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ABSTRACT
Load balance is critical for performance in large parallel applica-
tions. An imbalance on today’s fastest supercomputers can force
hundreds of thousands of cores to idle, and on future exascale ma-
chines this cost will increase by over a factor of a thousand. Im-
proving load balance requires a detailed understanding of the amount
of computational load per process and an application’s simulated
domain, but no existing metrics sufficiently account for both fac-
tors. Current load balance mechanisms are often integrated into
applications and make implicit assumptions about the load. Some
strategies place the burden of providing accurate load information,
including the decision on when to balance, on the application. Ex-
isting application-independent mechanisms simply measure the ap-
plication load without any knowledge of application elements, which
limits them to identifying imbalance without correcting it.

Our novel load model couples abstract application information
with scalable measurements to derive accurate and actionable load
metrics. Using these metrics, we develop a cost model for cor-
recting load imbalance. Our model enables comparisons of the ef-
fectiveness of load balancing algorithms in any specific imbalance
scenario. Our model correctly selects the algorithm that achieves
the lowest runtime in up to 96% of the cases, and can achieve a 19%
gain over selecting a single balancing algorithm for all cases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes, Model-
ing techniques; I.6.8 [Simulation and Modeling]: Types of Sim-
ulation—Parallel; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming
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1. INTRODUCTION
Optimizing high-performance physical simulations to run on ever-

growing supercomputing hardware is challenging. Large modern
parallel simulation codes use message passing frameworks such
as MPI, and dynamic behavior can lead to imbalances in compu-
tational load among processors. On current machines with hun-
dreds of thousands of processors, this cost can be enormous. Future
machines will support even more parallelism and efficiently redis-
tributing and balancing load will be critical for good performance.

Prior work has explored tools to measure large-scale computa-
tional load [12, 24] efficiently. These tools can provide insight into
the source location that caused an imbalance [23] and into the dis-
tribution of the load, but this knowledge alone is insufficient to cor-
rect the load. Existing load metrics do not account for constraints
on rebalancing imposed by application elements and their interac-
tion. Applications may only be able to rebalance load by mov-
ing simulated entities between nearby processors. Because this
requires knowledge of application elements, statistical metrics or
ones based solely on MPI ranks cannot guide correction of the im-
balance. Thus, many applications resort to custom load balancing
schemes and build their own workload model to guide the assign-
ment of work to processes. In these custom schemes, application
developers estimate the costs of the computation, but their esti-
mates typically only capture the developer’s best guess and often
do not correspond to the actual costs. As an alternative, applica-
tions can supply their workload model to partitioners [9, 19, 25],
which leaves the burden of providing accurate load information,
including the decision on when to balance, on the application.

Applications need information on both when and how to rebal-
ance; the three load balancing steps are:

1. Evaluate the imbalance;
2. Decide how to balance if needed;
3. Redistribute work to correct the imbalance.

We address the first two requirements and derive complete infor-
mation on how to perform the third; the application must be able
to redistribute its work units as instructed by our framework (a re-
quirement also imposed by partitioners [9, 19]). Our load model
couples abstract application information with scalable load mea-
surements. We derive actionable load metrics to evaluate the accu-
racy of the information. Our load model evaluates the cost of cor-
recting load imbalance with specific load balancing algorithms. We
use it to select the method that most efficiently balances a particu-
lar scenario. We demonstrate this methodology on two large-scale
production applications that simulate molecular dynamics and dis-
location dynamics. Overall, we make the following contributions:

• An application-independent load model that captures appli-
cation load in terms of the application elements;



Algorithm 1 Using the Load Model (Application code in Italics)
Input. G← graph of work units and interactions
1: for timesteps do
2: execute application iteration
3: send G to LB Framework
4: update Load Model based on iteration measurements and G
5: use Cost Model for cost-benefit analysis of available LB algorithms
6: if benefit of rebalancing > cost of rebalancing then
7: provide selected LB algorithm with accurate input
8: send instructions on how to rebalance to application
9: end if

10: if instructed to rebalance then
11: rebalance as directed by LB Framework
12: end if
13: end for

• Metrics to evaluate application-provided load models and to
compare candidate application models;
• A methodology to evaluate load imbalance scenarios, and

how efficiently particular load balance schemes correct it;
• A cost model to evaluate balancing mechanisms and to select

the one most efficient for a particular imbalance scenario;
• An evaluation of load balance characteristics in the context

of two large-scale production simulations.

We show that ad hoc application models can mispredict imbal-
ance by up to 70% and the widely used ratio of maximum load to
average load incompletely represents imbalance. Our models pro-
vide insight into the cost of algorithms such as diffusion [7] and
partitioning [19]. Our model correctly selects the algorithm that
achieves the lowest runtime in up to 96% of the cases, and can
achieve a 19% gain over selecting a single balancing algorithm.

The remainder of this paper is organized as follows. We give an
overview of our method in Section 2 and demonstrate the shortfalls
of current load metrics in Section 3. We define our application-
independent load model in Section 4 and our cost model for load
balancing algorithms in Section 5. We describe our target appli-
cations and their balancing algorithms in Section 6. We evaluate
application models and demonstrate how to use our load model to
select the appropriate load balancing algorithm in Section 7.

2. OVERVIEW OF APPROACH
The computational load in high-performance physical simula-

tions can evolve over time. Our novel model, which represents
load in terms of application elements, provides a cost-benefit anal-
ysis of imbalance correction mechanisms. Thus, it can guide the
application developer on when and how to correct the imbalance.

