
Written: May 1970

Distributed: October, 1970

LA-4458
UC-37, INSTRUMENTS
TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California
LOS ALAMOS • NEW MEXICO

Smoothing Effects of Surface Tension on

Grooved Melt Wires

by

B. J. Thamer

IEGAI NOTICE

JLVL"?. P.'~ - an 'r-.. ••ay prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe oriva*»>"ely p s e

ed rights,

i iii.s i>o<:i'Mr:NT is U N L I M I T E D



SMOOTHING EFFECTS OF SURFACE TENSION ON GROOVED MELT WiRES

by

B. J. Thamer

ABSTRACT

Possible interference of scratch smoothing in detecting melting of cylin-
drical, grooved melt wires has been investigated theoretically and experimen-
tally. Isotropy has been assumed for surface tension and diffusion coefficients.
The rate of diagonal build-up of material in the bottom comer of the groove
below the melting point has been calculated from known transport processes.
The higher-order terms omitted in Mullins' original treatment of scratch
smoothing have been retained in solving the differential equation by the
method of finite differences. Other methods of solution also are discussed. The
time required to give objectionable build-up (> 1 mil) is calculated to be 2
days for vacuum-sealed zinc, 3 months for vacuum-sealed silver, 8 months for
copper encased in graphite, 4 yr for nickel in graphite, and 5 months for
platinum in graphite. The calculation is supported by experimental observa-
tions for silver. In the absence of appreciable vapor transport the smoothing is
usually determined by Mullins' C = yClDv/kT, where Dv is by a vacancy mech-
anism. At the normal melting point, the suface tension of a pure metal is
generally proportional to the melting temperature and C * 10"'5 cm3 /sec if Dv

is by vacancies. From this the smoothing of nonvolatile:, unalloyed melt wires
should be innocuous for at -east 1 month.

I. Introduction

Encased melt wires have been used for the remote
measurement of temperature in the UHTREX reactor at
the Los Alamos Scientific Laboratory (LASL).1 The
indication of melting has been observed under a micro-
scope in a circumferential groove of square outline that
has been machined in a cylindrical wire of the chosen
material. A false indication of melting h also possible if
the smoothing effects described by Mullins and others2"8

are large enough in the solid state. The latter effects are
due to capillarity and require an appreciable time to occur
in contrast to the instancy of melting. The interference is
estimated for some melt-wire materials for which relevant
data are available. Isotropy is assumed for surface tension
and diffusion coefficients. A more refined treatment is
usually not justified by the available data.

Figure 1 depicts the out! ine of the machined groove
located half way along the 1/4-in. length of the melt wire.
The principal interference of the smoothing effects is at

the bottom comer of the groove where melting would
first appear. At that location (x = 0), transport processes
initially buiid up material at an approximately 45° angle
to the wall. The early stages and short-range transport of
the process may be derived in terms of the two solid-lined
walls c and c of Fig. 1. It is unnecessary to assume a single
sine wave to represent the initial geometry as was done by
Blakely and Mykura.9 Their approach, and the more
general one of King and Mullins,4 are based upon Mullins'
equations that will be discussed later. As in previous treat-
ments, it is necessary to represent the initial profile by a
Fourier equation.

1 > — cos
2\nx]

(1)

Oddn

It is readily verified that y i n = 0 at x = 0 by the math-
ematical equality



cos[2**7rx/c] 5"2cos[5(2^)irx/c]

= TT2/8 .

Equation (1) contains the lines c< of Fig. 1 as a unit in a
series of infinite sawteeth for which Eq. (1) is rigorously
correct. This model of the groove is therefore unrealistic
beyond the distance c from the origin in the x-y plane.
Nevertheless, it should suffice at the location of interest
x = 0, and for times that are short enough for material
transport over distances less than c. The validity of this
assumption will be discussed later in noting the effects on
the calculations of changing the parameter c, thus indi-
cating whether or not deficiencies of the model a distance
c from the origin are important in the early stages.

