
LLNL-PROC-453671

New Features of the Mercury
Monte Carlo Particle Transport
Code

R. J. Procassini, P. S. Brantley, S. A. Dawson, G. M.
Greenman, M. S. McKinley, M. J. O'Brien, S. M. Sepke,
D. E. Stevens, B. R. Beck, C. A. Hagmann

September 8, 2010

Joint International Conference on Supercomputing in Nuclear
Applications and Monte Carlo 2010 (SNA + MC2010)
Tokyo, Japan
October 17, 2010 through October 21, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

New Features of the Mercury
Monte Carlo Particle Transport Code

Richard PROCASSINI, Patrick BRANTLEY, Shawn DAWSON,
Gregory GREENMAN, Michael Scott McKINLEY, Matthew O'BRIEN,
Scott SEPKE, David STEVENS, Bret BECK and Christian HAGMANN

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, United States of America

Several new capabilities have been added to the Mercury Monte Carlo transport code over the past four years 1,2.
The most important algorithmic enhancement is a general, extensible infrastructure to support source, tally and
variance reduction actions. For each action, the user defines a phase space, as well as any number of responses that
are applied to a specified event. Tallies are accumulated into a correlated, multi-dimensional, Cartesian-product
result phase space. Our approach employs a common user interface to specify the data sets and distributions that
define the phase space, response and result for each action. Modifications to the particle trackers include the use of
facet halos (instead of extrapolative fuzz) for robust tracking, and material interface reconstruction for use in shape
overlaid meshes. Support for expected-value criticality eigenvalue calculations has also been implemented.
Computer science enhancements include an in-line Python interface for user customization of problem setup and
output3.

KEYWORDS: Monte Carlo, particle transport, tallies, variance reduction, particle tracking, Python user
interface

I. Introduction1

Mercury is a Monte Carlo particle transport code that is
being developed at the Lawrence Livermore National
Laboratory (LLNL) in support of a variety of laboratory
missions1,2. During the past four years, several new
capabilities have been added to the code, and as a result,
Mercury is now available for use in general-purpose particle
transport calculations. These new capabilities include a
general, extensible infrastructure to support source, tally and
variance reduction methods, more robust particle tracking,
accurate particle tracking through multi-material cells,
expected-value criticality calculations and a Python interface
for user customization of problem setup and output.

II. A General Infrastructure for Source, Tally and
Variance Reduction Methods

The most important capability that has recently been
added to Mercury is a general, extensible infrastructure to
support source, tally and variance reduction actions
(methods). The user defines the relevant phase space over
which the action is to be applied in the form of responses
and results. For source, tally and variance reduction actions,
the user may define any number of responses (filters or
intensity multipliers) that are applied to a specified Monte
Carlo event. User-defined tallies are accumulated into a
correlated, multi-dimensional, Cartesian-product result phase
space. A common user interface to specify the data
collections and distributions that define the response and
result phase spaces for each action. This flexible
infrastructure makes it easy for the developer to add new

1 Corresponding Author E-Mail: spike@llnl.gov

events, phase spaces, etc. for any supported action, while the
holistic approach to code input minimizes the input syntax
that the user is required to learn. This design feature of
Mercury was inspired by the input syntax of several other
Monte Carlo codes. A perusal of the user manuals for those
codes revealed that the way the 'response' and 'result' phase
spaces were defined varied from 'action' to 'action',
depending upon who implemented the feature.

The flexibility inherent in this infrastructure permits the
Mercury user to define an extremely complex set of actions
to be executed for a variety of events, response and result
spaces. In many cases, the flexibility that is available to
users of Mercury far exceeds that available to users of other
Monte Carlo particle transport codes. For example, weight
windows are a popular variance reduction method provided
by MCNP4. The capability provided by MCNP allows the
user to define weight windows for any cell that respond to
either time or energy, but not both. As shown below, the
capability provided by Mercury allows the user to define
weight windows responses that are a function of time and
energy, as well as which surface the particle is crossing, the
material it is leaving and entering, the original coordinates of
the particle, the angle relative to the surface normal, etc. (in
either an uncorrelated or correlated fashion). In comparison
to MCNP, Cog provides additional flexibility and input-
syntax uniformity for the definition of response and result
phase spaces5. Indeed, the approach taken by the developers
of Cog was the inspiration for the development of our
common, flexible infrastructure. While Cog's flexibility is
an improvement over MCNP, the user cannot define
correlated responses for tallies, greater than two-dimensional
tally results, and all variance reduction responses have

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

limited functional dependence (cell/material and/or energy).
A novel feature of both MCNP and Cog is the ability for the
user to define their own tally or source functionality by
writing Fortran routines that is executed by the code4,5.
While this approach provides the user with additional
flexibility, our philosophy is to provide users with an
extremely flexible infrastructure that will meet theirs needs
and not to burden them with code development and
debugging responsibilities.

The actions, phase spaces, events and special features that
are supported within the Mercury source/tally/variance-
reduction infrastructure are detailed below.

1. Actions
Mercury supports various actions or methods which are

defined by the category keyword in the relevant input data
block. For sources, the supported actions include particle
creation via sampling of an external source distribution
(External_Source) and reading particle records from a disk
file (File_Source). For user-defined tallies, the default action
is to accumulate data into the result phase space. In this
case, the category keyword refers to the quantity that is to be
accumulated. Currently supported categories include:

• Count
• Weight
• Energy
• Path_Length
• Flux
• Fluence
• Point_Detector_Flux
• Point_Detector_Fluence
• Energy_Deposition
• Reaction_Energy
• Net_Current_Count
• Net_Current_Fluence
• Net_Current
• Net_Normal_Current_Count
• Net_Normal_Current_Fluence
• Net_Normal_Current
• Surface_Flux
• Surface_Fluence

In addition, it is possible to write a particle record to a disk
file (Particle). For variance reduction, the supported actions
fall into three broad classes: termination, population control
and modified sampling:

• Cutoff (Termination)
• General (Population Control)
• Importance (Population Control)
• Weight_Window (Population Control)
• Forced_Collision (Modified Sampling)

2. Phase Spaces
While any number of response phase spaces may be

defined for a particular source, tally or variance reduction
action, tallies accommodate only a single result phase space.
The response and result phase spaces are defined through
the use of data collections and distributions, which are called
sets and boundary sets, or bsets. Each response may include
multiple sets and/or bsets, which defines a correlated phase

space, such as f  t , E , , cell  . By definition, each result
defines a correlated phase space. In contrast, if multiple
responses each contain a single set or bset, those phase
spaces are considered uncorrelated and multiplicative, such
as f 1 t f 2 E  f 3 f 4cell  . The overall magnitude of a
group of responses is simply the product of each individual
uncorrelated or correlated response.

