presents
a brief discussion of two open issues with the traditional FCT algorithm; that of
performance when either strong or sonic rarefactions are present in the flow. The
poor performance of the standard method for these problems is demonstrated and
an improvement of the algorithm is proposed and evaluated. Section 4 presents nu-
merical results for the FCT method and provides a comparison to a high-resolution
Godunov method. Some qualitative remarks concerning computational cost com-
parisons between the FCT and Godunov methods are presented in Section ?? and
concluding remarks are given in Section 5.

2 Governing Equations

We consider the flow of an inviscid compressible gas and assume that in two dimen-
sions the density ρ , velocities (u1,u2), pressure p, and total energy E satisfy the
system of conservation laws

∂

∂ t
u+

∂

∂x1
f1(u)+

∂

∂x2
f2(u) = 0, (1)

where

u =


ρ

ρu1
ρu2
E

 f1(u) =


ρu1

ρu1
2 + p

ρu1u2
u1(E + p)

 f2(u) =


ρu2

ρu1u2
ρu2

2 + p
u2(E + p)

 .
System (1) defines the conservation of mass, momenta, and total energy for the gas
and is recognized as the well known compressible Euler equations in two space
dimensions. In this formulation, the total energy is given by

E = ρe+
1
2

ρ
(
u1

2 +u2
2) ,

where e = e(ρ, p) is the specific internal energy, which is specified by an equation
of state. This paper assumes an ideal equation of state, namely

e =
p

ρ (γ−1)
(2)

where γ =
cp
cv

is the ratio of (constant) specific heats with cp the specific heat at
constant pressure and cv the specific heat at constant volume. The Euler equations
(1) are assumed to have been non-dimensionalized with suitable reference quantities
and all results are presented in dimensionless units.



6 J. W. Banks and J. N. Shadid

3 Flux-Corrected-Transport Algorithm

This section describes the FCT method as used in this chapter including the ex-
tensions and modifications we have made to the classic FCT algorithm. This imple-
mentation includes a DeVore type pre-limiter in lieu of Zalesak’s flux pre-constraint,
removal of artificial diffusion prior to the FCT flux limiter, a Jameson style artificial
viscosity, a sonic fix for entropy violating rarefaction waves, and the extension of
the FCT algorithm to overlapping grids. For clarity, the improvements for treating
sonic points and very strong rarefactions are left to the end of the section.

3.1 Overlapping grids and AMR

We consider the governing equations (1) and proceed with a description of the FCT
method in a two dimensional overlapping grid framework. To this end, we assume
the flow domain is given by Ω and is discretized using an overlapping grid G . The
overlapping grid consists of a set of component grids {Gi}, i = 1, . . . ,Ng, that cover
Ω and overlap where they meet. Each component grid covers a sub-domain Ωi. Grid
points are tagged as discretization points where the governing equations are applied,
ghost points used for the application of boundary conditions, interpolation points
where solution values are communicated between grids, or unused points where no
computation is performed which are cut out through the mesh generation proce-
dure. The FCT stencil is 7-points wide requiring three layers of data at interpolation
and physical boundaries. At interpolation boundaries, the 7-point stencil would nor-
mally require three layers of interpolation points. Although we can generate such
grids, in practice we usually construct a grid with a single layer of interpolation
points and obtain values at the two additional layers through extrapolation. At phys-
ical boundaries, values on the boundary and three layers of ghost points are obtained
through application of the physical boundary conditions, derived compatibility con-
ditions, and extrapolation following the approach described in [31, 32]. Note that
the dependence of the solution on this final extrapolated layer is extremely weak
as it can only affect whether the chosen update at the boundary is first or second
order accurate (i.e. it is used only in the determination of the α in (8) below. For
more details concerning general overlapping grid methods, including application of
boundary conditions, see [17, 31, 32, 30]. Adaptive mesh refinement (AMR) is used
in regions of the flow where the solution changes rapidly, such as near shocks and
contact surfaces. We employ a block-structured AMR approach following that de-
scribed originally in [10] and using modifications for overlapping grids as presented
in [31, 32, 7].
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3.2 FCT Discretization on a mapped grid

Each component grid, including base-level grids and any refined grids, is defined
by a mapping from the unit square in computational space (r1,r2) to physical space
(x1,x2). In computational space, equation (1) becomes

∂

∂ t
u+

1
J

∂

∂ r1
F1(u)+

1
J

∂

∂ r2
F2(u) = 0, (3)

where

F1(u) = J
(

∂ r1

∂x1
f1 +

∂ r1

∂x2
f2

)
, F2(u) = J

(
∂ r2

∂x1
f1 +

∂ r2

∂x2
f2

)
,

and

J =

∣∣∣∣∂ (x1,x2)

∂ (r1,r2)

∣∣∣∣ .
The metrics of the mapping, ∂x1/∂ r2, ∂x2/∂ r2, etc., and the Jacobian are consid-
ered to be known for each component grid at the time of computation and can be
generated analytically or approximated.

Discretization of (3) is performed using a uniform grid (r1,i,r2, j) with grid spac-
ing (∆r1,∆r2). The FCT method is generally considered a two-step process pro-
ceeding first with a low order update and finishing with the high-resolution FCT
correction. We begin with the formulation of the low order solution update

utd,n
i, j = un

i, j−
∆ t

Ji, j∆r1
D+r1F1

low,n
i−1/2, j−

∆ t
Ji, j∆r2

D+r2F2
low,n
i, j−1/2 (4)

where D+r1 and D+r2 are the undivided forward difference approximations in the
r1 and r2 directions of index space respectively. The “td” notation is consistent
with [11, 13, 12, 59] and denotes “transported and diffused”. For this work the HLL
low order flux [27, 55] is used and for curvilinear geometries is given by

F1
low,n
i+1/2, j =


F1

n
i, j if s− ≥ 0

F1
n
i+1, j if s+ ≤ 0
s+

s+− s−
F1

n
i, j−

s−
s+− s−

F1
n
i+1, j +

s−s+
s+− s−

D+r1un
i, j else

(5)
where

s− = min
(

vn
i, j− cn

i, j,v
n
i+1, j− cn

i+1, j

)∣∣∣∣∣∣( ∂ r1
∂x1

, ∂ r1
∂x2

)∣∣∣∣∣∣
2
,

s+ = max
(

vn
i, j + cn

i, j,v
n
i+1, j + cn

i+1, j

)∣∣∣∣∣∣( ∂ r1
∂x1

, ∂ r1
∂x2

)∣∣∣∣∣∣
2
,

cn
i, j is the sound speed in a given cell, and vn

i, j is the component of the velocity
normal to the cell face. The fluxes across other cell boundaries take similar forms.
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It should be noted that in [60, 39], Zalesak suggests the use of the Rusanov flux
for the low order method. This is a symmetrized version of the HLL flux resulting in
further diffusion than the original HLL flux. However, the Rusanov flux as presented
in [60, 39] is slightly flawed in that the selected wave speed is not sufficient to
encompass the full Riemann solution for all cases. A more general Rusanov flux is

F1
low,n
i+1/2, j =

1
2
[(

F1
n
i+1, j +F1

n
i, j
)
−max

(∣∣λ n
i+1, j

∣∣ , ∣∣λ n
i, j
∣∣)D+r1un

i, j
]

(6)

where λ n
i, j is the largest eigenvalue (in magnitude) of the Jacobian matrix ∂

∂u F1
at a cell (i, j) and time tn. The difference between (6) and the equation presented
in [60, 39] is the use of max

(∣∣∣λ n
i+1, j

∣∣∣ , ∣∣∣λ n
i, j

∣∣∣) rather than 1/2
(∣∣∣λ n

i+1, j

∣∣∣+ ∣∣∣λ n
i, j

∣∣∣). In
this work, the HLL flux is used but we have found that the Rusanov flux (6) works
nearly as well and is less expensive. As presented, both of these approximate fluxes
require knowledge of the eigenvalues of the Jacobian matrix. If this information
were not known, a Lax-Friedrichs type flux could in principle be used instead.

The second step of the FCT algorithm requires an “anti-diffusive” flux which is
defined as the difference between a high-order flux and the low-order one. In the r1
direction of index space for example, this is

F1
AD,n
i±1/2, j = F1

high,n
i±1/2, j−F1

low,n
i±1/2, j. (7)

The high order flux is typically chosen to be some high-order centered flux and for
this work the centered second-order flux

F1
high,n
i+1/2, j =

1
2
(
F1

n
i, j +F1

n
i+1, j

)
is chosen. The final sub-step update is now defined as

unew
i, j =utd,n

i, j −
∆ t

Ji, j∆r1
D+r1

(
α

n
i−1/2, j�F1

AD,n
i−1/2, j

)
− ∆ t

Ji, j∆r2
D+r2

(
α

n
i, j−1/2�F2

AD,n
i, j−1/2

)
(8)

where � indicates component-wise multiplication. The vector of α’s are chosen
using the FCT algorithm as described below and represent the proportion of anti-
diffusive flux at each cell face that is used in the final update. Our choice of notation
facilitates the use of the FCT algorithm in a method of lines type approach. By
defining

∂

∂ t
un

i, j =
unew

i, j −un
i, j

∆ t
(9)

we obtain an updated solution un+1
i, j using any ordinary differential equation (ODE)

integrator we choose. Choices for ODE integrators might include Runge-Kutta
methods, Adams methods, or others. For this work, we use an explicit Adams
predictor-corrector method of second order to match the spatial algorithm. Detail
concerning the implementation of these time integrators can be found for example
in [2, 30].
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Consider the determination of αn
i+1/2, j. FCT seeks to enforce solution mono-

tonicity through the choice of α , but the property of monotonicity is valid only
for characteristic variables [57]. For the non-linear Euler equations, conversion to
characteristic variables requires both a linearization and an eigen-decomposition
of the linearized problem. As such, we linearize about the arithmetic average ū =
1
2 (u

td,n
i, j +utd,n

i+1, j). More sophisticated choices, such as the Roe average [55], could be
made but in our experience these make little difference in the eventual computed so-
lutions. From this state, the linearized eigen-decomposition T−1ΛT=A= ∂

∂u F1(ū)
is found where we have dropped the sub- and superscripts to simplify the exposi-
tion. Whenever multiplication by T is performed to achieve characteristic quantities
it should be understood that this implies linearization about a particular face, in this
case (i+ 1/2, j). For two dimensions, a large number of characteristic transforma-
tions must be performed (in three dimensions the number is even larger) and this
constitutes one of the most expensive parts of the FCT method.