The initial value of y of Eq. (1) is composed of a
zeroth-order term c/23/a, say y0 o , and the cosine terms
- (23 /2 c/7ran2)cos(2'Arrnx/c),"th'at is, y n o . All of these
terms represent surfaces of revolution and undergo rates
of smoothing, 3yo/dt and 9yn/3t, that are proportional to
the curvatures and surface tension. Equation (2) is the
Gibbs-Thomson relation that governs the smoothing for
each Fourier component. It has been derived for three
dimensions by Herring!0

K c y l ) , (2)

where fi is the chemical potential per atom in excess of
that for a flat surface, S2 is the atomic volume, 7 is the
surface tension of the solid, and Kx y and Kcyi are the
principal curvatures. The curvature Kx y in the x-y plane is
defined by

Fig. 1.
Outline of the machined groove in a melt wire.
(k = c = 10 mil for these melt wires.)

where the primes indicate partial differentiation with
respect to x and Mullins' convention on the sign is
used.2-3 The value of K x y begin? at zero for y0 and
remains closely so as time continues, as illustrated by
Nichols and Mullins.5 There is also the principal curvature
Kpyl due to cylindricality for both yo andy n , n for
example,

KCyl = (1 - yn ' ) /(2*k + x + y nX! + y n ' Y for y n .

As smoothing progresses, yn retains the frequency
oj = 2'Ann/c but changes in amplitude, thus giving for yn

Kn =

yn)

Equation (3) and the differential equations to follow will
also suffice for y0 if one takes CJ = 0 , y n ' = 0, and
-Vn"=0.

It will be assumed that the slope y n is small with
respect to unity for each significant Fourier component at
the point of interest, x = 0. However, there will not be as
much reliance on this assumption as in some of Mullins'
publications.2"4-6 The assumption is initially satisfied by
y'n = 0 and is approximately satisfied for a considerable
length of time. Hence, the mathematical time should be
identified with the experimental time rather than with a
fictitious one during at least the early stages of the
smoothing. The present small-slope approximations are
better than they would have been if thex-y axes had been
rotated 45° to the right where larger values of y'n would
have resulted near x = 0.

Of the various modes of material transport
described by Mullins,2'3 that due to viscous flow may be
ignored here because the melt wires are crystalline.12 The
other means of transport are evaporation-condensation to
be considered in a closed system with long or short mean
free path of the vapor, volume diffusion in the solid, and
surface diffusion. The contribution of each of the latter
effects to 9yn/3t is derived briefly for the present
geometry partly to show some significant differences
from Mullins' results whose derivations are followed in
the main.2'3i5Except for y o , each yn is initially negative
and the contribution of each smoothing effect to 3yn/3t
must be positive to give the expected damping effect in
the early stages. After yn and yo are obtained as a
function of time for x = 0, Eq. (4) is used to calculate
Ay =y because yin = 0.

y = (4)

Oddn

The summation is preferred rather than integration partly
because of better accuracy and partly because the series



converges rapidly. The main purpose of this report is to
find how long each melt wire F">st remain just below its
melting point before the filling >> of the corner becomes
0.001 in. = 1 mil. The latter is thought to be the smallest
amount that could be misconstrued as an indication of
melting. We will show the time for nonvolatile melt wires
to be longer than 1 month.

II. Derivation of the Applicable Equations

For phenomena of evaporation-condensation, Eq.
(2) becomes

ln(p/po) = Kcyl)/kT = Ap/P o , (5)

where po and p are the metal's vapor pressure over its flat
surface and surface of curvature (Kx y

 + KCyj), respec-
tively. If the vapor has a mean free path much greater
than c/21/2«(case E t ) , one may write 0 = p/(2jrmkT)I/2,
where 0 is the number of atoms emitted/second-square
centimeter, m is the weight of a molecule of the solid's
vapor, and the coefficient of evaporation is taken to be
unity.2'13 We therefore obtain

Multiplying the latter by - ft, one obtains the rate of
growth along the normal at the curvature (Kx y + K c y | ) .

(9yn/dt)/(l = - A (K
x y

K c y l) ,

where

The substitution of Eq. (3) with x = 0 and y'n = 0 gives
the following for mechanism E!.

( 9 y n / a t ) E ] = - , (6)

Hence, one predicts from the model that, if E| is the only
operative mechanism, a component yn (not yo) will not
decay to zero as would be the case for the groove
embedded in a plane (k = °°), but rather yn will approach
[- k « + ( k 2

w
2 - 2)1/*]/21/jw=*yn J8 due to the effect of

cylindricality. The prediction in this extreme should hold
best when the model is simultaneously most valid, for
example, for n > 1 with the present model. It is implicit
in Eq. (6) that the vapor is in equiiibrium with surfaces of
zero curvature. This condition is not always perfectly
met, as shown in Sec. IV. Otherwise, Eq. (6) is applicable,
with little error, to the present melt wire of zinc vacuum-
sealed in quartz.

