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INTRODUCTION

In a stochastic medium, the material properties at a
given spatial location are known only statistically [1]. The
most common approach to solving particle transport prob-
lems involving binary stochastic media is to use the atomic
mix (AM) approximation [1] in which the transport prob-
lem is solved using ensemble-averaged (homogenized) ma-
terial properties. The AM approximation is conceptually
simple and computationally efficient but may not be accu-
rate enough for a given application. A common determin-
istic model developed specifically for solving linear par-
ticle transport problems in binary stochastic media is the
Levermore-Pomraning (LP) model [1, 2]. Zimmerman and
Adams [3] proposed a Monte Carlo algorithm that is equiv-
alent to the LP approximation.

Thermal radiative transfer problems are characterized
by a radiation field tightly coupled to a participating ma-
terial energy field. Radiative transfer through a stochas-
tic medium can occur, for example, in inertial confinement
fusion targets in which hydrodynamic instabilities at mate-
rial interfaces can produce a turbulent (stochastic) medium.
Miller [4] and Miller et al. [5] first investigated the solution
of binary stochastic medium radiative transfer problems
with a participating medium. They generated benchmark
ensemble-averaged results for a particular binary stochastic
medium radiative transfer problem and compared the accu-
racy of the atomic mix approximation, an adaptation of the
standard deterministic LP model to radiative transfer with
participating media, and an adaptation of a deterministic
model that attempts to incorporate the effects of scattering
in the statistical coupling terms arising in the LP model.
For the binary stochastic medium benchmark problem ex-
amined, the AM approximation generally under-predicts
transmission of radiation and the LP approximation gen-
erally over-predicts transmission.

The implicit Monte Carlo (IMC) algorithm [6] has
become the standard Monte Carlo algorithm for modeling
time-dependent thermal radiative transfer problems. In this
work, we describe the extensions to the IMC algorithm
required to incorporate the Monte Carlo LP algorithm
originally proposed by Zimmerman and Adams [3] for
the solution of linear particle transport problems in binary
stochastic media. We demonstrate numerically that the
proposed IMC algorithm reproduces the deterministic LP
model results obtained by Miller [4] and Miller et al. [5].

LEVERMORE-POMRANING IMC ALGORITHM

We consider thermal photon transport in a binary
stochastic medium described by temporally-stationary and
spatially-homogeneous isotropic statistics. In the absence
of physical scattering and external sources, the grey im-
plicit Monte Carlo equations [6] for material ¢ of a binary
stochastic medium including the Levermore-Pomraning
closure for the coupling of materials [2, 5] are given by:
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Here (2 is the direction of photon travel, ¢ is the time, c is
the speed of light, and o, is the absorption opacity for ma-
terial 4. I; (r,Q,t) is the intensity of radiation at position
7 traveling in direction {2 at time ¢ conditioned on mate-
rial ¢ being present at position r and time ¢. w,;, = aT}
is the equilibrium radiation energy density in material 1,
where a is the radiation energy density constant and 7;
is the temperature in material ¢, and w,, ; is the material
energy density in material . A superscript n denotes a
quantity evaluated at the beginning of the time step. The

ou, ; .
m, Bu;;: , is the
“Fleck factor” in material ¢ that serves to model a portion
of the absorption and subsequent reemission of photons
within a time step At™ as effective isotropic scattering. The
last two terms on the right side of Eq. (1a) arise from the
Levermore-Pomraning model for stochastic medium trans-
port. The term 1 I; can be interpreted as the rate per unit
volume at Wthh photons at position r and movmg in direc-
tion 2 exit material ¢ and enter material j; Ai can then be
interpreted as a probability per unit path length that a parti-
cle in material ¢ enters material j. The other coupling term
has an analogous interpretation and represents a source of
particles entering material ¢ from material 5. Eq. (1b) is a
material energy balance equation for material ¢.

Much of the standard implicit Monte Carlo algorithm
using the atomic mix approximation is unaltered by the in-
troduction of algorithms to model radiative transfer through

quantity fI' = where (3; =



a stochastic medium. A Monte Carlo photon must maintain
an additional identifier describing the material in which the
photon is currently located. This material identifier must be
appropriately sampled (in proportion to the material prob-
ability) when a photon is created from a source or enters
the problem via an external boundary. The IMC equations
are typically solved using a spatial mesh with Monte Carlo
photons advanced over time steps. In addition to the stan-
dard distance to collision, distance to zone boundary, and
distance to census values that must be sampled or com-
puted [6], a new event, the distance to material interface,
d;nt, 1s sampled from the appropriate distribution charac-
terizing the chord lengths in the material. For Markovian
statistics, the chord lengths \; are given by the exponential
distribution
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where A; is the mean chord length in material 7. If the
distance to material interface event is selected, the Monte
Carlo photon is moved to the material interface location
and the material identifier changed to the opposite mate-
rial. An important aspect of the algorithm in a stochastic
medium is to keep the Monte Carlo photon in the same
material when a zone boundary is crossed to preserve the
sampled local material realization. (This portion of the
algorithm must be modified if spatially inhomogeneous
material statistics are present.) In addition, particles
retrieved from census at the beginning of the time step
should remain in the same material in which they were
placed into census at the end of the previous time step
to avoid a dependence of the results on the time step
size. (This portion of the algorithm must be modified if
temporally non-stationary material statistics are present.)
Finally, a material energy balance equation for each
material is required.