In [14], DeVore indicates that the scheme of Zalesak does not preserve mono-
tonicity in two dimensions and suggests limiting the fluxes using the original
Boris/Book limiter [11, 13] in each direction prior to their input to the multi-
dimensional limiter. This is straight forward to and we demonstrate it for F1

AD,n
i+1/2, j

F̂1
AD,n
i+1/2, j = s�max

[
0,min

(∣∣∣TF1
AD,n
i+1/2, j

∣∣∣ ,s� Ji+1/2, j∆r1

∆ t
D+r1Tutd,n

i+1/2, j,s�
Ji+1/2, j∆r1

∆ t
D+r1Tutd,n

i−1/2, j

)]
,

where s = sign(TF1
AD,n
i+1/2, j) and the “hat” notation indicates that the anti-diffusive

flux has been pre-limited. The other F̂ fluxes are obtained through similar formulas.
To complete the FCT algorithm, define the local maximum and minimum char-

acteristic values as

wmax
k = max

(
Tutd,n

i+k−1, j,Tutd,n
i+k, j,Tutd,n

i+k+1, j,Tutd,n
i+k, j−1,Tutd,n

i+k, j+1

)
,

wmin
k = min

(
Tutd,n

i+k−1, j,Tutd,n
i+k, j,Tutd,n

i+k+1, j,Tutd,n
i+k, j−1,Tutd,n

i+k, j+1

)
,

(10)

where k = 0,1 and the extrema are taken component-wise. The actual influx into
the cells on either side of the cell face which would result from the AD fluxes is
computed for example as

Ik = 1
∆r1

[
max

(
F̂1

AD,n
i+k−1/2, j
Ji+k, j

,0

)
−min

(
F̂1

AD,n
i+k+1/2, j
Ji+k, j

,0

)]

+ 1
∆r2

[
max

(
F̂2

AD,n
i+k, j−1/2
Ji+k, j

,0

)
−min

(
F̂2

AD,n
i+k, j+1/2
Ji+k, j

,0

)]
,

(11)

and the maximum permissible influx such that the characteristic bounds from (10)
are not violated, indicated by the tilde, is for example
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Ĩk =
1

∆ t

[
wmax

k −Tutd,n
i+k, j

]
. (12)

Notice in (11) that the influx into the cells from both direction of index space
are considered simultaneously. This follows from [59] and reflects the fully multi-
dimensional nature of this limiter as opposed to a limiter which is split along dimen-
sional lines. Component-wise ratios of permissible to actual fluxes are then defined
for the two cells as

R+
k = min

(
Ĩk

Ik
,1
)
. (13)

The quantities R−k , which represent the ratio of actual AD flux leaving the cell to the
maximum flux permitted to leave the cell without violation of the bounds in (10),
are defined using similar reasoning. Setting

Ok = 1
∆r1

[
max

(
F̂1

AD,n
i+k+1/2, j
Ji+k, j

,0

)
−min

(
F̂1

AD,n
i+k−1/2, j
Ji+k, j

,0

)]

+ 1
∆r2

[
max

(
F̂2

AD,n
i+k, j+1/2
Ji+k, j

,0

)
−min

(
F̂2

AD,n
i+k, j−1/2
Ji+k, j

,0

)]
,

(14)

and
Õk =

1
∆ t

[
Tutd,n

i+k, j−wmin
k

]
, (15)

we define

R−k = min
(

Õk

Ok
,1
)
. (16)

By choosing the most restrictive of these R values, the bounds from (10) are not
violated. Thus we define

β =

min(R+
0 ,R

−
1 ) when Ji, jF̂1

AD,n
i+1/2, j < 0

min(R+
1 ,R

−
0 ) when Ji, jF̂1

AD,n
i+1/2, j ≥ 0.

(17)

The final values for αn
i+1/2, j are found through component-wise inversion of the

formula
α

n
i+1/2, j�F1

AD,n
i+1/2, j = T−1

(
β � F̂1

AD,n
i+1/2, j

)
. (18)

It is important to note that monotonicity of the linearized characteristic variables
does not imply monotonicity of the conserved variables. Thus the final updated solu-
tion could result in a negative density, imaginary sound speed, or negative pressure.
Such events do occur in the simulations we present and must be treated in a rational
and reasonable way. Zalesak suggests in [59, 39] that a fail-safe limiter be employed
and we take a similar approach here. At each time, if the values at a given cell (i, j)
violate physically realistic bounds after advancement to unew

i, j in (8), then no portion
of the anti-diffusive flux is allowed at the boundaries of that cell. For such cells,
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α
n
i+1/2, j = α

n
i−1/2, j = α

n
i, j+1/2 = α

n
i, j−1/2 = 0 (19)

is enforced and the method becomes fully first order in a local region. In our ex-
perience, this fail-safe mechanism is critical for the success of the FCT algorithm.
It should also be noted that after setting αn

i±1/2, j±1/2 = 0 in one cell, the problem
(negative density etc.) may then appear in a neighbouring cell. In principle the result
could be a cascade across all cells. These cascades are rare and do not occur for any
of the simulations presented in this work.

This completes the description of the FCT algorithm itself but there is another
aspect which must be addressed. In [59] it is recognized that some amount of higher
order dissipation must be included to remove high frequency noise generated by the
FCT procedure. In that work the high-order dissipation was added to the AD flux
prior to flux correction. In our studies we found this to be unsatisfactory because
the effect of the high-order dissipation is reduced by the FCT limiters. The result is
unacceptable levels of numerical noise in the computed solutions. Therefore we add
dissipation independently after the FCT step. To this end we implement a second-
order dissipation near shocks [19, 31] to treat undamped transverse instabilities as
well as a fourth-order Jameson style dissipation away from shocks [35, 34, 30]. We
switch the fourth order dissipation on or off based on density variations to ensure
that it is not active near shocks or contacts. One final note is that the computed
solution will not violate the prescribed bounds only for CFL numbers less than 1/2
and so all FCT simulation results presented in this chapter set the CFL number to
be 0.4.

3.3 Sonic fix

As is the case for some other methods, such as Godunov’s method with an ap-
proximate Roe Riemann solver [55], the FCT method can exhibit poor behavior in
rarefaction waves at points where the flow speed is equal to the sound speed (sonic
points). The problem is illustrated by the solution to a modified version of Sod’s
shock tube problem [52, 55] with left and right states given by (ρ,u1,u2, p)L =
(1.0,0.75,0.0,1.0) and (ρ,u1,u2, p)R = (0.125,0.75,0.0,0.1), and with γ = 1.4.
We compute approximations to the solution of this Riemann problem using the grid
L ([−1,1],100) where

L ([xa,xb],N) =
{

xi | xi = xa + i∆x, ∆x = (xb− xa)/N, i = 0,1, . . . ,N
}
, (20)

with the initial discontinuity located at x = −0.4. Figure 1 shows the results pro-
duced by the FCT method with and without our sonic fix. The problematic behavior
of the method at the sonic point is clearly visible in the form of a rarefaction shock
which represents an entropy violating weak solution.

The existence of rarefaction shocks in numerical approximations is typically the
result of insufficient numerical diffusion. For FCT this is caused by the use of high-
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Fig. 1 FCT solution for a shock tube problem containing a sonic rarefaction with and without
a sonic fix at t = 0.5. The black line represents the exact solution, the red circles the numerical
approximation without the sonic fix and the blue crosses the numerical approximation with the
sonic fix. The problematic behavior at the sonic point is quite clear in both the density (left) and
pressure (right).

order centered fluxes. This is in contrast to Roe’s method where the linearization
causes the problem even at first order. The FCT method considered in this chapter
uses the HLL flux (known to be devoid of rarefaction shocks [55]) for the low order
update. To eliminate rarefaction shocks for FCT approximations, we rely on this fact
and simply set the value for α in (8) to zero for cases where sonic rarefactions are
present. This choice has implications on solution accuracy, but because sonic points
exist in isolation, the impact is negligible as will be demonstrated in Section 4.

The anti-diffusive fluxes in (8) have associated left and right states, call these uL

and uR respectively. For instance consider F1
AD,n
i+1/2, j with uL = utd,n

i, j and uR = utd,n
i+1, j.

These states can be viewed as left and right states of a one dimensional Riemann
problem in the direction normal to the cell face. Define the normal velocities as
vn,L = (n1,n2) ·(u1L,u2L)

T and vn,R = (n1,n2) ·(u1R,u2R)
T where (n1,n2) is the unit

normal to the cell face. Following the nomenclature in [55], we define the star state
as the center solution to this Riemann problem (i.e. the solution between the C+

and C− characteristics). As in [55], p∗ and v∗n can be approximated by

p∗ =

[
max

(
0,
(

cL + cR−
γ−1

2
(vn,R− vn,L)

)(
cL

pz
L
+

cR

pz
R

)−1
)]1/z

(21)

and
v∗n = vn,L +

2
γ−1

(cL− c∗L) (22)

where c∗L = cL(p∗/pL)
z, c∗R = cR(p∗/pR)

z, z = (γ − 1)/(2γ), cL is the left sound
speed, and cR is the right sound speed. These particular star states arise from the
approximation of the Riemann solution by the so-called two rarefaction Riemann
solver and are approximations to the true star state. Note that other choices for the
star states are also acceptable. Our sonic fix defines a new value for α by
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α
n
i+1/2, j←


0 if vn,L− cL ≤ 0 and v∗n− c∗L ≥ 0
0 if v∗n + c∗R ≤ 0 and vn,R + cR ≥ 0
αn

i+1/2, j else.

The effect of these choices is to return the solver to first order accuracy near sonic
points in rarefaction waves. Figure 1 shows the solution to the modified Sod’s prob-
lem employing this sonic fix where it is seen that the poor behavior has been ef-
fectively eliminated apart from a small kink at the sonic point. It should be noted
that the particular sonic fix demonstrated here relies on an approximate solution to
the Riemann problem. For cases where this solution is not known, this fix is not
applicable and sonic rarefactions must be identified in another way. For example,
one might consider applying the fix wherever the flow transitions from super- to
sub-sonic flow across a cell boundary.

3.4 Strong Rarefactions

In addition to the poor behavior for sonic rarefaction waves, the traditional FCT
algorithm runs into difficulties for strong rarefaction waves where the difference
in velocities at which the gas is being pulled apart differ by more than the local
sound speed. This is a very difficult problem for many methods because a near vac-
uum state is reached and failure can occur as a result of negative densities or pres-
sures [56]. Consider the solution to a Riemann problem with left and right states
(ρ,u1,u2, p)L = (1.0,−2.0,0.0,0.4) and (ρ,u1,u2, p)L = (1.0,2.0,0.0,0.4) respec-
tively.

Figure 2 shows the density and velocity as computed by the FCT algorithm for
this case both with and without our fix. The FCT solution without any fix demon-
strates oscillations in velocity close to the near vacuum state (near the origin). In
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Fig. 2 Density (left) and velocity (right) for a strong rarefaction problem at t = 0.25. The black
line represents the exact solution, the red circles the FCT approximation without a fix and the blue
crosses the FCT solution with the fix. The oscillations in velocity for the original FCT scheme are
particularly troubling but also note the undershoot of the density near the origin.
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order to remove this behavior a simple fix is employed which sets

α
n
i+1/2, j = 0 if p∗ < min(pL, pR) and |vnL − vnR | ≥max(cl ,cr).

This causes the first order scheme to be used when strong rarefaction waves are
present. The results shown in figure 2 demonstrate that the velocity from the fixed
scheme is monotonic near the origin. These results are comparable to the results of
Tóth in [56] but further improvements should be investigated.

