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A METHOD FOR THE NUMERICAL DETERMINATION

OF THERMAL CONDUCTIVITY

B. L, Buzbee and F., W, Dorr

ABSTRACT

A computational procedure is described for determining the
thermal conductivity of a material from experimentally determined

transient cooling data.

INTRODUCTION

In this report, we describe a procedure that
we have developed to determine the thermal conduc-
The method can be divided into
First, the transient cooling

tivity of graphite.
two distinct parts.
profile of a cylindrical sample of the material is
experimentally determined., These data have been
provided by Paul Wagner.l Second, we simulate this
cooling on the CDC 6600 computer by solving a set
of finite difference equations. We will describe
this numerical simulation, and indicete how this
process can be used to approximate the thermal con-
ductivity of the material.

The procedure has been successfully applied to
a test case which is a model of the graphite exper-
imental data. An essential feature of the method
is that it cutomatically indicates whether the ex-
perimental data are accurate enough for the compu-
tational results to be meaningful. No solution is
obtained when the procedure is applied to the graph-
ite laboratory data, and we feel that this is due
both to inaccuracies in the experimental data and
to the fact that the camputational model does not
adequately describe the laboratory experiment.
Nevertheless, the results for the test case indi-
cate that this method could be very useful in sim~

ilar problems with more accurate input data,

FORMULATION OF THE PROBLEM

In the laboratory procedure, the ends of a
cylindrical sample of a material are heated to a
temperature at which the heat flow has reached a
steady state,
cooling profile as a function of time at several

The heating is then stopped, and the
points in a radial direction is observed., Ve assume
that the length-to-radius retio of the sample is
large enough to justify neglecting the end effects,
and also that the material is homogeneous,

Under these conditions, the temperature
T = T(t ,r) satisfies the nonlinear initial value
problem,

%:%%(ra(r)%—}) (o<r<nl,t>o)
» (1)
T(0,r) = glz) (0Oer« Rl)
and the two sets of boundary conditions,
T
sE(t,0 =0 (t > 0)
(2)
T(t, Rl) = fl(t) (t>0)
and
T(t,0) = f,{t) (t>0) . (3



The notation used in these equetions is the follow-

ing:
(1) R is the radius of the cylindrical sam-

ple, and O <R, <R.
(i1) The thermal diffusivity, a(T), is given

k(T
a(T)‘TTuT)'pTcPT .

The thermal conductivity, k(T), is assumed tc have

by

the form
KT) =4 +B ,

and the unlmown nonnegative constants A and B are
tc be determined by the computational procedure.
The density, p(T), is given by

o

o0 = TrerTsg
1+p:|_‘.|'.‘-p2

and the constants p; are known. The specific heat,
CP(T), is assumed to be known, slthough only in
tabular form,

{iii) The boundary condition g-"-:- (t,0) =0
is satisfied because T(t,r) is “symmetric" about
r=0.

{iv) The functions fo(t) and fl(t) for the
toundary conditions at r = 0 and r = Rl are as~
sumed to be known from the experimentel data.

(v) Because the material is at a steady
state at t = 0, we assume that the function g(r)
in the initial condition is the parebola giver by

g(r) = fo(»)) + (fl(o) - fo(O)) (i)2 .

We have selected the boundary conditions in
Eqs. (2) and (3) with Rl < R for our computational
model for two reasons, First, the choice of Dirich-
let data for T(t,r) on the line r = constant > O
simplifies the mathematical model because we do not
have to consider a radiation boundaery condition at
the surface of the cylinder. Second, we believe
that the experimental data from the interior of the
cylinder (r = Rl) are more reliable than dsta from
the surface of the cylinder (r = R).

We now consider the initial-boundary value
problem (P) defined by Eq. (1) with the boundary

2

conditions in Eq. (2). We assume that for each
fixed A and B there is a unique solution T(t ,r)
to problem (P). This is a reasonable hypothesis

on physical grounds, but we do not know enough about
the function Q(T) to prove that this assumption is
alwar-s satisfied, For a given A and B, it is
clear that the solution T(t,r) to problem (P)will
not generally also sa:isfy Eq. (3). Because the
solution derived in the laboratory does satisfy both
equations, we see that this yields an overdetermined
problem. The goal of the computational procedure is
to determine values of A and B such that the solu-
tion to problem (P) also satisfies Eq. (3). On
physical grounds, we expect a unigue solution pair
(A,B) to exist,

There is an extensive literature dealing with
overdeternined problems similer to the one we are
considering. In particular, we cite the work of
Ct:.nnon,z'5 Carmon, Douglas, and Jones ,6 Cannon and
Halton,7 Cannon and Jones,  Douglas and Jones,9 and
0,1 1, general, these authors restrict
their attention tc the linear case in which the
thermal diffusivity depends only on the time t,
and their results do not seem to be directly appli-
cable to our problem.

