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Abstract. Cylinder test data shows that the copper wall angle increases with time in a given shot and 
becomes much larger if the wall is at half-thickness. The true velocity is suggested to be that perpendicular 
to the wall, and this brings full and half-wall data in closer agreement. The previously published Gurney-
type equation for calculating the detonation energy density at each relative volume is modified by the angle 
of the wall and the angle of the measuring probe. This provides a unique solution to the energy density that 
does not require empirical coefficients or standards. We derive the length of the cone perpendicular to the 
cylinder surface and we use this as a description of the constant relative volume, creating a unified model 
for the first time. As a standard for full-wall cylinders, we obtain relative volumes of 2.43, 4.50 and 7.12 at 
the scaled wall displacements of 6, 12.5 and 19 mm. For a full-wall copper cylinder at the three points, the 
wall angles average 10.0, 11.0 and 11.6 degrees. Besides Cylinder test data on copper, previously 
unpublished framing camera pictures also measure angles for eight different metals. The angles are a 
function of wall thickness and relative volume but of nothing else, including the type of metal. For 
modeling, our simulation code calculates the wall velocity as seen along a particular probe direction, as this 
is a more realistic comparison to measurements than a zone particle velocity. 
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1 Introduction

An empirical Equation of State used in a computer code needs to be calibrated to the detonation energy 

densities at various volumes of the gas product adiabat expansion. The Cylinder test is perhaps the only 

way to measure these energy densities [1-4]. An annealed copper cylinder containing explosive is detonated 

at one end and the velocity of the expanding metal wall measured. One way to get the adiabat energies is to 

fit a cylinder model with the hydrocode many times, but this is so time intensive that it is rarely done. A 

practical alternative is the Cylinder test, which generate JWL equations-of-state that give the right answer

when inserted into a hydrocode. 

A schematic of the expanded cylinder wall is shown in Figure 1. The bottom horizontal line is the 

cylinder axis with detonation moving left to right. The vertical line is the inner radius R in gray and the 

outer radius R+x in black. The black vertical vector as well represents the vector um, which is the outside 

wall velocity at 0o.  is the angle of the wall to the axis in this section of cylinder.  Experimental 

observations are made at the angle  giving the vector ua. For the streak camera, the angle , is zero but it 

is non-zero for the Fabry or heterodyne velocimetry.



From the beginning, the wall velocities at the scaled displacements of

          
  

�

D 
( R x ) ( Ro  xo )

n
 6 , 12.5 and 19 mm , (1)

were taken as the “official” markers of performance. Above, Ro and xo are the initial explosive radius and 

wall thickness, and R and x are the same at a later time. “Scaled” means reduced to a 12.7 mm-radius (1-

inch dia.) by adjusting distance and time with radius using n, but not velocity.  The scaling parameter n is 

equal to Ro/12.7. The advantage of scaled data is that all Cylinder tests may be directly compared, no 

matter what their size or wall material. In the early days [1-3], the streak wall velocity was assumed

proportional to the detonation energy density. In order to convert, 1.765 g/cm3 PETN was used as a 

standard and the cylinder was run in the codes many times to set the energies.  Then, we turned to the 1943

Gurney pipe bomb model [4-6], which is a cylinder in which the explosive all detonates at once, so that the 

expansion is all-radial, but the walls stay at constant thickness. However, we added a feature that allows the 

walls to thin as they expand. The wall movement displacements are then related to relative volumes, which 

have been 2.2, 4.4, and 7.2 at the three scaled displacements listed in Eq. (1). The resulting JWL’s 

constructed from these three points work must in hydrocodes, which is the ultimate justification. 

Figure 1. Schematic of the cylinder wall. The vector um* is perpendicular to the expanding wall. 

The original inner radius is Ro and the wall thickness xo, so that the original outer radius is Ro + xo.  At

later times, we measure R + x. Assuming constant density in the metal wall, mass conservation leads to the

equation

                          ( R x )2  R2  ( Ro  xo )2  Ro
2.  (2)

We solve for the inner radius R to get 



                        
  
R  R x 2  Ro

2  Ro  xo 2







1 / 2

. (3)

The three wall velocities were converted into three detonation energy densities, Ed, using this Gurney-

type [5,6] equation at each relative volume [4]:
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2. (4)

where  was used for adjustment. Also, m is the initial metal density, and o the initial explosive density.

