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A METHOD FOR THE NUMERICAL DETSRMIHATION

OF THERMAL CONDUCTIVITY

by

B. L. Buzbee and F. W. Dorr

ABSTBACT

A computational procedure is described for determining the
thermal conductivity of a material from experimentally determined
transient cooling data.

INTRODUCTION

In this report, we describe a procedure that

we have developed to determine the thermal conduc-

tivity of graphite. The method can be divided into

two distinct parts. First, the transient cooling

profile of a cylindrical sample of the material is

experimentally determined. These data have been

provided by Paul Wagner. Second, we simulate this

cooling on the CDC 6600 computer by solving a set

of finite difference equations. We will describe

this numerical simulation, and indicate how this

process can be used to approximate the thermal con-

ductivity of the material.

The procedure has been successfully applied to

a test case which is a model of the graphite exper-

imental data. An essential feature of the method

is that it automatically indicates whether the ex-

perimental data are accurate enough for the compu-

tational results to be meaningful. No solution is

obtained when the procedure is applied to the graph-

ite laboratory data, and we feel that this is due

both to inaccuracies in the experimental data and

to the fact that the computational model does not

adequately describe the laboratory experiment.

Nevertheless, the results for the test case indi-

cate that this method could be very useful in sim-

ilar problems with more accurate input data.

FORMULATION OF THE PROBLEM

In the laboratory procedure, the ends of a

cylindrical sample of a material are heated to a

temperature at which the heat flow has reached a

steady state. The heating is then stopped, and the

cooling profile as a function of time at several

points in a radial direction is observed. We assume

that the length-to-radius ratio of the sample is

large enough to justify neglecting the end effects,

and also that the material is homogeneous.

Under these conditions, the temperature

T T. T(t , r) satisfies the nonlinear initial value

problem,

T(0 , r) = (0 s r s Rx)

and the two sets of boundary conditions,

<t,o)«o (t>0)

and

T(t , B^ = fx(t) (t > 0)

T(t , 0) = fo(t) (t > 0)

(2)

(3)



The notation used in these equations is the follow-

ing:

(i) R is the radius of the cylindrical sam-

ple, and 0 < R1 < R .

(ii) The thermal diffusivity, a(T), is given

by

a(T) = fcffl
p(T) C p (T)

The thermal conductivity, k(T), is assumed to have

the form

and the unknown nonnegative constants A and B are

to be determined, by the computational procedure.

The density, p(T), is given by

1 + px (T - ̂ g) >

and the constants p are known. The specific heat,

Cp(T), is assumed to be known, although only in

tabular form.

(iii) The boundary condition g ~ (t ,0) = 0

is satisfied because T(t , r) is "symmetric" about

r = 0 .

Uv) The functions fQ(t) and f.(t) for the

taundary conditions at r = 0 and r = R., are as-

sumed to be known from the experimental data.

(v) Because the material is at a steady

state at t = 0 , we assume that the function g(r)

in the initial condition is the parabola giver by

g(r) = tQh) * (fx(0) - fo(O)) (-E-

We have selected the boundary conditions in

Eqs. (2) and (5) with E 1 < R for our computational

model for two reasons. First, the choice of Dirich-

let data for T(t , r) on the line r = constant > O

simplifies the mathematical model because we do not

have to consider a radiation boundary condition at

the surface of the cylinder. Second, we believe

that the experimental data from the interior of the

cylinder (r = R O are more reliable than data from

the surface of the cylinder (r = R) .

We now consider the initial-boundary value

problem (P) defined by Eq. (l) with the boundary

conditions in Eq. (2). We assume that for each

fixed A and B there is a unique solution T(t , r)

to problem (P) . This is a reasonable hypothesis

on physical grounds, but we do not know enough about

the function OS(T) to prove that this assumption is

always satisfied. For a given A and B , it is

clear that the solution T(t, r) to problem (P) will

not generally also saiisfy Eq. (3). Because the

solution derived in the laboratory does satisfy both

equations, we see that this yields an overdetermined

problem. The goal of the computational procedure is

to determine values of A and B such that the solu-

tion to problem (P) also satisfies Eq. (3). On

physical grounds, we expect a unique solution pair

(A ,B) to exist.

There is an extensive literature dealing with

overdetermined problems simils.r to the one we are

considering. In particular, we cite the work of

Cannon, Cannon, Douglas, and Jones, Cannon and
7 8 9

Halton, Cannon and Jones, Douglas and Jones, and

Jones, ' In general, these authors restrict

their attention to the linear case in which the

thermal diffusivity depends only on the time t,

and their results do not seem to be directly appli-

cable to our problem.
In two recent papers Cannon, DuChateau, and
12 15

Filmer ' J have described a method that we have
incorporated in our procedure. We are grateful to

Ik
Prof. J. R. Cannon for discussing this technique
with us and indicating how it -.xruld be applied to

our particular overdetermined problem.