A set is a collection of particle or problem attributes that
form a discrete space with a histogram representation. The
currently supported sets and some example settings for each
are shown below:

• Particle (Neutron, Gamma, Deuteron, ...)
• Reaction (Fission, Elastic_Scattering, 2n, ...)
• Material (Uranium, Water, ...)
• Purpose (Transport, Diagnostic)
• Surface (Inner_Sphere, Lower_Plane, ConeA, …)
• Cell (Core, Reflector, Cell_23, …)
• Region (CombGeom, My_Mesh, …)
• From_Material (Air, Lead, …)
• To_Material (Steel, Uranium, …)
• ...

Boundary sets (bsets) are used to specify a distribution of a
continuously varying quantity, using either a histogram
(zeroth order interpolation) or piecewise linear (first order
interpolation) representation:

• Time
• Energy
• X_Coord, Y_Coord, Z_Coord
• Origin_X_Coord, Origin_Y_Coord, Origin_Z_Coord
• Theta_Coord, Phi_Coord
• Alpha_Angle, Beta_Angle, Gamma_Angle
• Theta_Angle, Phi_Angle
• Normal_Angle
• Num_Collisions
• Net_Distance
• Creation_Time
• ...

3. Events
While the source routines are obviously executed during

source events prior to particle tracking, the tally and variance
reduction actions in Mercury may be applied at a variety of
Monte Carlo events. While not all events are applicable to
both tally and variance reduction actions, the range of
possible events includes:

• Collision_Pre
• Collision_Post
• Creation_Collision
• Creation_External_Source
• Creation_Splitting
• Facet_Crossing
• Energy_Boundary_Crossing
• Internal_Interface
• Thermalization
• Reflection
• Census
• ...

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

4. Functionals
Functionals are tools that are available for use with

Mercury tallies which are designed to 'modify' the analog
physics of particle tracking with the intent of improving the
quality of the tally result. In some respects, functionals are
similar in nature to many variance reduction or biasing
methods. Particles can be teleported to other regions of the
problem geometry, undergo splitting or Russian roulette, or
tagged with an identifier. The complete set of supported
functionals is as follows:

• Move
• Move_To
• Project
• Rotational_Imaging
• Split
• Russian_Roulette
• Kill
• Add_Tag
• Remove_Tag

5. Illustrative Example
To illustrate these concepts, consider the following user-

defined tallies. A tally was chosen over a source or variance
reduction action in order to demonstrate the result phase
space and a functional. Our intent is to create an intensity
map of particles that strike an image plane after traveling
through air (green) and an iron shield (blue), as shown in
Figure 1. Neutrons are generated by fission events in the
three (red) parts (cone, sphere and cylinder) which are
comprised of 235U. Three distinct tallies will be considered:
standard transport (Figures 2 and 3), transport with a
rotational imaging functional (Figures 4 and 5), and
diagnostic ray tracing (Figures 6 and 7).

This calculation was run with all three tallies active, and
with two types of neutrons: Transport and Diagnostic
particles. Transport particles are the 'standard' particles used
in all Monte Carlo codes. As the Transport particles
undergo collisions in any material, Diagnostic (ray-traced)
particles are created and launched towards the image plane.
The Diagnostic particles undergo straight line attenuation of
their weight in accordance with the material mean-free path
in which they are traveling. As either Transport or
Diagnostic particles cross the image plane, their weight is
accumulated into the result pixel corresponding to the y and
z coordinates of the particle.

The input data block and resultant image for the standard
transport (first) tally are shown in Figures 2 and 3,
respectively. This tally contains three uncorrelated
responses and the single result. The result (shown in green)
is an image plane defined over −10  y  10 cm and
−5  z  5 cm with 1 mm square pixels located at x = 13

cm. The first response (shown in red) only permits
Transport particles to be tallied, while the second response
(shown in blue) directs that particles will be tallied upon
crossing the surface Imaging-Plane. The third response
(shown in pink) is designed to ensure that only particles that
are directed towards the image plane pixels (within 5
degrees of the image plane normal) will be tallied, and not

those scattered from the extremities of the shield. This
example shows that sets and bsets include a domain, which
defines the extent of the variable over which the set/bset is
active, and a range, which defines the values of the variable
over that extent. For n domain entries, there are n range
entries for sets and linearly-interpolated bsets, and n-1 range
entries for histogrammed bsets.

Since (a) fission events emit particles isotropically, (b) the
shield is multiple mean-free path lengths thick, and (c) the
shield and image plane are localized to one side of the
problem geometry, one might expect that only a small
fraction of the particles created by fission events would be
tallied at the image plane. This is indeed the case, as shown
in the tally image of Figure 3.

In an effort to improve the quality of the tallied image, the
second tally also records Transport particles as they cross the
image plane, however, this tally employs a
Rotational_Imaging functional to increase the number of
particles that reach the image plane. The input data block
and resultant image for the transport-plus-rotational-imaging
tally are shown in Figures 4 and 5, respectively. This
technique employs (a) the axisymmetry of the uranium parts
and (b) the isotropic nature of the fission process to increase
the number of Transport particles that cross the image plane.
As particles cross the cylindrical surface that bounds the
three uranium parts (shown by the dashed cylinder in Figure
1), a Rotational_Imaging functional is used to rotate the
velocity vector of the particle such that it has velocity
components v z ' = 0 and v x ' = v x

2  v z
2 , where the x-axis

is normal to the image plane. While this ensures that all
Transport particles are directed towards the image plane, the
shield is optically thick, and only a fraction of the rotated
particles that leave the cylinder will actually cross the image
plane and be tallied.

As shown in Figure 4, this imaging techniques employs
two tallies. The first is the standard-transport image tally

Fig. 1 The configuration of the three part imaging problem.

Cylindrical
Boundary

for
Rotational

Imaging

Uranium Parts
Iron Shield

Air

Image
Plane

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

that was used to generate the previous image (shown in
violet in Figure 4). The second tally is designed to
implement the rotational imaging operation. This tally
contains a single, correlated response (shown in red) which
ensures that only Transport particles that crossing the surface

Container-Cylinder into cell Air-Cell-1 will undergo the
rotational operation. The Rotational_Imaging functional
(shown in turquoise) is designed to rotate particles that are
enabled by the response around the cylinder that is aligned
along the Y-Axis and relaunch them in the Positive x
direction. Note that no result block is included in this tally.
In this case, a scalar tally result is being accumulated: the
sum of the the number of particles that have been rotated. In
comparison to the standard transport image (Figure 3), it is
now possible to discern the general shape of the three
uranium parts (see Figure 5). However, the periphery of
each part exhibits “stochastic fuzz”, and the exact location of
the interface between uranium and air is not obvious.