Algorithm 1 summarizes the steps of our method. The core of
our load model is a graph that abstractly represents application
elements (vertices) and dependencies or communication between
them (edges). The application elements are the entities that can be
migrated to correct imbalance. A developer only needs to provide
the work units and their interactions (the same input that they would
provide to a partitioner) (Alg. 1, line 3). Our framework then builds
a graph to represent this abstract information.

Our load model combines the abstract application representation
with existing tools’ measurements of the degree of imbalance to
evaluate the load accurately in terms of the application elements
(Alg. 1, line 4). We perform a cost-benefit analysis of available load
balancing algorithms to determine if rebalancing the application
would be beneficial at a given time, and, if so, which load balancing
algorithm to use (Alg. 1, line 5). We give accurate load information
to the load balancing algorithm to determine how the application
should be rebalanced (Alg. 1, line 7). We instruct the application to

Load on each Process L λ σ g1 g2

(a)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 0% 0 0 0

(b)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% 1 1 −2

(c)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% .5 2 1

(d)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% .5 2 1

Table 1: Example Load Distributions and Their Moments

rebalance (answering the when question) with that load balancing
algorithm (answering the how question) (Alg. 1, line 8).

We show that evaluation of the imbalance and correction mech-
anisms requires awareness of application information. Our gen-
eral framework characterizes load imbalance and augments existing
load metrics by facilitating the evaluation of developer-provided
load estimation schemes. Thus, a developer can use it to refine ad
hoc load models and to understand their limitations. We demon-
strate this process for two large-scale applications in Section 7.1.
The developer can then use our cost model to select from available
load balancing algorithms, as we show in Section 7.2.

3. DEFICIENCIES OF LOAD METRICS
Formally, load imbalance is an uneven distribution of computa-

tional load among tasks in a parallel system. In large-scale SPMD
applications with synchronous time steps, imbalance can force all
processes to wait for the most overloaded process. The perfor-
mance penalty grows linearly as the number of processors increases,
so regularly balancing large-scale synchronous simulations is par-
ticularly important as their load distribution evolves over time.

Load balance metrics characterize how unevenly work is dis-
tributed. The percent imbalance metric, λ, is most commonly used:

λ =

(
Lmax

L
− 1

)
× 100% (1)

where Lmax is the maximum load on any process and L is the
mean load over all processes. This metric measures the perfor-
mance lost to imbalanced load or, conversely, the performance that
could be reclaimed by balancing the load. Percent imbalance mea-
sures the severity of load imbalance. However, it ignores statistical
properties of the load distribution that can provide insight into how
quickly a particular algorithm can correct an imbalance.

Statistical moments provide a detailed picture of load distribu-
tion that can indicate whether a distribution has a few highly loaded
outliers or many slightly imbalanced processes. These properties
impact which balancing algorithm will most efficiently correct the
imbalance. Diffusive algorithms [7] can quickly correct small im-
balances while the presence of an outlier in the load distribution
may require more drastic, global corrections. Figure 1 shows the
three most common statistical moments, standard deviation σ, skew-
ness g1 and kurtosis g2, where n is the number of processes and Li

is the load on the ith process. Positive skewness means that rela-
tively few processes have higher than average load, while negative
skewness means that relatively few processes have lower than av-
erage load. A normal distribution of load implies skewness of 0.
Higher kurtosis means that more of the variance arises from infre-
quent extreme deviations, while lower kurtosis corresponds to fre-
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Figure 1: Statistical Moments

quent modestly sized deviations. A normal distribution has kurtosis
of 0. Statistical moments capture key information about load distri-
bution but are insufficient to evaluate the speed with which we can
correct imbalance because they do not include information about
the proximity of application elements in the simulation space.

Table 1 uses several load distributions to show how the statistical
moments fail to distinguish key properties. For simplicity, we show
a one-dimensional interaction pattern of processesP0...P7 in which
Pi and Pi+1 perform computation on neighboring domains. The
figure shows that load metrics cannot distinguish cases (c) and (d)
while the difficulty of correcting these load scenarios varies greatly
if the computation is optimal when neighboring portions of the sim-
ulated space are assigned to the neighboring processes. In case (c),
we could simply move the extra load on P1 to P0, while in (d) the
extra load from P7 must first displace work to P6, P5, and so on
through P1 until the under-loaded P0 receives enough work.

4. ELEMENT-AWARE LOAD MODEL
Parallel scientific applications decompose their physical domain

into work units, which, in different applications, can be elements
representing units of the simulated physical space, particles mod-
eled, or random samples performed on the domain. Some appli-
cation elements may involve more or less computation than oth-
ers due to their physical properties or spatial proximity. Section 3
shows that a load model must be aware of the application elements
and their interactions and placement in order to understand load
imbalance and, more importantly, how to correct it. A model that
does not include this information will fail to capture the effects of
the proximity of elements in the simulation space and the mapping
of the simulation space onto the process space.