In two recent papers Cannon, DuChateau, and
Fi:!.\'nerlz"15 have described a method that we have

Jones.,

incorporated in our procedure, We are grateful to
Prof, J. R. Ca.nnonl for discussing this technigue
with us and indicating how it ~ould be applied to
our particular overdetermined problem.
THE COMPUTATIONAL FROCEDURE

Let t) ,t, , and t; be three fixed times
satisfying

* * »*
0<t) <ty <ty st

1 2
vhere 1 is the maximum time considerad, Let
T(t,r ;A ,B) be a solution to problem (P), and fix
t* at one of the values t: . For each value of A
in a prescribed interval, we try to find a value for
B = B(A)} such that

T(t*,o ;A,B(A)) = 1,69 .

This defines a curve (A ’ B(A)) for each value of
*

t , and we then f£ind the points of intersection of
* *
the three curves corresponding to tl sty , and

t; . If the points of intersectioi. are (Ai , Bi)



for 1 < i s 3, we define the approximate solution
pair (A, B) by

A= (A1+A2+A3) »

L
3
3 (B, +B,+B) .

We are not able to guarantee & priori that this
method will provide a solution to the problem. This
question is discussed by Cannon, DuChateau, and
Filmer,12 but we cannot show that the hypotheses of
their theorem are satisfied, Nevertheless, our
computational results provide experimental justifi-
cation for the epplicetion of the method to this
particular problem,

In Appendix A we have outlined another proce-
dure that we have used for this problem. It is more
time-consuming and much less accurate than the meth-
od described above, so no numerical results are
ineluded.

COMPUTATIONAL RESULTS

We have used the computational procedure cut-
lined in the preceding section on two different
problems, The first example is a test problem that
was selected to determine the feasibllity and accu-
racy of the method. The second problem is derived
from the leboratory data for graphite,

For the tt_ast problem, we let By = 1.75,

Py = 1.5 x 1077, Py = 300, Ry = 0.62, and we let
CP(T) be determined by the values given in Ref, 1.

Define

-0,04t
63 00N

530 ’
B = 0,18 ,

£, (t)
A

n

which are the approximate values for graphite,

Solve problem (®) with these values and fo(o) = 2512,
and call the solution To(t »T) . We then let

fo(t) = To(t »0), and use this function as input to
the computer program. The solution to problem (P)
is approximated by the solution to a finite differ-
ence equetion, and this process is deseribed in
Appendix B,

In Figs., 1 to 4 we have plotted the computa-
tional results for the test case with a varying
number of correct digits for the input dfta fo(t).
The three curves in each case are for t, = L,

t) =9, and t; = r=14 . Note that the method

works very well with accurate input data, but its
usefulness repidly deteriorates as the mumber of
correct digits in fo(’c) is decreagsed, The data for
the grephs in Fig. 4 have been perturbed by random
noise so that the relative error is less than 0.1%,
and our method does not yield a solution.

In Fig. 5 we have plotted the curves for the
graphite experimental data, The parameters are the
same as those in the test case, except that we use
t) =k, t) =7, and t;: x=9. Inaddition,
fo(t) and fl(t) are determined from the date in
Ref. 1. Since the curves in Ref. 1 are for graphite,
we would expect to compute A = 530 and B = (,18.
However, it is clear that the method has not deter-
mined a solution, and the computed points on the

curves are far from the expected values., In Table I
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Fig. 2. Test case with five correct digits in

boundary date.,

we have tabulated the experimentally determined
values for fo(t) » vhich can be compared with the
computationally determined values for fo(t) using
A =53, B=0.18, and the experimental data for
() .
CONCLUSIONS

We conclude from these compuiational results
that the method can be applied to overdetermined
problems of this form. However, the procedure does
not give acceptable results for the graphite ex~
perimental data., We feel that this is due to &
failure in the model rather than in our method of
solution, for the following reasons:

(A) The experimental date may be too inaccu-
rate for the method to yield a solution. As the
results for the test case demonstrate, one of the
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Test case with four correct digits in
boundary date.

Fig. 3.

primary adventages of this procedure is that it
automatically indicates whether the input data are
accurate enough to provide reliable solutions. The
graphite curves in Fig. 5 clearly show that this
accuracy condition on the input data is not satis-
fied,

(B) We may be using the wrong model for the
leboratory experiment, We do not believe that the
large discrepancies exhibited in Table I can be
accounted for simply m8 noise in the data. Rather,
we feel that the initial-boundary value problem for
this partial differential equation does not ade-
qately describe the experiment. The following
factors provide a possible explanation:

(1) The sample is too short relative to
the radius to justify ignoring the end effects,
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boundary data.

(2) The heat flow is not independent of
the angular direction,

(3) The sample is not homogeneous.

(4) The dsta provided are not precisely
at r = 0, so the boundary condition %}(t 20} =0
cannot be used,

(5) The sample is not at a steady state
et time t = 0.

(6) The approximation of T(O,r) by e
parabola is not accurate enough.