3.5 A Note Concerning Monotonicity

The original FCT scheme of Boris and Book applied to 1-D linear advection
problems is provably monotone. However, the extension by Zalesak to higher-
dimensions do not result in a monotone scheme, a fact that has apparently not been
discussed in the literature. We now present a simple example to illustrate this fact.
Consider linear advection with unit advection velocity,

∂

∂ t
ρ +

∂

∂x1
ρ = 0.

We use the low-order flux given by flow,n
i+1/2 = ρn

i , and the second-order centered flux

given by fhigh,n
i+1/2 = 1

2 (ρ
n
i + ρn

i+1). At time level tn let the approximate solution be
given by

ρ
n
−3 = 4.5, ρ

n
−2 = 4, ρ

n
−1 = 3.5, ρ

n
0 = 3, ρ

n
1 = 3, ρ

n
2 = 2, ρ

n
3 = 1, ρ

n
4 = 0.

Set the grid spacing as ∆x1 = 1 and the temporal spacing as ∆ t = 0.25. The FCT
algorithm, as outlined by Zalesak [59, 60], produces the following values for α

α
n
−1/2 = 1, α

n
1/2 = 1, α

n
3/2 = 1.

By using the forward Euler time integrator (i.e. ρ
n+1
i = ρnew

i ), the FCT solution
after a single step results in the values

ρ
n+1
0 = 3.0625, ρ

n+1
1 = 3.125.

The solution at time tn was monotonically decreasing left to right while the solution
for these two cells at time tn+1 is monotonically increasing left to right and so the
violation of monotonicity is demonstrated. Many authors suggest the use of a pre-
limiter, but for this case the pre-limiter suggested by Zalesak [59] and Kuzmin [39]
has no effect as can be easily verified. The pre-limiter of DeVore [14], which we
have adopted here, does remedy this particular problem, but a proof of monotonicity
for arbitrary high order fluxes is not known.
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4 Numerical Results

We now present simulation results using the FCT algorithm described in Section 3.
The discussion centers on studying the robustness and accuracy of the overall nu-
merical approach as well as comparing the results to those from the high-resolution
Godunov method in [31, 32, 7] which uses an approximate Roe Riemann solver [49]
and the MinMod limiter [55]. Of course, any comparisons presented here are only
valid for these particular implementations of the FCT and Godnuov methods. There
are many variations to both algorithms which would change the specifics of the
results. However, the present study provides a reasonable baseline comparison of
the relative merits of the two schemes. Furthermore, the hope is that given the re-
sults from previous comparisons, for example in [24], one can place, in a general
sense, high-resolution Godunov methods, WENO methods, and FCT in relation to
each other. In fact the tests we present were largely driven by the choice of tests
presented in [24] exactly for the reason that comparisons could be made.

Because the purpose of any comparisons made in this section is to provide a
sense of the relative merits of the methods as they might be used in practice, the
set of parameters used by each method is set to what we consider to be reasonable
numbers. For the Godunov method we use CFL= 0.9 and for FCT we use CFL= 0.4.
The small choice for FCT is required, as noted in Section 3, to ensure the desired
bounds are not violated. For problems where AMR is used, the refinement criteria
is the same for both schemes and is based on a weighted sum of first and second
un-divided differences of the solution (see [31] for details).

We begin the discussion by establishing the expected second-order rate of conver-
gence for the FCT method for smooth flows using the method of analytic solutions.
Similar verification tests have also performed for the Godunov method as in [7],
but direct comparisons are not made here because of the manufactured nature of the
tests. Next we consider the solution to a series of problems including 1-D isolated
contacts, isolated shocks, Sod’s shock tube problem, a two-shock Riemann problem,
and the Shu-Osher test case. The methods are then compared for the 2-D problems
of shock impingement on a cylinder and the irregular Mach reflection of a strong
shock on an inclined ramp. Finally, simulation results from the FCT method are pre-
sented for a number of more complex problems to include shock impingement on
multiple fixed and moveable cylinders as well as for a prototype Z-pinch implosion
problem. These problems are more difficult to characterize and so no comparison to
the Godunov method is provided.

4.1 Method of analytic solutions

We now investigate convergence of the FCT method to known smooth solutions.
Smooth analytic solutions to the Euler equations are difficult to find although some
do exist. One example is that of the Prandtl-Meyer fan for flow around a smoothly
expanding channel. As a more general approach to constructing exact solutions, we
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use the method of analytic solutions, sometimes known as the method of manu-
factured solutions, whereby one picks an arbitrary smooth solution and includes a
forcing term in (1) such that the solution to the forced set of equations is the cho-
sen smooth solution. This approach is very general and we have found it to be an
invaluable tool in verifying the implementation of a given numerical approach.

To construct such a solution we take us(x1,x2, t) as a known smooth function.
Equation (1) is then modified to

∂

∂ t
u+

∂

∂x1
f1(u)+

∂

∂x2
f2(u) = h(us), (23)

where u, f1, f2 are defined as before and

h(us) =
∂

∂ t
us +

∂

∂x1
f1(us)+

∂

∂x2
f2(us).

The boundary conditions are also modified in a similar way. Clearly one solution to
the modified problem (23) is u = us. The particular choice of us is quite arbitrary
and for the purposes of this work we use trigonometric functions in both space and
time. The choice made here is

ρs =
1
8

cos
(

π (x1−5)
10

)
cos
(

πx2

10

)
cos
(

πt
10

)
+1

u1,s = cos
(

πx1

10

)
cos
(

πx2

10

)
cos
(

πt
10

)
u2,s =

1
2

cos
(

π (x1−5)
10

)
cos
(

π (x2−5)
10

)
cos
(

πt
10

)
ps = ρs

[
1
4

cos
(

πx1

10

)
cos
(

π (x2−5)
10

)
cos
(

πt
10

)
+1
]


(24)

where the conserved quantities are constructed from these given primitives. We con-
sider the solution to (23) on two different domains, the first being a simple square
with |xk| ≤ 2, k = 1,2. For this domain (and for later examples) Cartesian grids are
defined by

R([x1,a,x1,b]× [x2,a,x2,b],N1,N2) =
{
(x1,a + i1∆x1 , x2,a + i2∆x2) |

∆xk = (xk,b− xk,a)/Nk, ik = 0,1, . . . ,Nk, k = 1,2
}
.

For this example we use R([−2,2]× [−2,2],40m,40m), where m is an integer in-
dicating grid size. The initial condition is taken to be us(x1,x2,0) and the boundary
conditions on the perimeter of the square are given by the exact solution for all time.
The modified equations (23) are integrated numerically for 0 ≤ t ≤ 1 and the solu-
tion error is computed at the final time. Of course if the α’s in Equation (8) are not
taken to be 1 the method will not be second order accurate everywhere in the do-
main. Still it is of substantial interest to determine the actual accuracy of the method
for smooth flows such as this. Table 1 shows the maximum error in the primitive



FCT on Overlapping Grids 17

variables at t = 1 for various grid resolutions determined by m. The convergence
rate is computed from one resolution to the next as κ = log2(eρ(m)/eρ(2m)) as
well as a least squares fit of the rates over the entire refinement process which we
label κ̃ . The max-norm convergence rates are generally reasonably close to second-
order. Actual second order convergence is not expected because the method defaults
to first order near characteristic extrema as is typical of most limited schemes.

m eρ (m) F κ eu1 (m) F κ eu2 (m) F κ ep(m) F κ

1 1.1e−3 – 4.7e−3 – 6.8e−4 – 8.6e−4 –
2 7.9e−4 .48 1.3e−3 1.9 3.9e−4 .80 2.7e−4 1.7
3 1.5e−4 2.4 3.1e−4 2.1 7.3e−5 2.4 6.4e−5 2.1
8 4.7e−5 1.7 9.4e−5 1.7 1.9e−5 1.9 1.8e−5 1.8
κ̃ 1.5 1.9 1.7 1.9

Table 1 Convergence results for the square domain using the FCT method (indicated by F in table
headers. Maximum errors in density, velocity components and pressure at t = 1 for grid resolutions
determined by m, and the estimated convergence rates κ = log2(eρ (m)/eρ (2m)) as well as a least
squares fits of the convergence rates over the entire refinement process κ̃ are shown.

The second domain considered is a circular disk of radius 0.8 which is dis-
cretized using an overlapping grid consisting of a background Cartesian grid given
by R([−0.6,0.6]× [−0.6,0.6],30m,30m), and a boundary fitted annular grid de-
fined by A ((0.0,0.0), [0.4,0.8],10m,80m) with

A ((x1,c,x2,c), [ra,rb],Nr,Nθ ) =
{
(x1,c,x2,c)+ rir(cos(θiθ ),sin(θiθ )) |

rir = ra + ir(rb− ra)/Nr, θiθ = 2πiθ/Nθ , ik = 0,1, . . . ,Nk, k = r,θ
}
.

Through the use of such an overlapping mesh we provide a further check of both the
implementation of the scheme on curvilinear grids as well as for the interpolation
scheme at grid overlaps. Table 2 shows the maximum error in the primitive variables
at t = 1 for various resolutions of the overlapping grid. We note the near second-
order convergence for each of the variables.

m eρ (m) F κ eu1 (m) F κ eu2 (m) F κ ep(m) F κ

1 8.6e−5 – 2.3e−4 – 7.5e−5 – 1.1e−4 –
2 2.8e−5 1.6 6.8e−5 1.8 2.3e−5 1.7 3.1e−5 1.8
3 7.2e−6 2.0 2.0e−5 1.8 6.2e−6 1.9 7.7e−6 2.0
8 2.0e−6 1.8 6.1e−6 1.7 1.7e−6 1.9 2.0e−6 1.9
κ̃ 1.8 1.7 1.8 1.9

Table 2 Convergence results for the circular domain. Maximum errors in density, velocity compo-
nents, and pressure at t = 1 for grid resolutions determined by m, and the estimated convergence
rates κ = log2(eρ (m)/eρ (2m)) as well as a least squares fits of the convergence rates over the
entire refinement process κ̃ are shown.
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4.2 Isolated Contact and Shock Discontinuities

4.2.1 Contact wave

The contact wave is a traveling discontinuous jump where characteristics run paral-
lel to the front. As such, error can accumulate with the result that a nominally Pth

order shock capturing scheme will generally converge at the rate of κ = P/(P+1)
in the L1 sense [28, 26, 4]. There are some so-called compressively limited schemes
which can achieve κ = 1 convergence although such schemes often have other unde-
sirable characteristics such as the artificial steepening of smooth solutions [41, 55].
The construction of the FCT method does not immediately indicate what the con-
vergence rate should be.

The initial conditions for the contact wave consists of the left state (ρ,u1,u2, p)L =
(0.1,1.0,0.0,1.0) and the right state (ρ,u1,u2, p)R = (1.0,1.0,0.0,1.0) with the
jump at x0 = 0.25. We can construct a weak solution corresponding to a vanishing
viscosity solution, and we will call such solutions “exact” with the understanding
that there may be many weak solutions. The exact solution to this problem consists
of a propagating discontinuity moving to the right with speed 1.0. The density jumps
through this discontinuity but the pressure and velocity remain constant. Simulations
are performed on the grid defined by L ([0.0,1.0],200m) where m is a measure of
grid resolution (see equation(20)). A value of γ = 1.4, corresponding to a diatomic
ideal gas, is chosen.