Our investigation of large-scale scientific applications has shaped
our novel application-element-aware, application-independent load
model that represents application elements and interactions between
them. Our API enables the application to provide our framework
with abstract application information at the granularity of appli-
cation domain decomposition. This granularity allows our model
to reflect application elements, their communication and depen-
dencies, and their mapping to processes. Most load balancing al-
gorithms analyze and redistribute work with the same granularity,
which enables our framework to guide them. We provide a general
methodology to map observed application performance accurately
to the application elements at the appropriate granularity level.
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Process 0 Process 1 Process 2
CompUnits = 7 CompUnits = 4 CompUnits = 5
CompWt = 16 CompWt = 8 CompWt = 16
MeasuredLoad = 11 MeasuredLoad = 5 MeasuredLoad = 10

Figure 2: Application Element-Aware Load Model

Figure 2 illustrates our load model: the edges represent bidi-
rectional interactions between application elements. Solid edges
represent interactions within a process, while dashed edges repre-
sent interprocess communication. The relationships between ap-
plication elements within the domain decomposition provide the
communication structure and the relative weights of computation
in the model. Node weights indicate the computation required for
each element as anticipated by the application (i.e., the application
load model). Importantly, we can correlate this information to wall-
clock measurements of the load on each process. The example in
Figure 2 shows that Process 0 has 7 work units with an application
anticipated load or relative computation weight of 16, and its work
units have 4 channels of communication with elements on Process
1 with a total relative communication cost of 6. For example, we
measure the load on Process 0 to be 11.

We must carefully consider the difference in modeled and mea-
sured load. If the model is accurate, the two are linearly related.
If they are not directly proportional, the application model is in-
complete and could be improved. We discuss our methodology to
evaluate abstract application information in Section 7.1. When we
are satisfied with the model accuracy, we can use it to compute the
load distribution metrics and to observe how the load is distributed
throughout the process space in terms of application elements.

Table 2 illustrates the versatility of our model by showing work
unit mappings for three major types of scientific applications.

Unstructured Mesh. In unstructured mesh applications, each cell
in the mesh is an element. We represent the mesh connectivity
with edges. In some unstructured mesh applications, the cells may
require similar computation and we would anticipate unit compu-
tation per mesh cell. In others, the computation per cell may be
proportional to the cell’s volume, and we reflect this in the weight
of each node in our model. Table 2(a) shows an unstructured mesh
application that performs a Monte Carlo algorithm on its mesh. In
this case, the work is proportional to the number of samples in each
mesh cell, so we use the sample count as the node weight. We show
communication between neighboring grid cells as edges.

Molecular Dynamics. In classical molecular dynamics applica-
tions and other N-body simulations, each individual body is an el-
ement. Edges reflect the simulated neighborhood of the bodies:
each body is connected to others within a cutoff radius (i.e., those
with which it interacts), as Table 2(b) shows. As we discuss in
Section 7.1, we can select from several models for computation per
element. Simple models assume that the work per body is constant,
while others reflect the density of the body’s neighborhood.

Empirical Model. Some applications, such as ParaDiS [6], use
empirical models to anticipate computation per element. An appli-
cation developer can construct this type of model by placing timers
around important computation regions. Table 2(c) shows how ad
hoc placement of timers may omit important load constituents.



Type of Application, elements and interactions Sample Application Image Representation in App. Our Representation

(a) Unstructured Mesh
• e.g., particle transport or finite element applications

• elements: cell volume or number of samples in each
cell (Monte Carlo algorithms)

• interactions: mesh connectivity

4
5

2

3

1
2

(b) N-body
• e.g., Molecular Dynamics Applications

• elements: (sampled) molecules

• interactions: molecules within range of interaction
r (as defined by the application) r

1

1

1

1

1

1
1

1

1

1

(c) Other - Empirical Model
• e.g., ParaDiS (Section 6.3)

• interactions: graph of process communication

• elements: time in developer-defined ‘key’ routines
(green); incomplete coverage of application behav-
ior (red) main

fn1

fn2

fn3

fn4

fn5 fn6

fn7 fn8

fn9

P0

P1 P2

P3

P4

P5 P6

4.6s

2.1s 5.3s

5.1s

4.2s

4.1s 3.8s

Table 2: Applications and Their Representation in Our Load Model

5. LOAD BALANCE COST MODEL
In this section, we use our load model to evaluate the cost of

two types of load balancing algorithm. Our cost model can guide
selection of the best algorithm for specific imbalance scenarios.

5.1 Types of Load Balancing Algorithms
Global Algorithms. A global balancing algorithm [9, 19, 25] takes
information about the load on all tasks and decides how to redis-
tribute load evenly in a single step. Global decisions can be costly.
Sequential implementations must process data for an entire paral-
lel system. Parallel implementations can communicate excessively.
Global algorithms also can require substantial element movement.
However, if the cost of balancing is low, global algorithms balance
load in a single step and correctly handle local minima and maxima.

Diffusive Algorithms. A diffusive balancing algorithm [7] per-
forms local corrections at each step and only moves elements within
a local neighborhood in the logical simulation domain. Diffusive
algorithms can take many steps to rectify a large imbalance be-
cause load can only move a limited distance. However, diffusive al-
gorithms are scalable because they only require local information,
and element movements can be mapped to perform well on high
diameter mesh and torus networks used in the largest machines.

5.2 Cost Model for Balancing Algorithms
Our cost model captures the rebalancing characteristics of diffu-

sive and global algorithms. Developers typically choose balancers
based on their intuition about the scalability of particular algo-
rithms. For example, one might expect the cost of a global balanc-

ing scheme to be higher than that of a diffusive algorithm at scale
because the time required for an immediate rebalance outweighs
the amortized cost of local diffusive balancing. The intuition is ap-
proximate and sometimes inaccurate. Our cost model provides a
quantitative basis for selecting among algorithms. Table 3 summa-
rizes the variables that we use to define this cost model.

