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Several new capabilities have been added to the Mercury Monte Carlo transport code over the past four years 1,2. 
The most  important  algorithmic  enhancement  is  a general,  extensible  infrastructure  to  support  source,  tally and 
variance reduction actions.  For each action, the user defines a phase space, as well as any number of responses that 
are applied to a specified  event.   Tallies are accumulated into a correlated, multi-dimensional,  Cartesian-product 
result phase space.  Our approach employs a common user interface to specify the data sets and distributions that 
define the phase space, response and result for each action.  Modifications to the particle trackers include the use of 
facet  halos (instead of extrapolative fuzz) for robust tracking, and material interface reconstruction for use in shape 
overlaid  meshes.   Support  for  expected-value  criticality  eigenvalue  calculations  has  also  been  implemented. 
Computer science enhancements include an in-line  Python interface for user customization of problem setup and 
output3.

KEYWORDS:  Monte  Carlo,  particle  transport,  tallies,  variance  reduction,  particle  tracking,  Python  user  
interface

I. Introduction1

Mercury is a Monte Carlo particle transport code that is 
being  developed  at  the  Lawrence  Livermore National 
Laboratory  (LLNL)  in  support  of  a  variety  of  laboratory 
missions1,2.   During  the  past  four  years,  several  new 
capabilities  have been  added to the code,  and as  a  result, 
Mercury is now available for use in general-purpose particle 
transport  calculations.   These  new  capabilities  include  a 
general, extensible infrastructure to support source, tally and 
variance reduction methods,  more robust  particle tracking, 
accurate  particle  tracking  through  multi-material  cells, 
expected-value criticality calculations and a Python interface 
for user customization of problem setup and output.

II. A General Infrastructure for Source, Tally and 
Variance Reduction Methods

The  most  important  capability  that  has  recently  been 
added to  Mercury is a general,  extensible infrastructure to 
support  source,  tally  and  variance  reduction  actions 
(methods).  The user defines the relevant  phase space over 
which the action is to be applied in the form of  responses 
and results.  For source, tally and variance reduction actions, 
the  user  may  define  any  number  of  responses (filters  or 
intensity multipliers) that are applied to a specified Monte 
Carlo  event.   User-defined  tallies  are  accumulated  into  a 
correlated, multi-dimensional, Cartesian-product result phase 
space.   A  common  user  interface  to  specify  the  data 
collections  and  distributions  that  define  the  response  and 
result  phase  spaces  for  each  action.   This  flexible 
infrastructure  makes it  easy for  the developer  to  add new 

1 Corresponding Author E-Mail: spike@llnl.gov

events, phase spaces, etc. for any supported action, while the 
holistic approach to code input minimizes the input syntax 
that  the  user  is  required  to  learn.   This  design  feature  of 
Mercury was inspired by the input syntax of several other 
Monte Carlo codes.  A perusal of the user manuals for those 
codes revealed that the way the 'response'  and 'result' phase 
spaces  were  defined  varied  from  'action'  to  'action', 
depending upon who implemented the feature.

The flexibility inherent in this infrastructure permits the 
Mercury user to define an extremely complex set of actions 
to be executed for a variety of events, response and result 
spaces.   In  many cases,  the  flexibility  that  is  available  to 
users of Mercury far exceeds that available to users of other 
Monte Carlo particle transport codes.  For example, weight 
windows are a popular variance reduction method provided 
by MCNP4.  The capability provided by MCNP allows the 
user to define weight windows for any cell that respond to 
either time  or energy,  but  not both.  As shown below, the 
capability  provided  by  Mercury allows the  user  to  define 
weight windows  responses that are a function of time  and 
energy, as well as which surface the particle is crossing, the 
material it is leaving and entering, the original coordinates of 
the particle, the angle relative to the surface normal, etc. (in 
either an uncorrelated or correlated fashion).  In comparison 
to  MCNP,  Cog provides  additional  flexibility  and  input-
syntax uniformity for the definition of response and result 
phase spaces5.  Indeed, the approach taken by the developers 
of  Cog was  the  inspiration  for  the  development  of  our 
common, flexible infrastructure.   While  Cog's  flexibility is 
an  improvement  over  MCNP,  the  user  cannot  define 
correlated responses for tallies, greater than two-dimensional 
tally  results,  and  all  variance  reduction  responses  have 
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limited functional dependence (cell/material and/or energy). 
A novel feature of both MCNP and Cog is the ability for the 
user  to  define  their  own  tally  or  source  functionality  by 
writing  Fortran  routines  that  is  executed  by  the  code4,5. 
While  this  approach  provides  the  user  with  additional 
flexibility,  our  philosophy  is  to  provide  users  with  an 
extremely flexible infrastructure that will meet theirs needs 
and  not  to  burden  them  with  code  development  and 
debugging responsibilities.

The actions, phase spaces, events and special features that 
are  supported  within  the  Mercury source/tally/variance-
reduction infrastructure are detailed below.

1. Actions
Mercury supports various actions or methods which are 

defined by the  category keyword in the relevant input data 
block.  For  sources,  the supported actions include particle 
creation  via  sampling  of  an  external  source  distribution 
(External_Source) and reading particle records from a disk 
file (File_Source).  For user-defined tallies, the default action 
is  to accumulate data into the result  phase space.   In  this 
case, the category keyword refers to the quantity that is to be 
accumulated.  Currently supported categories include: 

• Count
• Weight
• Energy
• Path_Length
• Flux
• Fluence
• Point_Detector_Flux
• Point_Detector_Fluence
• Energy_Deposition
• Reaction_Energy
• Net_Current_Count
• Net_Current_Fluence
• Net_Current
• Net_Normal_Current_Count
• Net_Normal_Current_Fluence
• Net_Normal_Current
• Surface_Flux
• Surface_Fluence

In addition, it is possible to write a particle record to a disk 
file (Particle).  For variance reduction, the supported actions 
fall into three broad classes: termination, population control 
and modified sampling:

• Cutoff (Termination)
• General (Population Control)
• Importance (Population Control)
• Weight_Window (Population Control)
• Forced_Collision (Modified Sampling)

2. Phase Spaces
While  any  number  of  response phase  spaces  may  be 

defined for  a particular  source,  tally or  variance reduction 
action, tallies accommodate only a single result phase space. 
The  response and  result phase spaces  are defined through 
the use of data collections and distributions, which are called 
sets and boundary sets, or bsets.  Each response may include 
multiple sets and/or bsets, which defines a correlated phase 

space, such as f  t , E , , cell  .  By definition, each result 
defines  a  correlated  phase  space.   In  contrast,  if  multiple 
responses  each  contain  a  single  set or  bset,  those  phase 
spaces are considered  uncorrelated and multiplicative, such 
as f 1 t f 2 E  f 3 f 4cell  .  The overall magnitude of a 
group of responses is simply the product of each individual 
uncorrelated or correlated response.

A set is a collection of particle or problem attributes that 
form a discrete space with a histogram representation.  The 
currently supported sets and some example settings for each 
are shown below:

• Particle (Neutron, Gamma, Deuteron, ...)
• Reaction (Fission, Elastic_Scattering, 2n, ...)
• Material (Uranium, Water, ...)
• Purpose (Transport, Diagnostic)
• Surface (Inner_Sphere, Lower_Plane, ConeA, …)
• Cell (Core, Reflector, Cell_23, …)
• Region (CombGeom, My_Mesh, …)
• From_Material (Air, Lead, …)
• To_Material (Steel, Uranium, …)
• ...