In order to further improve the quality of the tallied
image, the third tally will record Diagnostic particles as they
cross the image plane. The input data block and resultant
image for the diagnostic-ray-trace image tally are shown in
Figures 6 and 7, respectively. For this tally, any Transport
particle that undergoes a collision within the system will
launch a Diagnostic particle, oriented parallel to the x-axis,
towards the image plane, such that all of the Diagnostic
particles will cross the image plane. However, the tallied
weight will be reduced from weight at “creation” by straight
line attenuation and 1/ r 2 spreading as the particle travels
through the intervening materials.

The tally definition shown in Figure 6 is similar to the
definition of the standard imaging tally shown in Figure 2,
with two differences. Instead of responding to Transport
particles, this tally will only respond to Diagnostic particles.
In addition, the response that accepts particles traveling
within a small angular band of the x-axis has been removed,
since this effect is now obtained through use of the
Diagnostic particles. The resultant image, shown in Figure 7,
demonstrates the superior image resolution capabilities of
Diagnostic particles. The interfaces between the uranium
parts and air environment can now be easily discerned. In
addition, the image shows regions within the parts where
fewer Diagnostic particles are being created. These
peripheral regions either have fewer optical depths through
the part than other regions (such as the large radius edges of
the cone) or are farther from the location of the source
(shown by the red dot at the center of the sphere) that
initiated subsequent fissions (such as the corners on the right
hand side of the cylinder).

Fig. 2 The definition of the standard-transport image tally.

Fig. 3 The result of the standard-transport image tally exhibits
exhibits extremely poor image quality.

tal Standard-Transport-Im age
 category Weight
 events
 Facet_Crossing_Transit_Exit
 end_events
 response
 set Particle-Purpose
 space Purpose
 domain
 Transport
 end_dom ain
 end_set
 range
 1
 end_range
 end_response
 response
 set Surfaces
 space Surface
 domain
 Im aging-Plane
 end_dom ain
 end_set
 range
 1
 end_range
 end_response
 response
 bset Acceptance-Angle
Accept particles headed w ithin 5 deg of the x-axis.
 space Alpha_Angle
 interpolation None
 domain
 0.99619 1.0
 end_dom ain
 end_bset
 range
 1
 end_range
 end_response
 result
 bset Y-Values
 space Y_Axis
 domain
 [-10 :10 : 200]
 end_dom ain
 end_bset
 bset Z-Values
 space Z_Axis
 domain
 [-5 : 5 : 100]
 end_domain
 end_set
 end_result
end_tal

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

Fig. 4 The definition of the transport-plus-rotational-imaging
image tally.

Fig. 5 The result of the transport-plus-rotational-imaging
standard transport image tally exhibits improved
image quality in comparison with the standard
transport tally.

tal Standard-Transport-Im age
 # This is the same tally as show n in Figure 2.
end_tal

tal Cylinder-Rotate
 category Count
 events
 Facet_Crossing_Transit_Enter
 end_events
 response
 set Particle-Purpose
 space Purpose
 domain
 Transport
 end_dom ain
 end_set
 set Surfaces
 space Surface
 domain
 Container-Cylinder
 end_dom ain
 end_set
 set Entering-Cells
 space Cell
 domain
 Air-Cell-1
 end_dom ain
 end_set
 range
 1
 end_range
 end_response
 functional
 type Rotational_Imaging
 direction_axis X_axis
 about_axis Y_axis
 orientation Positive
 end_functional
end_tally

Fig. 6 The definition of the diagnostic-ray-trace image tally.

tal Diagnostic-Ray-Tracing-Image
 category Weight
 events
 Facet_Crossing_Transit_Exit
 end_events
 response
 set Particle-Purpose
 space Purpose
 domain
 Diagnostic
 end_dom ain
 end_set
 range
 1
 end_range
 end_response
 response
 set Surfaces
 space Surface
 domain
 Im aging-Plane
 end_dom ain
 end_set
 range
 1
 end_range
 end_response
 result
 bset Y-Values
 space Y_Axis
 domain
 [-10 :10 : 200]
 end_dom ain
 end_bset
 bset Z-Values
 space Z_Axis
 domain
 [-5 : 5 : 100]
 end_domain
 end_set
 end_result
end_tal

Fig. 7 The result of the diagnostic-ray-trace image tally
demonstrates the superior image resolution
capabilities of Diagnostic particles.

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

III. Robust Particle Tracking Via Halos
The limited precision arithmetic that is inherent with the

use of digital computers often leads to inaccuracies in the
tracking of particles through complex geometries. This is
particularly true when particles are being tracked to second-
order analytic surfaces, such as spheres, ellipsoids and
cones. For these surfaces, solution of the quadratic equation
to obtain the distance to intersection of the particle-velocity
vector and the surface provides only O 7  digits of
accuracy for 64-bit double-precision arithmetic. This limited
precision determination of the intersection coordinates can
lead to tracking errors if the particle has not actually crossed
the surface. This occurs when the particle is still located
within the cell it is exiting, instead of the cell that it should
have entered.

A common technique for overcoming the inaccuracies
associated with limited-precision particle tracking is the use
of extrapolative fuzz. This technique assumes that, since the
particle coordinates are uncertain, due to limited-precision
tracking, one is free to advance the particle forward in the
direction of the travel by a small distance to ensure that the
particle actually enters the intended cell, as shown by the red
arrow in Figure 8. The distance that the particle is fuzzed
can either be absolute or relative to a characteristic cell
length.

While this technique is successful in many situations,
there are two important limitations of the method. First, the
addition of a fuzz may not be sufficient to ensure that the
particle actually exits the current cell and enters the intended
cell (see Figure 9a). If the method assumes that a single
application of fuzz is sufficient to enter the intended cell,
then the particle may be assigned to the wrong cell. This can
lead to the particle becoming “lost” in the geometry.
Second, it is possible that the addition of fuzz may be too
large, and the particle may be moved outside of the intended
cell (see Figure 9b). This situation is possible when the
intended cell has a large aspect ration with a narrow length
in the direction of particle travel, or when several cells

converge at a corner of the intended cell. Our experience
has shown that reliance on fuzz to correct particle tracking
issues arising from limited-precision arithmetic is a “losing
proposition”. As one of these “end cases” would arise, a
developer would “tweak” the magnitude of the fuzz to
overcome the immediate problem, only to find that the new
amount of fuzz would uncover tracking issues in other
geometries. Clearly, there had to be better technique to
overcome these issues.

By changing our “frame of reference”, a method has been
developed that solves these issues. In contrast to the
assumption inherent in the fuzz method that the particle
coordinates are uncertain, the 'halo' method assumes (a) that
the cell containing the particle is known and (b) the
acceptance criteria for a particle being assigned to a cell
includes the possibility of the particle being located within a
small, exterior buffer zone (halo) of width ε. This method
accepts a particle as within a cell if it lies either within the

Fig. 9 Limitations of the 'fuzz' method. (a) The addition of fuzz is
not sufficient to ensure that the particle exits Cell A and
enters Cell B. (b) Too much fuzz is added such that the
particle overshoots the intended cell (Cell B) and is located
in a different cell (Cell D).

x

Cell B Cell A

(a)

x

Cell B Cell A

Cell D Cell C
(b)

Fig. 10 The 'halo' method assumes that the cell containing the
particle is known, and the location of the cell facets are
extended outward by a distance ε. The blue particle is
tracked from Cell A and is assigned to Cell B, even if
its coordinates place it outside of, but within the halo of,
Cell B. The red particle is assigned to Cell B because it
was sourced onto the facet between Cells B and C,
which is within the halo of Cell B.