THE COMPUTATIONAL PROCEDURE

Let t. , t_ , and t, be three fixed times

satisfying

0 < t * < t * < t * S T ,

where T is the maximum time considered. let

T(t , r ;A,B) be a solution to problem (P), and fix

t' at one of the values V . For each value of A

in a prescribed interval, we try to find a value for

B = B(A) such that

T(t*,O;A,B(A)) = fQ(t*) .

This defines a curve (A , B(A)J for each value of

t , and we then find the points of intersection of

the three curves corresponding to t^ , t g , and

t, . If the points of intersection are (A. ,B.)



for l s i s j , ve define the approximate solution
pair (A, B) by

A = - i-

B - T B2 V
We are not able to guarantee a priori that this

method will provide a solution to the problem. This

question is discussed by Cannon, DuChateau, and
12Filmer, tut we cannot show that the hypotheses of

their theorem are satisfied. Nevertheless, our

computational results provide experinental justifi-

cation for the application of the method to this

particular problem.

In Appendix A we have outlined another proce-

dure that we have used for this problem. It is more

time-consuming and much less accurate than the meth-

od described above, so no numerical results are

included.

COMPUTATIONAL RESULTS

We have used the computational procedure out-

lined in the preceding section on two different

problems. The first example is a test problem that

was selected to determine the feasibility and accu-

racy of the method. The second problem is derived

from the laboratory data for graphite.

For the test problem, ve let pQ = 1.75 ,
5

= 1.5 10"5 , P 2 300, 0.62,? , and we let
x

C_(T) be determined by the values givsn in Ref. 1.
Define

fx(t)

A = 550

B = 0.18

which are the approximate values for graphite.

Solve problem (?) with these values and fQ(0)= 2512,

and call the solution T_(t , r) . We then let

f.(t) = T0(t , 0), and use this function as input to

the computer program. The solution to problem (P)

is approximated by the solution to a finite differ^

ence equation, and this process is described in

Appendix B.

In Fige. 1 to h we have plotted the computa-

tional results for the test case with a varying

number of correct digits for the input data fQ(t).

The three curves in each case are for t.. = h ,

t 2 = 9, and t, = T = lU . Note that the method

works very well with accurate input data, but its

usefulness rapidly deteriorates as the number of

correct digits in fQ(t) is decreased. The data for

the graphs in Fig. 4 have been perturbed by randon

noise so that the relative error is less than 0.1^ s

and our method does not yield a solution.

In Fig. 5 we have plotted the curves for the

graphite experimental data. The parameters are the

same as those in the test case, except that we use

tl ~ ** ' *2 = ^ ' a n d *1 = T = ^ " I n adaition>
fQ(t) and f^t) are determined from the data in

Ref. 1. Since the curves in Re?.\ 1 are for graphite,

we would expect to compute A = 5J0 and B = O.lfl .

However, it is clear that the method has not deter-

mined a solution, and the computed points on the

curves are far from the expected values. In Table I

490.00 500.00 510.00 S(0.00 560.00 SSO.OO

Fig. 1. Test ease with ten correct digits in
loundary data.
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• BO.OO SOO.OD 520.00 5(0.00 S60. DO 510.00 600.00 510.00

Fig. 2. Test case with five correct digits in
boundary data.

Fig. 3. Test case with four correct digits in
boundary data.

we have tabulated the experimentally determined

values for fQ(t) , -which can be compared with the

computationally determined values for fQ(t) using

A = 550 , B = 0.18 , and the experimental data for

CONCLUSIONS

We conclude from these corapu\,?.tional results

that the method can be applied to overdetermined

problems of this form. However, the procedure does

not give acceptable results for the graphite ex-

perimental data. We feel that this is due to a

fail'ire in the model rather than in our method of

solution, for the following reasons:

(A) The experimental data may be too inaccu-

rate for the method to yield a solution. As the

results for the test case demonstrate, one of the

primary advantages of this procedure is that it

automatically indicates whether the input data are

accurate enough to provide reliable solutions. The

graphite curves in Fig. 5 clearly show that this

accuracy condition on the input data is not satis-

fied.

(B) We may be using the wrong model for the

laboratory experiment. We do not believe that the

large discrepancies exhibited in Table I can be

accounted for simply RS noise in the data. Rather,

we feel that the initial-boundary value problem for

this partial differential equation does not ade-

quately describe the experiment. The following

factors provide a possible explanation:

(1) The sample is too short relative to

the radius to jnstiiy ignoring the end effects.
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SOO.OU S2D.U0 5«,UD 56U.00 SBO.OJ S0J.O3

Fig. U-. Test case with three correct digits in
•boundary data.

