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Recent Improvements in MADCAP

Mark B. Wells

ABSTRACT

MADCAP is a programming fanguage admitting subscripts, superscripts

and certain forms of displayed formulae.  The basic implementation of

this language was described in a previous paper [MADCAP: A scientific

compiler for a displayed formula textbook language, Comm. ACM, vol. 4

(Jan. 61), 31-36].  This paper discusses recent improvements in the

language in three areas: complex display, logical control, and sub-

programming.  In the area of camplex display, the most prominent im-
..

provements are a notation for integration and for the binamial coeffi-

cients. In the area of logical control the chief new feature is a no-

tation for variably nested looping.  The discussion of sub-programming

is   focused on MADCAP's notation  for  and  use of "procedures".
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1.  introduction

Authors of programming languages for scientific problems (FORTRAN,

ALGOL, etc.) generally place the burden of "linearizing" mathematical
14

fr, n,ni]ae   (that is, reducing scripting and display  to a one-line notation).

upon the programmer.  Historically, this state of affairs arose because

it was (mechanically) difficult to present normal mathematical formulae

as input to a compiler.  Many people in the computer field seem to be

content with this situation, but, in this author's opini6n, the

linearization of formulae is just as burdensame as translating from

mnemonics to machine code, assigning storage, or any of the other numer-

ous mechanical tasks of coding from which compilers are idtended to

liberate the scientist. Furthermore, the legibility of a Irtextbook"
presentation of a problem is extremely important to a less computer -

oriented colleague called upon to understand and verify a calculation.

MADCAP is a programming language admitting general displayed

forimilae [3].  With the help of a "scripting" Flexowriter for preparing

compiler input it has been successfully implemented for the MANIAC II

computer at Los Alamos. MADCAP is a "growing" language [1, 2, 3], and

this paper discusses some of the newer features of the language.

The object of this exposition is twofold.  First, by exhibiting

the types of mathematical formulae that can be implemented easily once

a one-line notation is abandoned, we hope to induce a measure of envy

among scientist-programmers.  Perhaps in this way we will speed the day

when the input of general display will be made available to everyone.                '
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Second, we wish to present some results of programming language research

which have evolved independently of the massive FORTRAN and ALGOL pro-

jects.  In this author's opinion, a truly acceptable "universal" pro-

gramming language can only evolve (as mathematical language has and

still is) by natural selection from many mutations.

Section 2 gives an abstract of the MADCAP .language. Section 3

discusseB new features involving complex display.  Section 4 presents

some extensions to the notation for expressing iterations and Section 5

gives MADCAP's approach to some sub-program questions (procedures, non-

library functions, and blocks).

2.  The Basic Language

As with most programming languages, MADCAP is a statement lan-

guage.  That is, the source program c6nsists of a sequence. of state-

ments- formulae (defining equations, e.g., a = 4 b + 2), control state-

ments ("if . . .", "for . . .", etc.), and information statements

("subscript range . . .", "format . . .", etc.) which outline in detail

the solution to the problem at hand.  This code is prepared on a full-

keyboard, modified (to allow key-controlled platen rotation) Friden -

Flexowriter Typewriter, which records the sequence of keystrokes on a

paper tape (for use as input to the compiler) as well as ob the typed

page.  The individual characters which may be printed (in red as well as

black) are as follows:

A

2
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a through z A through Z  ' 8
-

0' through   9              f

+ - X 1-4 = -D <  >

:()[]      „
# * ,

In addition, the following typewriter control keys are ayailable and

also record their function on the paper tape when ptruck:  space, back-
t.

space, upper case, lower case, red, black, carriage return, tabular,

stop, delete, superscript, subscript.  The last two keys represent the

modification mentioned above.  Their function is to rotate the platen
 1

one half-line down or one half-line up, respectively. They allow the

direct typing  f superscripts, subscripts, and displayed formulae.  The

flexibility   of the Flexowriter allows    new · symbols   to be formed by typing   

certain characters on top of or closely adjacent to one another.  Those

which have a known meaning to MADCAP are as follows:

4   2     (or 0)   5 (or S)   2 (or ,)  - ;

En f 1
The formation and use of the last four symbols is discussed in section 3.