Boundary sets (bsets) are used to specify a distribution of a 
continuously  varying  quantity,  using  either  a  histogram 
(zeroth order  interpolation) or  piecewise linear  (first  order 
interpolation) representation:

• Time
• Energy
• X_Coord, Y_Coord, Z_Coord
• Origin_X_Coord, Origin_Y_Coord, Origin_Z_Coord
• Theta_Coord, Phi_Coord
• Alpha_Angle, Beta_Angle, Gamma_Angle 
• Theta_Angle, Phi_Angle
• Normal_Angle
• Num_Collisions
• Net_Distance
• Creation_Time
• ...

3. Events
While the source routines are obviously executed during 

source events prior to particle tracking, the tally and variance 
reduction actions in Mercury may be applied at a variety of 
Monte Carlo events.  While not all events are applicable to 
both  tally  and  variance  reduction  actions,  the  range  of 
possible events includes:

• Collision_Pre
• Collision_Post
• Creation_Collision
• Creation_External_Source
• Creation_Splitting
• Facet_Crossing
• Energy_Boundary_Crossing
• Internal_Interface
• Thermalization
• Reflection
• Census
• ...
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4. Functionals
Functionals  are  tools  that  are  available  for  use  with 

Mercury tallies  which are designed  to 'modify'  the analog 
physics of particle tracking with the intent of improving the 
quality of the tally result.  In some respects, functionals are 
similar  in  nature  to  many  variance  reduction  or  biasing 
methods.  Particles can be teleported to other regions of the 
problem geometry, undergo splitting or Russian roulette, or 
tagged  with an identifier.   The  complete  set  of  supported 
functionals is as follows:

• Move
• Move_To
• Project
• Rotational_Imaging
• Split
• Russian_Roulette
• Kill
• Add_Tag
• Remove_Tag

5. Illustrative Example
To illustrate these concepts, consider the following user-

defined tallies.  A tally was chosen over a source or variance 
reduction  action  in  order  to  demonstrate  the  result phase 
space and a  functional.  Our intent is to create an intensity 
map of particles  that  strike an image plane after  traveling 
through air (green) and an iron shield (blue),  as shown in 
Figure 1.  Neutrons are generated by fission events in the 
three  (red)  parts  (cone,  sphere  and  cylinder)  which  are 
comprised of 235U.  Three distinct tallies will be considered: 
standard  transport  (Figures  2 and  3),  transport  with  a 
rotational  imaging  functional  (Figures  4 and  5),  and 
diagnostic ray tracing (Figures 6 and 7).

This calculation was run with all three tallies active, and 
with  two  types  of  neutrons:  Transport and  Diagnostic 
particles.  Transport particles are the 'standard' particles used 
in  all  Monte  Carlo  codes.   As  the  Transport particles 
undergo collisions in any material,   Diagnostic (ray-traced) 
particles are created and launched towards the image plane. 
The Diagnostic particles undergo straight line attenuation of 
their weight in accordance with the material mean-free path 
in  which  they  are  traveling.   As  either  Transport or 
Diagnostic particles  cross  the image plane,  their  weight  is 
accumulated into the result pixel  corresponding to the y and 
z coordinates of the particle.

The input data block and resultant image for the standard 
transport  (first)  tally  are  shown  in  Figures  2  and  3, 
respectively.   This  tally  contains  three  uncorrelated 
responses and the single result.  The result (shown in green) 
is  an  image  plane  defined  over  −10  y  10 cm  and 
−5  z  5 cm with 1 mm square pixels located at x = 13

cm.   The  first  response (shown  in  red)  only  permits 
Transport particles to be tallied, while the second  response 
(shown in  blue)  directs  that  particles  will  be  tallied  upon 
crossing  the  surface  Imaging-Plane.   The  third  response 
(shown in pink) is designed to ensure that only particles that 
are  directed  towards  the  image  plane  pixels  (within  5 
degrees of the image plane normal) will be tallied, and not 

those  scattered  from  the  extremities  of  the  shield.   This 
example shows that sets and bsets include a domain, which 
defines the extent of the variable over which the set/bset is 
active, and a range, which defines the values of the variable 
over  that  extent.   For  n domain entries,  there are  n range 
entries for sets and linearly-interpolated bsets, and n-1 range 
entries for histogrammed bsets.

Since (a) fission events emit particles isotropically, (b) the 
shield is multiple mean-free path lengths thick, and (c) the 
shield  and  image  plane  are  localized  to  one  side  of  the 
problem  geometry,  one  might  expect  that  only  a  small 
fraction of the particles created by fission events would be 
tallied at the image plane.  This is indeed the case, as shown 
in the tally image of Figure 3.

In an effort to improve the quality of the tallied image, the 
second tally also records Transport particles as they cross the 
image  plane,  however,  this  tally  employs  a 
Rotational_Imaging  functional to  increase  the  number  of 
particles that reach the image plane.  The input data block 
and resultant image for the transport-plus-rotational-imaging 
tally  are  shown  in  Figures  4  and  5,  respectively.   This 
technique employs (a) the axisymmetry of the uranium parts 
and (b) the isotropic nature of  the fission process to increase 
the number of Transport particles that cross the image plane. 
As  particles  cross  the  cylindrical  surface  that  bounds  the 
three uranium parts (shown by the dashed cylinder in Figure 
1),  a  Rotational_Imaging functional is  used  to  rotate  the 
velocity  vector  of  the  particle  such  that  it  has  velocity 
components v z ' = 0  and v x ' = v x

2  v z
2 , where the x-axis 

is  normal  to the image plane.   While  this ensures  that  all 
Transport particles are directed towards the image plane, the 
shield is optically thick, and only a fraction of the rotated 
particles that leave the cylinder will actually cross the image 
plane and be tallied.

As shown in Figure 4, this imaging techniques employs 
two tallies.   The first  is  the standard-transport  image tally 

Fig. 1  The configuration of the three part imaging problem.
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that  was  used  to  generate  the  previous  image  (shown  in 
violet in  Figure  4).   The  second  tally  is  designed  to 
implement  the  rotational  imaging  operation.   This  tally 
contains a single, correlated  response (shown in red) which 
ensures that only Transport particles that crossing the surface 

Container-Cylinder into  cell  Air-Cell-1 will  undergo  the 
rotational  operation.   The  Rotational_Imaging  functional 
(shown in  turquoise) is designed to rotate particles that are 
enabled by the  response around the cylinder that is aligned 
along  the  Y-Axis and  relaunch  them  in  the  Positive x 
direction.  Note that no result block is included in this tally. 
In  this case, a scalar tally result is being accumulated: the 
sum of the the number of particles that have been rotated.  In 
comparison to the standard transport image (Figure 3), it is 
now  possible  to  discern  the  general  shape  of  the  three 
uranium parts  (see  Figure  5).   However,  the  periphery  of 
each part exhibits “stochastic fuzz”, and the exact location of 
the interface between uranium and air is not obvious.