Alternatively, if the mean free path is much shorter
than c/2^«, then the vapor transport is by gaseous
diffusion (case E2) assuming the absence of thermal
convection. Vapor transport by E2 , though small, is
operative with those of the melt wires, described in tliis

report, that are encased in graphite undei 500 psi of
helium. Because the vapor density is proportional to the
vapor pressure, Eq. (5) becomes

poft7(Kxy + K (7)

where p s and p 0 are the vapor densities (mo!ecules/cm3)
adjacent to the surface at curvatures (Kxy + Kcyi) and
zero, respectively. The diffusion is quasi-steady-state in
the closed system and Laplace's equation applies in the
formv2p = 0, where the cylindrical coordinates of Fig. 1
are used in the gas phase. The term containing d2p/d02 is
zero because of cylindrical symmetry. The term 92p/dX2

may be obtained at the surface from Eqs. (3) and (7) with
the aid of the coordinate relations X = x/2^ - y/2^ and
Y = k + x/2l/4 + y/2! / i. Laplace's equation is solved with p s

specified by Eq. (7) and p = pQ for Y-><». The solution is

(pofiT/kT)Kn Ko (8)

where K<j(a) and K0(a s) are zero-order, modified Bessel
functions of the second kind,

a = 21/4Y(A/Kn)^ , (9)

X = w4yn + 3w6y3 + 2w4y2/(2Hk + yn)

-2 / (2 5 4 k + yA)3 ,

K n =

(10)

01)

as in Eq. (3), and o^ = a for Y = k + yn /2 !^. The build-up
of metal in the Y direction for each Fourier component is
(3Y/9t)Ea = DGi2(9p/3Y)S! where DG is the coefficient
of diffusion of the metal's vapor. The projection of build-
up in the y direction is found from the latter equation
and Eqs. (3), (8), and (9) to be the following:

(3yn/St)E2 = +A'[K,(a s)/Ko(o s)j Q

forX<0 andK n <0, (12)

where A' = po7DGf i2 /kT, and

y n ) !X/K n |K. (13)

In this report, each yn(except y0) begins in the region
X < 0, Kn < 0. In the other regions of X and K,,, one uses
Eq.(13)and

= - A'

forX<0 and K n >0,
(14)

where Ji(a s) and Jo(a s) are Bessel functions of the first
kind, and

= -A'[K,(a s) /K0(a s)J (XKn)W

forX>0 and Kn>0. (15)



The region X < 0 and K^ > 0 is appropriate for y0 for
which Oj = i/2. In the case of the groove in a plane, Eq.
(12) applies with k-<», a s = °°, and K1(CKS)/Ko(as)= 1.
Then, taking a minus sign at the square root, one obtains
the following from Eq. (12).

(16)

Equation (16) is not restricted to a square groove, of
course. Mutlins' result3 differs from Eq. (16) ' not
having the term (1 S 3oj2yn

2)' /2. The difference is not
negligible in this work although initial assumptions made
it so in Mullins' paper. Returning to Eq. (12), one notes
that if case E2 is the only operative mechanism for a melt
wire, then (as with case E t ) a component yn should not
decay below about one-eighth of its initial value.

In assessing the effect of volume diffusion in the
solid, it is important to remember that the diffusion
coefficient Dv must refer to diffusion by a vacancy
mechanism in the present problem.1* This identification is
assumed to be valid for the experimental diffusion
coefficients of metals that are face-centered cubic. The
requirement is thus met for all of the present metals,
except possibly zinc, in which case the importance of Dv

is small. As pointed out by Mullins, the equations for
diffusion in the solid are basically analogous to those for
diffusion in the gas.3'6 One thus obtains

0y n /d t ) v - +C[I,(a s)/I0(ag)] (XKfl)

for X< 0 and Kn< 0,

where 1,(015) and Io(a s) are modified Bessel functions of
the first kind, as is given by Eq. (13) and C = 7f tD/kT
In the other regions of X and Kn, one has

(9yn/9t)v = %(as)] (-XKn)

forX<0 and K n >0, (18)

and

(3yn/dt>, = -c [ I , ( a s ) / I 0 (a s ) ] (XKjA

for \ > 0 and K n >0. n m

Again X < 0, Kn > 0 and as = \JTare appropriate for y0 .
If the groove were in a plane, then Eq. (17) would
become the special case,

. (20)

Remarks analogous to those following Eq. (16) also apply
here. In addition, it might be noted that if E, and volume
diffusion C in the solid, or E2 and C are the only mech-
anisms of transport, then again yn should not decay
below about one-eighth of its initial value. This situation
is approximated in the case of zinc. As exemplified by
graphite-encased copper, nickel, and platinum, the effect

of the metal's volume diffusion usually exceeds that from
surface diffusion for at least the larger Fourier
components.

