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Mesoscale simulations of particulate flows

with parallel distributed Lagrange multiplier

technique

Y. Kanarska ∗, I. Lomov, T. Antoun

Lawrence Livermore National Laboratory, PO Box 808, L-231, Livermore, CA

94551

Abstract

Fluid particulate flows are common phenomena in nature and industry. Modeling

of such flows at micro and macro levels as well establishing relationships between

these approaches are needed to understand properties of the particulate matter.

We propose a computational technique based on the direct numerical simulation of

the particulate flows. The numerical method is based on the distributed Lagrange

multiplier technique following the ideas of Glowinski et al. (1999). Each particle is

explicitly resolved on an Eulerian grid as a separate domain, using solid volume

fractions. The fluid equations are solved through the entire computational domain,

however, Lagrange multiplier constrains are applied inside the particle domain such

that the fluid within any volume associated with a solid particle moves as an in-

compressible rigid body. Mutual forces for the fluid-particle interactions are internal

to the system. Particles interact with the fluid via fluid dynamic equations, result-

ing in implicit fluid-rigid-body coupling relations that produce realistic fluid flow

around the particles (i.e., no-slip boundary conditions). The particle-particle inter-

actions are implemented using explicit force-displacement interactions for frictional

inelastic particles similar to the DEM method of Cundall et al. (1979) with some

modifications using a volume of an overlapping region as an input to the contact

forces. The method is flexible enough to handle arbitrary particle shapes and size

distributions. A parallel implementation of the method is based on the SAMRAI

(Structured Adaptive Mesh Refinement Application Infrastructure) library, which

allows handling of large amounts of rigid particles and enables local grid refinement.

Accuracy and convergence of the presented method has been tested against known
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solutions for a falling sphere as well as by examining fluid flows through station-

ary particle beds (periodic and cubic packing). To evaluate code performance and

validate particle contact physics algorithm, we performed simulations of a represen-

tative experiment conducted at the University of California at Berkeley for pebble

flow through narrow opening.

1 Introduction

Particulate flows occur in a wide range of industrial applications and in nature. Clearly, it’s

difficult to have one single simulation method that can cover all length and time scales. Currently

there is a hierarchy of methods that can cover different length and time scales with different

levels of details (Zhu et al., 2007).

When the computational grid size is much larger then particle size usually a two-fluid (or

multiphase) approach is used. The computational fluid dynamics two-fluid approach is often

associated with methods described in Gidaspow (1994) and various implementations are avail-

able, such as the commercial code FLUENT (FLUENT, 2001) and the DOE/NFTL code MFIX

(Syamlal et al., 1993). These two-fluid codes usually utilize a granular-kinetic-theory based con-

stitutive model to represent the ”fluid” comprised of fluidized particles, and empirical two-way

coupling relations between fluid and particles. An advantage of the multi-fluid model is that in

principle it can be used to compute any multiphase flow regime. However the effective use of

these models strongly depends on the constitutive or closure relations for the solid phase and

momentum exchange between phases. For two-phase systems comprised of billions of particles

(like, for example, most fluidized-beds or pneumatic-transport systems for fine particulates) such

continuum models are the only computationally viable simulation methods available. In fact,

development of a general theory to correctly represent granular flow with fluid as a continuum

is still a challenging research area.

If the cell size is larger than the particle size, a combined CFD-DEM coupling approach

is used. In this approach, the motion of individual particles is obtained by solving Newton’s

equations of motion, while the flow of continuum gas is determined by the CFD on a compu-

tational cell scale. A variety of continuum fluid codes, coupled with discrete-element-method
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(DEM) particles, are utilized by researchers around the world in commercial codes as well as

codes developed by university researchers. An overview of these methods can be found in Zhu

et al. (2007). The algorithm relies on the parameterizations of drag terms similar to the Ergun

equation (Ergun, 1952) for static packed beds, or the Wen-Yu equation for moving beds (Wen

and Yu, 1966). While some questions regarding parameterizations of drag terms are still remain-

ing, this approach might be suitable for simulations of intermediate-scale system (about million

of particles) and promises to be a very powerful tool. However, there are some restrictions of

the algorithm and the CFD-DEM coupling algorithm since it assumes that the cell size in the

CFD model should be larger than the particle size. This may result in using a fairly coarse mesh

in the areas (nozzles, openings) where only few particles across an importan geometric feature

are considered as well as placing severe restrictions on the maximum particle size that can be

included in simulations.