In  order  to  further  improve  the  quality  of  the  tallied 
image, the third tally will record Diagnostic particles as they 
cross the image plane.  The input data block and resultant 
image for the diagnostic-ray-trace image tally are shown in 
Figures 6 and 7, respectively.  For this tally, any  Transport 
particle  that  undergoes  a  collision  within  the  system  will 
launch a  Diagnostic particle, oriented parallel to the x-axis, 
towards  the  image  plane,  such  that  all  of  the   Diagnostic 
particles will  cross the image plane.   However,  the tallied 
weight will be reduced from weight at “creation” by straight 
line attenuation and  1/ r 2  spreading as the particle travels 
through the intervening materials.

The tally definition shown in Figure 6 is similar to the 
definition of the standard imaging tally shown in Figure 2, 
with two differences.   Instead  of  responding  to  Transport 
particles, this tally will only respond to Diagnostic particles. 
In  addition,  the  response that  accepts  particles  traveling 
within a small angular band of the x-axis has been removed, 
since  this  effect  is  now  obtained  through  use  of  the 
Diagnostic particles.  The resultant image, shown in Figure 7, 
demonstrates  the  superior  image  resolution  capabilities  of 
Diagnostic particles.   The  interfaces  between  the  uranium 
parts and air environment can now be easily discerned.  In 
addition,  the  image  shows regions  within  the  parts  where 
fewer  Diagnostic particles  are  being  created.   These 
peripheral regions either have fewer optical depths through 
the part than other regions (such as the large radius edges of 
the  cone)  or  are  farther  from  the  location  of  the  source 
(shown  by  the  red  dot  at  the  center  of  the  sphere)  that 
initiated subsequent fissions (such as the corners on the right 
hand side of the cylinder).

Fig. 2  The definition of the standard-transport image tally.

Fig. 3  The result of the standard-transport image tally exhibits
exhibits extremely poor image quality.

tal Standard-Transport-Im age
    category Weight
    events
        Facet_Crossing_Transit_Exit
    end_events 
    response
        set Particle-Purpose
            space Purpose
            domain
                Transport
            end_dom ain 
        end_set
        range
            1
        end_range
    end_response
    response
        set Surfaces
            space Surface 
            domain
                Im aging-Plane
            end_dom ain  
        end_set
        range
            1
        end_range
    end_response
    response
        bset Acceptance-Angle
#      Accept particles headed w ithin 5 deg of the x-axis.
            space Alpha_Angle
            interpolation None
            domain
                0.99619 1.0
            end_dom ain
        end_bset
        range
            1
        end_range
    end_response
    result
        bset Y-Values
            space Y_Axis
            domain
                [-10 :10 : 200]
            end_dom ain
        end_bset
        bset Z-Values
            space Z_Axis
            domain
                [-5 : 5 : 100]
             end_domain
        end_set
    end_result
end_tal
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Fig. 4  The definition of the transport-plus-rotational-imaging
image tally.

Fig. 5  The result of the transport-plus-rotational-imaging
standard transport image tally exhibits improved
image quality in comparison with the standard 
transport tally.

tal Standard-Transport-Im age
    #  This is the same tally as show n in Figure 2.    
end_tal

tal Cylinder-Rotate
    category Count
    events
        Facet_Crossing_Transit_Enter
    end_events
    response
        set Particle-Purpose
            space Purpose
            domain
                Transport
            end_dom ain
        end_set
        set Surfaces
            space Surface
            domain
                Container-Cylinder
            end_dom ain
        end_set
        set Entering-Cells
            space Cell
            domain
                Air-Cell-1
            end_dom ain
        end_set  
        range
            1
        end_range
    end_response
    functional
        type Rotational_Imaging
        direction_axis X_axis
        about_axis Y_axis
        orientation Positive
    end_functional
end_tally

Fig. 6  The definition of the diagnostic-ray-trace image tally.

tal Diagnostic-Ray-Tracing-Image
    category Weight
    events
        Facet_Crossing_Transit_Exit
    end_events 
    response
        set Particle-Purpose
            space Purpose
            domain
                Diagnostic
            end_dom ain 
        end_set
        range
            1
        end_range
    end_response
    response
        set Surfaces
            space Surface 
            domain
                Im aging-Plane
            end_dom ain  
        end_set
        range
            1
        end_range
    end_response
    result
        bset Y-Values
            space Y_Axis
            domain
                [-10 :10 : 200]
            end_dom ain
        end_bset
        bset Z-Values
            space Z_Axis
            domain
                [-5 : 5 : 100]
             end_domain
        end_set
    end_result
end_tal

Fig. 7  The result of the diagnostic-ray-trace image tally
demonstrates the superior image resolution 
capabilities of Diagnostic particles.
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III. Robust Particle Tracking Via Halos
The limited precision arithmetic that is inherent with the 

use of digital  computers often leads to inaccuracies in the 
tracking of particles  through complex geometries.   This is 
particularly true when particles are being tracked to second-
order   analytic  surfaces,  such  as  spheres,  ellipsoids  and 
cones.  For these surfaces, solution of the quadratic equation 
to obtain the distance to intersection of the particle-velocity 
vector  and  the  surface  provides  only  O 7   digits  of 
accuracy for 64-bit double-precision arithmetic.  This limited 
precision determination of  the intersection coordinates  can 
lead to tracking errors if the particle has not actually crossed 
the surface.   This occurs  when the particle  is  still  located 
within the cell it is exiting, instead of the cell that it should 
have entered.

A  common  technique  for  overcoming  the  inaccuracies 
associated with limited-precision particle tracking is the use 
of extrapolative fuzz.  This technique assumes that, since the 
particle  coordinates  are  uncertain,  due to limited-precision 
tracking, one is free to advance the particle forward in the 
direction of the travel by a small distance to ensure that the 
particle actually enters the intended cell, as shown by the red 
arrow in  Figure 8.  The distance that the particle is  fuzzed 
can  either  be  absolute  or  relative  to  a  characteristic  cell 
length.

While  this  technique  is  successful  in  many  situations, 
there are two important limitations of the method.  First, the 
addition of a fuzz may not be sufficient to ensure that the 
particle actually exits the current cell and enters the intended 
cell  (see  Figure 9a).   If  the method assumes that  a single 
application of fuzz is  sufficient  to enter  the intended cell, 
then the particle may be assigned to the wrong cell.  This can 
lead  to  the  particle  becoming  “lost”  in  the  geometry. 
Second, it is possible that the addition of fuzz may be too 
large, and the particle may be moved outside of the intended 
cell  (see  Figure  9b).   This  situation  is  possible  when the 
intended cell has a large aspect ration with a narrow length 
in  the  direction  of  particle  travel,  or  when  several  cells 

converge at a corner of the intended cell.   Our experience 
has shown that reliance on fuzz to correct particle tracking 
issues arising from limited-precision arithmetic is a “losing 
proposition”.   As one of  these “end cases” would arise,  a 
developer  would  “tweak”  the  magnitude  of  the  fuzz  to 
overcome the immediate problem, only to find that the new 
amount  of  fuzz  would  uncover  tracking  issues  in  other 
geometries.   Clearly,  there  had  to  be  better  technique  to 
overcome these issues.