Two kinds of cylinders were used over 45 years at LLNL. The “full-wall” cylinder has a wall thickness 

1/5th the radius, and this is the current standard everywhere, usually with a 12.7 mm radius. For many years 

the “half-wall” cylinder, with a wall thickness 1/10th the radius and most with a 25.4 mm radius, was used 

to get a higher wall velocity and, hence, more resolution. The transition from streak camera to lasers made 

this expensive version obsolete. The half-wall shots left a legacy of trouble, because the half-wall energy 

densities were always several percent higher than the full-wall. Table 1 in the “No Wall Correction” shows 

the half-wall-to-full-wall multiplier for cylinders of the same radius measured with streak camera. There 

are few such pairs because usually there were radius differences. This effect did not appear to be caused by 

work-hardening, because it appeared regardless of energy, and so an empirical adjustment was used to 

bring the half-wall data into line. 

Table 1. Multiplier for conversion of half-wall to full-wall energy densities at three Cylinder 
displacements in mm. The new calculation closes the gap partially. 

The second problem came with the modern laser measurements of wall velocity, first with Fabry 

interferometry and presently heterodyne velocimetry (called “PDV”)[7]. The streak camera energy was 

always high compared to the Fabry result as summarized in Table 2 with five half-wall shots where both 

methods were used. The Fabry was always set at 7o to the wall whereas the streak camera looked in at 0o. 



A simple angle correction factor was used to adjust Fabry results to the streak camera, which was 

considered the standard [4, 8]. 

Table 2. Comparison of the Fabry-to-streak camera detonation energy densities on shots where both were 
measured. The three Cylinder displacements in mm are listed.

2 New Considerations

The cylinder fans out into a cone as the explosive progressively pushes the wall. Figure 2 shows a 

framing camera picture of a 150 mm-long nickel cylinder, and the expanding sides look straight. In fact, 

there is a slight bend and the angle  increases with time. The laborious way to get this angle from the data 

is to use

              
  
  tan1 ( R x)2  ( R x )1

U s( t2  t1 )








, (5)

where Us is the steady state detonation velocity and t2-t1 is a time interval in the data.

An easier way of getting  is to consider the velocity vectors in Figure 1, all of which we can measure. 

In the two right triangles, we have 

                        

  

cos(  )  um
*

u

sin 
um

*

U s

(6)



where u is the measured wall velocity for streak camera measurements and um* is the wall velocity 

perpendicular to the outside surface. We eliminate um* to get at 0o

                          
  

�

um
U s

 tan . (7)

Fabry and heterodyne experiments measure the particle velocity along the direction of the laser. 

Assuming that the particle velocity can be approximated by um*, we define this velocity as 

                     

�

u f  um
* cos(  ) U s sin cos(  ). (8)

We checked the substitution of Eqs. (7) and (8) instead of Eq. (5). We found that Fabry or heterodyne data, 

with a gap of 20 data points in the derivitive for smoothing, gave agreement to with in +0.2%. However, 

streak data, which has many fewer points, agrees to within +2%.

Figure 2. Framing camera picture of detonating LX-04 in a 150 mm-long nickel cylinder. The detonation 
moves upward, leaving a fan of expanding metal behind. The gas products are beginning to come out of the 
bottom. The expanding sides look straight but they are slightly curved.

The other part of the Cylinder test recipe is coming up with the relative volume that goes with a given 

wall displacement, and these are listed in Table 3. A consistent approach is to use relative volumes are 

based on the geometric relative volume, vg, which is defined as



                         
  
vg 

R2

Ro
2


( R x )2  Ro
2  ( Ro  xo )2

Ro
2

. (9)

In effect, this volume is a thin wafer along R in Figure 1. A problem is that vg varies between full-wall and 

half-wall tubes, but no one wanted to keep two sets of values. 

Table 3. Different types of relative volumes plus measured angles  at the three Cylinder displacements in 
mm. 