And, finally, if the cell size is smaller than the particle diameter the direct numerical sim-

ulations, resolved in the particle and fluid domains, can be applied. In this case there are no

assumed drag terms. Drag effects and the flow around each particle are explicitly resolved. And

particle-particle interactions are modeled, again, using a DEM-like approach. The method has

no assumptions for drag terms and can be used to improve fluid-coupling terms and derive clo-

sure parameterizations that can represent the effective coarse-grained interactions in the larger

scale models just mentioned above. Moreover, rapid granular flows demonstrate lack of scale

separations which render local closure laws inapplicable in many applications and will require

multiscale approach if it is not feasible to use a high resolution grid everywhere.

A variety of fixed-grid and mesh-free methods have been utilized for simulation of fluid-

particle systems. We have selected the Lagrange multiplier technique following the ideas of

Glowinski et al. (1999) and Patankar et al. (2001) to model fluid-particle systems. The advantage

of the method is that its finite element formulation permits the use of a fixed structured grid.

This eliminates the need for remeshing the domain, a necessity in the unstructured grid-based

methods. The objective of this paper is to present an efficient approach based on the advantages

of utilization of a stationary Eulerian grid with adaptive mesh refinement (AMR). A parallel

implementation of the method is based on the SAMRAI library, which allows handling of large

amounts of rigid particles and enables local grid refinement in the areas where higher resolutions

are needed. The paper is organized as follows. Introduction is presented in the first section.

Numerical method, governing equations and algorithm are described in section 2. Section 3

describes code validation against experiments and empirical data. The final section presents

conclusions.
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2 Numerical Model

The method we used is based on the Distributed Lagrange Multiplier (DLM) technique

of Glowinski et al. (1999) and Patankar et al. (2001) that was originally developed to study

particulate suspension flows. The code uses a stationary Eulerian grid. Particle positions are

treated as Lagrangian variables. The particle domain is explicitly resolved on the Eulerian

grid using solid volume of fractions. The idea of the method is to solve fluid equation in the

entire domain, and then correct the flow inside the rigid domain using Lagrange multipliers.

The original works are based on elastic collision forces that prevent particles from overlap. We

extended this approach by incorporating DEM methods for inelastic, frictional contact forces.

The governing equations are solved using a fractional-step scheme for time discretization. The

fluid equations are solved in the entire computational domain at the first stage. It results in

a provisional divergence-free intermediate velocity field. At the next stage, the constraint of

rigid motion (in the form of Lagrange multiplier) is applied in the solid domain. A rigid body

motion is imposed by constraining the deformation-rate tensor within the particle domain to be

zero. The code is parallelized using SAMRAI framework Hornung and Kohn (2002) developed

at LLNL. This framework allows to track individual particle position on multiple cpu as well as

do refinement resolution on structured grid near the areas of interest (e.g. solid-fluid interfaces,

maximum vorticity zones etc.).

2.1 Collisionless governing equations

The idea of the Lagrange multiplier algorithm is based on the formulation of Glowinski et al.

(1999); Patankar et al. (2001); Sharma and Patankar (2005). The particle domain is denoted as

P (t), where ∂P is the interface between the particle and the fluid. F is the fluid domain that is

not shared with the particle. The entire computational domain that includes both the fluid and

the particles is denoted by F
⋃

P . The governing equations in the fluid domain can be written

as:

ρ

(

∂u

∂t
+ (u · ∇)u

)

= ∇ · σ + ρg + f , in F
⋃

P (1)

∇ · u = 0, in F
⋃

P (2)

4



D[u] = 0, in P (t) (3)

D[u] · n = 0, on ∂P (t) (4)

u = us, in P (t) (5)

where u is the fluid velocity, p is the pressure, µ is the fluid viscosity, ρ is the density that is

equal to ρf in the fluid domain and equal to ρs in the particle domain, g is a body force, n is a

unit normal on the particle surface. The rigid body velocity inside the particle us is represented

as

us = U + Ω×r, (6)

where U and Ω are the translational and angular velocities of the particle, respectively, and r is

the position vector of the point with respect to the particle centroid. Force f that appears in the

right hand side of the momentum equation is non-zero only in the particle domain and arises as

a result of the rigid body motion constraint in the particle domain. D[u] is the deformation-rate

tensor defined as

D[u] =
1

2
[∇u + ∇uT ] (7)

The stress tensor is then given by:

σ = −pI + τ, (8)

where I is the identity tensor, p is the pressure and τ is the viscous stress tensor given by

τ = µD[u], (9)

for a Newtonian fluid, where µ is the viscosity of the fluid. The particle domain in this formu-

lation is treated as a fluid with an additional constraint (Lagrange multiplier) to impose the

rigid body motion in such a way that deformation-rate tensor D[u] within the particle domain

is zero. It should be noted that the representation (6) for the solid velocity is sufficient and

necessary condition for validity of (7). Stresses can develop in the rigid fluid domains, but the

only displacement allowed are strain-free translations and rotations. The numerical algorithm

to solve the fluid-particle equations of motion is presented in the next section.
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2.2 The numerical algorithm

The integration of governing equations is done using fractional time stepping approach at

time interval [tn, tn+1]. In the present algorithm, the velocity and pressure are cell-centered

quantities. The velocity is defined at integer multiplies of ∆t, whereas the pressure is de-

fined at half-timesteps. The system of equations (1)-(3) with boundary conditions (3)-(5) are

solved numerically using operator-splitting technique that combines incompressibility condition,

advection-diffusion as a first step; the constraint of rigid-body motion in the particle domain

and the related distributed Lagrange multiplier technique as the next step.