ε
Cell BCell C Cell A

x
n

n

Fig. 8 The 'fuzz' method advances the particle along its
trajectory to ensure that it actually enters the intended
cell. (a) Limited-precision arithmetic places the
particle to the left of the cell facet, so the particle
remains in Cell A. (b) The particle is 'fuzzed' forward
a small distance, so the particle crosses over the cell
facet into Cell B.

(b)

(a)

x

Cell B Cell A

x

Cell B Cell A

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

cell or its associated halo (see Figure 10).
As a particle tracks to a cell bounding facet, the particle is

unconditionally assumed to undergo a facet crossing event
and enter the new cell. This is shown by the track of the
blue particle in Figure 10, which is exiting Cell A and
entering Cell B. The cell attribute of the particle is set to
Cell B, even though the coordinates of the particle place it
just outside the cell, but within its associated halo. During
the next segment of the particle's track (the dashed blue
particle vector), the standard tracking method would find the
minimum facet distance to be from the point 'x' to the facet
between Cells A and B. However, since (a) the particle has
already been assigned to Cell B, and (b) the dot product of
the particle velocity and facet outward normal is negative,
distance to facet calculations will only be performed for
facets with positive velocity-normal dot products (left and
bottom facets of Cell B). This ensures that the particle exits
the cell that it has been assigned to.

Unfortunately, the use of halos complicates the locate-
coordinate methods. Consider the track of the red particle in
Figure 10. This particle has been sourced into the system at
a location that is within the halo of Cell B, as well as within
Cell C proper. In order to prevent double counting of the
particle, it must be uniquely associated with one of those
cells. This task can be costly if the facet between Cells B
and C is also a domain boundary, and the cells are assigned
to different processors. In this case, a multi-step
communication process is required, during the cycle
initialization phase, in order to assign the particle to the
correct cell / domain / processor so it is free to continue its
track.

An important consideration is the choice of the halo width
ε, and whether the width uses an absolute or relative scale
length. After several tests, it was decided to set ε to a small
multiple O 10−7 of a characteristic length scale of the cell.
Once the halo method was implemented in Mercury, our
team noticed a marked decrease in the number of
occurrences in which a particle became “lost” during
tracking. This method has produced more robust particle
tracking through both mesh-based and combinatorial
geometries. It has been proven effective in tracking particles
through meshes with skewed or large aspect ratio cells,
which have historically been problematic. Modifications of
this method have also been developed to support nearly
tangential tracking through cells with curvilinear surfaces.

IV. Material Interface Reconstruction for Accurate
Mesh-Based Particle Tracking

A common technique for defining complex geometric
regions on orthogonal meshes is known as shape (sphere,
ellipsoid, cylinder, cone, etc.) overlaying. During this
process, the interface between two regions or materials is
mapped onto the cells of the mesh. The result is a set of
multi-material cells along the interface, which effectively
smears the interface over the width of a cell. The relative
concentration of each material in a cell is defined by the
material volume fraction f V

m . The cell-based properties are
then defined by the weighted sum of the material-based

properties for each material m in the cell:

(1)

where m is the density of the m-th material in the cell and
 cell density. A standard approach to tracking particles

through multi-material cells is to “atomically mix” the
isotopes in each material within the cell. The number
density of any isotope i that occurs in multiple materials
within the cell is given by:

(2)

where f M
i , m is the mass fraction of the i-th isotope in

material m, N Av is Avogadro's number and A i is the
atomic mass of isotope i. This method is (a) easy to
implement and (b) conservative with regard to the number of
atoms of each isotope in the cell. However, it can lead to
serious particle tracking inaccuracies when the optical
depths of the materials within the interface cell are widely
disparate. Relevant examples include the interface between
the fissile material in a bare, spherical critical assembly and
the surrounding air (neutron transport), or between a plasma
and its confining metallic surface (charged particle
transport).

To overcome the shortcomings associated with tracking
particles through multi-material cells, a material interface
reconstruction (MIR) algorithm has been implemented
within the 1-D spherical and 2-D unstructured mesh-based
particle trackers in Mercury6. This method works by
converting each multi-material cell into two single-material
sectors within the cell. The material interface, which forms
the facet between the two single-material sectors, is
reconstructed from the volume fractions of the two materials
in the cell f V

1 and f V
2 (see the thick black lines in Figure

11). Currently, only multi-material cells which contain two
materials are supported. The atomically mixed prescription
is used for cells with more than two materials.

To study the efficacy of the MIR mesh-based particle
tracker, consider the 2-D, axisymmetric r-z representation of
the Godiva critical assembly shown in Figure 11. Godiva is
a bare spherical assembly of radius r = 8.7407 cm, which
is comprised of highly-enriched uranium. Godiva has been
given the International Criticality Safety Benchmark
Evaluation Project (ICSBEP) name HEU-MET-FAST-001-
0017. Our 2-D mesh-based model of Godiva shape overlays
the sphere onto an orthogonal r-z mesh, in which the cells
form cylindrical annuli. The region outside of the sphere is
modeled as nominal density air. Figure 11 shows a coarse,
1.0 cm resolution representation of the 2-D mesh (the thin
black lines), which extends out to 10.0 cm. The
reconstructed material interfaces is shown by the thick black
line segments, which together form a representation of the
spherical interface. Also shown in Figure 11 is a point
representation of the simulation particles for the MIR
enabled calculation with a 1.0 cm cell size. The particles are
color coded in accordance with the pure material within each
cell or sector. Figure 11 clearly shows that the MIR tracking
method is effective, since only red points are visible within

 =∑
m=1

M

 f V
m m 

ni =∑
m=1

M  f V
m f M

i , m m N Av

A i 

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

the piecewise discontinuous interface, and teal points are
found outside of that interface. Note that the low particle
density observed near the z-axis, commonly referred to as
the “cone of inadequacy” arises due to the axisymmetric
nature of the mesh, and hence, the low cell volumes close to
the axis of rotation8.