By changing our “frame of reference”, a method has been 
developed  that  solves  these  issues.   In  contrast  to  the 
assumption  inherent  in  the  fuzz  method  that  the  particle 
coordinates are uncertain, the 'halo' method assumes (a) that 
the  cell  containing  the  particle  is  known  and  (b)  the 
acceptance  criteria  for  a  particle  being  assigned  to  a  cell 
includes the possibility of the particle being located within a 
small, exterior buffer zone (halo) of width  ε.  This method 
accepts a particle as within a cell if it lies either within the 

Fig. 9  Limitations of the 'fuzz' method.  (a) The addition of fuzz is
not sufficient to ensure that the particle exits Cell A and 
enters Cell B.  (b) Too much fuzz is added such that the 
particle overshoots the intended cell (Cell B) and is located 
in a different cell (Cell D).

x

Cell B Cell A

(a)

x

Cell B Cell A

Cell D Cell C
(b)

Fig. 10  The 'halo' method assumes that the cell containing the
particle is known, and the location of the cell facets are 
extended outward by a distance ε.  The blue particle is 
tracked from Cell A and is assigned to Cell B, even if 
its coordinates place it outside of, but within the halo of, 
Cell B.  The red particle is assigned to Cell B because it 
was sourced onto the facet between Cells B and C, 
which is within the halo of Cell B.

ε
Cell BCell C Cell A

x
n

n

Fig. 8  The 'fuzz' method advances the particle along its 
trajectory to ensure that it actually enters the intended 
cell.  (a) Limited-precision arithmetic places the 
particle to the left of the cell facet, so the particle 
remains in Cell A.  (b) The particle is 'fuzzed' forward 
a small distance, so the particle crosses over the cell 
facet into Cell B.

(b)

(a)

x

Cell B Cell A

x

Cell B Cell A
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cell or its associated halo (see Figure 10).
As a particle tracks to a cell bounding facet, the particle is 

unconditionally assumed to undergo a facet  crossing event 
and enter the new cell.   This is shown by the track of the 
blue particle  in  Figure  10,  which  is  exiting  Cell  A  and 
entering Cell B.  The cell attribute of the particle is set to 
Cell B, even though the coordinates of the particle place it 
just outside the cell,  but within its associated halo. During 
the  next  segment  of  the  particle's  track  (the  dashed  blue 
particle vector), the standard tracking method would find the 
minimum facet distance to be from the point 'x' to the facet 
between Cells A and B.  However, since (a) the particle has 
already been assigned to Cell B, and (b) the dot product of 
the particle velocity and facet  outward normal is negative, 
distance  to  facet  calculations  will  only  be  performed  for 
facets  with positive velocity-normal  dot  products  (left  and 
bottom facets of Cell B).  This ensures that the particle exits 
the cell that it has been assigned to.

Unfortunately,  the  use  of  halos  complicates  the  locate-
coordinate methods. Consider the track of the red particle in 
Figure 10.  This particle has been sourced into the system at 
a location that is within the halo of Cell B, as well as within 
Cell C proper.  In order to prevent double counting of the 
particle,  it  must  be uniquely associated  with one  of  those 
cells.  This task can be costly if the facet between Cells B 
and C is also a domain boundary, and the cells are assigned 
to  different  processors.   In  this  case,  a  multi-step 
communication  process  is  required,  during  the  cycle 
initialization  phase,  in  order  to  assign  the  particle  to  the 
correct cell / domain / processor so it is free to continue its 
track.

An important consideration is the choice of the halo width 
ε, and whether the width uses an absolute or relative scale 
length.  After several tests, it was decided to set ε to a small 
multiple O 10−7  of a characteristic length scale of the cell. 
Once  the  halo  method was  implemented  in  Mercury,  our 
team  noticed  a  marked  decrease  in  the  number  of 
occurrences  in  which  a  particle  became  “lost”  during 
tracking.   This  method has  produced  more  robust  particle 
tracking  through  both  mesh-based  and  combinatorial 
geometries.  It has been proven effective in tracking particles 
through  meshes  with  skewed  or  large  aspect  ratio  cells, 
which have historically been problematic.  Modifications of 
this  method  have  also  been  developed  to  support  nearly 
tangential tracking through cells with curvilinear surfaces.

IV. Material Interface Reconstruction for Accurate 
Mesh-Based Particle Tracking

A  common  technique  for  defining  complex  geometric 
regions  on orthogonal  meshes  is  known as  shape (sphere, 
ellipsoid,  cylinder,  cone,  etc.)  overlaying.   During  this 
process,  the interface  between  two regions  or  materials  is 
mapped onto the cells of the mesh.  The result is a set of 
multi-material  cells  along  the  interface,  which  effectively 
smears  the interface over the width of a cell.  The relative 
concentration  of  each  material  in  a  cell  is  defined  by the 
material volume fraction f V

m .  The cell-based properties are 
then  defined  by  the  weighted  sum  of  the  material-based 

properties for each material m in the cell:

(1)

where m  is the density of the m-th material in the cell and 
  cell density.   A standard approach to tracking particles 

through  multi-material  cells  is  to  “atomically  mix”  the 
isotopes  in  each  material  within  the  cell.   The  number 
density  of  any  isotope  i that  occurs  in  multiple  materials 
within the cell is given by:

(2)

where  f M
i , m  is  the  mass  fraction  of  the  i-th  isotope  in 

material  m,  N Av  is  Avogadro's  number  and  A i  is  the 
atomic  mass  of  isotope  i.   This  method  is  (a)  easy  to 
implement and (b) conservative with regard to the number of 
atoms of each isotope in the cell.  However, it can lead to 
serious  particle  tracking  inaccuracies  when  the  optical 
depths of the materials within the interface cell are widely 
disparate.  Relevant examples include the interface between 
the fissile material in a bare, spherical critical assembly and 
the surrounding air (neutron transport), or between a plasma 
and  its  confining  metallic  surface  (charged  particle 
transport).

To overcome the shortcomings associated with tracking 
particles  through  multi-material  cells,  a  material  interface 
reconstruction  (MIR)  algorithm  has  been  implemented 
within the 1-D spherical  and 2-D unstructured mesh-based 
particle  trackers  in  Mercury6.   This  method  works  by 
converting each multi-material cell into two single-material 
sectors within the cell.  The material interface, which  forms 
the  facet  between  the  two  single-material  sectors,  is 
reconstructed from the volume fractions of the two materials 
in the cell f V

1  and f V
2  (see the thick black lines in Figure 

11).  Currently, only multi-material cells which contain two 
materials are supported.  The atomically mixed prescription 
is used for cells with more than two materials.

To  study  the  efficacy  of  the  MIR  mesh-based  particle 
tracker, consider the 2-D, axisymmetric r-z representation of 
the Godiva critical assembly shown in Figure 11.  Godiva is 
a bare spherical assembly of radius  r = 8.7407  cm, which 
is comprised of  highly-enriched uranium.  Godiva has been 
given  the  International  Criticality  Safety  Benchmark 
Evaluation Project  (ICSBEP) name HEU-MET-FAST-001-
0017.  Our 2-D mesh-based model of Godiva shape overlays 
the sphere onto an orthogonal  r-z mesh, in which the cells 
form cylindrical annuli.  The region outside of the sphere is 
modeled as nominal density air.  Figure 11 shows a coarse, 
1.0 cm resolution representation of the 2-D mesh (the thin 
black  lines),  which  extends  out  to  10.0  cm.   The 
reconstructed material interfaces is shown by the thick black 
line segments, which together form a representation of the 
spherical  interface.   Also  shown  in  Figure  11  is  a  point 
representation  of  the  simulation  particles  for  the  MIR 
enabled calculation with a 1.0 cm cell size.  The particles are 
color coded in accordance with the pure material within each 
cell or sector.  Figure 11 clearly shows that the MIR tracking 
method is effective, since only red points are visible within 

 =∑
m=1

M

 f V
m m 

ni =∑
m=1

M  f V
m f M

i , m m N Av

A i 



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

the  piecewise  discontinuous  interface,  and  teal points  are 
found outside of that interface.   Note that the low particle 
density observed near  the z-axis,  commonly referred to as 
the  “cone  of  inadequacy”  arises  due  to  the  axisymmetric 
nature of the mesh, and hence, the low cell volumes close to 
the axis of rotation8.