Nichols and Mullinss have derived the equation

(3yn/3t), = (B/Y)(3/3s)(YdKn/3s)

for the effect of suiface diffusion, where B = DsySl2v/kT.
Ds is the coefficient of surface diffusion, and v is the
number of diffusing atoms per unit area. It is applicable
to a surface of revolution. The quantity (3yn/3t) s may be
evaluated from

(3yn/9t)s = (B/Y)(3x/3s)(3/dx) [Y(3x/3s)(3Kn/dx)] ,

where Kn is from Eq. (3), Y = k + \/21/z + yn/21/2, and
3x/ds = (1 + y'n

2) J /*. Doing these operations and setting
x = 0, y'n = 0 gives

(3yn/9t)s = - B[u4yn

From this the planar case is

,pi. = - Bco4yn

k + yn)

(21)

(22)

Equation (22) differs from Mullins' result3 by the factor
(1 + 3cj2yn

2) in this case. Equation (21) suggests that if
surface diffusion is the only operative mechanism for a
melt wire, then each component yn having n > 1 should
move to about -yn o /32?r2n2 , that is, virtually zero, in
sufficient time.

The foregoing processes may act simultaneously
except that either E! or E2 is to be eliminated because
they are mutually exclusive.

= [Oyn/dt)Ei orOyn/3t)E2]

(23)

Mechanism E| is given by Eq. (6), E-2 is given by Eqs.
(12) through (15), volume diffusion in the solid is given
by Eqs. (17) through (19), and surface diffusion is given
by Eq. (21). if surface diffusion is absent, then Eqs. (10)
and (11) will aivays have X < 0 and K n < 0 in the
present geometry so that the appropriate equations for yn

will be Eq. (12) for E2 and Eq. (17) for volume diffusion
in the solid. The analog of Eq. (23) for yo is

2yo/at =

or - y0)"2 J ,

2 J , ( B(21/-k yo)"3

(24)

Equations (23) and (24) are best handled by computer.
However, some comparatively simple solutions are
possible in restricted cases. For example, if the groove is



in a plane, then yo remains 2'3/h. If, further, only volume
diffusion is operative (A = B = 0), then Eq. (23) reduces
to the sum of Eqs. (16) and (20). Equation (4) then yields
the solution

ypi.,v
2%] 7T2 4-» n2 cosh [(A'+ C)w31]£

sinh C)co3t]
(25)

where w = 2'̂ Trn/c as usual. Equation (25) may be used to
a good approximation with the existing data for platinum
because A = A' = 0 and 21/27rB/cC"^ 10"2. An ^ajjalogous
solution with the approximation l + 3 c o 2 y n

2 « 1 in
Eqs. (5 6), (20), and (22) is to be found as the case
A = A' = 0 in

* • -

- [Aw2

Oddn

(26)

Equation (26) has the advantage of including all smooth-
ing effects. Most of the summing for Eq. (26) can be
replaced by integration as shown in the Appendix [Eq.
(3i)] if one smoothing effect dominates. Figure 2 shows
*he calculated curves for graphite-encased platinum
according to Eqs. (25), (26), and (31) in the planar case,
and according to Eqs. (23) and (24) with the present

I WEEK

i
I MONTH 4 MONTHS I YEAR

I I i /

Eq. 25/ /
Eqs. 23,24,4 v y /

10
TIME (sec)

Fie. 2.
Calculated growth of y for Pt/C at 1736°C with
c = 10 mil. (k = °° for Eqs. (25), (26), and (31);
k=10 mil for Eqs. (23), (24), end (4).)

cylindricality, Eq. (4) and the method of finite difier-
e n c - to be outlined shortly. The agreement of Eqs. (26)
and (31) with Eq. (25) is tolerable for many purposes.
The solution of Eqs. (23), (24), and (4) by the method of
finite differences should be the most realistic for the
present melt wires. The curve from the latter equations
would coincide closely with the curve of Eq. (25) except
for cylindricality.

A solution of Eqs. (23), (24), and (4) for only
surface diffusion for the groove in a plane is as follows.

, A V exp.(-Bco4

7 r 2 OdTn n { n 2 + ( 4 8 / 7 r 2 ) l ! ~ e X p - 1xp.(-2Bco4t)]}*

The latter equation might be applicable considerably
below the normal melting point of the metal, for
example.