Our cost model only considers the current imbalance. Future
imbalances are highly dependent on how the simulation evolves.
Predicting them is generally infeasible (otherwise we could predict
the result of the simulation). We assume a continuous evaluation
of the imbalance in an application’s load leading to new balanc-
ing decisions when necessary. These decisions can consider the
(observed) rate at which the application becomes imbalanced, and
apply a global balancer when drastic changes are necessary or a
diffusion scheme to handle more modest imbalances.

A load balancing algorithm’s cost is the time to decide which
elements to move plus the time required to move the elements:

CBalAlg = CLbDecision + CDataMvmt (5)

where BalAlg can be global or diffusion (i.e., Cglobal or Cdiffusion ).
CLbDecision , the time to run the balancing algorithm, can be known

a priori or derived using a performance model, such as a regression
model over timings that vary the algorithm’s input parameters [15].
Typical parameters for the modeling approach include the input
size (e.g., the number of vertices in the load model graph and the
average number of edges per vertex) and the number of processes
that a parallel balancing algorithm uses.



Variable Definition How Determined

Lave Average process load 1
procs

procs∑
i=0

Li

Li Load of process i Measured or estimated by Algorithm 2
Di Set of processes with elements that can be moved to process i Derived from edges in load model
Lij Load of process j ∈ Di Measured or estimated by Algorithm 2
γ Load shifting coefficient in Algorithm 2 Provided by application, γ ≤ 1
convergence_steps Number of steps for diffusive algorithm to converge Derived by simulating diffusion, Algorithm 2
Lmaxi Maximum process load at step i Simulated (diffusion); ≈ Lave (global)
ElementsMovedi Largest number of elements moved to a process at step i Simulated (diffusion); ≈ Elementsmax

Lave
Lmax−Lave

(global)
CDataMvmt Time required to send ElementsMovedi Modeled empirically, α+ βElementsMoved
CLbDecision Runtime of load balancing algorithm, e.g., Cglobal and Cdiff Measured or modeled empirically
CBalAlgo Balancing algorithm cost: algorithm time plus redistribution time CLbDecision + CDataMvmt

AppTimeBalAlg Total application runtime under BalAlg, e.g., AppTimediff Modeled by cost model
steps Number of time steps that the application takes Arbitrary, same for global and diffusion algorithms

Table 3: Cost Model Variables

We define CDataMvmt as:

CDataMvmt = α+ βElementsMovedmax × elementsize (6)

where the application provides elementsize, α is the start-up cost
of communication (latency), and β is the per-element send time
(bandwidth), determined empirically per platform. A more detailed
model could capture network contention. For global balancing al-
gorithms, we approximate the number of elements moved as:

ElementsMovedglobal ≈ Elementsmax
Lave

Lmax − Lave
(7)

where Elementsmax is the number of elements on the process
with Lmax. We approximate the portion of the elements that we
must move from the most loaded process as proportional to the
load imbalance, which assumes that the load per element is approx-
imately constant. Although this assumption is coarse (load balance
would be trivial), we find this simplification works well in practice.

The total cost of a load balancing algorithm is the application
runtime when using the algorithm, which is the time to perform
each computation step plus the cost of the algorithm at each step:

AppTimeBalAlg =

steps∑
i=0

(CBalAlgi + Lmaxi ) (8)

where steps is the number of timesteps that the application takes,
CBalAlgi is load balancing algorithm’s cost at step i, which is zero
for a global algorithm in all steps other than the one in which load
balancing is performed. The time for each step of the computation
is the time taken by the most heavily loaded process, Lmax .

For a global scheme, the total cost reduces to:

AppTimeglobal = Cglobal1 + steps × Lave (9)

since we assume that the global load balancing algorithm is only
invoked in the first step. We estimate the time per computation step
as Lave under the assumption that imbalance is corrected.

For diffusion, we compute the total application time as:

AppTimediff =

steps∑
i=0

(Cdiffi + Lmaxi ) (10)

To compute the total application time for diffusion, we have de-
veloped a diffusion simulator that mimics the behavior of diffusive
load balancing algorithms. Algorithm 2 gives a high level overview
of our diffusion simulator. We apply Algorithm 2 to our load model

Algorithm 2 Diffusion Simulation [7]
Input. Li ← load of process i

Di ← neighborhood of process i, defined in Load Model graph
Lij ← load of process j ∈ Di

γ ← coefficient for how much load can be moved in one timestep
threshold ← lowest attainable level of imbalance for the application
convergence_steps← 0

1: All processes in parallel do
2: for timesteps do
3: if imbalance > threshold then
4: convergence_steps++
5: end if
6: Li = Li +

∑
j∈Di

γ(Li − Lij)

7: ElementsMovedi = NumElementsi

∑
j∈Di

γ(Li − Lij )

8: NumElementsi = NumElementsi + ElementsMovedi

9: Lmaxi = max(Li ) ∀ processes at timestep i
10: ElementsMovedmaxi = max(ElsMovedi )∀ procs at step i
11: end for

to simulate the movement of load at each iteration. At each step,
process i moves a portion of its load to its neighboring processes.
We define a coefficient, γ, to model the amount of load that can be
moved in one time step to reflect any application limitations (e.g.,
the maximum amount that domain boundaries can move in one time
step). If the application does not limit element movement, γ = 1.
Our algorithm accounts for local minima and maxima because it
moves the simulated load through our graph based model similarly
to data motion under an actual diffusive algorithm.