The k-eigenvalue of this system was calculated for several 
cell sizes in the range  0.1 ≤ r , z ≤ 2.0  cm.  For each cell 
size, calculations were performed in which the MIR method 
was either disabled or enabled.  The results of these mesh-
based calculations are shown below in  Table 1 and Figure 
12.   These  calculations  used  continuous-energy  ENDL-
2009.0  nuclear  data,  N p = 2.5×104  particles,  25   (500) 
“inactive”  (maximum)  generations,  and  a  convergence 
tolerance of   = 1×10−3 .  The MIR enabled (red curve) / 
disabled  (blue curve)  results  are  presented,  along  with  a 
reference result (dark-gray curve) that was obtained from a 
combinational geometry version of the problem.  The dotted 
lines  in  Figure  12  represent  the  standard  deviation  offset 
from the reference result.   Table 1 indicates  that  the MIR 

enabled / disabled results for are in agreement to within ~1.5 
times the statistical uncertainty (standard deviation ~0.001) 
for  r , z ≤ 0.5  cm,  and  are  also  in  agreement  with  the 
reference results.  For larger cell sizes ( r , z ≥ 1.0  cm), the 
MIR  disabled  results  fall  off  linearly  from  the  reference 
results, while the MIR enabled results remain within about 
twice the standard deviation.

The  reason  for  the  sudden  fall  off  in  the  computed  k 
eigenvalues  from  the  MIR  disabled  calculations  with 
r , z ≥ 1.0  cm  becomes  clear  when  one  examines  the 

density profiles of the uranium / air interface in the mesh-
based  calculations.   Figure  13 presents  “inverse  radio-
graphs” of the average cell density, as defined by Equation 
1, for the r , z = 0.25  cm (Figure 13a) and r , z = 1.0  cm 
(Figure 13b) MIR-disabled calculations.  The highest density 
(pure uranium) cells are black, while lower density cells are 
shown in a gray scale palette, and the lowest density (pure 
air)  cells  are  white.   As  the  resolution  of  the  problem 
decreases (Figure 13a to 13b), the uranium-air interface is 
smeared out over a larger scale length.  As the size of the 
cells increases and becomes comparable to, or larger than, 
the mean-free path length, one should expect that the total 
number of mean-free path lengths a neutron travels “within 
the sphere” to decrease on average.

Comparing the two images,  it  is  clear  that  most  of  the 
cells  in  the  higher  resolution  calculation  (Figure  13a)  are 
either  pure  uranium or  pure  air,  with  a  small  number  of 
multi-material  interface zones  N cell

multi / N cell
pure ~ 1% .   As a 

result,  the  number  of  mean-free  path  lengths  a  neutron 
travels  through  a  multi-material  cell  is  small,  and  the  k 
eigenvalue  obtained  from the  MIR  disabled  calculation  is 

Fig. 12  The efficacy of mesh-based particle tracking using material
interface reconstruction (MIR) is shown for a variety of 
cell sizes in the range  0.1 ≤r , z ≤ 2.0  cm.  The MIR 
disabled / enabled k-eigenvalue results are shown as blue / 
red curves, while the  reference result and associated 
statistical uncertainty are shown as solid and dotted dark-
gray curves.

Table 1  The efficacy of mesh-based particle tracking using MIR

Cell Size
(cm)

k Eigenvalue
MIR Enabled

k Eigenvalue
MIR Disabled

Difference
(%)

0.10 0.9999893 0.9990349 0.10

0.25 0.9982933 0.9992048 -0.09

0.50 0.9979354 0.9982782 -0.09

1.00 0.9981178 0.9911490 0.70

2.00 0.9974251 0.9777487 1.97

Reference k Eigenvalue:  k = 0.9996063 ± 0.001
(Combinatorial Geometry)

Cell Size (cm)
k 
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Fig. 11  Particles, mesh and material interfaces in a material
interface reconstructed (MIR) mesh-based calculation 
of the k-eigenvalue for the Godiva critical assembly.
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close  to  the  reference  value.   In  contrast,  the  fraction  of 
multi-material  cells  in  the  lower  resolution  calculation 
(Figure 13b) is much larger  N cell

multi / N cell
pure ~ 18 % , and the 

MIR-disabled  k eigenvalue  is  about  0.8%  less  than  the 
reference value.

Based upon the results presented in Table 1 and Figure 
12, one can deduce that the neutron mean-free path length in 
Godiva  is  between  0.5  and  1.0  cm.   The  MIR  enabled 
simulations produce accurate  k eigenvalues, even when the 
mean-free  path  length  is  not  resolved.   The  reduced  cell 
counts in the lower resolution calculations mean fewer facet 
crossings,  so  the  low-resolution  MIR  enabled  calculations 
have shorter run times while continuing to produce accurate 
results.  Although the Godiva simulations prove the efficacy 

and  accuracy  of  the  MIR  method,  the  large  ratio  of  the 
neutron mean-free path to the system scale length (~5–10%) 
limits the efficiency of the method.  It is expected that the 
efficiency  of  the  method will  become  larger  as  this  ratio 
decreases (consider  α particles transporting to a metal wall 
in a bounded ICF plasma).

V. Expected-Value Criticality Calculations
Consider  the  analog method employed  in  Mercury for 

calculating a k eigenvalue in a multiplying system.  Neutrons 
are  sourced  into the system using an  initial  guess  for  the 
converged  spatial  and  energy  distributions.   Particles  are 
then  tracked  for  a  single  'generation'  until  experiencing  a 
removal event, either leakage from the system or absorption 
by a  nucleus.   The  secondary  particles  produced  by non-
terminal absorption (non-capture) events serve as the source 
for  the  next  generation.   The  analog  estimate  of  the  k 
eigenvalue at any generation i is given by:

(3)

where N prod
i  is the number of simulation particles produced 

following  an  absorption  event,  N rem
i  is  the  number  of 

particles removed from the system,  N leak
i  is the number of 

particles that leak from the system and N abs
i  is the number 

of particles absorbed within the system.  This procedure is 
repeated until a running-average of the eigenvalue converges 
within  the  user  specified  tolerance  for  five  successive 
generations.   The  number  of  particles  absorbed,  and 
subsequently  produced,  are  obtained  directly  from  the 
collision routine on a per collision basis.  Unfortunately, this 
method  is  prone  to  statistical  fluctuations  in  the  various 
terms of Equation 3 between successive generations, leading 
to  fluctuations  in  successive  estimates  of  k.   Therefore,  a 
large  number  of  generations  can  be  required  to  obtain  a 
converged result.