A convergence study is performed at various numerical resolutions indicated by
m with the comparisons taking place at t f = 0.5 using the discrete L1 norm. Results
from this study are given in Table 3. Here it is seen that both the FCT and Godunov

m eρ (m) F κ eρ (m) G κ

1 1.06e−2 – 1.39e−2 –
2 6.64e−3 .67 8.78e−3 .66
4 4.18e−3 .67 5.55e−3 .66
8 2.63e−3 .67 3.51e−3 .66
κ̃ .67 .66

Table 3 Convergence results for the contact wave problem using second order Godunov and
FCT approximations, indicated by “F” and “G” in the headings respectively. L1 errors in den-
sity at t f = 0.5 are computed for grid resolutions determined by m. Estimated convergence rates
κ = log2(eρ (m)/eρ (2m)) as well as a least squares fit of the convergence rates over the entire
refinement process κ̃ are shown. Note that errors for velocity and pressure are identically zero.

methods attain the expected convergence rate of ≈ 2/3 as measured by both κ and
κ̃ . We can also see that the FCT method captures the contact with slightly less error
than the Godunov method although the results for the Godunov method are sensitive
to the choice of Riemann solver and limiter [4].
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4.2.2 Shock wave

Consider a Mach 2 shock with γ = 1.4. The pre- and post-shock states are given
by (ρ,u1,u2, p)L = (2.67,1.48,0.0,4.5) and (ρ,u1,u2, p)R = (1.0,0.0,0.0,1.0). For
this nonlinear phenomenon, the characteristic curves enter into the discontinuity
which acts as a natural steepening mechanism. Computations are carried out on the
unit interval x ∈ [0,1] using mesh L ([0.0,1.0],200m) with m being a measure of
grid resolution. The initial jump is placed at x0 = 0.25 and integration is carried out
to t f = 0.25 where L1 errors are computed. The results are presented in Table 4.

m eρ (m) F κ eρ (m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

1 8.38e−3 – 7.08e−3 – 5.59e−3 – 4.83e−3 – 1.44e−2 – 1.26e−2 –
2 3.94e−3 1.0 3.65e−3 .96 2.91e−3 .94 2.76e−3 .81 6.57e−3 1.1 6.35e−3 .99
4 2.08e−3 .92 1.82e−3 1.0 1.39e−3 1.1 1.22e−3 1.2 3.63e−3 .86 3.27e−3 .96
8 9.63e−4 1.1 9.15e−4 .99 7.13e−4 .96 6.72e−4 .86 1.66e−3 1.1 1.60e−3 1.0
κ̃ 1.03 .99 1.00 .97 1.02 .99

Table 4 Convergence results for the shock wave problem using second order Godunov (G) and
FCT (F) approximations. L1 errors in density, velocity and pressure are shown at t f = 0.25 for grid
resolutions determined by m. Estimated convergence rates κ = log2(eρ (m)/eρ (2m)) as well as a
least squares fits of the convergence rates over the entire refinement process κ̃ are also shown.

Both schemes have similar L1 errors and demonstrate the expected first order
convergence with κ ≈ 1 and κ̃ ≈ 1 for density, velocity and pressure. This implies
that the number of cells for which there is O(1) point-wise error is fixed which
implies that the shock does not continually smear as a function of time. Contrast
this to the case of the contact in Section 4.2.1 where the captured discontinuity
contains an increasing number of grid cells even as its overall width decreased.

4.3 Sod’s shock tube problem (modified)

For this example problem we investigate the behavior of the FCT and Godunov
methods for a modified version of Sod’s shock tube problem. This problem is de-
signed to highlight the poor behavior of some numerical methods near sonic points
in rarefaction waves and was previously discussed in Section 3.3 where the sonic
fix for the FCT method was described. A description of sonic fixes for Godunov
schemes can be found, for example, in [55]. The computational domain is again
chosen to be x ∈ [−1,1], the initial jump is placed at x0 =−0.4, and the governing
equations (1) are integrated to t f = 0.5. The computational grid for this study is
given by L ([−1.0,1.0],100m).

The exact density and pressure, as well as approximate results for m = 1 for both
the Godunov and FCT methods, are shown in Figure 3 which demonstrates the sim-
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Fig. 3 Exact solution (black line) and numerical approximations with m= 1 for Godunov’s method
using Roe’s approximate Riemann solver (red marks) and the FCT method (blue marks) for the
modified Sod shock tube problem at t f = 0.5. Shown here are the density (left) and the pressure
(right).

ilarity of the two approximate solutions. This trend continues for all resolutions but
is more easily seen for this coarse simulation where m = 1. Figure 3 also shows that
both methods seem to be handling the sonic rarefaction. Quantitative convergence
results are shown in Table 5 using the discrete L1 norm. These results indicate that

m eρ (m) F κ eρ (m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

2 8.86e−3 – 9.44e−3 – 1.44e−2 – 1.44e−2 – 6.54e−3 – 6.32e−3 –
4 5.00e−3 .83 5.31e−3 .83 6.99e−3 1.0 7.51e−3 .94 3.21e−3 1.0 3.22e−3 .97
8 3.05e−3 .71 3.03e−3 .81 3.32e−3 1.1 4.08e−3 .88 1.54e−3 1.1 1.67e−3 .94
16 1.83e−3 .74 1.80e−3 .75 1.59e−3 1.1 2.42e−3 .75 7.24e−4 1.1 9.08e−4 .88
κ̃ .76 .80 1.06 .86 1.06 .93

Table 5 Convergence results for the modified Sod shock tube problem. Discrete L1 error and
associated convergence rates for the Godunov (G) and FCT (F) schemes at selected resolutions
associated with the choice of m. Apparently the mesh is of insufficient resolution for the methods
to exhibit global convergence rates of 2/3 for the L1 norm of density which is dictated by the
captured contact.

although both schemes are clearly converging to the exact solution, neither scheme
is yet in the asymptotic range of convergence where the L1 error of density will
be dominated by the 2/3 convergence rate near the contact. Even so, both schemes
provide similar convergence behavior with the FCT yielding slightly higher conver-
gence rates for the pressure and velocity.
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4.4 A Two-Shock Riemann Problem

The last Riemann problem investigated in this work is commonly known as the two-
shock problem. The exact solution to this problem for γ = 1.4 has a M ≈ 5.62 shock
in the rightmost characteristic field, a M ≈ 1.81 shock in the leftmost characteristic
field, and a contact wave separating the two. Left and right states are taken from [55]
and given as (ρ,u1,u2, p)L = (5.99242,19.5975,0.0,460.894) and (ρ,u1,u2, p)R =
(5.99242,−6.19633,0.0,46.0950) The exact solution is determined as in [57], and
results in a nearly stationary shock for the leftmost characteristic field. The ac-
tual speed of the left shock is S ≈ 0.78, the velocity through the contact wave is
u1 ≈ 8.69, and the rightmost shock moves with speed S ≈ 12.25. The capturing of
the nearly stationary shock proves to be one of the primary difficulties for this prob-
lem (see [38, 1] for details on slowly moving shocks). Shock capturing schemes
also have difficulty representing the contact in this problem and there is a need to
accurately resolve that jump before a reasonable global approximation is achieved.

The solution for this problem is approximated for x ∈ [−1,1] using the mesh
L ([−1.0,1.0],100m) and integration is carried out to a final time of t f = 0.035.
Figure 3 shows profiles of density and pressure for the exact solution at that time
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Fig. 4 Exact solution (black line) and approximations with m = 1 for Godunov’s method using
Roe approximate Riemann solver (red marks) and the FCT method (blue marks) for the two-shock
Riemann problem at t f = 0.035. Shown here are the density (left) and the pressure (left).

as well as the numerical approximations for m = 1. Qualitatively it is seen that the
two schemes produce similar results, however, close inspection revels the Godunov
approximation to be slightly less oscillatory particularly in the pressure while the
FCT approximation shows a sharper capture of the contact wave. Table 6 shows
quantitative convergence results for the two schemes using the discrete L1 norm for
the computation of the errors. This table shows that the Godunov approximations
demonstrate somewhat higher convergence rates for all quantities, but that for the
resolutions discussed here the FCT approximations always give smaller actual er-
rors. In fact for the pressure and velocity, the errors in the FCT approximations are
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m eρ (m) F κ eρ (m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

2 4.48e−1 – 7.53e−1 – 1.10e−1 – 3.40e−1 – 8.74e0 – 3.29e1 –
4 2.58e−1 .80 4.08e−1 .88 7.15e−2 .62 1.41e−1 1.3 6.49e0 .43 1.40e1 1.23
8 1.51e−1 .77 2.26e−1 .85 2.48e−2 1.5 7.78e−2 .86 3.34e0 .96 7.89e0 .83
16 9.00e−2 .75 1.43e−1 .66 1.66e−2 .58 4.76e−2 .71 1.82e0 .88 4.94e0 .66
κ̃ .77 .80 .91 .94 .75 .90

Table 6 Discrete L1 error and associated convergence rates for the two shock problem using the
Godunov (G) and FCT (F) schemes at selected resolutions associated with the choice of m. Nei-
ther scheme is yet in the asymptotic range of convergence where the L1 errors in density will be
dominated by the 2/3 convergence rate at the contact.

more than three times smaller than the Godunov approximations at coarse resolu-
tions and still more than twice as small for the finest mesh considered.

4.5 Shu-Osher Problem

The final one-dimensional test case considered in this chapter is a problem origi-
nally considered by Shu and Osher [36] and subsequently by others [24, 48]. This
problem consists of a M = 3 shock in air, γ = 1.4, traveling into unshocked air with
sinusoidally perturbed density. As originally presented, the problem has a number
of parameters and the specific values used here are taken from [24]. The initial setup
is

ρ = 3.857143, u1 = 2.629369, u2 = 0, p = 10.33333 for x1 <−4
ρ = 1− ε sin(λπx), u1 = 0, u2 = 0, p = 1 for x1 ≥−4

(25)
where the parameter values are ε = 0.2 and λ = 5. The approximate solution is
computed for x ∈ [−5,5] using L ([−5.0,5.0],200m) and integrated to a final time
t f = 1.8.

When interpreting results, it is useful to understand the Riemann structure of
the solution when ε = 0. For this case we can determine an exact solution and the
waves present there give a good indication where structures in the more complicated
solution will arise. When ε = 0, the solution consists of a M = 3 shock traveling
with speed S≈ 3.55. The perturbed problem, ε 6= 0 and small, will have disturbances
traveling along the other two characteristic fields with speeds S≈ 2.63 and S≈ 0.69.
At t = 1.8, the lead shock will have travelled to x1 ≈ 2.39, the contact wave to
x1 ≈ 0.73 and the left acoustic wave to x1 ≈ −2.76. For small ε it is expected that
the exact solution will change character near these locations.