Algorithm 2 records Lmaxi and ElementsMovedmaxi at each
simulated step. We use those values in Equation 10. Additionally,
Algorithm 2 defines an important metric, convergence steps, or the
number of steps a diffusion algorithm takes to balance the load.
This metric differentiates scenarios that a diffusion algorithm can
correct quickly from those for which diffusion performs poorly.

Algorithm 2 determines the costs required for Equation 10 much
faster than the actual diffusion can be performed. We can evaluate
its cost without perturbing the application. If the simulation pre-
dicts that diffusion will take too long, we can use a different load
balancing algorithm such as a global load balancing scheme.

We compare AppTimediff , AppTimeglobal , and AppTimenone

to determine which load balance algorithm to use, where:

AppTimenone = steps × Lmax1 (11)

We report the effectiveness of this decision in Section 7.2.



Algorithm 3 Benchmark
Input. G ← graph of elements, where each process P is assigned a sub-

graph GP and remote edges represent interprocess communication
1: for P ∈ processes in parallel do
2: for timesteps do
3: for remote edges of GP do
4: Irecv/Isend messages
5: end for
6: for v ∈ G assigned to process P do
7: do_work(weightv )
8: end for
9: MPI_Wait(all messages)

10: if directive to rebalance then
11: rebalance
12: end if
13: update info for load balancing framework
14: end for
15: end for

6. BENCHMARKS AND APPLICATIONS
To evaluate our load and cost models, we conduct experiments

with two large-scale scientific applications, ddcMD and ParaDiS,
as well as a synthetic load balance benchmark that allows us to
evaluate a larger variety of load scenarios and the performance of
various load balancing algorithms for those scenarios.

6.1 Load Balance Benchmark
We use a benchmark to represent classes of load imbalance sce-

narios that occur in parallel scientific applications. Scientific appli-
cations can encounter varying initial load configurations, different
patterns of element interactions, and different scenarios of how the
imbalance evolves throughout the program. Our benchmark con-
trols these variations to ensure a wide range of experiments.

The main input to our benchmark is a directed graph with ver-
tices that represent application elements and edges the communi-
cation/dependencies between them. We derive input graphs from
a variety of meshes from actual simulations. We use a simple
do_work(time) function that accesses an array in a random order.
We tune this function for each architecture such that do_work(1)
executes for one second. Algorithm 3 outlines our benchmark,
which calls do_work for each graph vertex with the appropriate
weights to represent the load scenario. We send an MPI message
for each edge that connects vertices on different processes.

Our experiments vary the size of the graph, vertex and edge
weights, and the initial distribution. We can reassign each vertex
to any process, as determined by the load balance framework.

6.2 ddcMD
ddcMD [8, 11] is a highly optimized molecular dynamics ap-

plication that has twice won the Gordon Bell prize for high per-
formance computing [11, 22]. It is written in C and uses the MPI
library for interprocess communication. In the ddcMD model, each
process owns a subset of the simulated particles and maintains lists
of other particles with which its particles interact.

To allocate particles to processes, ddcMD uses a Voronoi do-
main decomposition. Each process is assigned a point as its center;
it “owns” the particles that are nearer to its center than any other.
A Voronoi cell is the set of all points nearest to a particular center.
Figure 3(a) shows a sample decomposition, with cells outlined in
black and particles shown in red. Around each cell, ddcMD also
maintains a bounding sphere that has a radius of the maximum dis-
tance of any atom in the domain to its center.

During execution, atoms that a process owns can move outside
of their cell. When this happens, ddcMD uses a built-in diffusion

ci

ri

(a) ddcMD.

z 

x 

y 

(b) ParaDiS.

Figure 3: Domain Decomposition in ddcMD and ParaDiS

load balancer that uses a load particle density gradient calculation
to reassign load. The balancer moves the Voronoi centers so that the
walls of the Voronoi cells shift towards regions of greater density.
Voronoi centers can only move a limited amount closer to neigh-
boring cells. Voronoi constraints on the shape of cells also limit
the possible distributions. To represent elements and the associated
load, ddcMD uses three application-specific models:

1. Molecules: number of particles (molecules) per process;
2. Barriers: time each process spends outside of barriers;
3. Forces: time spent calculating interactions on each process.

For our global load balancing algorithm, we use a point-centered
domain decomposition method developed by Koradi [14]. Each
step, we calculate a bias bi for each domain i. When the bias in-
creases (decreases), the domain radius and volume increase (de-
crease). We assign each atom (with position vector x) to the do-
main that satisfies:

|x − ci |2 − bi = minimal , (12)

where ci is the center of domain i, and we calculate the new centers
as the center of gravity for the atoms in each cell.

Although the Koradi algorithm is diffusive, we can run its steps
independently of the application execution until it converges. Thus,
our implementation is a global method since it only applies the
final center positions in the application. We further optimize the
algorithm by parallelizing it and executing it on a sample of the
atoms rather than the complete set.