.

With respect to the writing of individual formulae, the MADCAP

language differs very little from common mathematical notation.  Script-

ing forname (identifier) formation, indexing,and exponentiation, dis-

played division, and implied multiplication by juxtaposition of operands

are all part of the language.  There are, of course, some.notational

3
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re#trictions imposed to keep the compiler and campiling within reason-

able bounds of space and time.  In most cases, however, a restriction

is imposed on the language only when the frequency of occurrence of that

being disallowed is extremely small.  For example, at the present, dis-

play within exponents or subscripts is not allowed.  On the other hand,

the common notation for exponentiation of a functional value, e.g.,

2
cos x, is permitted as it arises quite frequently in our work.

Although not particularly common in mathematical notation, the use  ,

of "word-names" is very popular in computer work.  In the MADCAP lan-

guage such identifiers are capitalized to distinguish them fram fuhction

mnemonics, keywords,    or the product of variables. For example,    "csc"   is             '

a mnemonic for "cosecant", while "Csc" would be an identifier, and "cCs"

would  be "c times   Cs".

Program control is. handled by the basic "go" and "if" statemerrts,

"for"   statements and their extensions   ( see Section  4), and sub-programs

(procedures - see Section 5).  The MADCAP language also contains state-

ments for. array storage assignment, number type declaration, input-out-

put handling, and other jobs associated with program preparation:  Details

of the language may be found in,the MANUAL [2].

3.  Complex Displayed Formulae

Two of the early notational improvements to the basic language were

the indorporation of a summation and a product notation.  Motivation for

their inclusion was as much the flaunt of our new capability (see, for

4
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fun, the cover of Datamation, December 1961) as it was the utility of

the notation, though both are now an active part of the language.  The

limited size of the Flexowriter keyboard did not allow the inclusion of

a large sigma and a large pi, but the camposed facsimiles we were able

to construct were surprisingly acceptable.  A sigma is formed from two

"less than" symbols one half-line apart,  and a pi consists of adjacent -

vertical bars topped with a pair of underscores three half-lines above

the line of the bars.  The limits appear as subscripts and superscripts

on these· symbols.

Since summations and products may appear as part of a more involved
4                                                                                                                -

formula,  it is necessary .to require the summand (or factor) to be in
'

parentheses.  Examples of legitimate MADCAP statements involving these

notations   are:,                                                                                                       4

I, - Ii= 1(«)

r F 11
Fr"Ifi -1 ll--..1 +bPi J    r

With the limits treated as normal scripts, the linearization of such

statements is straightforward.  The translation of this one-line form

into symbolic machine code is of interest as it involves a useful cam-

piler recursion.  A summation (or product) is rewritten by MADCAP into a

series of simpler statements and then these new statements are analyzed

just as if they had been prepared by the programmer.  Campilation of a

camplicated statement (for example a multiple summation) involves

5                                       ·



iteration of this process (see [3] for further discussion).
)

A related, and more valuable, notation that is part of the lan-

guage is that for numerical integration.  Standard textbook notation for

definite integration has been adopted, for example:

r  */2          .      3
Y=J sin t

J 1.0

The integral sign is not typable directly, but a left parenthesis one
t

half-line above a right parenthesis is quite satisfactory.  As before,

the limits appear as scripts on this symbol.  The integrand may be any

t                expression and is followed by the differential which defines the dummy

variable of i4tegration (any legal name [3]).  Language restrictions
1

'

that must be imposed on the use of the integration notation are few and

natural.  As an example, a lower case d may not be used within an inte-

grand.  To accomplish the integration, MADCAP inserts a call to a

(Simpson's rule) library subroutine.  The subroutine has facility for           ·.

returning temporarily to the main program in order to compute the

functional values it needs.  Also, cammunication of data between the .t
subroutine and main program is by means of a data-table assigned by

MADCAP for each particular integral.  Thus, multiple integrals are

possible.  The subroutine generally uses a preassigned number of intervals

(thirty-two) for its calculation, although it is possible for the pro-

grammer to specify the number te be used by altering the quantity

"IGN " in a statement preceeding the integration.

6



It is possible, and often convenient, to use this notation to per-

form an integration where part of the integrand is a tabular function.