A reference solution, computed with m = 128 up to t = 1.8, can be seen, for
example, in Figure 5. For x < −2.76 the solution is the unperturbed post-shock
state. For x ∈ (−2.76,0.73) the solution exhibits mild oscillations in all quantities.
These oscillations are the result of the passage of the left acoustic wave. For x ∈
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(0.73,2.39) the solution exhibits high frequency oscillations. Notice that for the
computational resolution m, the high frequency oscillations in the density for x ∈
(0.73,2.39) contain approximately 2m grid points per wavelength. The solution with
m = 128 uses a sufficiently fine grid to resolve these oscillations as evidenced by
the fact that further refinement does not change the character of the solution, and
because it results in approximately 256 cells per wavelength for x∈ (0.73,2.39). For
x > 2.39 the solution returns to the initial upstream state. The locations where the
solution changes behavior are, as expected, those mentioned above in the discussion
of the Riemann structure for ε = 0.

There is no known closed form solution to this problem and convergence results
must be estimated through comparison to more finely resolved solutions. Here we
use a method similar to that presented in [33]. At a given point, xi, we assume the
solution at a given resolution differs from the exact solution by

ue(xi)−um(xi)≈ c(xi)hκ
m (26)

where ue is the exact solution, um the numerical approximation, c(xi) depends only
on xi, κ is the convergence rate and hm is the grid spacing. Note that we have uniform
grid spacing. From (26) one can compute

||um1(x)−um2(x)||h ≈ ||c(x)||h
∣∣hκ

m1
−hκ

m2

∣∣ (27)

using a discrete norm. Numerical approximations at three resolutions and equa-
tion (27) can be combined to produce two equations which define the convergence
rate κ and the constant ||c(x)||h. The solution error can then be approximated as
eu(m) = ||ue−um||h ≈ ||c(x)||h hκ . When estimating the error and convergence rate
for a given approximation with resolution given by m, we use the three approxima-
tions um, u64 and u128. Table 7 shows the convergence results using the discrete L1
norm for both the FCT and Godunov schemes. From this table it is clear that the

m eρ (m) F κ eρ (m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

1 1.16e0 .75 1.20e0 .44 3.44e−1 1.1 3.02e−1 .94 2.34e0 1.1 1.98e0 .92
2 9.18e−1 .86 1.01e0 .52 1.57e−1 1.1 1.55e−1 .94 1.08e0 1.1 1.08e0 .93
4 7.86e−1 1.1 8.64e−1 .67 6.35e−2 1.1 7.85e−2 .92 4.75e−1 1.1 5.67e−1 .94
8 5.98e−1 1.4 7.28e−1 .93 3.10e−2 1.1 4.22e−2 .94 2.23e−1 1.1 2.94e−1 .93
16 2.39e−1 1.4 5.00e−1 1.3 1.52e−2 1.2 2.35e−2 1.0 1.06e−1 1.2 1.70e−1 1.1
32 8.90e−2 1.4 2.19e−1 1.5 6.87e−3 1.4 1.20e−2 1.3 4.57e−2 1.3 8.38e−2 1.3

Table 7 Convergence results for the Shu-Osher test problem using both the Godunov (G) and FCT
(F) methods. Convergence rates and errors are computed with (26) and (27) using finely resolved
simulations at m = 64 and m = 128.

coarser resolutions do not approximate the solution well at all, particularly for the
density, and low rates of convergence are attained. Figures 5 and 6 demonstrate this
graphically where the numerical approximations for m = 1 are plotted on top of the
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reference solution. Figure 5 shows the global character of the solution and Figure 6
shows a zoom of the density in the most oscillatory region. For low resolutions,
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Fig. 5 Comparison of the numerical approximations with m = 1 at t = 1.8 for the Shu-Osher
test problem. For all images the black line represents the reference solution with m = 128 while
the red line (left) shows the Godunov approximation and the blue line (right) shows the FCT
approximation. From top to bottom are density and pressure.

the high frequency oscillations are not well represented and both methods exhibit
poor convergence properties, particularly for the density as seen in Figure 6. This is
reflected by the convergence rates which are less than 1. At some critical resolution
however, both methods see a rise in convergence rates, tending to some value larger
than 1. Once this transition occurs, the high frequency oscillations begin to be well
represented as shown in Figures 7 and 8. This transition to higher convergence rates
happens at lower resolution for FCT, indicating that it has more resolving power than
the Godunov method. For the highest resolutions demonstrated here, both approxi-
mations are reasonably representing all structures in the flow and their convergence
rates become roughly equal. However, because the FCT method experienced the
transition to higher convergence rates earlier in the refinement process, the errors at
the highest resolutions are smaller than for the Godunov approximations by nearly
a factor of 2.
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Fig. 6 Zoom of density near the high frequency oscillations. Shown are the FCT and Godunov
approximations wtih m = 1, and the reference solution computed by the Godunov method with
m = 128.

4.6 Shock Impingement on Stationary Cylinder

The first two-dimensional test problem which we consider is the impingement
of a M = 2 shock on a rigid immovable cylinder. The basic problem consists
of a rigid cylinder of radius 0.5 placed in the larger domain [−2,2]× [−2,2]. A
Mach 2 shock initially located at x1 = −1.5 runs from left to right. The com-
putational mesh is defined as the overlapping grid constructed from an annu-
lus A ((0,0), [0.5,1.0],10m,80m) and a rectangle R([−2,2]× [−2,2],80m,80m),
where A and R are defined as before in Section 4.1. The boundary around the
cylinder is defined as a slip wall (see [32]), the left boundary as an inflow, and
the remaining boundaries are given outflow conditions. Phenomena of interest are
limited to those associated with the shock/cylinder interaction. Provided that the
simulation is not run too far in time, waves generated at the cylinder do not reach
the exterior boundaries and so the exterior boundary condition choice has little in-
fluence. Figure 9 shows the computational mesh as well as color contours of density
for the initial conditions. Numerical values for the initial conditions in primitive
quantities, corresponding to a Mach 2 shock in air (γ = 1.4), were shown previously
in Section 4.2.2.

The comparisons carried out in this chapter use the resolution m = 1 displayed
in Figure 9 for the coarse grid simulation. Adaptive mesh refinement (AMR) is
then used for successive resolutions. For this test of shock interaction with a single
cylinder, additional levels of AMR use a factor four refinement in each coordinate
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Fig. 7 Comparison of the numerical approximations at t = 1.8 for the Shu-Osher test problem
and m = 16. For all images the black line represents the reference solution with m = 128 while
the red line (left) shows the Godunov approximation and the blue line (right) shows the FCT
approximation. From top to bottom are density and pressure.

direction and so the four resolutions investigated have approximate grid spacings
h≈ 0.05, 0.0125, 0.003125, and 0.00078125. Notice that because the initial condi-
tion uses a perfect jump, there exists numerical artifacts along the c− characteristic
and contact path. No effort is made to remove these and their contribution may be
seen throughout the simulations.

Figure 10 shows the computed density using both methods for t = 0.6, t = 1.0,
and t = 1.4 as the incident shock reflects from the cylinder boundary. Overall the
results show remarkably good agreement although slight differences can be seen at
t = 1.4 in the low density wake region of the cylinder. To give a better indication of
what is happening, Figure 11 shows the AMR grid structure, numerical Schlieren
images [5], and the estimated error in density at t = 1.4. The computation of the error
estimate will be discussed below. The image of the AMR grids is perhaps the most
informative because it demonstrates the increased noise created by the FCT method.
Numerical noise tends to flag cells for refinement by the AMR algorithm and so a
larger portion of the domain is covered by fine meshes for the FCT simulation. This
type of noise, also interpretable as staircases [39], is a common phenomenon in FCT
simulations. There are ways to reduce the noise, such as adding higher levels of ar-
tificial diffusion, using different high order fluxes, and others, but in our experience,
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Fig. 8 Zoom of density near the high frequency oscillations. Shown are the FCT and Godunov
approximations wtih m = 16, and the reference solution computed by the Godunov method with
m = 128.

Fig. 9 Overlapping grid structure (left) and color contour of the initial density (right). The overlap-
ping grid structure is used to capture geometry and additional adaptive grids will be dynamically
added to locally increase resolution. Note that we only require one layer of interpolation points at
grid overlap as discussed in Section 3.1. The initial density shows a M = 2.0 shock in air (ideal gas
with γ = 1.4) moving from left to right.

there is no single method which completely eliminates it. On the other hand the re-
sults from the Godunov method show little sign of this phenomenon and the AMR
meshes conform closely to the locations of rapid change, such as shocks and con-
tacts. The plots of estimated error also show increased noise in the FCT solution. It
is worth noting that the remnant of the initial condition on the c− characteristic has
flagged refinement for the FCT solution whereas this feature has been smoothed by
the Godunov method.
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Fig. 10 Color contours of density for the finest resolution using FCT (top) and Godunov’s method
(bottom) at t = 0.6 (left), t = 1.0 (middle), and t = 1.4 (right).

Fig. 11 AMR grid structure (left), numerical Schlieren images (center) and estimated L1-error in
density (right) for the FCT method (top) and Godunov’s method (bottom) for the finest resolution
simulation at t = 1.4.
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Figure 12 shows line plots of the approximations along the lines x2 = 0 with
x1 ∈ [0.5,2.0] and x1 = 1 with x2 ∈ [0,2] which gives an indication of convergence
as the mesh is refined. From these plots one can again see the trend that FCT approx-
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Fig. 12 Solution convergence along the lines x2 = 0 (top) and x1 = 1 (bottom) for the FCT method
(left) and the Godunov method (right) on the shock-cylinder problem. Shown here is the density
with the colors indicating numerical resolution. Maroon represents the solution with no AMR
while cyan, red, and finally blue represent 1, 2, and 3 levels of additional factor four adaptive
meshes respectively.

imations contain more noise as compared to the Godunov approximations which
generally vary more smoothly. Table 8 shows estimated L1-norm self convergence
errors and convergence rates. These errors and rates were computed using the finest
three resolutions following the approach presented in [33] and as outlined in Sec-
tion 4.5. An advantage to this method is that it naturally provides an estimate for the
exact solution ue in equation (26). This result can be used to estimate solution errors
as was done to obtain the error estimates shown in Figure 11. The results in Table 8
show that the errors and convergence rates are similar for the FCT and Godunov
methods. It is interesting to see that convergence results for all quantities, including
the velocities and pressure which do not jump through contact waves, show sub-
linear convergence. The probable cause for this behavior is the complex interactions
of shocks, contacts and rarefactions as well as the instabilities in the wake region of
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m eρ (m) F eρ (m) G eu1 (m) F eu1 (m) G eu2 (m) F eu2 (m) G ep(m) F ep(m) G
4 1.54e−2 1.91e−2 1.02e−2 1.32e−2 7.55e−3 8.77e−3 3.00e−2 3.75e−2
16 5.60e−3 7.49e−3 3.70e−3 5.76e−3 3.13e−3 3.00e−3 1.06e−2 1.45e−2
64 2.03e−3 2.94e−3 1.35e−3 2.52e−3 1.29e−3 1.03e−3 3.73e−3 5.60e−3
κ 0.73 0.67 0.73 0.60 0.64 0.77 0.75 0.69

Table 8 Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on the
problem of shock-cylinder interaction. Here we use a weighted L1-norm.

the flow. Indications of this are given by the error estimates of Figure 11 where the
wake region is shown to have large errors over a substantial area.