Our experiments use a range of decompositions that exhibit dif-
ferent load balance properties by varying the placement of Voronoi
cell centers. We evaluate all three models in Section 7.1, and vary
load distributions in Section 7.2. We used two problem sets for dd-
cMD, a nanowire simulation and a condensation simulation. The
nanowire simulation is a finite system of 133,280 iron (Fe) atoms
that incurs imbalance due to uneven partitioning of the densely pop-
ulated cylindrical body surrounded by vacuum. Atom interaction is
modeled with EAM potentials. We ran the nanowire problem on 64
processes. The condensation simulation is a Lennard-Jones con-
densation problem with 2.5e+6 particles and the interactions mod-
eled with Lennard-Jones potentials [13]. It incurs imbalance due to
condensation droplets forming in some of the simulated domains.
We ran the condensation simulation on 512 processes.

6.3 ParaDiS
ParaDiS [6] is a large-scale dislocation dynamics simulation

used to study the fundamental mechanisms of plasticity. It is writ-
ten primarily in C and uses MPI for interprocess communication.
ParaDiS simulations grow in size as more time steps are executed.
Thus, the application domain is spatially heterogeneous and the



distribution is recalculated periodically to rebalance the workload.
ParaDiS uses a 3-dimensional recursive sectioning decomposition
that first segments the domain in the X direction, then in the Y di-
rection within X slabs, and finally in the Z direction within XY
slabs. Figure 3(b) illustrates this decomposition method.

ParaDiS uses an empirical model as an input to its load balanc-
ing algorithm. It estimates load using timing calipers around the
computation that the developers consider most important for load
balance. The load balancing algorithm adjusts work per process
by shifting the boundaries of the sections. The size of neighboring
domains constrains the magnitude of a shift and the algorithm does
not move a boundary past the end of a neighboring section. This
constraint makes the ParaDiS balancer a diffusion algorithm. For
our experiments, we vary the distributions of the domain by varying
the xyz decomposition of the domain such that x ∗ y ∗ z = nProcs .

We use a highly dynamic crystal simulation input set for Par-
aDiS, with 1M degrees of freedom at the beginning of the simula-
tion growing to 1.1M degrees of freedom by the end of the run. We
ran this simulation on 128 processes.

7. EVALUATION
For all ParaDiS experiments, we use a Linux cluster that has 800

compute nodes, each with four quad-core 2.3 GHz AMD Opteron
processors, connected by Infiniband. We use a similar cluster that
has 1,072 compute nodes, each with four dual-core 2.4 GHz AMD
Opteron processors connected by Infiniband for all ddcMD runs
in Section 7.1. On both Linux systems, we use gcc 4.1.2 and
MVAPICH v0.99 for the MPI implementation. We use a Blue
Gene/P system with 1,024 compute nodes with 4 32-bit PPC450d
(850MHz) cores each and 64 32-bit PPC450d I/O nodes for all dd-
cMD experiments in Section 7.2. On this system, we use gcc 4.1.2
for our measurement framework and compile ddcMD with xlC 9.

To validate application models, we measure the work per process
using Libra [10], a scalable load balance measurement framework
for SPMD codes. Libra measures the time spent in specific regions
of an application per time step using the effort model. In this model,
time steps, or progress steps, model each step of the synchronous
parallel computation, and fine-grained effort regions within these
steps model different phases of computation.

We extend Libra’s effort model to serve as input to our load
model and add an interface to query load information during ex-
ecution. We measure the computational load on each process by
summing the time spent in all effort regions. Our load model cou-
ples these measurements with the application abstractions, allow-
ing us to validate the abstractions against empirical measurements.

We use PNMPI [20] to integrate Libra with our load model in-
frastructure. PNMPI stacks independent tools that use the MPI pro-
filing interface [4], which we apply to combine Libra with our new
load model component. PNMPI also supports direct communica-
tion among tools, which we use to exchange element interaction
and performance information. Our tool stack imposes 3% overhead
on average, an insignificant perturbation of application behavior.

7.1 Evaluating Application Abstractions
In this section, we evaluate the quality of ad hoc, developer-

provided application load abstractions by comparing them with em-
pirical measurements obtained from Libra. To quantify the quality
of the abstractions, we report the accuracy with which they cap-
ture the measured load imbalance and the statistical moments of
the measured load distribution, as defined in Section 3.

For additional analysis, we validate application abstractions with
a rank correlation metric. Rank correlation measures how accu-
rately the abstraction ranks each process’s load relative to that of

Table 4: RMSE for Plots in Figure 4
Molecules Barriers Forces

imbalance 15.917 25.769 16.095
kurtosis 0.444 0.079 0.057
rank corr. 0.138 0.008 0.007

other processes. To calculate the rank correlation r of process loads
between the application abstractionM and measured load L as, we
first order all ranks based on the values of the developer-provided
load abstraction and the measured load data. The resulting rank
number for process i is stored in li and mi respectively, as is the
mean rank in l̄ and m̄. We then calculate the correlation with:

r =

n∑
i=0

(mi − m̄)(li − l̄)√√√√ n∑
i=0

(mi − m̄)2
n∑

i=0

(li − l̄)2
(13)

To accommodate tied ranks correctly, we use Pearson’s correlation
coefficient [17]. We now apply our abstraction evaluation method-
ology to ddcMD and ParaDiS.

Figure 4(a) demonstrates how well the ddcMD abstractions cap-
ture the imbalance in the problem. Table 4 shows root mean squared
error (RMSE) of load imbalance and the statistical moments cal-
culated over our experiments. Abstractions based on the number
of molecules and force computation overestimate the imbalance in
the system, while the abstraction based on execution time exclud-
ing time spent at barriers underestimates the imbalance. Underes-
timating the imbalance leads to slower imbalance correction with a
diffusion scheme because it is less aggressive than necessary. Al-
ternately, overestimation pushes the limits of how much the load
can be redistributed at each time step, and thus converges faster, as
long as the overestimation correctly captures the relative loads.

