cE R s e R e tn e vt an e et A p———

N IR it

egp 98T o
_ S Facsimile Price $ // @0 _ —” 7981&@ T

AL

_Microfilm Price $ r :
. T

;":Avoiloble from the
_1Office of Technical Services

‘Department of C ; :
s epar men»,o“; ommerce . N . "r
 Washington 25, D. C. ~ ‘ MAS !

g >

oy

. E{ecent‘Improvements in w
Mark B. Vells
Los Alamos Scientific Laboratory
of the A
University of Califqrnié o

Los Alamos, New Mexico

This paper was submitted for publication
in the open literature at least § months
Prior to the issuance date of this Micro-
card. Since the U.S.A.E.C. has no evi-
dence that it has been published, the pa-
per is being distributed in Microcard
form as a preprint,

LEGAL NOTICE———— -

This report was prepared as an account of Government sponsored work, Nelther the United
States, ‘nor the Commission, nor,any person acting on behalf of the Commission:

A. Makes any warranty or represcntation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or ihat the use
of ony information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or .

) B. Assumes any liabilities will respecl W the use of, or for damages resuiting rom the
use of any {nformation, apparatus, method, or process disclosed in this report.

As used In the above, ‘‘person acting on behalf of the Commlasion" includes any em-
ployee or contractor of the C or empl of such . to the extent that
such or of the:Ci or of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with auch contractor.

;Vv‘: - ‘ — 4 - “

#* This work wag pc;rforme‘d under the auspices of the U, S, Atomic
Energy Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Recent Improvements in MADCAP

Mark B, Wells

ABSTRACT

MADCAP is a programming language admitting subscripts, superscripts
and certain forms of displayed formulae, The basic implementation of
this language was described in a previous paper [MADCAP: A scientific

compiler for a displayed formula textbook language, Comm. ACM, Vol. L

(Jan, 61), 31-36]. This paper discusses recent improvements in the
language in three areas: complex display, logical control, and sub-
prograrming. In the area of complex display, the most prominent im-
provements’are a notation for integration and fof the biﬁomial coeffi-"
cients., In the area of logical control the chief new feature is a no-
tation for variably nested looping. The discussion of sub-programing

is focused on MADCAP!'s notation for and use of "procedures'.

I

l, #ntroduction

Authors of progrémﬁing languages for scientific p;oblemé'(FORTRAN,.
ALGOL, etc.) generally place thc burden of ”linearizihg" mafhematical
formu]ao\(thét is, reducing scripting.and display to a one-line nofation).
npon the programmer, Historically, this state of affairs aroso bocouse
it was (mechanically) difficult to present normal mathematical formulae
as input to a compiler., Many people in the computer field seem to be
content with this situation, but, in this author's opinion, the
.linearization of formulae is just as burdensome as translating from
ﬁnemonics to machine code, aséigning storage, or any of tﬁe Otﬁer numer-
oﬁs mechanical tasks of coding from vwhich compiiers are iﬁtendod to
liberate the séientist Furthermorc, the legibility of a Vtextbook"
presentation of a problem is extremely 1mportant to a less computer -
orientedlcolleague called upon to understand and verify a calculation.-

MADCAP is a programming language admitting general displayed |
. formulae (3], With the help of a "scripting" Flexoﬁriter'for preparing
. compiler input it has been successfully implemented for thé MANIAC II
-computer at Los Alamos, MADCAP is a "groﬁing" language (1, 2, 31,-and
this péper discusses some of the newer features of the language;

The oﬁject of this exposition is twofold, First, by exhibiting
the types of mathematical formulae that can be iﬁpleﬁented easily{once'
a one-line notatioh is abandoned, we hope to induce a measure'of envy
among scientist-programmers, Perhaps in this way wé will speed thé day i

‘when the input of general display will be made available to e#eryone.

10
2

Second, we wish to present some results of progfamming language research
* which have evolved independently of the massive FORTRAN and ALGOL pro-
jects. In this author's opinion, a truly acceptable "universal" pro-
gramning language can only evolve (as mathematical language has and
still is) by natural selection from many mutations. |

Section 2 gives an abstract of the MADCAP language. Seetion 3
discusses new features involving complex display. Section 4 presents
some extensions to the notation for expressing iterations and Section 5 .
gives MADCAf's approach to some sub-program questions (prqeedures, non-

library functions, and blocks).