The k-eigenvalue of this system was calculated for several
cell sizes in the range 0.1 ≤ r , z ≤ 2.0 cm. For each cell
size, calculations were performed in which the MIR method
was either disabled or enabled. The results of these mesh-
based calculations are shown below in Table 1 and Figure
12. These calculations used continuous-energy ENDL-
2009.0 nuclear data, N p = 2.5×104 particles, 25 (500)
“inactive” (maximum) generations, and a convergence
tolerance of  = 1×10−3 . The MIR enabled (red curve) /
disabled (blue curve) results are presented, along with a
reference result (dark-gray curve) that was obtained from a
combinational geometry version of the problem. The dotted
lines in Figure 12 represent the standard deviation offset
from the reference result. Table 1 indicates that the MIR

enabled / disabled results for are in agreement to within ~1.5
times the statistical uncertainty (standard deviation ~0.001)
for r , z ≤ 0.5 cm, and are also in agreement with the
reference results. For larger cell sizes (r , z ≥ 1.0 cm), the
MIR disabled results fall off linearly from the reference
results, while the MIR enabled results remain within about
twice the standard deviation.

The reason for the sudden fall off in the computed k
eigenvalues from the MIR disabled calculations with
r , z ≥ 1.0 cm becomes clear when one examines the

density profiles of the uranium / air interface in the mesh-
based calculations. Figure 13 presents “inverse radio-
graphs” of the average cell density, as defined by Equation
1, for the r , z = 0.25 cm (Figure 13a) and r , z = 1.0 cm
(Figure 13b) MIR-disabled calculations. The highest density
(pure uranium) cells are black, while lower density cells are
shown in a gray scale palette, and the lowest density (pure
air) cells are white. As the resolution of the problem
decreases (Figure 13a to 13b), the uranium-air interface is
smeared out over a larger scale length. As the size of the
cells increases and becomes comparable to, or larger than,
the mean-free path length, one should expect that the total
number of mean-free path lengths a neutron travels “within
the sphere” to decrease on average.

Comparing the two images, it is clear that most of the
cells in the higher resolution calculation (Figure 13a) are
either pure uranium or pure air, with a small number of
multi-material interface zones N cell

multi / N cell
pure ~ 1% . As a

result, the number of mean-free path lengths a neutron
travels through a multi-material cell is small, and the k
eigenvalue obtained from the MIR disabled calculation is

Fig. 12 The efficacy of mesh-based particle tracking using material
interface reconstruction (MIR) is shown for a variety of
cell sizes in the range 0.1 ≤r , z ≤ 2.0 cm. The MIR
disabled / enabled k-eigenvalue results are shown as blue /
red curves, while the reference result and associated
statistical uncertainty are shown as solid and dotted dark-
gray curves.

Table 1 The efficacy of mesh-based particle tracking using MIR

Cell Size
(cm)

k Eigenvalue
MIR Enabled

k Eigenvalue
MIR Disabled

Difference
(%)

0.10 0.9999893 0.9990349 0.10

0.25 0.9982933 0.9992048 -0.09

0.50 0.9979354 0.9982782 -0.09

1.00 0.9981178 0.9911490 0.70

2.00 0.9974251 0.9777487 1.97

Reference k Eigenvalue: k = 0.9996063 ± 0.001
(Combinatorial Geometry)

Cell Size (cm)
k

Ei
ge

nv
al

ue

Fig. 11 Particles, mesh and material interfaces in a material
interface reconstructed (MIR) mesh-based calculation
of the k-eigenvalue for the Godiva critical assembly.

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

close to the reference value. In contrast, the fraction of
multi-material cells in the lower resolution calculation
(Figure 13b) is much larger N cell

multi / N cell
pure ~ 18 % , and the

MIR-disabled k eigenvalue is about 0.8% less than the
reference value.

Based upon the results presented in Table 1 and Figure
12, one can deduce that the neutron mean-free path length in
Godiva is between 0.5 and 1.0 cm. The MIR enabled
simulations produce accurate k eigenvalues, even when the
mean-free path length is not resolved. The reduced cell
counts in the lower resolution calculations mean fewer facet
crossings, so the low-resolution MIR enabled calculations
have shorter run times while continuing to produce accurate
results. Although the Godiva simulations prove the efficacy

and accuracy of the MIR method, the large ratio of the
neutron mean-free path to the system scale length (~5–10%)
limits the efficiency of the method. It is expected that the
efficiency of the method will become larger as this ratio
decreases (consider α particles transporting to a metal wall
in a bounded ICF plasma).

V. Expected-Value Criticality Calculations
Consider the analog method employed in Mercury for

calculating a k eigenvalue in a multiplying system. Neutrons
are sourced into the system using an initial guess for the
converged spatial and energy distributions. Particles are
then tracked for a single 'generation' until experiencing a
removal event, either leakage from the system or absorption
by a nucleus. The secondary particles produced by non-
terminal absorption (non-capture) events serve as the source
for the next generation. The analog estimate of the k
eigenvalue at any generation i is given by:

(3)

where N prod
i is the number of simulation particles produced

following an absorption event, N rem
i is the number of

particles removed from the system, N leak
i is the number of

particles that leak from the system and N abs
i is the number

of particles absorbed within the system. This procedure is
repeated until a running-average of the eigenvalue converges
within the user specified tolerance for five successive
generations. The number of particles absorbed, and
subsequently produced, are obtained directly from the
collision routine on a per collision basis. Unfortunately, this
method is prone to statistical fluctuations in the various
terms of Equation 3 between successive generations, leading
to fluctuations in successive estimates of k. Therefore, a
large number of generations can be required to obtain a
converged result.

To minimize the impact of these statistical fluctuations of
the calculated value of k, an expected value eigenvalue
method has recently been implemented. Instead of obtaining
N prod

i and N abs
i by summing the results of each collision

event, this new method begins by calculating the neutron
fluence during the generation in each cell c and energy group
g:

(4)

where Lc , g
p is the segment path length of the p-th particle in

cell c and group g, W p is the weight of the p-th particle and
V c is the volume of cell c. The number of particles

produced and absorbed in the i-th generation are given by:

(5)
and

(6)
where

(7)

c , g =∑
p  Lc , g

p W p

V c


k i =  N prod
i

N rem
i =  N prod

i

N leak
i  N abs

i 

N abs
i =∑

c
∑

g
abs , gc , g 

N prod
i =∑

c
∑

g
gain , gc , g 

 gain, g =∑
r

r ,g − 1 r , g

Fig. 13 Inverse radiographs of the cell density in the MIR-
disabled, mesh-based calculations of the k eigenvalue
for the Godiva critical assembly. The cell sizes for the
calculations are (a) r , z = 0.25 cm and
(b) r , z = 1.0 cm, respectively.

(a)

(b)

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

is the neutron 'gain' cross section abs , g is the absorption
cross sections for group g, r , g is the secondary neutron
multiplicity and r , g is the partial cross section for reaction
r and group g. This method produces estimates of the k
eigenvalue that are less noisy than the per collision method
because the fluence averages neutron interactions over
multiple track segments, and hence, multiple collisions.