NUMERICAL RESULTS

We implemented the Levermore-Pomraning IMC al-
gorithm in an experimental version of the LLNL Kull IMC
package [7]. This IMC package already possessed multi-
ple material infrastructure that aided the implementation of
the modifications required to enable the LP algorithm. The
implementation of the stochastic medium transport algo-
rithm is general (multiple spatial dimensions, multigroup
opacities, parallelism via domain decomposition and repli-
cation), although testing of the capability to this point has
focused on one-dimensional planar geometry grey radiative
transfer problems.

As an initial test of the capability, we simulated the
binary stochastic medium linear particle transport bench-
mark suite of Adams et al. [8]. This time-independent
one-dimensional planar geometry benchmark suite consists
of three spatial domain widths, three material mean chord
length combinations, and three material scattering ratio

combinations (27 total cases). We used a large specific
heat capacity to decouple the transport from the material
for this linear benchmark suite. For the 27 cases simulated,
the ensemble-averaged reflection and transmission values
from our IMC simulations agree with previous LP Monte
Carlo results [9] to typically three to four digits (signifi-
cantly better than 1%). These Monte Carlo LP results also
agree with the deterministic LP results in Ref. [8].

We investigate in more detail here the binary stochas-
tic medium benchmark radiative transfer suite of Miller [4]
and Miller et al. [5]. This one-dimensional planar geometry
benchmark suite consists of a strongly absorbing material
1 (0, = 1000 cm~—!) with smaller mean chord length mixed
with a more weakly absorbing material 2 (o5 = 5 cm™!)
with larger mean chord length. The problem spatial domain
is given by 0 < z < L =0.15 cm. The materials are dis-
tributed according to Markovian statistics (exponentially)
with the mean chord lengths given in Table 1. (We note
that the mean chord length values are listed incorrectly in
Ref. [5]; the correct values given in Ref. [4] are one order of
magnitude smaller.) For the specified mean chord lengths,
the probability of material ¢ being present, p; = ﬁ, is
constant for all mean chord length cases. As a result, the
atomic mix approximation result is the same for all cases.
The initial temperature of the materials is T;,;+ = 30 eV,
and a cosine-distributed source of radiation at 300 eV is
present at z = 0. A special form of the specific heat ca-
pacity is assumed, C,; = 4—‘_‘Ti3, where p; is the mass
density of material ¢, which results in a linearization of
the material energy balance equation. We simulated this
problem using the IMC package with the LP model using
3 x 10% Monte Carlo photons per time step, one thousand
uniformly-spaced zones, and an initial time step of 1071° s
with a maximum time step of 10712 s.

Table 1: Benchmark Problem Parameters

Problem Ay Ao
[cm] [cm]
A 5.0e-3 | 5.0e-1
B 5.0e-4 | 5.0e-2
C 5.0e-5 | 5.0e-3
D 5.0e-6 | 5.0e-4
E Atomic Mix

We plot in Fig. 1 the ensemble-averaged temperature
energy density at the outgoing edge (z = L) of the spa-
tial domain scaled by the initial temperature for each of the
cases simulated. The ensemble-averaged temperature en-
ergy density is computed from the material temperatures
using [5]

(aT*) = poaTy + praly | (3)
where p; is the probability of material ¢ being present, as

described above. The material temperature in the simula-
tion code is zone-centered, so we plot the temperature in



the zone closest to the boundary to represent the value at
z = L. We plot in Fig. 2 the ensemble-averaged transmis-
sion at the outgoing edge (¢ = L) of the spatial domain
scaled by the initial temperature, where the transmission is
given by

(Trans) = </01 wl (L, p,t) du> . 4

The ensemble-averaged transmission is numerically
computed by tallying the energy weight of Monte Carlo
photons escaping the domain at z = L. By inspection,
we observe that the LP IMC results for the exiting
ensemble-averaged temperature and transmission agree
with the deterministic LP results in Refs. [4] and [5]. (The
numerical data from Refs. [4] and [5] is no longer available
and has not yet been reproduced.) We also observe that
the material temperature at z = L and the transmission
computed using the LP IMC algorithm is higher for cases
with larger mean chord lengths and limits in the steady
state to the atomic mix result as the mean chord lengths
decrease. For the smallest mean chord length case, the
discrepancy in the transient temperature and transmission
profiles between the LP model (curve D) and the AM
approximation (curve E) was also observed in Refs. [4] and
[5]. This discrepancy was subsequently investigated using
asymptotic analysis in Ref. [10]. Though not examined
here, the LP approximation is shown in Refs. [4] and [5]
to be more accurate than the atomic mix approximation
for larger mean chord lengths and is more accurate in the
small mean chord length limit during the transient phase.
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Figure 1: (aT*) /aT},;, at z = L versus time (x 1071 s)
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CONCLUSIONS

We described the modifications to the standard
implicit Monte Carlo algorithm for thermal radiative
transfer necessary to implement the Levermore-Pomraning
approximation for binary stochastic media. Simulations
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Figure 2: (Trans)/caT},, at z = L versus time
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of a radiative transfer benchmark suite using the modified
IMC algorithm numerically demonstrate agreement with
deterministic Levermore-Pomraning solutions. In future
work, we plan to investigate additional algorithms with
the aim of improving on the accuracy of the Levermore-
Pomraning approximation for radiative transfer in binary
stochastic media.
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