2. The Basic Language o : . ‘%

As with most programmlng languages, MADCAP is a statement lan-
guage, That is, the source program consists of a sequence of state-
ments - formulae (defining equations, e.g., a = Jo + 2), control state-
ments ("if . . .", "for . . .", etc.), and information statements
("subscript range . . .", "format . . ;“, etc.) which outline in detail
the.solution to the problem at hand. This code is prebared on a‘full-
ke&board, modified (tq allow key-controlled platen rotaﬁion).Friden
Flexowriter Typewriter, which records the sequence of keyétfokes on a

paper tape (for use as input to the campiler) as well as on the typed
page. The individual characters which may be printed (in red as well as

black) are as follows-

i,

256

JIL % t

In addition, the following typevriter control keys are available and
also record their function on the paper tape when §truck~f space, back-
space, upper case, lower case, red, black, carriage return; tabular,
_stop, delete, superscript, subscript. The last two ke&s represent the
modification mentioned above, Their function is to fotato fhe{platen-’
oné half-line down or one half-line up, respectivély; Té%y allow tho
direct typing of superscripts, subscripts, and displayed formulae. The
flexibillty of the Flexowriter allows new -symbols to be formed by typing '
oertain'characters on top of or closely adjacent to one another. _Those)
| vhich have a known meaning to MADCAP are as followS:' | ‘

4 3 4(rf) <(rg) 2(or2)

sz

The formation and use of the last four symbols 1s discussed in section 3,

VWith respect to the writing of individual formuloe; the MADCAP
Jlanguage dif%ero very litole from'common mathematical notationf Script-
ing for name (identifier) formation, indexing snd exponentiation, dis-

" played division, ond implied multiplication by Juxtaposition of operands

are all part of the language. There are, of course, some notational

e e ey e

re$trictions imposed to keep the compiler and campiling within reason- -
‘able bounds of space and time. In most cases, howevef, a réstriction.
is.imposed on fhe language only when the frequency of occurreﬁce of 1:ha"t;v~
being disallowed is extremely small. For example, at the present, dis-
playAwithin exponents or subscripts is not allowed.. On the other hand,
the common notation for exponentiation of a functional value, e.g.,

cqs2x, is permitted as it arises quite frequently in our work. “

Although not particularly common in mathematiegl notation, the uée

of "word-names" is very popular in cqmputef wvork. In the MADCAP lan- -
guage such identifiers are capitalized to‘distinguish them from function
mnémonics; keywords, or the product of variables. For example, "csé“‘iS"
a mnemonic for "cosecanﬁ", while "Csc" would be an ident%fier,‘and "eCs"
~ would be "c timés Cs";

| Program control is handled by the basic'"go" and "1$f stateﬁents,
"for" stétementé and their extensions (see Section 4), and sub-prégrams
(prbcédures - see Sectién 5). The MADCAP language also contains state-
ments for.array storage assigmment, number type declaration, input-out-
put hgndling, and other jobs associated with program preparation;. Details

of the language may be found in the MANUAL [2].

3. Complex Displayed Formulae

Two of the early notational improvements to the basic language were
the ihéorporation of a suimation and é product notation. Motivation for»

their inclusion was as much the flaunt of our new capability (see, for

RN Bt A s P Sl foosu P e I 25 AR ¢ e cdiSamy e -

fun, tﬁe cover of Dafamation, December 1961) as it was the utility of
the notafibn, though both‘ére now an active part of the language. The
limited size of the Fléxowritcr keyboard did not allow the inclusion of
a large sigma and a laréé pi, but the camposed facsimileé we were able

to construct were surprisingly acceptable. A sigma is formed from two

"less than" symbols one half-line apart, and a pi consists of adjacent "

vertical bars topped with a‘pair of underscores three half-lines above
the line of the bars. The limits appear és subscripts and superscripts
oﬁ these. symbols,