The method of finite differences was generally used
to solve Eqs. (23) and (24) over the desired range of time.
A fourth-order Runge-Kutta method was used. ls The
chosen program estimated the truncation error and
adjusted the size of integration step to keep the error
below an assigned level. This feature was necessary
because the equations for some of the higher Fourier
components were difficult to integrate without it. The
values of y were then readily obtained by Eq. (4).

III. Calculated Solutions

Sufficient data for the present calculations have
been found in the literature for five of the compositions
used in the melt wires for UHTREX (Table I). The
coefficient of surface diffusion is assumed to be negligible
for zinc because usually 2I/4TTB/CC < 1 at the melting
point and, for this metal, 21/2nC/cA < 1, that is, the effect
of vapor pressure predominates in these melt wires, which
are vacuum-sealed in quartz as are those of silver. The last
•hree metals are encased in graphite (-/C). The effects on
transport of dissolved carbon are ignored for these metals
because its effects are unknown and its solubility is small,
being greatest (2.7 at. %) in nickel.16 The atomic volume
ft is corrected for volumetric expansion for every case in
this report.35'3*

The results of the finite-difference method with
Eqs. (23), (24), and (4) are plotted in Fig. 3 except for
Pt/C which has already appeared in Fig. 2. When surface
diffusion v.as assumed to be absent, as with zinc, each
value of yn moved towaia, and eventually stopped at,
~ y n o / 8 . When y p for Ag, Cu/C, Ni/C, and Pt/C reached
~ y n | o / 8 , it continued to move sluggishly in '.he range
between ~ y n o / 8 ^nd zero. The latter behavior was to be
expected from' th -.urn of Eqs. (! 8) and (21) because Eq.
(18) can be either positive or negative, and volume and



Temp

TABLE I

DATA FOR THE CALCULATION OF A, A', C, AND B

DG(cm2/sec)Vletai

Zn

Ag

Ag
Cu/C

Ni/C

Pt/C

(°C)

420.
961.

93S.

1083.

3318.

1736.

-/(dyne/cm)

717.
1120.

1231.

1430.

1799.

1930.

PO(AS)

1.92 x ID"4

3.30 x 10"6

2.12 x 10"6

nil

4.! x SO"7

nil

D^cm"*

!.06x
6.67 x
4.90 x
5.61 x
6.87 x
1.24 x

/sec)

10"8

10"9

io-9

10"9

io-'°
10'8

0.07

aReference 17's value ofi-= 769 erg/cm2 a: 247°C was used with<*y/dT= - 0.3 erg/cm2 deg.

Ds(cm'/sec)

(Zero)
2.07 x lO"4

i .22xlO- 4

2.46 x 10"4

B taken.

5.9 x 10'6

References

16-19a

16,20-3

20-3

16,24-8

16,18,29-31

14,21,32-34

surface diffusion could oppose one another, it can be
shown that 3yn/3t ^ 0 in much of this range.

As mentioned earlier, the chosen mathematical
model, Eq. (1), corresponds to an infinite series of
sawteeth of outline c-c. How well this model represents
the groove (Fig, 1) has been investigated in two cases
calculated for the groove in a plane (k = °°) to avoid the
disturbing effect of cylindricality. It is inferred that
doubling c should appreciably affect the calculated y at
x = 0 to the extent that transport processes are apprec-
iable to x = 0 from a distance c, that is, where the dis-
crepancy exists between Eq. (1) and the groove. The
method of finite differences [Eqs. (23), (24), and (4)]
was used for this purpose because that method is the most
accurate of ihis paper. Increasing the value of c from 10
to 20 mils decreased the calculated value of y no more
than 0.2% up to y - 1 mil in the case of zinc in which
mechanism Ei dominates. However, the same change in c
decreased the calculated value by 14% at y - 1 mil in the
case of Pt/C in which volume diffusion in the solid is
preponderant. The higher dependence on co<*- j s

I DAY I WEEK I MONTH 4 MONTHS , , -
1 j * 1 / / /

/ Ag AT 9 6 1 " - / / /
Ag AT S3

TIME ( s e c )

Fig. 3.
Calculated growth of y calculated from Eqs. (23),
(24), and (4). (k = c = 10 mil.) i Experimental
observations an silver at 938° C.