Another volume estimate, running along R in Figure 1, extends the perpendicular from the wall back 

to form a cone, which becomes longer as the wall expands. We define a cone geometric volume, vc, equal 

to 

                           
  
vc 

RR
Ro

2


( R x )2  Ro
2  ( Ro  xo )2

Ro
2 cos

. (10)

The tilted R/cos is the “cone radius”, which we shall use later. The problem with this version is that it 

varies with , which requires us to calculate the entire Cylinder test library with 275 full wall entries and 

53 half-wall. The results are listed in Table 3, along with the measured angles. This definition of relative 

volume closes most of the gap between full and half-wall. The angles for each type show no trend with 

detonation energy density or detonation velocity. We shall take the cone full-wall as our new official set. 



3 Experimental Results

While the Cylinder test data is best for deriving wall angles, we have also located parts of the K271 

cylinder framing camera series, which was fired in 1962-1963 by Howard Hornig but never published. 

Figure 2 is from this set. These were 152 mm-long, 25.4 mm radius (1-inch diameter) LX-04 (85% 

HMX/15% Viton A) shots in various metal cylinders, driven by a Comp B booster and P-22 baratol/TNT 

plane wave lens. A grid was inscribed on the cylinder surface to make analysis easier. The detonation was 

photographed with a framing camera at about 1 µs intervals. By digitizing the cylinder edges, we are able 

obtain the edge angles. These angles are not a good as those obtained by streak camera in the Cylinder test 

itself, but this series tried various metals and the result was that copper was picked as the winner, to be used 

in the Cylinder test ever after. The tube dimensions are listed in Table 4. 

Table 4. Metals used in the framing camera shots.

Some framing camera results for copper, nickel and aluminum are shown in Figure 3. About six 

coordinates are taken on each frame and the differential angle is obtained using Eq. (5).  Points can blow 

upward at the left because the gas starts breaking out of the short cylinders and it folds back the ends, but

we do not include these. The right side is the end-of-detonation end, and it rises to a near-constant value. 

The data cannot be taken more than 1-2 µs after complete blow-out at the back end before the angles 

deform often to large values. The results are shown in Table 5 along with the standard full wall cone 

obtained from the Cylinder test. The spread is so large that all the metals effectively show the same result. 



Figure 3. Framing camera edge angles from copper (triangles), nickel (circles) and aluminum (gray 
squares) cylinder shots. The full wall results from the Cylinder tests are the diamonds with error bars. 

Table 5. Average wall angles for various metals from the framing camera study, listed according to the 
three standard cone relative volumes. The copper standard is the full wall cone result from above.

4 Experimental Summary

We have seen that streak camera energies for half-wall are larger than those for full-wall, so the use of 

the velocity um at 0o cannot be correct. It seems more likely that the use of the surface velocity 



perpendicular direction to the wall at angle  will be the true one. If we imagine the Gurney problem with a 

conical tube and instant lighting, the direction of expansion would be the perpendicular. If so, all full-wall 

velocities taken at different probe angles  should be the same if corrected to . Also, the half-wall energy 

densities should be the same as the full-wall if we correct for the wall angle. We therefore change Eq. (4), 

at each relative volume, to
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where

             

  

um
* 2  um cos 2 , streak
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2

, laser
(12)

Note the cosines cancel in (R+x)/R. This says that the measured wall velocities at the angle  are converted

to the smaller velocities at the angle , where  is a function of the relative volume.  Then, the old radius 

R is converted to the cone radius (R+x)/cos. We should not need the empirical coefficient . 

The use of the cone radius means that Eq. (10) for vc becomes the new relative volume. All modern 

Cylinder tests are done with full-wall so that the full-wall cone should become the new standard.

The right side of Table 1 shows that use of Eq. (11) brings the half-wall and full-wall energy densities 

closer together although the half wall numbers still are higher. 

5 Code Model

The main calculational tool is a 2-D ALE hydrocode, which is descended from CALE. In calculations, 

Lagrange zoning is used initially to ensure that the surfaces where measurement occurs have not had mass 

flow away from them and are well defined. To avoid zone tangling, Eulerian relaxation is applied away 

from the surfaces of measurement at later times. Normally, the code directly delivers the particle velocity 

of each zone in the x and y directions, but this is not directly measurable in the laboratory. We need a way 

of looking at the wall at any given angle. 

We first modeled the Cylinder test with 1.765 g/cm3 PETN in copper, the closest we have to a 

standard, using programmed burn at 4 zones/mm. The three relative volume points come after 3.6, 6.6 and 



9.5 µs for the full-wall and 4.7, 8.7 and 12.4 µs for half-wall. The first point for the full-wall may still have 

wiggles in the velocity and require averaging.  The relative volume contours, as determined by the code, 

show many wiggles and the shape is amenable to drawing either the geometric or the cone lines. 