Since sumations and products may appear as part of a more involved
formula, it is pecessaryffo require'the summand (dr factor) to ﬁe in

parentheses., Examples of legitimate MADCAP statéments involving these

r.‘r?'.é

.Ip =>§; | (ui;i) : , , , 3

notations are:

- o .
¢r€H [l-—l—-..:]+br

1 =1 Py

- With the limits treated as normal scripts, the. linearization of such

statements is straightforward. The translation of this one-line form

L)

into symbolic machine code is of interest as it involves a useful cdm-

piler recursion. A summation (or product) is rewritten by MADCAP into &

- series of simpler statements and then these new statements are analyzed

Just as -if they had been prepared by the programmer. Campilation of a

complicated statement (for example a multiple summation) involves

R e N Tl L

iteration of this process (see [3] for further discussionm).

A related, and more valuable, notation that is part of the lan-
guage is that for numerical integration. Standard textbooﬁ notation for

definite integration has been adopted, for example:

: n/2 . 3.
Y =f Sl: L at
1.0

. The 1ﬁtegral sign is not typable directly, but a left parenthesis one'

" half-line éboVe a right parenthesis is quite satisfactory, As before,
the limits appear as scripts on this symbol. The integrapd may be any |
expression an@'is followed by the differential which defines the dummy
variable of i%teggation (any legal name [3]). Language;restricﬁioné |
that musf be imposed on the use of the integration notatioh are few and
natural., As an example, & lower case d may not be used-yithin an inte;
grand., To accomplish.the integration, MADCAP inserts a call to a

| '(Si@pson's rule) library subroutine. The subroutine has facility fof

returning temporarily to the main program in order to compute the

T e

functional values ‘it needs, Also, cammunication of datA between fhe

"~ subroutine and main program is by means of a data-table assigned by
MADCAP for:each particular integral, Thus, multiple integrals are
.possible. The subroutine generally uses & preassigned number of 1ntefvals

-(ﬁhirty—two) for its c;lculation, although it is possibie for'the‘pro;
grammer to specify the mumber to, be used by altering the quantity |

"IGNQ#" in a statement preceeding the integration.

It is possible, and often convenient, to use this notation to per-

form an integration where part of the integrand is a tabular function.

" Thus, for example, one.might-have

b) :
Q =f fet(X)sinX ax
a "

where fct(X) is a procedure (see Section 5) whose job is table lookup;‘
and perhaps interpolation, from-; given tabular function.

Integrations are alwgys performed in floating point arithmetic.

A recent addition to the language 1s the common display nptation
for the binomial coefficieﬁts. This notation greatly improves the .
readability of mﬁny combinatorial formulae. ' |

No new symbols are reqniréd for this notation althoygh we would .
o;casioﬁally prefer to have larger parentheseé.. The following examples ;

1llustrate the potation: . - N -

{ .
A+B
n+r-1 qt+tk 2
q+J-1 Ri + 1 .
Note that the "mmerator" and/or the "denominator" of the coefficient
may themselves be displayed (this is seldom called for, however).:
*‘The linear@zation of a coefficient is accomplished in a manner sim-
ilar to that for displayed division [3]. In this case, however, the
dividing "line" between "numerator" and "denominator” is the blank half-.

line between parentheses; The presence of a binomial coefficient is

detected during the map analysis by the change of main-line following a

left parenthesis. Then, the linearization results in, say,

"binemial(m, r)", where "binomial" is the title of a two-argument
lidbrary subroutine,

For the sake of efficiency, the binomial coefficient subroutine

is nerely. a table'lookup: MACAP arranges for the computation of the

table as part of, and st the beginning of, the target cbde.,
A’related, fut simplef, new notatién is that for factorials. The - - ;
exclamation point'is.consfructed from~a prime and a periéd. There 18 |
no linearization requiréd, but an expression, say, "n!",would be re-
written as "factorial(n)" @uring the linearization paés. As with-
"binomial",dfactorial" is a library subroutine which merely finds 1ts‘
vélue frdm a precomputed tablce., | |
For both gﬁe bihomial céefficient and factorial cas?s, the argu-
ments may be either real (floafing point) or whole'(inxeggr)‘numbefs.
MADCAP selects.thé appropriate subroutine (including tabie cﬁmputgtion)
to &ield~thé desired result; that is, real arguments will yield.a'real

answer, and integer arguments will yield an integer result,

4, Extensions to Looping Notation

Nolutlon for exXpressing the logical control of an involved calcu-
3

lation is generally far less developed than notation for expressing the

individual mathematical formulae (statements) used in the caleulstion.