Thus, for example, one might have

rb

Q  = J'  a  fct(X)sinX dX

where fct(X) is a procedure (see Section 5) whose job is table lookup,

and perhaps interpolation, from a given tabular function.

Integrations are always performed in floating point arithmetic.

A recent addition to the language is the common display notation

for the binamial coefficients.  This notati6n greatly improves the

readability of many cambinatorial formulae.

No new symbols are required  for this notation although  we  would.

occasionally prefer   to have larger parentheses. The fol;Loving   examples
':

illustrate the notation:

1

A + 8..
 n j (n+r-1) (  q+k    h   /   2-  A
<r/         r     j     q+j-1)     R. +1/1

Note that the "munerator" and/or the "denominator" of the coefficient

may themRelves be displayed (this is seldam called for, however).

The linearization of a coefficierrt is accomplished in a manner sim-

ilar to that for displayed division [3].  In this case, however, the

dividing "line" between "numerator" and "denominator"   is the blank  half-.

line between parentheses.  The presence of a binamial coefficient is

detected during the map analysis by the change of main-line following a

7



left parenthesis.  Then, the linearization results in, say,

"binamial(m, r)", where "binamial" is the title of a two-argument

library subroutine.

For the sake of efficiency, the binomial coefficient subroutine

is merely. a table lookupe MA])CAP arranges for the computation of the

table as part of, and at the beginning of, the target code.

A  related, but simpler, new notation   is   that for factorials. The

exclamation poirrt is constructed from*a prime and a period. There is

no linearization required,  but an expression,   say, "nt'; would be  re-
.-

written as "factorial(n)" during the linearization  pass.      As   with

"binnmi al","factorial"   is a library subroutine vhich merely finds   its. 4

value from a precamputed table.

Fbr both the binomial cor.fficient and factorial cases, the argu-

ments  may be either real (floating point) or whole (integer) numbers.

MADCAP selects the appropriate subroutine (including table computation)

to yield the desired result; that is, real arguments will yield a real

answer, and integer arguments will yield an integer result.

4.  Extensions to Looping Notation

Notation for expressing the logical control of an involved calcu-

lation is generally far less developed than notation for expressing the

individual mathematical formulae (statements) used in the calculation.

The use of a flow diagram has always been (and still is) an excellent

way to describe logical control.  However, the difficulty. in presenting

8



a flow diagram as input to a campiler tends to frustrate the incorporation ·

of such notation into a programming language (in this regard, see [4]).

Consequently, programming languages generally require a "linear" pre-

sentation of the statements composing a program, wlth allowance for

conditional (and unconditional) branching of control by means of "lf"

(and "go") statements and iteration by means of "for" statements.  In

the MADCAP language the requisite bracketing of statements to indicate

dependence under such control statements is accomplished with indentation

[3] rather than by statement number reference [FORTRAN, for instance]

or "begin-end" bracketing [ALGOL]. This simple  use  of a second dimension

in program presentation greatly improves the readability of progrnmmed

logical control.  (It is interesting to note how natural this language

feature must be as most ALGOL programs are now written in thi* form

although, regrettably, the "begin",and  "end" must still be there. ) The ..

implementation of indentation-bracketing is quite simple using the

tabular key of the Flexowriter.

The   introduction  of a notation for iteration ("for" statements)

into a programming language is really the first step in the sophistica-

tion of a programming language with respect to logical control.  Such a

notation is.introduced, of course, because it is burdensome to be re-

quired to write statements to initialize, increment and test a loop   -

index everytime an iteration is desired.  Other common control tasks for

which the expression in terms of several basic statements rapidly be-

comes tiresame are frequently encountered.  (See [5], for i nntance,
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which presents same language extensions to FORTRAN for·expressing com-

plex searching and testing jobs useful in simulation problems.)  Two ..

such tasks have recently been assigned a more compact notation in the

MADCAP language.