Figure 4(b) shows how the three ddcMD abstractions capture the
kurtosis of the load distributions for each run; Table 4 shows the
RMSE. The abstraction based on the number of molecules does
most poorly, because much of the imbalance arise from imbalanced
neighbor communication, which that abstraction omits.

Figure 4(c) shows the rank correlation between the modeled and
measured distributions for each of our test cases; Table 4 shows the
corresponding RMSE. Again, abstractions based on time and force
computation detect any outliers fairly well, while the abstraction
based solely on the number of particles does worse.

Overall, our analysis indicates that the force computation ab-
straction is the most accurate and, thus, the most suitable for use
as input to the diffusion mechanism. To validate our conclusions,
Figure 4(d) shows the number of steps to converge when the dif-
fusion algorithm uses the three abstractions as input. We use a
threshold of 12% imbalance because, as mentioned, ddcMD’s best
achievable balance is limited by constraints on the shape of Voronoi
cells in its domain decomposition. As predicted, the abstraction
based on the force calculation is the most accurate and thus cor-
rects the load most quickly. The abstraction based on the number of
molecules outperforms the Barrier abstraction, partly because the
former overestimates the imbalance making the diffusion scheme
take more drastic measures and arrive at a balanced state sooner.

Figure 5(a) shows the accuracy with which the ParaDiS applica-
tion abstraction represents its load imbalance. Figure 5(b) shows
the rank correlation of actual and modeled load distributions. The
figures show that the abstraction is somewhat inaccurate, which we
suspected because it does not include certain major phases of the
computation that are captured by the measurements; the develop-
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Figure 5: ParaDiS Model Evaluation

ers only measure the main force computation. Our load model in
conjunction with Libra’s data shows that this fails to capture the be-
havior of communication, collision detection, and remesh phases.
When we compare ParaDiS’s calipers to Libra’s measurements of
only the force computation, the model is quite accurate. Depending
on the problem, these omitted regions comprise up to 15% of the
execution time. We have communicated our findings to the appli-
cation developers, and are working with them to optimize how the
application reports load to the load balancer.

7.2 Cost Model Case Study
In this section, we evaluate how well our model selects the most

effective load balancer for particular imbalance scenarios, and we
further evaluate the net performance improvement achieved using
our model. We use the cost model defined in Section 5 to select the
load balancing algorithm that would lead to the shortest runtime of
our benchmark. We then apply our cost model to the global and
diffusive load balancing schemes in ddcMD.

For our benchmark, we compare total application runtime when
using the following load balancing algorithms:

1. Global: Correcting imbalance during the first time step using
Zoltan’s graph partitioner [9]; modeled by Equation 9;

2. Diffusive: Correcting imbalance at every time step using the
Koradi method [14]; modeled by Equation 10;

3. None: No correction; modeled by Equation 11.

We conduct runs spanning 2 to 64 processes with graphs with be-
tween 8,000 and 512,000 vertices and varying weights and initial
decompositions. Figure 6(a) shows initial imbalance in the bench-
mark runs; we chose these initial imbalance scenarios because they
are representative of some of the application runs we observed.

Figure 6(b) shows that our load model correctly selects the algo-
rithm that achieves the lowest runtime in 87% of the cases, tracing
the curve with highest performance improvement for most of the

experiments. In most cases, our model chooses the global algo-
rithm. This algorithm performs very well in 96% of the cases, but
4% of the time, its high algorithmic and redistribution cost (as mod-
eled by Equation 5) outweighs the performance benefit so it incurs
a 35% performance penalty. In these cases, the diffusive algorithm
outperforms the global algorithm, and our model correctly chooses
it instead. In the only cases where our model does not choose the
correct algorithm, it only suffers a penalty of 5.43% because these
were scenarios where the global and diffusive algorithm performed
within 6% of each other.

On average, using our model can achieve a 49% performance
gain while the next best alternative, the global algorithm, achieves
48% overall improvement in runtime. While the diffusive algo-
rithm performed much worse than either of these overall (averaging
net gains of only 3% over doing nothing), our model is still able to
exploit it in the rare cases where it did outperform the global al-
gorithm, leading to significant gains in these scenarios and more
reliable performance across the board. For these cases, the diffu-
sive algorithm performs significantly better than Zoltan, and using
our model can prevent performance loss for workloads that contain
many such pathological runs.