- The use of a flow diagram has always been (and still is) an exceljent

way to describe logical control. However, the difficulty. in presenting

a flow diagram as input to a'compiler tends to frustrate the inéorporation“.

of such notation into a programming language (in this reéard, see [h]).
Consequently, programming languages gencrally require a "linear" pre-
sentation of the statements composing a program, with allowance for
conditional (and unconditionai) branching of control by means of "if"
(and "go") statements and iteration by means of "for'" statements, 1In

the MADCAP language the requisite bracketing of statements to indiéate
dependence under such control statements is accomplished with indéntation
[3] rather than by statement number reference [FORTRAN, for instancel

or "begiﬁ-en " bracketing [ALGOL]. This simple use of a second dimension °
in program presentation greatly improves the readability of pfogxammed |
logical control. (It is interesting to note how natural this 1aﬁguage
feature must be as most ALGOL programs are now written in thi%zfanm _
although, regrettably, the "begin" and "end" must still be tﬁere.) ‘The
huplementation of 1ndentation-bracketing is quite simple using the
tabular key of the Flexowriter.

The 1ntroduction of a notation for iteration ("for statements)

into a prograqping languag? is really the first step in the sophistica-
tion of a programming language with respect to logical control. Such a
notation is.introduced, of course, because it is burdensome to be feJ ;
q&ired to vrite statements to initialize, incremenﬁ and test a loop
'index everytime an iteration is desired. Other common control tasks for
which the expressioh in terms of several basic statements rapidly be- |

" comes tiresome are frequently encountercd. (See (5], for instance,

vwhich presents some language extensions to FORTRAN for: expressing c@mr:

plex searching and testing Jobs useful in simudation problems) Two
such tasks have recently been a551gned a more compact notation in the
MADCAP language.
The first and simpler allows a loop to have more than one.(dummy) o
index. For example: ‘ |
fori=sltoI; J=0,2 ... 2m; X = xd, Xo f A, 0.,
BODY OF LOOP

C=0

=y

is equivalent to
i=1
5'3.0;
%
go tgz#l
#Q'i-+l-0i
J+2-+3.
X+ X ~X
A 121> 1, go to 13
if 3 > 2m, g0 to 3
BODY OF LOOP
g to f2
B c=0 |
The exit from the loop occurs when EEI of the loop indices has comp;eted

its range. ‘This "parallel incrementing" feature should be contrasted

"

10

with the similarly appearing ALGOL notation, for example:

for 1 ;= 1 step s until n; n + 1 step 1 until m

vhich assigns a succession of values to a single dummy index., There -
has been less demand for this latter "for" statement extension, but sﬁch-
facility will soon be aveilable in MADCAP via a8 general notation for

the manipulation and use of "sets" of integers;

The second new notation allows variably or indefinltely nested
iterations ("for" statements) to be written compactly and quite naturally
Demand for such nesting arises in many problems but particularly often
in the form of "backtracking" in combinatorial 1nvestigations (6, 71.°

As a simple emmmple, consider the task of counting from 0 to 22 (= 35-1)

using base 3 arithmetic where the 5 individual “digits" are what is
. . L
needed. In terms of nested iterations this job would be Qritten as

follows:

for ai -0 to 2

for dz = O to 2

for d5 =0 to 2

USE DIGITS 4,, dyy ooy ds‘
The MADCAP notation for this job is:

w.ith i = l’ 2, L LM .5

for di = 0 to 2

"USE DIGITS d;, 4y ++v» dg

More realistic examples would have the "5" a variable (or unexprésséd),
the "2" a function of the index i, and statements preceding and follows
ing each iteration, for example: ’

with i =1 to I

STATEMENTS

for qi s 0 to Qi

STATEMENTS

n
STATEMENTS
STATEMENTS

ADDITIONAL PROGRAM

The form for the expression of the range of the dumy index in a

"with" statement is the same as allowed in a "for" statement [1].