4.7 Irregular Mach Reflection of a Strong Shock

The next test considered in this chapter is that of irregular Mach reflection of a strong
shock at an inclined ramp. This classic example has been investigated by many
authors [60, 58, 48] as well as demonstrated experimentally [21]. In this problem,
a Mach 10 shock impacts a ramp which is inclined 30◦ from the normal shock
propagation direction. The result is a complex interaction and results in an irregular
Mach reflection. Numerically, this flow can cause a carbuncle like instability [47,
20] for some numerical methods if proper care is not taken.

Traditionally this test problem has been solved by inclining the incident shock
to a Cartesian grid and using special boundary conditions to simulate the transition
region at the start of the ramp. For the simulations presented in this chapter, the ge-
ometry of a 30◦ ramp is realized using overlapping grids and then a Mach 10 shock
is impacted onto this ramp. The overlapping grid we use consists of a thin boundary
fitted mesh to model the ramp in union with a background Cartesian mesh for the
remaining bulk of the computational domain. The background Cartesian mesh is de-
fined by the rectangle R([−0.5,3.0]× [0,1.7],420,340). Although the boundary fit-
ted mesh is not described by a simple mathematical expression, a verbal description
will suffice for our purpopses. The physical boundary of this ramp grid is defined
as a curve that smoothly transitions from the line x2 = 0, to the line x2 = x1/

√
3,

and finally to the line x2 = 1.4438. These transitions are defined in terms of inte-
grals of hyperbolic tangent functions and are therefore smooth [29]. The ramp grid
is extruded along normals into the domain and the mesh spacing is chosen to ap-
proximately match that of the background Cartesian grid. The resulting overlapping
grid is shown in Figure 13 where both the full geometry and a zoom near the ramp
initiation at the origin are shown. At the scale of the full geometry it is difficult to
see the rounding of the corners, but the close up image makes this rounding clear.
A rounded corner will have some effect on the solution as it compares to a solution
obtained using a perfectly sharp corner. Such effects have been studied for example
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Fig. 13 Basic overlapping grid used for the simulation of irregular Mach reflection on an inclined
ramp. The boundary fitted ramp grid is seen in green and the background Cartesian mesh in blue.
The full geometry (left) shows what looks like sharp transitions to represent the ramp corners, but
the zoom near the origin (right) shows that these corners are very slightly rounded.

in [37, 31] and found to be of little consequence when the radius of curvature is
small as compared to the flow features of interest (as is the case here).

Initial conditions for a Mach-10 planar shock in air (γ = 1.4) are (ρ,u1,u2, p)L =
(8.0,8.25,0.0,116.5) and (ρ,u1,u2, p)R = (1.4,0.0,0.0,1.0). The initial shock is
located at x1 = −0.25 (for reference the left-most boundary is x1 = −0.5 and the
ramp incline begins at x1 = 0) and time integration is performed to t = 0.2. Bound-
ary conditions are set using a slip wall condition along the ramp boundary, inflow
conditions along the left boundary and outflow conditions elsewhere. For these sim-
ulations, the base mesh has roughly equal mesh spacing throughout the domain with
h ≈ 1

120 . Simulations are performed at four resolutions starting with only the base
mesh and then progressing through to use one additional level of factor four refine-
ment, two additional levels of factor three refinement, and finally two additional
levels of factor four refinement.

Figure 14 shows the approximations obtained using the FCT and Godunov meth-
ods at the finest resolution with approximate mesh spacing h≈ 5.21×10−4. At this
scale there are some apparent differences that merit mention. First notice the in-
creased noise production by the FCT method as shown by the increased proportion
of the domain flagged for AMR refinement. Also both simulations retain remnants
of the initial condition along the c− characteristic and contact path. These remnants
are covered with fine AMR meshes, although the refinement for the FCT algorithm
covers a larger region. Finally it is seen that the minimum pressure inside the main
vortex is lower for the FCT simulation than for Godunov.

Figure 15 shows close-up numerical Schlieren images near the main vortex struc-
ture at the four different mesh resolutions. For both simulation techniques, the main
vortex is poorly represented at low resolutions but with increasing mesh resolu-
tion the main features begin to develop. The roll-ups along the slip lines become
pronounced for both methods with the Godunov solution showing slightly more
detailed structure. The final two solutions show interesting differences in the devel-
opment of the main vortex. For the Godunov method it remains as a coherent single
vortical structure, while for the FCT method it begins to break down and show more
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Fig. 14 Simulation results at t = 0.2 for the Godunov method (left) and FCT (right) with 3 levels
of factor 4 refinement. Shown are the AMR mesh (top), a numerical Schlieren image (middle), and
pressure (bottom). Notice the increase in noise produced by the FCT method as evidenced by the
larger region flagged for AMR refinement. Also notice the lower pressure achieved by the FCT
method within the main vortex.

complex behavior. Comparing this behavior with what is seen in [48] shows that
the Godunov methods (for [48] the PPM method) tend to maintain a coherent sin-
gle structure, while the other methods (the hybrid WENO method in [48] and FCT
here) produce a vortex which begins to loose coherence at very high resolution. This
type of behavior calls into question the limit processes of the various schemes and
whether the various methods are in fact approaching the same vanishing viscosity
solution. This is an interesting question and will be the subject of future work. As a
further comparison of the methods, Figure 16 compares the peak vorticity and min-
imum scaled temperature, defined as p/ρ , for the two methods as a function of grid
resolution. For both schemes the minimum temperature decreases and the maximum
vorticity increases as the mesh is refined. The FCT results show a lower temperature
and smaller vorticity as compared to the Godunov results. A self convergence study
is performed as was done in Section 4.6 using a weighted L1-norm. The finest three
resolutions are used for this comparison and results presented in Table 9. Here it is
seen that the performance of the two methods is similar. The L1-norm convergence
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Fig. 15 Zoom of the numerical Schlieren images near the triple point and main vortex for Godunov
(left) and FCT (right). Resolution increases from top to bottom with approximate grid spacings
h≈ 1/120, 1/480, 1/1080, and 1/1920 respectively.



34 J. W. Banks and J. N. Shadid

0 2 4 6 8

x 10
−3

100

200

300

400

500

600

700

mesh spacing 

v
o
rt

ic
it
y

0 2 4 6 8

x 10
−3

14

15

16

17

18

19

20

21

mesh spacing 

te
m

p
e
ra

tu
re

Fig. 16 Maximum vorticity within the main vortex as a function of mesh spacing (left) and min-
imum scaled temperature (right), defined as p/ρ , as a function of mesh spacing. Godunov results
are given in red and FCT results in blue.

m eρ (m) F eρ (m)G eu1 (m) F eu1 (m) G eu2 (m) F eu2 (m) G ep(m) F ep(m) G
4 5.67e−2 6.29e−2 3.15e−2 3.45e−2 3.32e−2 3.89e−2 1.06e0 1.09e0
9 3.71e−2 4.25e−2 1.74e−2 2.32e−2 2.05e−2 2.84e−2 6.85e−1 6.81e−1
16 2.75e−2 3.22e−2 1.14e−2 1.76e−1 1.46e−2 2.28e−2 5.04e−1 4.87e−1
κ 0.52 0.48 0.73 0.49 0.59 .39 0.54 0.58

Table 9 Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on the
problem of irregular Mach reflection. Here we use a weighted L1 norm.

rates are somewhat low but this is attributed to the large variations in the solution
and unstable vortical flows which arise at the slip line which is evident in Figure 15.

4.8 Shock impingement on a collection of cylinders

Section 4.6 presented a problem where a single cylinder was impacted by a Mach
2 shock. Although this problem is by no means trivial it is not unduly complicated
either and so we extend this problem to a Mach 2 shock impacting many cylinders.
In principal any number of cylinders could be used, but for this case we choose the
somewhat arbitrary number of seven. The geometry is meshed using the overlapping
grid generated as the union of the seven annuli
A ((−1,−1), [0.4,0.55],119m,6m),
A ((−1.2,0), [0.23,0.37],68m,6m),
A ((−0.75,0.75), [0.3, .45],89m,6m),
A ((0.2,−1.0), [0.3,0.45],89m,6m),
A ((0.3,0.6), [0.15,0.3],44m,6m),
A ((0.7,−0.2), [0.2,0.35],59m,6m),
A ((−0.05,−0.15), [0.1,0.25],29m,6m),
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and a background grid R([−2,4]× [−2,2],200m,132m) where m is an indicator
of grid size. Figure 17 shows the initial mesh corresponding to m = 1 along with
the initial condition as a numerical Schlieren image. As in Section 4.6, the exact

Fig. 17 Computational mesh with resolution corresponding to m = 1 (left) and initial condition
as a numerical Schlieren image(right). The exact shock jump conditions for a Mach 2 shock in air
found in Section 4.2.2.

shock jump conditions for a Mach 2 shock in air, as given in Section 4.2.2, are
applied as initial conditions at x1 = −1.75. The boundary conditions are set using
an inflow condition at the left, outflow at the top, bottom, and right, and solid slip-
wall along all cylinder boundaries. The basic idea is to make the boundaries of the
square transparent so that the simulation can be viewed as a group of cylinders in a
region of very large extent. Section 4.6 provided a good baseline for the interaction
of a shock with one cylinder but for this case this basic interaction will be carried
out many times and the subsequent interactions will become quite complex.

Figure 18 shows numerical Schlieren images and pressure contours on the grid
corresponding to m = 4 at t = 0.5, 1.0, 1.5, and 2.0. Here it is seen that the early
time behavior near t = 0.5 is rather simple and one can easily draw the comparison
to the simulations of Section 4.6. As time progresses however, the structure becomes
markedly more complex and by t = 2.0 the simulation contains extremely compli-
cated structures. Still the FCT method is capable of capturing these complexities
quite nicely and without undue numerical artifacts. We would also like to note that
the collective action of the cylinders is to generally retard the progress of the shock
much as the single cylinder did in Section 4.6. This is witnessed by the fact that the
lead shock becomes concave forward for both cases at late times indicating that the
cylinders were an impedance.

We would also like to give some indication of grid convergence for the solution
and so Figure 19 shows simulation results at t = 2.0 for grid resolutions correspond-
ing to m = 1, 2, and 4. It is easily seen that even for the lowest resolution the nu-
merical method nicely captures most bulk flow features. Increasing grid resolution
serves to sharpen these bulk features as well as to bring out the more detailed fine
scale structures.