We turn next to the wall velocity measurement. The code establishes a line for the measurement from 

outside down to the initial metal surface with a given angle , which may be 0o. The code looks at the x 

and y coordinates of the wall along the ray as a function of time, and then it differentiates them to get a wall 

velocity. The code calculates the ray-surface intercept x and y values by looping over the surface zones 

until it finds where the ray passes between zones. It then calculates the velocity “surfvel” , u, on the ray. 

The earlier simple angular model noted that a fixed point on the cylinder wall bends outward at about the 

angle /2 [8]. At 0o, the probe sees new zones with higher velocities moving into view. If  is large 

enough, new zones with lower velocities will appear. From Eqs. (6) and (8), it is clear why the streak 

camera velocities are always higher than the laser velocities which have finite . 

We calculated the PETN surfvel wall velocity and wall angle at each of the three Cylinder test points 

and converted them into values along the perpendicular using cos(-). The JWL in Table 6 was 

constructed using full wall relative volumes and an average of all energy densities, which were 6.66, 7.67

and 8.06 kJ/cc. The JWL’s were constructed so that the ratio of the 19 mm to the 6 mm energy density was 

maintained. The calculated and measured wall velocities for full and half-wall cylinders are shown in 

Figure 4. The solid lines are as-calculated at  and should be compared with the solid triangles, which are 

the data. The agreement is good for full-wall and close for the half-wall. The dashed lines are the calculated 

um* for each probe angle. We expect these to be independent of the probe angle, and they are close. 



Figure 4. Calculated copper wall velocities for a dense PETN cylinder. Full-wall results are at the bottom 
and half-wall at the top. The black triangles are the measured values converted to um*. Solid lines are as-
calculated from simulations and dashed lines are corrected to togiveum.   

Table 6. JWL parameters for dense PETN, which is our best standard. GPa units are used.  



6 Conclusions

We have derived an analytic equation that predicts detonation energy densities suitable for code 

models without the need for empirical adjusting coefficients or standards. Also, the derivation of the 

relative volumes is now consistent with the energy density calculation. Finally, a correction for the position 

of the measuring probe is also present. This method brings half-wall data closer to full-wall without 

arbitary corrections, and the standard deviation of data sets dominated by streak cameras, has dropped from 

+3% to +2% or less. All PETN data agrees to +1.5%. Further confirmation of accuracy to +1% comes from 

comparison of HMX data with historical JWL’s, which were previously obtained by repetitive code fitting 

runs. 

The work pushes the Cylinder test into realms where the data starts to break down. All the famous runs 

with dense PETN and various HMX’s, which are largely represented by 40-year-old streak camera data, 

should be repeated with modern laser methods. 

Symbols

A high pressure JWL coefficient (GPa)
B medium pressure JWL coefficient (GPa)
C low pressure JWL coefficient (GPa)
D scaled “official” wall displacement- one of three (mm)
Ed detonation energy density (kJ cm-3)
Eo total energy density in JWL (kJ cm-3)
n scaling factor (dimensionless)
Pcj C-J pressure from JWL (GPa)
R  explosive radius at time t (mm)
Ro initial explosive radius (mm)
R1 high pressure exponent in JWL (dimensionless)
R2 medium pressure exponent in JWL (dimensionless)
R cone radius (mm)
surfvel   wall velocity calculated by the code (mm µs-1)
t2-t1 time interval in the data (µs)
u metal wall particle velocity at angle  (mm µs-1)
uf       outer surface metal wall particle velocity at angle (mm µs-1)
um outer surface metal wall velocity at angle 0o (mm µs-1)
um* outer surface metal wall velocity at angle  (mm µs-1)
v relative volume (dimensionless)
vc cone relative volume (dimensionless)
vg geometric relative volume (dimensionless)
x wall thickness at time t (mm)
xo   initial wall thickness (mm)
 probe angle referenced to the axis perpendicular (degrees)
cj+1  Gruneison way of describing C-J point (dimensionless)
metalwallangle referenced to the cylinder axis (degrees)



o initial explosive density (g cm-3)
m initial metal wall density (g cm-3)
 low pressure coefficient in JWL (dimensionsless)
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