To minimize the impact of these statistical fluctuations of 
the  calculated  value  of  k,  an  expected  value eigenvalue 
method has recently been implemented.  Instead of obtaining 
N prod

i  and  N abs
i  by summing the results of each collision 

event,  this  new method begins  by calculating  the  neutron 
fluence during the generation in each cell c and energy group 
g:

(4)

where Lc , g
p  is the segment path length of the p-th particle in 

cell c and group g, W p  is the weight of the p-th particle and 
V c  is  the  volume  of  cell  c.   The  number  of  particles 

produced and absorbed in the i-th generation are given by:

(5)
and

(6)
where

(7)

c , g =∑
p  Lc , g

p W p

V c


k i =  N prod
i

N rem
i =  N prod

i

N leak
i  N abs

i 

N abs
i =∑

c
∑

g
abs , gc , g 

N prod
i =∑

c
∑

g
gain , gc , g 

 gain, g =∑
r

r ,g − 1 r , g

Fig. 13  Inverse radiographs of the cell density in the MIR-
disabled, mesh-based calculations of the k eigenvalue 
for the Godiva critical assembly.  The cell sizes for the 
calculations are  (a) r , z = 0.25  cm and
(b)  r , z = 1.0  cm, respectively.

(a)

(b)
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is the neutron 'gain' cross section  abs , g  is the absorption 
cross  sections for  group  g,  r , g  is  the secondary neutron 
multiplicity and r , g  is the partial cross section for reaction 
r and  group  g.   This  method produces  estimates  of  the  k 
eigenvalue that are less noisy than the per collision method 
because  the  fluence  averages  neutron  interactions  over 
multiple track segments, and hence, multiple collisions.

To determine efficacy of this expected value eigenvalue 
method,  it  was  compared  to  the  analog  method  on  two 
critical  assemblies:  the  fast-spectrum,  metallic-uranium 
Godiva system (HEU-MET-FAST-001-001) and a thermal-
spectrum,  plutonium-solution  spherical  system  (PU-SOL-
THERM-001-001)7.   The  generation  histories  of  the  (a) 
averaged k eigenvalue and (b) associated standard deviation 

are shown for these two critical  assemblies in  Figures 14 
and  15, respectively.   The converged eigenvalues, required 
number  of  iterations  and  resultant  run  times  for  these 
calculations  are  presented in  Table 2.   These calculations 
used 230 group ENDL-2009.0 nuclear  data,  N p = 1×104  
particles, 25 “inactive” generations (after which the running 
averaged  k eigenvalue  is  discarded),  a  maximum of  1000 
generations and a convergence tolerance of  = 5×10−4 .

Figures 14a and 15a indicate that the analog (blue) and 
expected  value  (red)  eigenvalue  generation  histories  are 
similar,  and  converge  within  the  tolerance  of  each  other. 
However,  the  expected  value  calculations  reach  the 
convergence tolerance in only 29% to 72% of the number of 
active  generations  that  are  required  for  the  analog 

Fig. 14  Comparison of the analog (blue curves) and expected value
(red curves) methods on the calculation of the k eigenvalue 
of the Godiva / HEU-MET-FAST-001-001 uranium critical 
assembly.  (a) 〈k 〉  eigenvalue, and (b) standard deviation 
of the 〈k 〉  eigenvalue.
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Fig. 15  Comparison of the analog (blue curves) and expected value
(red curves) methods on the calculation of the k eigenvalue 
of the PU-SOL-THERM-001-001 plutonium critical 
assembly.  (a) 〈k 〉  eigenvalue, and (b) standard deviation 
of the 〈k 〉  eigenvalue.
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calculations.   This  is  borne  out  by the standard  deviation 
histories shown in Figures 14b and 15b, in which the curves 
end  when  /〈k 〉   = 5×10−4 .   It  is  clear  that  the 
approach to convergence is more rapid for the fast uranium 
system than it is for th thermal plutonium system.  Note that 
the  variability  in  these  figures  near  25  generations  is  a 
consequence of the switch from inactive to active averaging 
of the k eigenvalue.  Finally, consider the run times shown in 
Table 2.  It is clear that the required expected value (EV) run 
times and generations to convergence are shorter than that 
require for the analog (A) calculations.   However,  the run 
time required per generation are the same for both methods, 
indicating  that  there  is  minimal  overhead  associated  with 
calculation  of  the  particle  fluence  and  reaction  rates 
(Equations 4 – 6).

VI. Python User Interface
Recently,  our  team has  extended the capabilities  of  the 

Mercury code to permit user customization of problem setup 
and output via the use of Python3.  Python is a remarkably-
powerful,  object-oriented,  dynamic  programming language 
that has been used extensively at LLNL to provide a flexible 
user interface in several multi-physics codes9.  Since Python 
is  designed  for  use  as  a  high-level  dynamic  scripting 
language, it is not suitable for direct use in high-performance 
applications.   However,  Python has  been  designed  to 
interface with high-performance code modules written in  C 
and C++, which are the native languages of Mercury.  Use of 
Python within  Mercury falls  into  two categories:  (a)  two 
separate  Python pre-parsers have been developed to permit 
customization of problem input, and (b) several of the C/C++ 
data  structures  in  Mercury have  been  wrapped  to  permit 
customization of  the output and computational  steering of 
the  problem  via  an  inline  Python user  interface.   These 
applications of Python within Mercury are discussed below.

1. Python Input Pre-Parsing
Two  Python input  pre-parsing  methods  have  been 

developed for use with  Mercury.  The first method uses a 
mix  of  standard  string-based  input  along  with  Python 
functions and scripts.  In contrast, the second method solely 
uses a  Python script to generate the string-based input file. 
In either case, the resultant string-based input file undergoes 

standard  Mercury parsing  via  conversion  of  the  string  to 
XML and subsequent DOM tree parsing10.   The details of 
these pre-parsing methods are discussed below.
(A) Mixed Python/String Input Pre-Parser

Customization  of  Mercury input  files  via  Python pre-
parsing  minimizes  the  amount  of  time  that  users  spend 
developing and maintaining input files.  For example, users 
often  perform  sensitivity  studies  of  a  particular  problem, 
varying the evaluated nuclear data (ENDF/B, ENDL, JEFF, 
etc.),  cross  section  representation  (continuous  energy  vs 
multigroup), geometry definition (combinatorial geometry vs 
mesh),  criticality  convergence  criterion,  etc.   Previously, 
users were required to either (a) maintain separate input files 
for  each  variant  or  (b)  edit  the  input  file  to  change  the 
parameters  of  interest  for  each  specific  simulation.   Our 
experience  has  shown  that  these  approaches  are  time 
consuming to maintain, difficult to keep in sync and prone to 
typo errors.

The first  feature  of  this mixed method is  the ability to 
embed a block of Python coding within the string input file. 
While this is placed within a set of  python …  end_python 
delimiters, the scope of Python variables defined within the 
block is global across he entire input file.  This allows the 
user to perform a complex calculation in Python to define a 
variable, and use that variable later on in the input file.  To 
aid the user in distinguishing these variables from keywords, 
the code requires hat all Python variables be placed with a 
set of  { … } delimiters.  Any number of Python blocks may 
be used within the input file, provided they are each placed 
within a set of  python … end_python delimiters.