A final level of complexity is added to this simulation in that the cylinders are
now allowed to move. The extension of the FCT algorithm for moving grids is very
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Fig. 18 Numerical Schlieren images (left) and the pressure images (right) of simulations carried
out on the grid whose resolution corresponds to m = 4. The times for these images (from top to
bottom) are t = 0.5, 1.0, 1.5, and 2.0.
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Fig. 19 Numerical Schlieren images at t = 2.0 for grid resolutions corresponding to m = 1 (top
left), m = 2 (top right), and m = 4 (bottom).

straightforward and follows closely the ideas enumerated in [32]. The critical exten-
sion from what is presented in Section 3 is simply that the apparent flow velocity
on a given component grid is the difference between the grid velocity and the flow
velocity. Simulations are then carried out just as before and coupled to the motion
of each cylinder through Newton’s laws of motion. For this case we assume that
all cylinders are made of a material with density 1.5 in dimensionless units and the
mass is then computed using this assumption. Figure 20 shows results for the com-
putation on a mesh corresponding to m = 4 and compares these results to the fixed
cylinder case. The FCT algorithm again performs well and maintains sharp inter-
faces and shocks throughout the simulation without undue numerical artifacts. It is
of physical interest to note that while the fixed cylinders retarded the shock wave,
the movable cylinders actually aid its progress. This is shown by the generally con-
cave forward shock for the fixed cylinders and the generally convex forward shock
for the movable cylinders at late time.

4.9 An Idealized Z-pinch Implosion

The last example presented in the FCT evaluation is a complex and challenging
prototype of an idealized Z-pinch like magnetic implosion modeled by an extended
Euler system with source terms [8]. A schematic diagram of the geometry for an
idealized liner implosion is presented in Figure 21. Briefly, in a typical Z-pinch mag-
netic implosion, a very large total current I (e.g. 20 MA) with a characteristic rise



38 J. W. Banks and J. N. Shadid

Fig. 20 Numerical Schlieren images of shock interaction with fixed (left) and movable (right) rigid
cylinders at t = 0.5 (top), 1.0 (second row), 1.5 (third row), and 2.0 (bottom). Both simulations
were carried out on the mesh corresponding to m = 4. For the rigid case the cylinders serve to
retard the shock resulting in a concave forward shock front while for the movable case the cylinders
enhance the shock resulting in a convex forward shock front.
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time of about 100ns is carried initially by either a thin cylindrical metallic liner or a
cylindrical array of metallic wires that ablate and produce a plasma [42]. The current
flowing through the conductor/plasma produces a corresponding strong azimuthal
magnetic flux, Bθ . The induced local plasma current, J and magnetic flux den-
sity, B, produces a strong J×B Lorentz force which accelerates a highly energetic
plasma to stagnate on axis in about 100 ns. This stagnation and subsequent mag-
netic energy conversion produces an intense 10 ns X-ray radiation pulse [43, 53].
The intense X-ray pulse can then be used for radiation-material interaction stud-
ies [44, 42, 45], environments for indirect drive inertial confinement fusion (ICF)
applications [42, 45, 43], or for pursuing laboratory-based astrophysics environ-
ments [45, 51, 54, 15, 9, 22]. An important limiting mechanism for the amount of
radiation energy produced by a Z-pinch is the Magnetic Raleigh-Taylor (MRT) in-
stability which distorts the outer and inner interfaces of the collapsing plasma shell
and broadens the pulse width [42, 45, 23].

Fig. 21 Schematic of prototype thin-shell implosion model.

The prototype implosions considered in [8], and briefly described in the next
subsections, are developed by a simple source term model that can be used in a
basic Euler solver for inviscid compressible gases to generate implosions that have
the essential character of actual Z-pinch implosions. These problems include simple
idealized implosions that can be used as verification type problems, for code de-
velopment purposes, and also for complex implosions with high material velocities,
strong-shocks and compressive heating that may generate a radiation power pulse.
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4.9.1 An Extended Euler System Model

A generalization of the Euler conservation law system to a balance equation with
general source term is

∂u
∂ t

+∇• f+ s = 0. (28)

In this equation we have included a general source term s that will be defined for
each individual system of interest. As described in [8] Z-pinch like implosions can
be developed by including parameterized source terms for the momentum and en-
ergy balance equations that in effect model a Lorentz force and magnetic energy
work term along with the definition of an advected scalar that defines the current
flow through the liner material. For this model the Euler single temperature system
with the advected scalar, λ , is then defined by

u =


ρ

ρv
E

ρλ

 , f =


ρv

ρv⊗v−T
Ev−T ·v+q

vρλ



s =


0
−ϒ

−ϒ ·v+Qrad
0

 .
(29)

Here the effective Lorentz force source term, ϒ = J×B, can be evaluated from

ϒ = λρ (I(t))2 1
reff

êr. (30)

In this term, the effective r-coordinate, reff, is used to define the strength of the
source term locally. As in [8] the thin-shell Lorentz force term is modified to produce
an effective limiting compression ratio by using an effective radial distance, reff,
intended to remove the singularity at r = 0 with the definition

reff/R0 = max
(
r/R0,1.0−4) . (31)

The non-dimensional scalar 0 ≤ λ (r, t) ≤ 1 is used to control the magnitude and
localize the application of the non-dimensional Lorentz force term. Notionally the
scalar λ (r,0) is considered to define the initial “current sheet” and to localize the
application of the source term during the evolution of the implosion. Thus by spec-
ifying I(t) the forcing term magnetically drives the Z-pinch like implosion with the
required 1/r behavior in the active region where the Lorentz force term is non-zero.
Therefore by including this force term, in a suitably non-dimensionalized form of
the Euler equations, a parameterized set of prototype magnetically driven shock-
hydro problems can be developed. In the examples that follow an analytic limiting
case of a thin-shell implosion in the (x,y) plane, Rayleigh-Taylor instability effects
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in a (r,z) implosion and a simple radiating implosion is carried out to evaluate the
FCT algorithm.

4.9.2 Thin-shell Implosion in the x-y Plane and a Comparison with an
Asymptotic Analytic Solution

In this model, the conducting plasma is considered to be concentrated (or lumped)
into a asymptotically thin shell with the geometry of Figure 21 and limited to the
(x,y) plane. The non-dimensional initial conditions are choosen with an interior den-
sity of ρpre-fill = 1.0× 10−6, a liner density of ρL = 1.0, and an exterior density

of ρexterior = 5.0× 10−7 as in [8]. The initial pressure throughout the domain is
p0 = 1.0× 10−6 and the flow is initially stagnant. In the context of the asymptotic
thin-shell implosion analysis presented in [8] this problem uses a current drive of
I(t) =

√
12(1− t4)t2. This current drive results in a power law relation for the radial

position r(t)/R0 = 1− t4 for the location of the thin shell as a function of time. In
order to give a reasonable intuitive sense for these initial conditions as well as the
computational domain where the simulation is carried out refer to Figure 22. The
base computational grid which is used for these simulations is shown in Figure 22.
Here an annular grid (blue in the figure) is used over much of the domain with the
singularity at the origin covered by a square grid (green in the figure). The grid
spacing in the radial direction as well as for the center square patch is chosen to be
h = 0.025, and the average grid spacing in the azimuthal direction for the annular
grid is h ≈ 0.059. Solid slip-wall boundary conditions are applied at the left and
bottom, and an inflow condition is applied at the outer curved boundary. A series of
results for a shell of fixed thickness ∆ = 0.05 is presented using increasing amounts
of AMR. For the initial resolution no AMR is used. The second resolution uses one
additional level of AMR with a refinement factor of 4 in each direction giving the
effective resolution of h = 0.00625. The final resolution takes 2 additional levels of
AMR each with a refinement factor of 4 (h = 1/640). The initial condition for den-
sity for the finest resolution simulation is presented in Figure 22. Here the thin ring
of conducting material is seen as pink which represents ρ = 1.0 and λ = 1.0. Interior
and exterior to this ring the density is so low (≈ 10−6) that one cannot distinguish
it from a pure vacuum using the included colorbar. Figure 23 shows two snapshots
of the density at t = 0.5, and t = 0.9. These two images show the imploding con-
ducting shell which appears to remain quite cylindrically symmetric even after its
transit from the annular grid to the center square patch. It can be seen, particularly
at the later time t = 0.9, that the thin shell model is clearly approximate. The most
obvious indication of this is the fact that the peak density now has a much higher
value ρmax ≈ 1.75, which results from non-uniformities in the simulation as well as
because the shell here is not infinitely thin and compressional effects are induced
that are not accounted for in the thin-shell model [8].

For this problem Figure 24 presents the shell radius, R(t), and the shell velocity
V (t). The values for these plots are obtained from the simulation results but because
we are dealing with simulation results obtained using a capturing code, the selection
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1.25

0

0                                                  1.25

Fig. 22 Left: Computational grid used for the magnetic implosion simulations. Here an annular
grid (blue) is used for much of the domain with the singularity covered by a square patch (green) in
the center. Right: Initial condition of density for for the highest resolution simulation of the simple
implosion. Notice the thin shell of high density surrounded by nearly rarefied regions interior and
exterior. The non-dimesnional values for these densities are ρL = 1.0, ρpre-fill = 1.0× 10−6 and

ρexterior = 5.0×10−7.

Fig. 23 Density for the highest resolution simulation at t = 0.5 (right), and t = 0.9 (left). The
thin shell is seen to implode in a remarkably symmetric fashion even after the transition from the
annular grid to the square center patch.

of the location, and hence velocity, for the imploding shell is open to interpretation.
In these results the shell location at a given time is defined by the location of the
computational cell nearest to the origin whose density is 1/2 of the maximum den-
sity at that time. From this cell the radius and velocity are selected and used in the
plots. In these plots the clustering of the data about the analytic solution demon-
strates good agreement of the simulation with the predicted behavior for the thin
shell model. One can also see the solution for finer mesh resolutions converging to
the analytic solution at all times. This plots show the excellent agreement of the
FCT simulation with the analytical asymptotic solution.
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Fig. 24 Shell radius against time (left) and shell velocity against time (right). In these plots the
black curve represents the exact solution R(t) = 1− t4 and V (t) = 4t3, the blue x’s represent the
solution with no AMR, the red x’s represent the solution with one level of AMR, and the green
x’s represent the solution with two AMR levels. We can see the convergence of the solution to the
exact thin shell prediction upon increasing resolution.

4.9.3 A More Realistic Implosion in the r-z Plane with Rayleigh-Taylor
Instability Effects

In this more challenging prototype problem perturbations are introduced into the
initial geometric configuration of a finite thickness representation of a shell liner [8].
These perturbations are intended to generate vorticity due to Rayleigh-Taylor and/or
Richtmyer-Meshkov type instabilities. Here the initial density profiles are given by
a liner density of ρL = 1.0, an exterior density of ρexterior = 0.025, and a pre-fill
density inside the linear of ρpre-fill = 0.05. The initial pressure is constant with a
value of p0 = 0.01. The base computational grid has a mesh spacing of h≈ 0.0025
and uses two additional levels of factor 4 AMR to give an effective grid resolution
of h≈ 0.0015625. In this case a linear current drive I =

√
12t is employed.