apparently responsible. As y increases, each bottom
corner of the groove acts, to some extent, as a sink for the
othei rather than as a source although the model does not
take cognizance of this fact. It is thought that the
calculated value of y at y = 1 mil is thereby too high by
less than - 1 / 2 % for Zn, ~ 10 to 20% for Cu/C, Ni/C,
and Pt/C, and ~ 5% for the intermediate case of silver. An
improved model, that is, a replacement for Eq. (1), might
be sought, but it would probably lead to unwarranted
complication because comparable errors may result from
the assumption of isotropy for surface tension and dif-
fusion coefficients. As noted following Eq. (6) and as
described in Sec. IV, the present melt wires do not per-
fectly fulfill the conditions for case Et. The total error in
y at y = 1 mil is probably ~ 20% for all of the present
melt wires. Fortunately, such errors are not critical for
our purpose.

It is believed that the radiation enhancement of
scratch smoothing of melt wires has been small in
UHTREX.37 The maximum flux of fast neutrons has been
about 3 x l O 1 3 neutrons/cm'" sec. That the effect is
negligible can be shown to hold for the surface diffusion
of Cu/C and Ni/C, for example, during the usual max-
imum time in UHTREX of a few days.38

IV. Experimental

There was often some recrystallization in the melt
wires of UHTREX and in the experimental work to be
described below. However, these effects did not seriously
interfere with the observations of melting in the
UHTREX experiments or observations of scratch
smoothing in the present studies.

Melt wires of silver were chosen to test the calcula-
tions because of the easily maintained temperature, the
convenient length of time, and (compared with zinc)
chemical inertness. Calculations had indicated the growth



of y to be about one hird due to vapor transport ( E ^
and two-thirds due to volume diffusion in the solid for
the times of measurement. Machined wires of 99.9+%
purity were freed of dissolved oxygen in a 1-h treatment
at 800°C in 1 As of hydrogen. The small steam bubbles
(39) produced (Fig. 4) were not considered numerous
enough to measurably retard volume diffusion in the
solid, particularly at the bottom corners of the grooves.
Five wires were microphotographed and microradio-
gnphed and then sealed in quartz capsules under I n or
less of pressure. The encapsulated, metal-bright wires were
equilibrated at 938 ± 3°C. It is believed that chemisorbed
impurities on the surface at this temperature would be
small and would only slightly affe -t the transport through
mechanisms £j and surface diffusion. Traces of surface
oxygen would go to the gas phase or bulk silver to leave
negligible concentrations either at the surface or in the
bulk.40 The hydrogen treatment should have left the
surfaces free of chloride and sulfide. Residual hydrogen
was probably beneficial in removing the remaining oxygen
and surface sulfide, the latter of which could have
enhanced the small effect of surface diffusion.23 A small
pressure of hydrogen would have affected mechanism Ei
only slightly, particularly in view of the large ratio of
molecular weights of silver vapor compared with hydro-
gen. By comparison, having a dynamic vacuum probably
would have vitiated mechanism E, . Initially, the value of
y was experimentally 0.0 to 0.2 mil principally due to
limitations in machining the groove to the desired shape.
This effect corresponded to an error in time of 0 to 1 day.

The observations (Fig. 3) were made by miciorad-
iography at the indicated intervals. The inside of the
quartz capsule often developed deposits of silver due to

Fig. 4.
View of the sii'er groove before equilibration at
938°C.

mass transport through the vapor. The deposits aboye the
groove may have caused about one-half the growth of y
that was due to mechanism E, . Because the inside
diameter of the capsules was about 42 mils, this "source"
for mechanism Es had a curvature not of zero as assumed
in the theoretical development, but a small negative value
of about 10% of the initial value for each Fourier
component. It may be difficult to estimate this error in
detail, but it is likely that>> was overestimated because of
it. In two cases, the melt wires actually melted but this
coincided with the silicon content of the wires rising from
about 8 to 800 ppm. It is thought that the latter increase
derived from a reaction with the quartz capsule such as

SiO2 + 2H2(trace) = Si(in Ag)+ 2H2O(g).

It is inferred that 800 ppm of silicon in silver exceeds the
solid solubility and gives rise to liquid and melting in the
Ag-Si system the eutectic of which is at 830°C.16 Such
wires were excluded from further consideration. Among
other reasons for the fairly large standard deviations in
the plotted values of y are (1) the variation of volume
diffusion and surface tension with the orientation of the
grains at the corners, (2) the inherent difficulty of the
measurements, and (3) the necessity to discard a broken
melt wire. Nevertheless, the measurements support the
calculations within the limits of accuracy.