It is seen from the above example that three 1ndentation levels -
are required to express normal "with" statement dependency. A "with"
statement may operate upon'another "with" statement, rather than on a

"for" statement, and each such application adds (at least) two inden-

tation levels of dependency.

As mentioned above, the logical control expressed by "with"

statements occurs especially often in "emumerative" jobs. A good.

o wee T e i CAVARGS TETPTANDE T 6 3 ATWRERIMISY o e e 8

percentage of the programs written in MADCAP are of this type and
further language development in this direction (e.g. set manipulation)

is being made. These dévelopments will be reported elsevhere.

5. Procedures
; . ' A MADCAP "procedure" is a section of program written iﬁ MADCAP
5 ‘ ; ' language ahﬁ referenced by means of a mmemonic title and list of .

. | grguments. Thus MADCAP procedures are quite similar to AlbOL proce-
dures; yet, the MADCAP notation arose independently»and is generally more
coneise than ALGOL notation, In what follows it will be convenient to
explaiﬁ certain features‘by cdmparing with ALGOL ér by using ALGOL

terminology [8], since that language is so widely publicized.

There are two basic rgasons for incorporating sucquub-program no- -
tqtion into a ianguage, each of which presents somewhat.different notg-A
‘tional demands. One, it is desirable to allow the programmer to define
his own specialized function routines and be able to refer to them in
the usual fashion (as he refers to library funétions éuch as sin, log,
ctc.), and two, 1t 1s efficient to allow pre~-coded -and pre-debugged jobs
to be incorporated easiiy into another program. Associatéd wifh reason
" two is the useful programning practice of splitting a large problem 1ﬁt0~'

. several nearly independent sections, each section prepared by a different

g, L. " 4

programmer} and where communication between sections derives from

reference to a few common indcntifiers, A feature suggested by reason
one above is that ﬁrovision for "transitory" arguments (in'ALGOL,
arguments called by value) be made. Suggested by reason tno is provision
{or "stationary" argumente (in ALGOL, arguments called by name).

In giving & list of arguments, the transitory argumente are.seperated '
from the stationary arguments by a semi-colon. E

Tt seems reasonable that all labels, and i@entifiers not in the

argument list, which appear within the body of the procedure code should -

be local to that code. Thus, as with ALGOL, a procedure 1is essentially

an independent sub-program, a block. It is interesting ﬁo note.fhat

there has been no motivation to define a block independent of a procedure;

that is, sub-programming by means of procedures has, 8o far, pnoved both
natural and sufficient - Ei
A procedure is called by giving the procedure title (a mnemonic

dev1sed by the programmer and consisting of three or more lower case
letters) followed by the list of arguments‘enclosed in parenthesis. This
may appear within a statenent as in |

y = gud(x)/[ex + 6]
or as a statement by itself es

hyd.ro(n, x; P, R, E, V, g)e
A procedure is declared by heading the sub-program with a statement
giving the title and argument 1ist (as used by the procedure code) and

bracketing it with the symbols "(..." and "...)", as for example:

1k

(¢o. hydro(a, b; p, r, E, V, h)

BODY OF PROCEDURE
eee)
I7 the result of the procedure is a single quantity and the procedure
is to be called-witﬁin an arithmetic statement, then the last line 6f
| the Eody of the procedure should define this result, for example:
(eo. QILE(X, Y) ‘
a=X-Y 7
if a < 0.0
a = 0,0
aire(x, Y) = a ‘ S,
| e |
If the body of the'procedﬁre prbducing a single result‘can-be wfittén'_

on a single lihg, then so may the entire procedure declaration. - For

example: 4 ' .

(o.. gud(x) = 2 arétaq(ex) - g_ .eo)

As. usual intthe MADCAP language, transitory arguments and identifiers -

internal to a procedure are assigned real number-type unless"specifical;y

A'declared to be integers the first time they appear. Stati&nary arguménts,‘

of course, adopt thé number-type of the "main-problem" identifier to
wvhich they are-équivalent. The number-type of the procedure result itsglf
ig defined either by the last line of the procedure body (see last two ‘

examples) or in & specific declaration.