To determine efficacy of this expected value eigenvalue
method, it was compared to the analog method on two
critical assemblies: the fast-spectrum, metallic-uranium
Godiva system (HEU-MET-FAST-001-001) and a thermal-
spectrum, plutonium-solution spherical system (PU-SOL-
THERM-001-001)7. The generation histories of the (a)
averaged k eigenvalue and (b) associated standard deviation

are shown for these two critical assemblies in Figures 14
and 15, respectively. The converged eigenvalues, required
number of iterations and resultant run times for these
calculations are presented in Table 2. These calculations
used 230 group ENDL-2009.0 nuclear data, N p = 1×104
particles, 25 “inactive” generations (after which the running
averaged k eigenvalue is discarded), a maximum of 1000
generations and a convergence tolerance of  = 5×10−4 .

Figures 14a and 15a indicate that the analog (blue) and
expected value (red) eigenvalue generation histories are
similar, and converge within the tolerance of each other.
However, the expected value calculations reach the
convergence tolerance in only 29% to 72% of the number of
active generations that are required for the analog

Fig. 14 Comparison of the analog (blue curves) and expected value
(red curves) methods on the calculation of the k eigenvalue
of the Godiva / HEU-MET-FAST-001-001 uranium critical
assembly. (a) 〈k 〉 eigenvalue, and (b) standard deviation
of the 〈k 〉 eigenvalue.

Generation

<k
>

Ei
ge

nv
al

ue

(a)

<k
>

Ei
ge

nv
al

ue
 S

ta
nd

ar
d

D
ev

ia
tio

n

Generation
(b)

Fig. 15 Comparison of the analog (blue curves) and expected value
(red curves) methods on the calculation of the k eigenvalue
of the PU-SOL-THERM-001-001 plutonium critical
assembly. (a) 〈k 〉 eigenvalue, and (b) standard deviation
of the 〈k 〉 eigenvalue.

Generation

<k
>

Ei
ge

nv
al

ue

(a)

<k
>

Ei
ge

nv
al

ue
 S

ta
nd

ar
d

D
ev

ia
tio

n

Generation
(b)

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

calculations. This is borne out by the standard deviation
histories shown in Figures 14b and 15b, in which the curves
end when /〈k 〉   = 5×10−4 . It is clear that the
approach to convergence is more rapid for the fast uranium
system than it is for th thermal plutonium system. Note that
the variability in these figures near 25 generations is a
consequence of the switch from inactive to active averaging
of the k eigenvalue. Finally, consider the run times shown in
Table 2. It is clear that the required expected value (EV) run
times and generations to convergence are shorter than that
require for the analog (A) calculations. However, the run
time required per generation are the same for both methods,
indicating that there is minimal overhead associated with
calculation of the particle fluence and reaction rates
(Equations 4 – 6).

VI. Python User Interface
Recently, our team has extended the capabilities of the

Mercury code to permit user customization of problem setup
and output via the use of Python3. Python is a remarkably-
powerful, object-oriented, dynamic programming language
that has been used extensively at LLNL to provide a flexible
user interface in several multi-physics codes9. Since Python
is designed for use as a high-level dynamic scripting
language, it is not suitable for direct use in high-performance
applications. However, Python has been designed to
interface with high-performance code modules written in C
and C++, which are the native languages of Mercury. Use of
Python within Mercury falls into two categories: (a) two
separate Python pre-parsers have been developed to permit
customization of problem input, and (b) several of the C/C++
data structures in Mercury have been wrapped to permit
customization of the output and computational steering of
the problem via an inline Python user interface. These
applications of Python within Mercury are discussed below.

1. Python Input Pre-Parsing
Two Python input pre-parsing methods have been

developed for use with Mercury. The first method uses a
mix of standard string-based input along with Python
functions and scripts. In contrast, the second method solely
uses a Python script to generate the string-based input file.
In either case, the resultant string-based input file undergoes

standard Mercury parsing via conversion of the string to
XML and subsequent DOM tree parsing10. The details of
these pre-parsing methods are discussed below.
(A) Mixed Python/String Input Pre-Parser

Customization of Mercury input files via Python pre-
parsing minimizes the amount of time that users spend
developing and maintaining input files. For example, users
often perform sensitivity studies of a particular problem,
varying the evaluated nuclear data (ENDF/B, ENDL, JEFF,
etc.), cross section representation (continuous energy vs
multigroup), geometry definition (combinatorial geometry vs
mesh), criticality convergence criterion, etc. Previously,
users were required to either (a) maintain separate input files
for each variant or (b) edit the input file to change the
parameters of interest for each specific simulation. Our
experience has shown that these approaches are time
consuming to maintain, difficult to keep in sync and prone to
typo errors.

The first feature of this mixed method is the ability to
embed a block of Python coding within the string input file.
While this is placed within a set of python … end_python
delimiters, the scope of Python variables defined within the
block is global across he entire input file. This allows the
user to perform a complex calculation in Python to define a
variable, and use that variable later on in the input file. To
aid the user in distinguishing these variables from keywords,
the code requires hat all Python variables be placed with a
set of { … } delimiters. Any number of Python blocks may
be used within the input file, provided they are each placed
within a set of python … end_python delimiters.

The second feature of this method are a set of Python
functions which do not require the user to be fluent in
Python in order to modify the values of keywords and
control the execution of the problem. Currently, three types
of functions have been implemented, each of which are pre-
pended by the characters 'mc_'. The mc_ifundef command
allows the user to set the default value for a Python variable:

mc_ifundef MyVariable {1.234}
where the string variable 'MyVariable' is initialized to the
value '1.234'. Later in the parsing process, this string
assigned to the proper type, based upon the keyword with
which it is associated. The user is free to redefine the value
of each variable defined with a mc_ifundef command by
including a -def option on the Mercury execution line:

mercury <input-file-name> -def MyVariable=5.678
The mc_include command allows the user to insert a named
file into the input file at the calling location:

mc_include {'OtherFile.txt'}
where the file name must be inserted within a set of single (')
or double (“) quotes. This feature permits modular
construction of input files and re-use of common files across
multiple input files. Finally, Mercury supports logical
operations that permit the user to customize the input and
problem execution based upon several possible options.
This is accomplished via the mc_if {expression} …

Table 2 Performance of analog and expected value
criticality calculations

Method k Eigenvalue Generations
Total/Active

Run Time
(sec)

Time/Gen
(sec)

Critical Assembly HEU-MET-FAST-001-001

A 1.001503 776 / 751 4.98 6.42 x 10-3

EV 1.000286 244 / 219 1.56 6.39 x 10-3

Critical Assembly PU-SOL-THERM-001-001

A 1.019285 787 / 762 111.68 1.42 x 10-1

EV 1.018661 583 / 558 82.97 1.42 x 10-1

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

mc_elseif {expression} … mc_endif construct. The logical
expressions make use of Python variables that have been
defined either in a previous python … end_python block, or
via the mc_ifundef / -def construct. Logical comparators
and sub-expression grouping utilize the C/ C++ syntax: ==,
&&, ||, !, (…):

mc_if {MyBoolean == True}
...