V. Discussion

Some of the foregoing equations are applicable to
other geometries when the geometry is represented in
terms of Fourier components y n and dyn/dx=*0 at the
point of interest. General applicability holds for Eqs.
(16), (20), and (22) provided that the scratch is in a
plane.

Further remarks regarding the present melt wires
and unalloyed metals in general should be made. If the
vapor pressure of the melt wire is less than 10"6 As, then
the scratch smoothing near the melting point is dom-
inated by volume diffusion in the solid in the present
geometry. This is illustrated with Ag, Cu/C, Ni/C, and
Pt/C for which surface diffusion is of secondary impor-
tance. It also appears that the parameter C = 7l2Dv/kT of
Eqs. (17) through (20) is of the same order of magnitude
(ta 10"15 cm3/sec) for each of the present metals at its
normal melting point. This is true within a factor of 2.
For example, values of C from Table I and associated data
are 1,5 x 10"ls cm3/sec for zinc, 7.97 x 10'16 cm3 /sec for
silver at 961°C, 5 .40xl0" 1 6 cm3/sec for Cu/C,
1.38xlO" l s cm3/sec for Pt/C at 1736°C (1.77 xlO"15

cm3 /sec for platinum at 1769°C). An apparent exception
for Ni/C is due to this eutectic's being 135°C below the
melting point of pure nickel at which temperature it has
3.2 x 10"16 cm3/sec for C. That the above approximate
value for C should hold for most metals having a vacancy
mechanism for Dv is better understood when one
examines the quantities that define C. First, Shewmon41



has expressed a crude rule that the volun>e-d:ffusion
coefficient Dv is usually about 10"8 cm2/sec at the melt-
ing point of a metal. F r example, this rule is obeyed
within a factor of 2 for the metals of Table I except for
the inapplicable case of Ni/C. Second, the surface tension
at the normal melting point can be shown to be propor-
tional to the normal melting temperature. In analogy with
Mullins* approach,42 the (100) face of a crystal can be
shown by a method of Cottreli43 to have

ys = AH sub/3Nao
2 - TS S , (27)

where AHSub is the molar heat of sublimation and
Ss =-d7 s /df is the surface entropy per unit area. Cottrell
gives a typical value for Ss of about 0.3 erg/cm2-deg. It
will be assumed that Eq. (27) represents the average
surface tension of the solid although values of 7S calcu-
lated with individual values of AHsub are only about 60%
of the measured values for fee metals silver, copper,
nickel, platinum, and gold. I6 '3S '44"46 (Also see Table I.)
The discrepancy may be due principally to the employed
value of Ss. Figure 5 shows that AH sub at the melting
point of a pure metal varies approximately as the melting
tempera tu re for fee and other meta ls , giving
A H s u b « 2.3 x I 0 9 T erg/mole. One then obtains
C « 2.3 x 10"8 ao( l - 2 x 1014 a c

2 ) cm3/sec, from which
C =s (6-4) x W16 cm3/sec for a0 = 3-6 A. This derivation
of the value of C would probably be closer to 1O'IS

cm3/sec if it were not for the appr(?\imations for ys. The
ruls C«= 10"IS cm3 /sec is probably also valid for other
crystal structures if Dv is determined by a vacancy
mechanism. Otherwise, C should be correspondingly less.

One can set an approximate time for objectionable
scratch smoothing (y « 1 mii) in case the vapor pressure
of the melt, wire is less than 10"6 As and C ^ 1 0 ' l s

cm3/sec. Then Eqs. (23), (24), and (4) give this time as
about 10+7 sec ~ 4 months. Although this rule is obeyed
in Fig. 3 for Cu/C within a factor of 2, it is less applicable
to Pt/C because of a 33°C eutectic depression, although
the rule is obeyed there also. The rule is not obeyed for
Ni/C principaily because of the aforementioned eutectic

500 1000 1500 2000 2500 3000 3500

M.Pt., °K
Fig. 5.

Molar heat of sublimation at the At. Pt. vs M. Pt. of
the metal, (m, FCC;*, BCC; • , HCP)

depression of 135°C. Generalizing from C^10" I S

cm3/sec and v = 1 mil at 4 months, one shouM usually
have no difficulty using nonvolatile, unalloyed melt wires
for less than 1 month as in UHTREX. The prediction is
particularly conservative if Dv is not determined by a
vacancy mechanism.