For evaluating the performance of our model for ddcMD, we
applied it to the input sets also used in Section 7.1; their initial load
properties are demonstrated in Figures 4 (a-c). Our model selected
among the following load balancing algorithms:

1. Global: Correcting imbalance during the first time step using
the Koradi method [14] several times to mimic a method that
corrects the imbalance in one step; modeled by Equation 9;

2. Diffusive: Correcting imbalance at every time step using the
ad hoc Voronoi decomposition method with the Forces ab-
straction evaluated in Sec. 7.1 as input; modeled by Eqn. 10;

3. None: no correction; modeled by Equation 11.

Table 5 shows runtimes of the load balancing algorithms for
several imbalance scenarios in the nanowire simulation. These
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Figure 6: Evaluation of our Load Model on Benchmark and ddcMD

Load on each Process Orig. Diffus. Global Model
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ad

270 267 235 global

Table 5: Sample ddcMD Imbalance Scenarios (seconds)

cases ran on 64 processors organized as a 4x16 process grid. Ta-
ble 5 shows the relative load in the beginning of the simulation,
with darker sections representing higher load and lighter blue rep-
resenting lower load for the particular process. For each of these,
we show the execution time without load balancing, the execution
time with the diffusion algorithm, and the execution time using the
global algorithm. We run the nanowire simulation for 200 time
steps. The diffusion algorithm has a cost (as defined in Equation 5)
of 0.01 seconds per simulation step. The global load balancing
method incurs a one-time cost of 9 seconds. In all cases, our cost
model guides the selection of the appropriate balancing algorithm.

Figure 6(c) shows that our load model correctly selects the best
algorithm in 96% of the cases, tracing the curve of the best perform-
ing algorithm. Because the ad hoc Voronoi algorithm improves
the performance in 82% of the cases with an average performance
gain of 14%, our model correctly selects it in most cases. The Ko-
radi algorithm consistently performs worse and is only selected by
the model in a few cases where its performance improvement out-
weighs the high cost of Koradi; overall, the model achieves a 19%
gain over the Koradi algorithm.

While our experiments are designed to explore a range of values,
a suite of production runs might contain a variety of pathological
cases, and our model will allow for a code to perform well even in
the cases where the otherwise preferred balancing algorithm will
perform poorly. Our model provides a means to select the appro-
priate load balancing algorithm at runtime without developer inter-
vention, correctly selecting the algorithm that achieves the lowest
runtime in up to 96% of the cases, achieving a 19% gain over se-
lecting a single balancing algorithm for all cases.

8. RELATED WORK
Previous work has focused on load measurement and finding

sources of imbalance. Efficient, scalable measurement of load [12,
24] identifies whether load imbalance is a problem for a particu-
lar application. Imbalance attribution [23] provides insight into the
source code locations that cause imbalance. Our load model takes
advantage of existing tools [10] and their measurements, and com-
bines them with knowledge of the application elements and their
interactions. This combination improves understanding of compu-
tational load in terms of application elements.

Many applications that suffer from load imbalance implement
their own load balancing algorithms that are usually tightly cou-
pled with application data structures and cannot be used outside
of the application. Some rely heavily on geometric decomposi-
tion of the domain (i.e., hierarchical recursive bisection [6]). AMR
applications can order boxes according to their spatial location by
placing a Morton space filling curve [16] through the box centroids
to increase the likelihood that neighboring patches reside on the
same process after load balancing [27]. N-body simulations ei-
ther explicitly assign bodies to processes or indirectly assign bod-
ies by assigning subspaces to processes using orthogonal recursive
bisection [2], oct-trees [21, 26], and fractiling [1]. These exam-
ples require application developers to construct an ad hoc model of
per-task load. These abstractions are frequently inaccurate because
they omit a significant subset of computational costs, or they fail
to consider the platform. Our load model enables evaluation of the
application abstractions, thus ensuring that the computation costs
are correctly assigned prior to being used to correct the imbalance.

Another common approach to load balancing uses suites of par-
titioners that work with mesh or graph representations of computa-
tion in the applications (e.g., ParMetis [19], Jostle [25], Zoltan [9]).
Users of these partitioners must supply information about the cur-
rent state of the application and the system, which again must be
application specific. Thus, they may provide inaccurate or incom-
plete information. Further, partitioners do not have sufficient infor-
mation to decide when to load balance, placing a further burden on
the application developer. Our load model enables actionable eval-
uation of load imbalance, and can help a developer decide when to
rebalance and whether the repartitioner is a good balancing algo-
rithm for a particular type of imbalance.

Charm++ [3, 5] provides a measurement-based load balancing
framework that records the work represented by objects and object-
to-object communication patterns. The load balancer can migrate
the objects between process queues. While this approach may work
well when the application developers can decompose their compu-
tation into independent objects, many applications cannot. In other
cases, Charm++ can over-decompose the domain [18] and then bal-



ance load by moving virtual processors from overloaded physical
processors to the underloaded ones. This approach can impose ex-
tra communication overhead for tightly coupled applications. In
more recent work, Charm++ explores hierarchical approaches to
load balancing [28]. Our model’s ability to evaluate the load in an
actionable manner could thus provide a sound basis to choose the
best level at which to balance the load.

9. CONCLUSIONS
We have presented a novel load model based on application ele-

ments and their interactions. Our load model establishes a map-
ping between application elements and computation costs while
maintaining information on dependencies between application el-
ements. Our load model enables an application-independent rep-
resentation of load distribution and can form the basis for a new
generation of generic, yet element-aware load balance tools. We
have shown that our element-aware approach overcomes deficien-
cies of conventional statistical load metrics, which fail to represent
the element interaction information. Using our element-aware load
model, we developed a new set of actionable metrics that accurately
characterize load distribution.

We have demonstrated the effectiveness and versatility of our
load model on several case studies. We have provided a mecha-
nism to evaluate and to contrast several application-provided ab-
stractions. We have used our load model to analyze the load im-
balance in two production applications. Finally, we evaluated the
ability of available load balance schemes to correct imbalance. In
all experiments, adding the application element interaction infor-
mation to the load data was critical to understanding and analyzing
the application’s load behavior.
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