(2) The heat flow is not independent of

the angular direction,

(3) The sample is not homogeneous.

CO The data provided are not precisely

at r = 0 , so the boundary condition -r—- (t , 0) = 0

cannot he -used.

(5) The sample is not at a steady state

at time t = 0 ,

(6) The approximation of T(0 , r) by a

parabola is not accurate enough.

(7) The assumed form for a(T) is not '

adequate to describe the thermal diffusivity for

this material undsr these conditions.

(C) It is possible that we have not solved the

finite difference equations accurately enough. In

this respect, we have considered the following

Fig. 5. Graphite experimental data.

factors:

(1) The truncation error may be too

large because the mesh is too coarse. We hove run

test cases using Bessal functions, and the mesh

size does not appear to be a source of significant

error.

(8) Ke may not be solvir-g the equations

accurately enough "because of the nonlinearity in

a(T). We have -used an iterative technique to im-

prove the accuracy of tha solutions to the non-

linear problem, and tlie relative change in temper-

ature is less than 10"''. This vould not be a

large enough error to account for the graphite

results.

(3) The finite difference equations may

not have a unique solution pair {A, B) . w'e know



TABLE I

EXPERIMENTAL AND COMPUTED VALUES FOR f.-(t)
?c:> GMnrrrs DATA WITH A. » 530 AND B = 0.18 ,

Experireantal Value Computed Value

£^55

22U/

215>*

i.001

iSg.5

* 6 l . 26
£389.00

2293.

2116.

3*1 .

1966.

81

02

16

63

1850.27

of no r-esults in this direction, and we have been

\ifiablf to dtsternins whether this is a significant

factor in our computational results.

APPBHDD: A

ANOTHER METHOD FOR THE SOLUTION OF
THE OVHffiK-ERMINED PROBLEM

"oe a fixed set of points
satisfying

If w(t) is any give** '"unc* ion, the norm T)(W) is

defined by

S 11/2

We rsmark that, tharc are miiny other norms that

could ba used for r,(s) ? such as max |w( t . ) | .

However, our ccmjnrtational experience indicates

that the choice of non? is not cr i t ica l t o the

procedure.

r.C r ( t , r ; A , B) i s .1 solution to problem (P),
we daf me the errsr K(A , I) in th is function by

E(A,B) = Ti( i -a ,O;A,B) - fQ(

Our goal is to determine values A- and BQ such

that

E(A , 3-} - air E(A, B) .

Notice tha t t h i s method of solut ion uses a l l of the

data on the l i ne r •- 0 , ra ther than ju s t data a t

the three points ( t . , 0) , 1 « i < 3 . In our com-

puta t ions , we have solved the minimization problem

in the form

E(AQ . BQ) = min ("min E(A , B)J
B

The advantage of this procedure is that the curves

(E(A , B) |A fixed] have always been convex, so the

one-dimensional minimization problems are easy to

solve.

We have not used this approach for our c.Tnpu-

oational procedure for two reasons. First, it is

very time-consuming to evaluate the function E(A , B)

(about k sec on a CDC 6600 computer), and E(A,B)

is steep in the neighborhood of B = B- . This makes

the calculation of the function M(A) = min S(A, B)
B

quite expensive. Second, the graph of M(A) is very

flat near the minimum; and it is not possible to

meaningfully ascertain the value of A- .

APPENDIX B

FINITE DIFFERENCE EQUATIONS

Consider the nonlinear initial-boundary value

problem

6T

T(0,r) =g(r)

T(t ,

(0

(t> 0)

(t>0)

In this appendix, we outline the finite difference

approximation we have used for this problem. These

techniques are not new, and we refer to Ref. 15 for

a complete discussion of similar methods.

Define mesh points (t. ,x ) by
i J



and use the notation T,j = t(ti ,r.). We introduce

the difference operator B T.. defined by
i iJ

where

(*>•

The difference equations we -use are given in the

implicit form

A t

For a fully implicit equation, we would -use the

operator D T in the right-hand side of the
i+1 1 + 1 ' a

equation. However, this choice makes the computa-
tion of T i+1 . more difficult, and because a(T) is
observed to be a slowly varying function of time i t
appears that no significant error is introduced by
computing the solution by the above "semi-ijnplicit"
equation.

We have used the values N = 16 and M = 20 f or
our numerical results. The function f,(t) is given
by a cubic spline interpolant through the data points
tjitj), ani we actually compute the solution T(t , r)
with A t % ^ .
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