The second feature  of  this  method are  a  set  of  Python 
functions  which  do  not  require  the  user  to  be  fluent  in 
Python in  order  to  modify  the  values  of  keywords  and 
control the execution of the problem.  Currently, three types 
of functions have been implemented, each of which are pre-
pended by the characters  'mc_'.  The  mc_ifundef command 
allows the user to set the default value for a Python variable:

mc_ifundef  MyVariable  {1.234}
where the  string variable 'MyVariable'  is  initialized to the 
value  '1.234'.   Later  in  the  parsing  process,  this  string 
assigned to the proper type,  based upon the keyword with 
which it is associated.  The user is free to redefine the value 
of  each  variable  defined  with  a  mc_ifundef command  by 
including a -def option on the Mercury execution line:

mercury <input-file-name> -def MyVariable=5.678
The mc_include command allows the user to insert a named 
file into the input file at the calling location:

mc_include {'OtherFile.txt'}
where the file name must be inserted within a set of single (') 
or  double  (“)  quotes.   This  feature  permits  modular 
construction of input files and re-use of common files across 
multiple  input  files.   Finally,  Mercury supports  logical 
operations that  permit  the user  to customize the input and 
problem  execution  based  upon  several  possible  options. 
This  is  accomplished  via  the   mc_if  {expression} … 

Table 2  Performance of analog and expected value
criticality calculations

Method k Eigenvalue Generations
Total/Active

Run Time
(sec)

Time/Gen
(sec)

Critical Assembly HEU-MET-FAST-001-001

A 1.001503 776 / 751 4.98 6.42 x 10-3

EV 1.000286 244 / 219 1.56 6.39 x 10-3

Critical Assembly PU-SOL-THERM-001-001

A 1.019285 787 / 762 111.68 1.42 x 10-1

EV 1.018661 583 / 558 82.97 1.42 x 10-1



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)
Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

mc_elseif {expression} … mc_endif  construct.  The logical 
expressions  make  use  of  Python  variables  that  have  been 
defined either in a previous python … end_python block, or 
via the  mc_ifundef / -def construct.   Logical  comparators 
and sub-expression grouping utilize the C/ C++ syntax:  ==, 
&&, ||, !, (…):

mc_if {MyBoolean == True}
...

mc_elseif {(!(a == 2.0)) && (b == 3.0)}
…

mc_endif

A  typical  usage  of  these  features  of  the  mixed 
Python/string input pre-parser is shown in Figure 16.  In this 
input  file  for  a  pulsed  sphere  calculation,  a  Python code 
block is  embedded within the  pink python …  end_python 
delimiters, while the various Python commands are shown in 
blue (mc_ifundef), red (mc_include) and green (mc_if, etc.). 
All  Python variables  are  shown  italicized,  and  braces  {...} 
surround all variables and command arguments.  This input 
file  makes  use  of  Python variables  that  are  defined  both 
within  the  embedded  python …  end_python block 
(PulseWidth), as well as via the mc_ifundef  / -def construct 
(NuclearData,  NumParticles).   Note  that  those  variables 
defined within the  Python code block are considered static, 
while  those  defined  via  a  mc_ifundef can  be  dynamically 
redefined each time the problem is run.
(B) Python Script Pre-Parser

A set of  Python functions have recently been developed 
for those users who prefer to define the input parameters for 
their problems via a Python script.  This capability permits a 
user  to  define  Python objects  which  have  the  same 
hierarchical layout as the data blocks in the  Mercury input 
file.  Once the data elements have been initialized for each 
relevant object, the script executes a final function to write 
out a standard string version of the input file.  This capability 
is demonstrated in Figure 17, which shows a portion of the 
script  used  to  define  the  input  for  the  Godiva  critical 
assembly.

The function MCInstance (shown in red) creates a skeletal 
version of the Monte Carlo input object  known as  myMC. 
Once it is created, the object  myMC is filled out via one of 
two techniques.  One method is direct initialization of data 
elements, such as for the problem control data.  This simple 
method is typically used to initialize single-level input data 
structures, such as problem control data.  The other method 
is execution of the  create function (shown in  blue).  This 
function is  used to initialize data elements  within a  given 
level  of  the  Monte  Carlo  object  via  “keyword  =  value' 
assignment.   As  shown  in  Figure  17,  this  is  a  powerful 
method for  initializing multiple  levels of  hierarchical  data 
structures. The display function (shown in green) is used to 
write  out  the status  of  the specified  portion of  the Monte 
Carlo object.  This useful tool permits the user to determine 
which  data  elements  of  the  specified  level  have  been 
initialized, and the value it is set to.  Once each of the data 
elements within the Monte Carlo object has been initialized 
to  the appropriate  value,  the  getString function (shown in 

Fig. 16  An example of the mixed Python/string input pre-parser.

mc_ifundef  IncludeSphere     {True}
mc_ifundef  IncludeTarget      {True}
mc_ifundef  NuclearData        {'endl/2008.2'}
mc_ifundef  NumParticles      {10.0}

python
PulseWidth = 2.0
FlightPath = 945.54
DetectorAngle = 30.0
DetectorBias = 'NE213_16'
end_python

mc_include {"Pulsed_Sphere_Control.txt"}
mc_include {"Pulsed_Sphere_Tim e.txt"}
mc_include {"Pulsed_Sphere_Material.txt"}

…

particle
#  Particle Data
   part Neutrons
      particle_type Neutron
      target_num _particles {NumParticles*1.0e+6}
      therm alization Thermal_Scatter
      cross_section_data_file /usr/Mercury/data/
{NuclearData}/m cf1.pdb
      num_diagnostic_bins 36
      diagnostic Point_Detector_n
         direction Point
         point_location {PointDetectorX} 0.0 {PointDetectorZ}
      end_diagnostic    
   end_part
end_particle

…

source
#  External Source Data
   src ExternalSource
      source_type External_Source
      particle Neutrons
      geom etry
         category Point
         center_coords 0.0 0.0 0.0
      end_geometry
         ...
      response
mc_if {PulseWidth == 0.3}
         bset Tim es_03
            space Time
            interpolation None
            domain
                  ...
            end_dom ain
         end_bset
mc_elseif {PulseWidth == 2.0}
         bset Tim es_20
            space Time
            interpolation None
            domain
                 ...
            end_dom ain
         end_bset
mc_endif
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pink) is executed to write out the input string to the specified 
file.  
2. Python Wrapped Data Structures and Inline User 
Interface

While the previous section describes how Python is used 
to  enter  data  into Mercury,  this  section  discusses  how 
Python is  used to  get  data  out of Mercury.   Many of  the 
Mercury data structures have been exposed to Python.  This 
permits the user to easily query and retrieve the exact data 
they desire  from  Mercury,  using a programming language 
that is ripe for data analysis, visualization, and custom I/O.