(7) The assumed form for &(T) is not
adequate to describe the thermal diffusivity for
this material under these conditions,

(C) It is possible that we have not solved the
finite difference equations accurately enough. In
this respect, we have comsidered the following
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Fig. 5. Graphite experimental data.

factors:

(1) The truncation error may be tco
large because the mesh is too coarse, We have run
test cases using Bessel functions, and the mest
size does not appear to be & source of significant
error,

(2) V¥e may not be solving the equations
accurately enough pecause of the nonlinearity in
a(T). We have used an iterative technique to im-
prove the accurscy of the solutions to the non-
linear problem, and the relative change in temper-
ature is less than 1072, This would not be a
large enough error to account for the graphite
results.

(3) The finite difference equations may
rot have & unique solution pair (A ,B) . Wwe Xnow



TABRLE 1

EXPERTMIMNTAL AND COMPUTED VALUES FOR fo(t)
P, SRAPTITE DATA WITH A = 530 AND B ="0.18.

t Exparimental Value

- ——— —s”

Commted Value

b #4355 461,26
z 2450 2389.00
% 2247 2293.81
4 215k 219230
5 070 21i6.02
i 001 2041,16
7 g3k 1966,63
i blorl 190%,13
£ ifax 1850, 27

of no regults in this direclion, and we have been
unabie to determine whether this is a significant
factor in our computgbtional results,

APPENDIY A
ANOTHER METKQOD FOR 'THE SOLUTION OF
THE CVERDETERMIVED PROBLEM

Let to 7 tl yoeen s t’N pe a fixed set of points

satiafying

O=t, < u, <% eee < t -
Tty SRy, < NET

It w(t) is apy alven “unction, the norm n(w) is
1/2

defined by
. \ 2
e = { E wity) -

%
p oi=l
We remark that thare are msny other norms that
couid ba used for #{w} , such as max lw(ti)l .

lish
Hovever, our computationel experience indicates
thet the choice of nora is not critical to the
arocedure,
¥C T{t,r;A,B) is 2 solution to problem (F),

we dafine the errer K{A, ) in this function by

#

E(&,5) = n{3(t ,05A,B) - fo(t)) .

Jur geel iy to determine vaiues AO and BO such
that

B.} = mir E(A,B) .
Ax0,B20

Notice that tkis method of solution uses all of the
data on the line r = ¢, rather than just data at
tkhe three points (t:,O) ;1si<3, Inour com-
putations, we have solved the minimization problem
in the form

E(a,; B,) = min [m:iBn E(A, B)] .

The edvantage of this procedure is that the curves

[E(A ,BYA fixed} have always been corvex, so the
one-dimensional minimizatiou problems are easy to
solve.

We have not used this approach for our compu-
tational prucedure for two reasons, First, it is
very time-consuming to evaluate the function E(A, B)
(about 4 sec on a CDC 6600 computer), znd E(A, B)
is steep in the neighborhood of B = B;. This makes
the calculation of the function M(a) = m}isn z(a, B)

quite expensive. Second, the graph of M(A) is very
flat near the minimm., and it is not possible to
meaningfully ascertain the value of AO .

APPENDIX B
FINITE DIFFERENCE EQUATIONS

Consider the nonlinear initial-boundury value

problem

%E-:%%(ﬂ:ﬂ)%ﬁ-) (o<r<Rl,t>o)§
0, 1) =glr) (0 sT <R,
8T1t,0)= 0 (t>0) r
Tt ,Ry) = 1 () (t > 0) J

In this appendix, we outline the finite difference
approximation we have used for this problem. These
technigues are not new, and we refer to Ref. 15 for
a complete discussion of similar methods.

Define mesh points ('c.i % ;]) by
t; =ist, At:-x'g- ’

R
I'=jA1‘, AI‘:Y »

-



and use the notation Tyy = T(t, , rJ) . We introduce

the difference operator Da T defined by
i

14

1

» — ___—.1 -
F3 > 0: By Tyy = Y [(ar)i,j~1/2Ti,j-l ((ar)i,j-1/2 * (ar)i,3+l/2)Tij +(ar)i,j+l/2Ti,j+l] ’
5(ar)

0: D ua(Tio)
r., - H T_ = — T - T
i Q:i i (Ar)2 il 10 ’

where

fr.+r (T, )+ (T, . .)
3+l 1 1,341
@r) /0= l it ][ . — ]

The difference equations we use are given in the
implicit form

_isl,3 ij _
=D iTi+1,J

0OgigN-1,0gcixM~-1) .

For a fully implicit equation, we would use the

operator Dy T in the right-hand side of the

1+1,5

i+l
equation. However, this choice makes the computa-
tion of T, , ; more difficult, and because ®(T) is
¥

observed to be a slowly varying function of time it
appears that no significant error is introduced by
computing the solution by the above "semi-implicit"
equaticn,

We heve used the values N = 16 and M = 20 for
ocur numerical results, The function fl(t) is given
by a cubic spline interpolant through the data points
fl(ti), ani we actuelly compute the solution T(t,r)

with At:;%s—.
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