15

It was noted above that the transitory and stationary arguments in-

an argument list are separated by a seml-colon., Thus, in "hydro(n, k;
P, R, E, V, g)", "n" and "k" are transitory arguments while the rest
are stationary argumenté. I' there are no stationary arguments, then

the semi-colon may be omitted as in the "Aiff" and "gud" examples above.

iy

. If there are no transitory arguments, then the semi-colon must still be
there, but‘for esthetic reasons the word "none" may be blaced.before

it, ag for example, "proc (none; A; ﬁ, C)". More often than not the |

' identifiers o% & procedure body whiéh are st#tionary argumehts ére,.

. identical to fhe indentifiers of the "main code" (actualiy_one pro-
 cedure level pack, since procedures may be nested) to wh%ch they are .
being made eqéivalent. In this case the stationary argu%ents in the
‘argument lisé of the proéedure call may be omitted. Thi; is especially
useful when a pre-coded functional proceduré, such as "lstéq" (1least V
squares), must‘refer to an as yet uncoded function withuan'unknown number
of arguments. The arguments are then given in the heading of the function
- procedure declaration as stationary .arguments and refef €0 main problem’
'identifiers. .Occasionally, it is desirable (when afprbcedure is one paft
of an arﬁitrari}z sectioned‘problem, for instance) to make no distinction
between identifiers intermal or immediately-ekternal to a procedure body.
This may be done by making all identifiers within the procedure body
(ekceptvidéntifiers vhich are transitory arguments, of course) stationary
arguments, by placing the word "all" after the semi-colon in the argumenf

1ist of the heading, for'exémple:

16

(ese fect(n, m; all)

As indicated above, procedure bodies may be nested! mucﬁ as are
blocks in ALGOL. Reference to such procédﬁres is restricted only‘in
that there be no closed cycles, the gimplest case of which is & pro-
cedure body containing a refcrence to itself, So far, no practical
example requiring that this restriction against "recursive procedures"

be lifted has arisen in our wvork.

6. Conclusion

This paper has presented some of the-newer_features:of the
"scientigi-orientgd" language MADCAP.: Tﬁe preseﬁtation~is{‘of course,
informal and inéompiete. In fact, the language itself yill never be
completely or formally defined since, from a piacticai p;int'of viév;
" it makes no sgpse to attempt to do so. The expedition g%’prqblgm solving'
 is the priﬁary'motivation for MADCAP'ianguage developme;t.'f

The current expanding tide of reseérch in formal aigorithmic iAn-
guages is a little frightening in same respects. The dhnger that this
_tide will drown out ;esearch on the more mundane prdblém‘of bridging
the notational gap between men and machine is not negligible.‘ Prograﬁminga
language authors should not forget that compiler langhages afe.inte;ded
to help make the computer a working tool of the everyday scientist and

not merely to present the scientist w1th a new (and "foreign), albeit

'efficicnt, language in which to state his problems,

17

70'

REFIRENCES

‘Bradford, D. H. and Wells, M, B. MADCAP IT. in Annual Review in’

Automatic Programming, Vol. 2, Pergamon Press, 1961, 115-1L0,

Bradford; D, H. and Wells; M. B. MADCAP III (Manusl), LAMS-2601,
Los Alamos Scientific Lavoratory, 1961. '

Wells, M. B. MADCAP: A scientific compiler for a displayed formula '
textbook language. Comm. ACM 4 (Jan. 61), 31-36. , -

Voorhees, E. A, Algebraic formulation of flow diagrams. Comm ACM 1

(June 58), 4-8,

Buxton, J.'N. and Laski, J. G. Control and simulation language.

Comput. J. 5 (Oct. 62), 194-200.

Valker, R,'J. An emmerative technique for a clas: &f combinatorial
problems., In Proceedings of Symposia in Applied Mathematics,
Vol. 10, Amer. Math Soc., 1960, 91-9%. R .

! . § o
Lehmer, Di H, Teaching combinatorial tricks to a comﬁuter. In
Proceedings of Symposia in Applied Mathematics, Vol, 10, Amer,
Math Soc., 1960, 179-193. . S

Naur, P, and others. . Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6 (Jan. 63), 1-17. o

Lo