The first and simpler allows a loop to have more than one (dummy)

index. For example:

fori  =lto   I;   j   =  0,2,...2mi   X=X·.X    +AX,...
0' 0

BODY OF LOOP

C=0

is equivalent to                                              
         *

i=1

j = 0'

X=X
9                                                                        „·go tq,#1

#2   i +1- •i    .

j +21 j

X + AX + X

#1   if i>I, goto#3

if .1 > a, go to #3

BODY OF LOOP

go to #2

#3     C=o

The Bxit from the loop occurs when any of the loop indices has completed

its  range. This "parallel incrementing" feature should be contrasted
l

4
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with the similarly appearing ALGOL notation, for example:

for i: =1 step s until n; n+1 step 1 until m

which assigns a succession of values to a single dummy index
.  There.

has been less demand for this latter "for" statement extension, but such

facility will soon be available in MADCAP via a general notatio
n for

the  manipulation  and  use   of   "sets" of integers.

The second new notation allows variably or indefinitely nested
)                                                   .·

iterations ("for" statements)  to be written compactly and quite naturally.
-

Demand for such nesting arises in many problems but particular].y often

in the form of "backtracking" in combinatorial investigations [6,7].

As a simple eitample, consider the task of counting from q to 242 (= 35-1)
t

using base 3 arithmetic where the 5 individual "digits" are what is
.,

needed. Ln terms of nested iterations this job wouLd be written as

follows:

for i = 0 to 2

for d  =O t o 2
2

for d = 0 to 2
5

USE DIGITS d1,   d  '    . . . '   d5

The MADCAP notation for this job is:

with i -1, 2, ... 5

for d  =O t o 2
i

USE  DIGITS  dl' (12' ..., d5

11
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More realistic examples would have the "5" a variable (or unexpressed),

the "2" a function of the index i, and statements preceding and followi

ing each iteration, for example:

with i=l t o I
.

STAT IENTS

for qi = 0 to Qi

STATEMENTS
1,4

STATEME31TS

STATEMENTS

ADDITIONAL PROGRAM
i

The form for the expression of the range of the dummy 'index in a

"with"  statement  is  the  same as allowed  in  a "for" statement  [1].

It is seen from the above example that three indentation levels

are required to express normal "with" statement dependency.  A "with"

statement may operate upon another "with" statement, rather than on a

" for"   statement,   and  each such application  adds (at least) two inden-

tation levels of dependency.

As mentioned above, the logical Control expressed by "with"

statemerrts occurs especially often in "enumerative"   jobs.      A  good

12
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' percentage of the programb written in MADCAP are of this type and         -  

further language development in this direction (e.g. set manipulation)

is being made.  These developments will be reported elsewhere.

5.  Procedures

'                        A MADCAP "procedure" is a section of program written in MADCAP

language and referenced by means of a mnemonic title and list of

arguments.  Thus MADCAP procedures are quite similar to ALGOL proce-

dures; yet, the MADCAP notation arose independently and is generally more

concise than AIQL notation. In what follows it will be convenient to

explain certain features by comparing with ALGOL or by using ALGOL

m   .
terminology [8], since that language is so widely publicized.

There are two basic reasons for incorporating such sub-program no-

tation into a language, each of which presents somewhat·different nota-

tional demands.      One,    it. is desirable to allow the programmer to define

his own specialized function routines and be able to refer to them in

the usual fashion (as he refers to library functions such as sin, log,

otc.), and two, it is efficient to allow pre-coded.and pre-debugged jobs

to be incorporated easily into another program.  Associated wlth reason

two is the useful programming practice of splitting a large problem into·

several nearly independent sections, each section prepared by a different

13

4                                                                                                                                                     '



programmer, and where cammunication between sections d
erives from

reference to a few common indentifiers.  A feature sug
gested by reason       ,

one   above   is that provision for "'trans itory" arguments (in ALGOL,

arguments Balled by value) be made.  Suggested by reas
on two is provision

for "stationary" arguments  (in ALGOL, arguments called by  name).

In giving a list of arguments, the transitory arguments are. separated

fram the stationary arguments ·by a semi-colon.

It seems reasonable that all labels, and identifiers n
ot in the      "

argument list, which appear within the body of the pro
cedure code should

be local to that code.  Thus, as with ALGOL, a procedu
re is essentially

an independent sub-program, a block.     It is interesting  to  note. that

there has been· no motivation to define a block independent of a procedure;

that is, sub-programming by means of procedures has, s
o far, proved both

natural and sufficient.