If the melt wire's vapor pressure is greater than
10"6 As, this contribution may still be nil if there is a
cover gas and lack of convection as in case E2 . For
example, UHTREX's 500 psi of helium has provided a
cover gas over all graphite-encased melt wires.36 As in the
above generalization for C, one can say that A' of Eqs.
(12) through (16), (23) through (26), (30), and (31) will
remain less Jian C «= 10- ls cm3/sec in 500 psi of helium if
the vapor pressure of the melt wire is less than
10"3 As ~ 1 mm Hg. However, convection could
considerably increase the vapor transport. Vapor
transport is greatest when the melt wire has been
vacuum-sealed in quartz, for example. Then, typically,
case E( and Eq. (6) apply. In this case, vapor transport
will still be secondary at the melting point if the vapor
pressure is less than about 10'5 As.

VI. Conclusions

The scratch smoothing of grooved melt wires has
been calculated to assess its interference with the detec-
tion of melting. The higher-order terms omitted in
Mulling original treatment of the general subject have
been retained for the more accurate calculations. The
differential equation describing the time behavior of the
diagonal build-up y of material at the bottom corner of
the groove has been solved for zinc, silver, Cu/C, Ni/C,
and Pt/C by the method of finite differences as well as by
more approximate methods. The calculations have shown
that the cylindricality of these melt wires stops or hinders
the decay of each Fourier component y n of n 5-1 at a
certain fraction (* 1/8) of its original value. Positive
errois result in the estimation of y because of deficiencies
in the representation of the groove and in meeting the
conditions for estimating vapor transport in case E , .
Because of these errors and those errors from the assump-
tion of isotropy, it is believed that the total error for all
of the present wires is ~ 20% at y = 1 mil, but less at
lower values of y. The calculations of y have been approx-
imately confirmed with some experimental measurements
on silver melt wires.

The calculated times for y = 1 mil ars estimated for
the five materials for which data are available. When vapor
transport is not a factor, the smoothing can usually be
well approximated at the melting point by Mullins'
parameter C = y£lDv/kT where Dv is by a vacancy
mechanism. It is shown that the surface tension of a pure,
solid metal is proportional to the normal melting temper-
ature and that C ^ 10'15 cm3/sec if Dv is by vacancies.
From this, the smoothing of nonvolatile, unalloyed melt
wires of the present design should not be a serious
problem for at least 1 month.
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APPENDIX

THE PLANAR CASE APPROXIMATED WITH INTEGRATION

Attention is again restricted to x = 0 for which
Ay = y and

(28)2
Oddn Oddn

where yn o = -23l2c/n2n2. Replacing the summations with
integrals would be too inaccurate if yn a n d y n o forn = 1
were included. Instead, only terms beyond n'= 1 will be
integrated as follows.

yPi. * yi - yi.o + y / vndn ~ T I
n=2 n=2

,dn (29)

The interval of 2 for n in Eq. (28) is responsible for Eq.
(29) having a coefficient of 1/2 for each integral and a
lower limit of integration of n = 2.

The transport process will be designated i = 2 for
mechanism E ( , i = 3 for mechanism E2 or volume dif-
fusion in the solid, and i = 4 for surface diffusion. Then,
Mullins' approximation,3 applicable for the groove in a
plane, may be written as

9yn/9t « - yn £ KjCJ1 ,
i

where K, = A, K2 = A ' + C, and K3 = B. Because
y, o = -23/2C/TT2 , the first term on the right of Eq. (29) is

y, -(23/*c/»r2)exp {-[

where wj = 21/2TT/C. After integrating the rightmost term
of Eq. (29), one has

y « (23/2c/7T2)(l-exp{-[Aw,2 +(A'+C)w,3 +Bw, 4 ] t} )

V - ^ r I n-2exp-(t 2, Ki(J)dn. (30)
n=2 '

To readily evaluate the remaining integral in Eq. (30), it
will be assumed that one smoothing effect is dominant,
that is, ? KJGL>' will be replaced by «:«' . The solution
involves a'n incomplete gamma function.

V ^ i 4(1 -exP{-[AcJl
2+(A'+C)«1

3+Ba;1
4]t})

2V
-R2exp(-R2)[i/(i-l) + i2R2/(i-

3i-l)+ - -

+ 1 -exp(-R2)+ R2 h [i/(i-l)]r(2- 1/i) | , (31)

where R2 = 2i(21/2w/c)iKit. The series in Eq. (31)
converges fairly rapidly for y / c ^ 0 . 1 for which the
equation agrees to within 3% wiih Eq. (26) if only one
means of mass transport is operative.
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