From a user's perspective, the most useful data structures 
exposed  to  Python are  associated  with  tally,  source  and 
variance reduction objects.  A uniform user interface to these 
data structures has been implemented, enabling the user to 
access the data using human readable indices.  This makes it 
clear what data the user is requesting, and hence, what data 
is  being  delivered.   For  example,  consider  an  energy 
deposition  tally,  with  a  two-dimensional  result  space  of 
particle  categories  and  materials.   Each  tally  object  is 
accessed via its name, and a handle to the object is returned:
 

my_tal = mc.tally.tal['MyTally']
 

The user may then request the energy deposition by particles 
of type Neutron into the material Water as follows:
 

print my_tal[“Neutron”, “Water”]
 

This method employs a positional indexing scheme, where 
the indices  are  listed in  the  same order  that  the  sets and 
bsets were  listed  in  the  input  description  of  the  tally. 
Alternatively,  one can use named parameters to access the 
tally data.  In this case, the order in which the parameters are 
listed does not matter:
 

print my_tal.getValue(Particle=”Neutron”,
       Material=”Water”)

 

Source  and  variance  reduction  objects  are  accessed  in  a 
similar manner.   The  Python dictionaries  that describe the 
tally, source and variance reduction objects are as follows:
 

mc.tally.tal
mc.source.src
mc.variance_reduction.vr

 

These  are  standard  Python dictionaries,  which  can  be 
accessed  and iterated over  as you  would with any  Python 
dictionary.   To access  objects by name, use the following 
syntax:
 

my_tal = mc.tally.tal[“MyTally”]
my_src = mc.source.src[“MySrc”]
my_vr  = mc.variance_reduction.vr[“MyVR”]

 

An extremely useful feature for  Mercury developers,  as 
well  as  advanced  users,  is  the ability to register  a  Python 
function that will be executed at any specified particle event. 
Mercury has  a list  of  standard tally events  which may be 
linked to a Python function which is executed whenever the 
event occurs.  The prototype of the Python function takes a Fig. 17  An example of the Python script input pre-parser.

#!/usr/local/bin/python -i

im port sys
sys.path.append('..')
from MCInstance im port *

myMC = MCInstance()

#  Problem Control Data
myMC.control.problem_type = "Dynamic_Alpha"
myMC.control.edit_verbosity = "Moderate"
myMC.control.total_nu_bar = True
myMC.control.energy_representation = 
"Continuous_Energy"
myMC.control.verify_particle = True
myMC.control.population_control = "Weight_Window s"

#  Material Data
myMC.material.mat.create("Uranium ",
    iso = [create( "U234",  za=92234, atom_fract=1.0250e-2,  
                          react_list="None" ),
             create( "U235",  za=92235,  atom _fract=9.3768e-1,   
                          react_list="None" ),
             create( "U238",  za=92238,  atom _fract=5.2070e-2,   
                         react_list="None" ), ] )
myMC.material.mat.create("Air",
    iso = [create( "N14",   za= 7014,  atom _fract=1.0,               
                              react_list="None" ) ] );

#  Surface Data
myMC.geom etry.surf.create( "Sphere_1",
    surf_type = create("Sphere", radius= 8.7407 ) )
myMC.geom etry.surf.create( "Sphere_2",
    surf_type = create("Sphere", radius=12.0) )
#  Cell Data
myMC.geom etry.cell.create( "Godiva_Assembly",
    surf = "-Sphere_1",
    mat  = [ create("Uranium", 
tem perature_electron=2.5e-5,
                            density=18.74 ) ] );
myMC.geom etry.cell.create( "Atmosphere",
    surf = "+Sphere_1 -Sphere_2",
    mat  = [create( "Air", tem perature_electron=2.5e-5,
                             density=1.2e-3 ) ],
    bc   = [create("OuterSpherical",
               bc_type='Vacuum ', surf='Sphere_3') ] )

#  Particle Data
myMC.particle.display()
myMC.particle.part.create("Neutrons",
    particle_type = "Neutron",
    target_num _particles = 100000,
    allow _combing = True,
    allow _splitting = True,
    therm alization = "Thermal_Scatter",
    cross_section_data_file =
        "/usr/Mercury/data/endl99/mcf1.pdb",
    kinetic_energy_min = 1.0e-10 )

…

# Write out the standard string input file.
input_file = open( 'MyGodiva.inp', 'w ' )
input_file.w rite(m yMC.getString())
input_file.close()
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single argument, which is the particle object that is currently 
undergoing the event.  A use case in which this feature has 
been  extremely  helpful  is  to  examine,  in  detail,  what 
happens  to each  particle  that  is  sourced  into the problem. 
The relevant Python function may be defined as follows:
 

        def WatchSourceParticles(part):
mc.control.debugging_identifier = part.identifier

        ...
        mc.particle.register(WatchSourceParticles,

            "Creation_External_Source")
 

This  instructs  Mercury to  execute  the  Python function 
watchSourceParticle each  time  the  particle  undergoes  the 
event  Creation_External_Source.  Whenever this function is 
executed, it sets a global  debugging identifier to the unique 
identifier of the specified particle that was sourced into the 
problem.  This triggers the code to print out to the terminal 
what  is  happening  event-by-event  as  the  particle  tracks. 
Every facet crossing, collision, census, etc that the particle 
undergoes  will  be  reported  in  detail.   This  permits  a 
Mercury code  developer  to  quickly  diagnose  what  is 
happening to the source particles.

Another  use  case  of  Python-wrapped  data  structures  is 
verification  of  combinatorial  geometry  (CG).   A  Python 
routine has been developed that returns the CG cell object 
which contains any physical Cartesian coordinate (x,y,z).  If 
one is certain that given coordinates, or set of coordinates, 
should be within a specific CG cell, it is possible to query 
those coordinates, ensuring that the code agrees that they are 
within the specified cell.  Suppose one knew that a certain 
locus of points within a bounding box, defined by the limits 
 xmin , ymin , zmin  and xmax , ymax , zmax  , are entirely within a 

CG cell.   One  could  use  the  following  Python coding  to 
verify that this box is indeed within the given CG cell:
 

    my_cell = mc.geometry.cell[CellName]
    for i in xrange(1000000):
        my_x = xmin + (xmax - xmin)*random()
        my_y = ymin + (ymax - ymin)*random()
        my_z = zmin + (zmax - zmin)*random()
        my_other_cell = 

mc.geometry.locateCoordinate(my_x,my_y,my_z)
        if (my_other_cell.cell != my_cell.cell) :
            print “Error: Specified point not within the cell!”
 

A similar bit of  Python code could be used to calculate the 
volume of a complex CG cell.  If one has knowledge of the 
bounding box of the CG cell, this may be achieved via use of 
a Monte Carlo rejection technique.  In this case, the product 
of the fraction of points located within the desired cell and 
the bounding box volume converges to the volume of the CG 
cell.

A design goal of the inline Python user interface was that 
knowledge of the Mercury input syntax would be sufficient 
to permit access to data through the  Python user interface. 
As a  result,  there is  a one-to-one correspondence  between 
the block hierarchical keywords used in the  Mercury input 
file, and the Python variable names.  Suppose one wants to 
access the energy bin boundaries of a tally via Python.  The 

Python syntax is to obtain this data is as follows:

mc.tally.tal['MyTally'].bset['MyBset'].domain

whereas the corresponding input file syntax is:

tally
   tal MyTally
      …
      bset MyBset
         space Energy
         domain
            0 1 2 3 4 5
         end_domain
      end_bset
   end_tal
end_tally

The  inline  Python user  interface  has  proven  extremely 
useful for quickly and easily accessing the data out of the 
code,  diagnosing  problems,  and  verifying  CG  problem 
setups.   The  alternatives  involve  (a)  writing  custom C++ 
functionality to provide the user with the exact feature they 
want, (b) spending hours tracking particles in a debugger, or 
(c)  spending hours checking a CG problem definition “by 
hand”.  Having the inline Python user interface eliminates all 
of this,  while providing the flexibility to permit  users and 
developers to solve future, unanticipated problems for which 
a solution was not already coded in C++.
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