mc_elseif {(!(a == 2.0)) && (b == 3.0)}
…

mc_endif

A typical usage of these features of the mixed
Python/string input pre-parser is shown in Figure 16. In this
input file for a pulsed sphere calculation, a Python code
block is embedded within the pink python … end_python
delimiters, while the various Python commands are shown in
blue (mc_ifundef), red (mc_include) and green (mc_if, etc.).
All Python variables are shown italicized, and braces {...}
surround all variables and command arguments. This input
file makes use of Python variables that are defined both
within the embedded python … end_python block
(PulseWidth), as well as via the mc_ifundef / -def construct
(NuclearData, NumParticles). Note that those variables
defined within the Python code block are considered static,
while those defined via a mc_ifundef can be dynamically
redefined each time the problem is run.
(B) Python Script Pre-Parser

A set of Python functions have recently been developed
for those users who prefer to define the input parameters for
their problems via a Python script. This capability permits a
user to define Python objects which have the same
hierarchical layout as the data blocks in the Mercury input
file. Once the data elements have been initialized for each
relevant object, the script executes a final function to write
out a standard string version of the input file. This capability
is demonstrated in Figure 17, which shows a portion of the
script used to define the input for the Godiva critical
assembly.

The function MCInstance (shown in red) creates a skeletal
version of the Monte Carlo input object known as myMC.
Once it is created, the object myMC is filled out via one of
two techniques. One method is direct initialization of data
elements, such as for the problem control data. This simple
method is typically used to initialize single-level input data
structures, such as problem control data. The other method
is execution of the create function (shown in blue). This
function is used to initialize data elements within a given
level of the Monte Carlo object via “keyword = value'
assignment. As shown in Figure 17, this is a powerful
method for initializing multiple levels of hierarchical data
structures. The display function (shown in green) is used to
write out the status of the specified portion of the Monte
Carlo object. This useful tool permits the user to determine
which data elements of the specified level have been
initialized, and the value it is set to. Once each of the data
elements within the Monte Carlo object has been initialized
to the appropriate value, the getString function (shown in

Fig. 16 An example of the mixed Python/string input pre-parser.

mc_ifundef IncludeSphere {True}
mc_ifundef IncludeTarget {True}
mc_ifundef NuclearData {'endl/2008.2'}
mc_ifundef NumParticles {10.0}

python
PulseWidth = 2.0
FlightPath = 945.54
DetectorAngle = 30.0
DetectorBias = 'NE213_16'
end_python

mc_include {"Pulsed_Sphere_Control.txt"}
mc_include {"Pulsed_Sphere_Tim e.txt"}
mc_include {"Pulsed_Sphere_Material.txt"}

…

particle
Particle Data
 part Neutrons
 particle_type Neutron
 target_num _particles {NumParticles*1.0e+6}
 therm alization Thermal_Scatter
 cross_section_data_file /usr/Mercury/data/
{NuclearData}/m cf1.pdb
 num_diagnostic_bins 36
 diagnostic Point_Detector_n
 direction Point
 point_location {PointDetectorX} 0.0 {PointDetectorZ}
 end_diagnostic
 end_part
end_particle

…

source
External Source Data
 src ExternalSource
 source_type External_Source
 particle Neutrons
 geom etry
 category Point
 center_coords 0.0 0.0 0.0
 end_geometry
 ...
 response
mc_if {PulseWidth == 0.3}
 bset Tim es_03
 space Time
 interpolation None
 domain
 ...
 end_dom ain
 end_bset
mc_elseif {PulseWidth == 2.0}
 bset Tim es_20
 space Time
 interpolation None
 domain
 ...
 end_dom ain
 end_bset
mc_endif

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

pink) is executed to write out the input string to the specified
file.
2. Python Wrapped Data Structures and Inline User
Interface

While the previous section describes how Python is used
to enter data into Mercury, this section discusses how
Python is used to get data out of Mercury. Many of the
Mercury data structures have been exposed to Python. This
permits the user to easily query and retrieve the exact data
they desire from Mercury, using a programming language
that is ripe for data analysis, visualization, and custom I/O.

From a user's perspective, the most useful data structures
exposed to Python are associated with tally, source and
variance reduction objects. A uniform user interface to these
data structures has been implemented, enabling the user to
access the data using human readable indices. This makes it
clear what data the user is requesting, and hence, what data
is being delivered. For example, consider an energy
deposition tally, with a two-dimensional result space of
particle categories and materials. Each tally object is
accessed via its name, and a handle to the object is returned:

my_tal = mc.tally.tal['MyTally']

The user may then request the energy deposition by particles
of type Neutron into the material Water as follows:

print my_tal[“Neutron”, “Water”]

This method employs a positional indexing scheme, where
the indices are listed in the same order that the sets and
bsets were listed in the input description of the tally.
Alternatively, one can use named parameters to access the
tally data. In this case, the order in which the parameters are
listed does not matter:

print my_tal.getValue(Particle=”Neutron”,
 Material=”Water”)

Source and variance reduction objects are accessed in a
similar manner. The Python dictionaries that describe the
tally, source and variance reduction objects are as follows:

mc.tally.tal
mc.source.src
mc.variance_reduction.vr

These are standard Python dictionaries, which can be
accessed and iterated over as you would with any Python
dictionary. To access objects by name, use the following
syntax:

my_tal = mc.tally.tal[“MyTally”]
my_src = mc.source.src[“MySrc”]
my_vr = mc.variance_reduction.vr[“MyVR”]

An extremely useful feature for Mercury developers, as
well as advanced users, is the ability to register a Python
function that will be executed at any specified particle event.
Mercury has a list of standard tally events which may be
linked to a Python function which is executed whenever the
event occurs. The prototype of the Python function takes a Fig. 17 An example of the Python script input pre-parser.