A procedure is called by giving the procedure title (a
 mnemonic

devised by the programmer and consisting of three or mo
re lower case

letters) followed by the list of arguments enclosed in 
parenthesis.  This

may appear within a statement as in

y = gud(x)/[ex + e]

or as a statement by itself as

hydro (n,     k;    P,    R,     E,     V,     g) .

A procedure is declared by heading the sub-program wit
h a statement

giving the title and argument list (as used by the proc
edure code) and

bracketing  it  with the symbols   " ( ...
" and

"
... )",   as for example:

14
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(... hydro(a, b; p, r, E, 16 11)
4

BODY OF PROCEDURE

...j

3. the result of the procedure is a single quantity and the procedure

is to be called within an arithmetic statement, then the last line of

the body of the procedure should define this result, for example:

(... .diff(X, Y)

.
a=X-Y

'                              if a < 0.0

a = 0.0

diff(X, Y) =a

..., ..

If the body of the procedure producing a single result can·be written

on a single line, then so may the entire procedure declaration. · For

example:

(...   gud(x) = 2 arctan(ex) -    '..)

As.usual inithe MADCAP language, transitory arguments and identifiers

internal to a procedure are assigned real number-type unless specifically

declared to be integers the first time ·they appear.  Stationary arguments,

of course, adopt the number-type of the "main-problem" identifier to         ·

which they are·equivalent.  The number-type of the procedure result itself

is defined either by the last line of the procedure body (see last two

examples) or in a specific declaration.

15
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It was noted above that the transitory and stationary arguments in

an argument list are separated by a semi-colon.  Thus, in "hydro(n, k;

P, R, E, V, g)", "n" and "k" are transitory arguments while the rest

are stationary arguments. D' there   are no stationary arguments,   then

the    semi-colon  may be omitted   as    in   the    "diff"    and "gud" examples above.
*
t

If there are no transitory arguments, then the semi-colon must still be

there, but for esthetic reasons the word "none" may be placed before

it, as for example, "proc(none; A, B, C)". More often than not the
..

identifiers of a procedure body which are stationary arguments are

identical to the indentifierr. of the "main code" (actually one pro-

cedure level back, since procedures may be nested) to which they are

being made eq»ivalent.  In this case the stationary argu ents in the

argument list of the procedure call may be amitted.  This is especially

useful when a pre-coded functional procedure, such as "lstsq" (least

squares), must refer to an as yet uncoded function with an unknown number

of arguments.  The arguments are then given in the heading of the function

procedure declaration as stationary arguments and refer to main problem

identifiers. .Occasionally, it is desirable (when a procedure is one part

of an arbitrarily sectioned problem, for instance) to make no distinction

between identifiers internal or immediately ·external to a procedure body.

This may be done by making all identifiers within the procedure body

(except identifiers which are transitory arguments, of course) stationary

arguments, by placing the word "all" after the semi-colon in the argument

list of the heading, for example:

16
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C . . .        fct(n,     m;     all)

As indicated above, procedure bodies may be nested, much as are

blocks in ALGOL.  Reference to such procddures is restricted only in

that there be no closed cycles, the sjmplest case of which is a pro-

cedure body containing a reference to itself.  So far, no practical

example requiring that this restriction against "recursive procedures"

be lifted has arisen in our work.

6.  Conclusion

This paper has presented some of the newer features of the

"scientist-oriented" language MADCAP.: The presentation ..is, of course,

informal and incomplete.  In fact, the language itself yill never be
..

completely or formally defined since, from a practical point of view,

it makes no sepse to attempt to do so.  The expedition Of problem solving
I                                                     i ·

is the primary motivation for MADCAP language developmeht.

The current expanding tide of research in formal algorithmic lan-

guages is a little frightening in same respects.  The danger that this
' i

tide will drown out research on the more mundane problem of bridging

the notational gap between men and machine is not negligible.  Programming

language authors should not forget that compiler languages are intended

to help make the computer a working tool of the everyday scientist and

not  merely to present the scientist  with  a  new (and "foreign"), albeit

efficient, language in which to state his problems.

(
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