Figure 25 shows a numerical Schlieren of the time evolution of the initial con-
ditions where a sinusoidal perturbation to the initial interface has been introduced.
This perturbation is intended to promote the growth of a particular unstable Raleigh-
Taylor mode and thus create significant structure as the liner nears stagnation. Here
the perturbation has amplitude 0.005 and period 0.125 and has been introduced
along the inner boundary of the conducting shell. The initial pressure distribution,
p0 = 0.01, is selected to promote growth of R-T spikes ahead of the liner implo-
sion at a sufficient rate so as to view their effect before stagnation. The instability
evolves from the initial conditions on the right to the stagnation on axis on the left.
The FCT AMR solution provides a very well resolved simulation of multiple unsta-
ble modes resulting in a complex pattern of R-T growth with complex interaction
of shock waves at stagnation. It should be noted that the evolution of the R-T in-
stability is qualitatively different from an actual Z-pinch system in which spikes
lag behind the remaining liner material due the larger current flow in this contigu-
ous material sheet (for example see [18, 23]). This is due to our simplified model
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Fig. 25 A prototype Rayleigh-Taylor instability for a perturbed liner geometry for the magnetic
implosion in (r,z). An initial pressure distribution to promote growth of R-T spikes ahead of the
liner implosion has been selected. The instability evolves from the initial conditions on the right to
the stagnation on the axis on the left. The upper images are a numerical Schlieren and the lower
images show the density at times (from left to right) t = 1.2, t = 1.0, t = 0.8, and t = 0.0.

assumption that defines the ”current sheet” by the scalar λ that cannot adequately
model the preferential physical current flow through the contiguous liner material
over the penetrating spikes. However the magnetic force term does produce spikes
and sheets of material developed by the R-T effects and R-M instabilities as the
strong-shock interacts with the trailing liner material sheet. These later stages have
some qualitative similarities to actual Z-pinch implosions which gives indication to
why such a simple testing procedure can be very beneficial in benchmarking the
flow portion of simulation tools intended for shock-hydrodynamics applications.
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4.9.4 An Idealized Z-pinch Implosion with Simplified Radiation Emission and
a Self Convergence Study

This final test prototype problem is intended to increase the complexity of the Z-
pinch prototype problem to include a phenomenological radiation emission model
and to allow the evaluation of the FCT method by considering the estimated order-
of-accuracy of the method in modeling the integrated radiation output from the im-
plosion. In actual Z-pinch modeling efforts the simulation of the temporal charac-
teristics of the radiation output is an important and challenging goal for these types
of simulations. Even with the use of such a simplified model as described below,
the results produced by the Euler system solver with the J×B source term model
produce power pulses with qualitative similarities to experimental and full compu-
tational MHD results found in the literature (see e.g. Figure 9 in [25]).

One of the simplest radiation emission models one might consider is

Qrad = σT 4

where T is the temperature obtained from the equation of state (2) and the caloric
equation of state for an ideal gas as given by ρe = ρCvT , where Cv is the specific
heat of the gas at constant volume. From [8]

σ = σ̄ρ
1

T 2

where σ̄ is a constant chosen here to be σ̄ = 100.0. The radiation emission is set
to be active only in the liner material by multiplication with λ so the final radiation
source term becomes

Qrad = σ̄λρT 2.

Obtaining resolved radiation profiles in an actual Z-pinch simulation is a tremen-
dously challenging task due both to the complexity of the physically realistic ra-
diation models as well as the mesh resolution requirements. With this difficulty in
mind, this section presents two convergence studies where different aspects of this
difficult regime are highlighted.

The first problem is a pinch in the r-z plane with some small amount of pre-fill
material and a stagnation point off axis at r = 0.1 as for example on a rod. Here
the pre-fill and exterior densities are ρpre-fill = 1×10−3, ρexterior = 5×10−4 and

the initial pressure is p = 1× 10−5. A linear current drive I =
√

12t is used so the
current is rising as the material stagnates and radiates. The study is performed at
a variety of uniform mesh resolutions corresponding to h = 1/160, 1/320, 1/640,
1/1280, 1/2560 and 1/5120 where h is the grid spacing in the r and z directions.
Figure 26 presents the radiation output and the total radiated power as a function of
time for these resolutions and it is clear that the pulse is well behaved and largely
converged at the finest resolution h = 1/5120.

In order to gauge convergence, consider the convergence rate in two separate
norms. The first and perhaps simplest is to look at is the extrapolated convergence
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Fig. 26 Shown here are the radiation pulses (left) and total radiated power (right) obtained using
the linear current model I =

√
12t on a pinch with ρpre-fill = 1× 10−3 and a stagnation point at

r = 0.1. The simulation is carried out in the r-z plane and the resolutions, from coarse to fine, are
represented by green, cyan, blue, black, red and maroon.

rate as considered by Roy in [50]. In this analysis the final three data points for
total radiated power from Table 10 are considered and an order of convergence is
obtained, as in [50], from this data. For this data the convergence rate is judged to

Table 10 Total radiated power, peak power, and time to peak power for the radiation results pre-
sented in Figure 26. Here N is a measure of grid resolution with h = 1/N.

N total radiated power peak power time to peak power
160 2.261 118.7 .9299
320 1.833 172.0 .9267
640 1.528 215.3 .9264
1280 1.311 174.0 .9260
2560 1.203 196.8 .9261
5120 1.158 227.8 .9257

be κ ≈ 1.26 for the total radiated power at t = 1.0. For the second measure consider
the self convergence in L1 of individual radiation pulses to the finest computation
h = 1/5120 from Figure 26. Table 11 shows these results with a least squares fit
to the convergence rate κ ≈ 1.08. To put this result in context, for flows with solu-
tions dominated by shocks a rate of κ = O(∆x) is expected and for contact surface
dominated flows a rate of κ = O(∆x2/3), for a second order method, is expected as
described above. Finally it should be noted that because simulations are run at fixed
CFL, spatial refinement and temporal refinement are carried out in a coordinated
manner.

The second radiation result demonstrates stagnation with the very difficult pre-
fill density set at ρpre-fill = 1×10−6, the exterior density ρexterior = 5×10−7 and

stagnation on the center line. Here the power law current drive I(t) =
√

12(1− t6)t4

and I = 0 for t ≥ 1 is used rather than the linear drive. The softening of the problem
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Table 11 Self convergence results for the L1 norm of the radiation pulses from Figure 26 as com-
pared to the finest resolution h = 1/5120. Here κ ≈ 1.08 is a least squares fit for the convergence
rate and N is a measure of grid resolution with h = 1/N.

N self convergence error
160 2.614
320 1.149
640 0.5340
1280 0.2672
2560 0.1275

κ 1.08

as a result of the more gentle current drive is more than made up for in the increased
difficulty of resolving the stagnation on axis which makes numerical convergence
extremely difficult. Simulations have been carried out for h = 1/160, h = 1/320,
1/640, 1/1280, 1/2560 and 1/5120. Figure 27 presents the radiation output and
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Fig. 27 Shown here are the radiation pulses obtained using the current model I(t) =√
12(1− t6)t4. The simulation is carried out in (r,z) space with r ∈ [0,1.25]. The radiation output

and total radiated power is plotted as a function of time with the simulations from coarse to fine
represented by green, cyan, blue, black, red and maroon.

total radiated power as a function of time for these results and indicates strongly
that convergence is near at hand for the finest resolution h = 1/5120, but shows how
difficult this problem is in terms of sufficient resolution for convergence. Indeed
some aspects of the simulation seem to be well resolved such as the peak output
location as a function of time, but even at this fine resolution the peak power is
clearly not well resolved.

As before convergence is measured in two ways. The first takes the extrapolated
convergence rate for the total radiated power at t = 1.0 in Table 12 as in [50]. The
result here is κ ≈ 0.37 which is obviously not excellent, but still convergent and
for such a difficult problem still considered reasonable. The second measure judges
self convergence of individual radiation profiles in Figure 27 using the L1 norm.
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Table 12 Total radiated power, peak power, and time to peak power for the radiation results pre-
sented in Figure 27. Here N is a measure of grid resolution with h = 1/N.

N total radiated power peak power time to peak power
160 8.500 186.9 1.015
320 8.790 195.9 1.011
640 9.365 258.5 1.011
1280 9.808 330.4 1.012
2560 10.18 389.7 1.006
5120 10.46 478.5 1.003

Table 13 shows these results and demonstrates that even here the convergence rate
is κ ≈ 0.75 which is quite good.

Table 13 Self convergence results for the L1 norm of the radiation pulses from figure 27 as com-
pared to the finest resolution h = 1/5120. Here κ ≈ 0.75 is a least squares fit for the convergence
rate and N is a measure of grid resolution with h = 1/N.

N self convergence error
160 10.74
320 6.920
640 4.450
1280 2.654
2560 1.290

κ 0.75

5 Conclusions

This chapter has outlined the development and assessment of a high-resolution FCT
algorithm for the Euler equations on structured overlapping grids as in [6]. The im-
plementation of the FCT method for overlapping grids was based on the Overture
framework and included modifications and extensions to the classical FCT algo-
rithm. These extensions included the modifications required for the discretization
on curvilinear grids as well as the inclusion of a Jameson-style fourth-order artifi-
cial viscosity to remove the high frequency noise produced by FCT. Improvements
were made to the FCT algorithm to eliminate entropy violating shocks that can oc-
cur at sonic points in rarefaction waves. Difficulties occurring in strong rarefaction
waves, where a near vacuum state is produced when the gas separates at velocities
greater than the sound speed, were also addressed. In addition we discussed FCT
for moving overlapping grids.
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We have evaluated this new FCT method on a series of benchmark high-speed
flow problems and compared the results to those obtained using a high-resolution
Godunov method. This investigation confirmed the expected convergence character
for manufactured solutions as well as isolated contact and shock waves. The over-
lapping grid capabilities were used to study the interaction of a planar shock by fixed
and movable rigid cylinders as well as irregular Mach reflection of a strong shock
on an inclined ramp. Where possible the FCT method was compared to a well char-
acterized Godunov method. Overall the results obtained by the FCT and Godunov
methods were found to be very similar. The FCT solutions tended to have a some-
what higher resolving capability but also to contain more numerical noise. It should
be noted that our implementation of the FCT method was quite costly in comparison
to the Godunov method. This is due to the large number of characteristic transfor-
mations, the smaller time step required, and the apparent difficulty in removing high
frequency noise which tends to flag cells for refinement by the AMR algorithm [6].
Recent developments in alternate limiting procedures for conserved and primitive
variables, as well as linearized FCT algorithms for implicit calculations might help
to reduce the overhead of the FCT algorithm [40]. Finally, the extensive compar-
isons and order-of-accuracy results presented in this study suggest that the FCT
method may be a viable option for cases where Riemann solvers are expensive or
not readily known, or for cases with extremely large jumps where more traditional
methods may have difficulty. This type of challenging problem was illustrated with
the inclusion of the prototype Z-pinch implosion as discussed in [8].
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