#!/usr/local/bin/python -i

im port sys
sys.path.append('..')
from MCInstance im port *

myMC = MCInstance()

Problem Control Data
myMC.control.problem_type = "Dynamic_Alpha"
myMC.control.edit_verbosity = "Moderate"
myMC.control.total_nu_bar = True
myMC.control.energy_representation =
"Continuous_Energy"
myMC.control.verify_particle = True
myMC.control.population_control = "Weight_Window s"

Material Data
myMC.material.mat.create("Uranium ",
 iso = [create("U234", za=92234, atom_fract=1.0250e-2,
 react_list="None"),
 create("U235", za=92235, atom _fract=9.3768e-1,
 react_list="None"),
 create("U238", za=92238, atom _fract=5.2070e-2,
 react_list="None"),])
myMC.material.mat.create("Air",
 iso = [create("N14", za= 7014, atom _fract=1.0,
 react_list="None")]);

Surface Data
myMC.geom etry.surf.create("Sphere_1",
 surf_type = create("Sphere", radius= 8.7407))
myMC.geom etry.surf.create("Sphere_2",
 surf_type = create("Sphere", radius=12.0))
Cell Data
myMC.geom etry.cell.create("Godiva_Assembly",
 surf = "-Sphere_1",
 mat = [create("Uranium",
tem perature_electron=2.5e-5,
 density=18.74)]);
myMC.geom etry.cell.create("Atmosphere",
 surf = "+Sphere_1 -Sphere_2",
 mat = [create("Air", tem perature_electron=2.5e-5,
 density=1.2e-3)],
 bc = [create("OuterSpherical",
 bc_type='Vacuum ', surf='Sphere_3')])

Particle Data
myMC.particle.display()
myMC.particle.part.create("Neutrons",
 particle_type = "Neutron",
 target_num _particles = 100000,
 allow _combing = True,
 allow _splitting = True,
 therm alization = "Thermal_Scatter",
 cross_section_data_file =
 "/usr/Mercury/data/endl99/mcf1.pdb",
 kinetic_energy_min = 1.0e-10)

…

Write out the standard string input file.
input_file = open('MyGodiva.inp', 'w ')
input_file.w rite(m yMC.getString())
input_file.close()

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

single argument, which is the particle object that is currently
undergoing the event. A use case in which this feature has
been extremely helpful is to examine, in detail, what
happens to each particle that is sourced into the problem.
The relevant Python function may be defined as follows:

 def WatchSourceParticles(part):
mc.control.debugging_identifier = part.identifier

 ...
 mc.particle.register(WatchSourceParticles,

 "Creation_External_Source")

This instructs Mercury to execute the Python function
watchSourceParticle each time the particle undergoes the
event Creation_External_Source. Whenever this function is
executed, it sets a global debugging identifier to the unique
identifier of the specified particle that was sourced into the
problem. This triggers the code to print out to the terminal
what is happening event-by-event as the particle tracks.
Every facet crossing, collision, census, etc that the particle
undergoes will be reported in detail. This permits a
Mercury code developer to quickly diagnose what is
happening to the source particles.

Another use case of Python-wrapped data structures is
verification of combinatorial geometry (CG). A Python
routine has been developed that returns the CG cell object
which contains any physical Cartesian coordinate (x,y,z). If
one is certain that given coordinates, or set of coordinates,
should be within a specific CG cell, it is possible to query
those coordinates, ensuring that the code agrees that they are
within the specified cell. Suppose one knew that a certain
locus of points within a bounding box, defined by the limits
 xmin , ymin , zmin and xmax , ymax , zmax  , are entirely within a

CG cell. One could use the following Python coding to
verify that this box is indeed within the given CG cell:

 my_cell = mc.geometry.cell[CellName]
 for i in xrange(1000000):
 my_x = xmin + (xmax - xmin)*random()
 my_y = ymin + (ymax - ymin)*random()
 my_z = zmin + (zmax - zmin)*random()
 my_other_cell =

mc.geometry.locateCoordinate(my_x,my_y,my_z)
 if (my_other_cell.cell != my_cell.cell) :
 print “Error: Specified point not within the cell!”

A similar bit of Python code could be used to calculate the
volume of a complex CG cell. If one has knowledge of the
bounding box of the CG cell, this may be achieved via use of
a Monte Carlo rejection technique. In this case, the product
of the fraction of points located within the desired cell and
the bounding box volume converges to the volume of the CG
cell.

A design goal of the inline Python user interface was that
knowledge of the Mercury input syntax would be sufficient
to permit access to data through the Python user interface.
As a result, there is a one-to-one correspondence between
the block hierarchical keywords used in the Mercury input
file, and the Python variable names. Suppose one wants to
access the energy bin boundaries of a tally via Python. The

Python syntax is to obtain this data is as follows:

mc.tally.tal['MyTally'].bset['MyBset'].domain

whereas the corresponding input file syntax is:

tally
 tal MyTally
 …
 bset MyBset
 space Energy
 domain
 0 1 2 3 4 5
 end_domain
 end_bset
 end_tal
end_tally

The inline Python user interface has proven extremely
useful for quickly and easily accessing the data out of the
code, diagnosing problems, and verifying CG problem
setups. The alternatives involve (a) writing custom C++
functionality to provide the user with the exact feature they
want, (b) spending hours tracking particles in a debugger, or
(c) spending hours checking a CG problem definition “by
hand”. Having the inline Python user interface eliminates all
of this, while providing the flexibility to permit users and
developers to solve future, unanticipated problems for which
a solution was not already coded in C++.

Acknowledgment
This work performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

References
1) Mercury Code Team, "Mercury Web Site", Lawrence Liver-

more National Laboratory, http://www.llnl.gov/mercury
2) R.J. Procassini, P. S. Brantley, S. A. Dawson, G. M. Green-

man, M. S. McKinley and M. J. O'Brien, Mercury User Guide:
Version c.8, UCRL-TM-204296, Revision 7, Lawrence Liver-
more National Laboratory (2010).

3) Python Code Team, "Python Programming Language - Offi-
cial Website", Python Software Foundation, http://www.py-
thon.org

4) X-5 Monte Carlo Team, MCNP — A General Monte Carlo N-
Particle Transport Code, Version 5, Volume II: User’s Guide,
LA-CP-03-0245, Los Alamos National Laboratory (2003).

5) Cog Code Team, Cog User's Manual, Fifth Edition: A Multi-
particle Monte CarloTransport Code, M-221-1, Revision 4,
Lawrence Livermore National Laboratory (2002).

6) R. Scardovelli and S. Zaleski, "Direct Numerical Simulation
of Free-Surface and Interfacial Flow". Annu. Rev. Fluid Mech.,
31, 567-603 (1999).

7) International Criticality Safety Benchmark Evaluation Pro-
ject, International Handbook of Evaluated Criticality Safety
Benchmark Experiments, NEA/NSC/DOC/(95)03, September
2009 Edition [CD-ROM], Nuclear Energy Agency (2009).

8) T. J. Urbatsch, Los Alamos National Laboratory, private com-
munication (2008).

9) M.R. Collette, I. R. Corey and J. Johnson, High Performance
Tools & Technologies, UCRL-TR-209289, Lawrence Liver-
more National Laboratory (2004).

10) R. J. Procassini, J. M. Taylor, M. S. McKinley, G. M.
Greenman, D. E. Cullen, M. J. O'Brien, B. R. Beck and C. A,.
Hagmann, "Update on the Development and Validation of Mer-
cury: A Modern, Monte Carlo Particle Transport Code", Pro-
ceedings, International Topical Meeting on Mathematics and
Computations, 12 - 15 September 2005, Avignon, France
(2005). [CD-ROM]