First step: Solve Navier-Stokes equations in the entire domain. At the first step we solve fluid

equations of motion in the entire computational region and satisfy the provisional divergence-free

intermediate velocity field ũn+1 using implicit pressure projection technique.

ρ
ũ− un

∆t
+ ∇pn+1/2 = Rn+1/2, (10)

∇ · ũ = 0, (11)

where Rn+1/2 represents all terms on the right-sides of momentum equations except the pressure

gradient terms. An unsplit second-order Godunov procedure is used to approximate the nonlinear

advection term that appears in the momentum equations using both velocities defined at the

centers of the Cartesian grid as well as velocities defined at the cell faces. The MAC projection

method Bell et al. (1991) that corrects divergence of advection velocity along with MUSCL

advection scheme of Colella et al. (1985) are used to advect fluid. The Crank-Nickolson scheme

is used to compute diffusion terms. A divergence constraint is satisfied using an approximate

pressure projection method of Almgren et al. (1996). The density is computed as ρ = ρsφ +

ρf (1−φ), where φ is the solid volume fraction which is equal to 1 in the solid domain and equal

to 0 in the fluid domain.

Second step: Rigid body projection in the particle domain. At the next stage, the constraint

of rigid body motion (in the form of Lagrange multiplier) is applied in the solid region. The

particle velocity us in a given cell is splitted in translational U and rotational Ω parts as

us = U + Ω × r, (12)

where r is a vector which connects a particle centroid and a center of the considered grid cell.

Particle velocities U and Ω are computed by integration of the provisional velocity field ũ in

the solid domain as
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MU =
∫

P
ρsũ dV, (13)

IpΩ =
∫

P
r × ρsũ dV, (14)

where M is the mass of a particle and Ip is the moment of inertia of a particle.

The velocity field un+1 is then updated in the solid, fluid and mixed (where both solid and

fluid are presented) domains as



























un+1 = us, in solid cells

un+1 = ũ, in fluid cells

un+1 = φus + (φ − 1)ũ, in mixed cells

(15)

where φ is the solid volume of fraction, computed based on the particle position at time n. This

step could be considered as finding force f that modifies provisional velocity field ũ such that

the final velocity field un+1 satisfies rigid body motion constraints. Therefore the force f can be

defined as

un+1 = ũ +
f∆t

ρ
. (16)

Also as it was mentioned before the final velocity should provide zero deformation-rate tensor

as

D[un+1] = 0. (17)

Since in the method considered here the final velocity in the solid domain is known at this step

and it is equal to us, condition (17) is satisfied automatically and the final velocity is calculated

from equations (15) directly. This approach is similar to one implemented in Patankar et al.

(2001). In other versions of the Lagrange multiplier method (Veeramani et al., 2006; Glowinski

et al., 1999) the governing equations (1)-(3) include equations of motion of each individual

particle to find U and Ω. Therefore the resulting equations are solved iteratively.

Third step: Apply particle collision forces. If the particle Reynolds number and solid volume

fraction are low, particles do not interact and Un+1 and Ωn+1 defined at the previous step

are the final velocities that describe velocity field inside the particle. When the concentration

of particles is high enough they begin to interact with each other. If the viscosity of fluid is

high it would prevent particles from colliding each other. But if fluid forces are insufficient to
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prevent particle contacts, the separately applied collision forces Fn+1 similar to DEM models

(Cundall et al., 1979) are used in our code. It’s based on visco-elastic soft collision model. Since

we resolve the particle domain on stationary Eulerian grid we compute collision force in each

cell of the overlapping region and then integrate them over the entire overlapping volume. This

is the main difference with classical DEM approach Cundall et al. (1979). We will talk more

about calculation of collisional force Fn+1/2 in a separate section. Once this force is calculated,

the final particle velocities (translational and rotational) are updated using velocity field Ũ and

Ω̃ from previous time step as:

Un+1 = Ũn+1 + Fn+1/2∆t, (18)

Ωn+1 = Ω̃n+1 + [r × Fn+1/2]∆t, (19)

where Ũn+1 and Ω̃n+1 are particle velocities computed at the previous stage.

Fourth step: Update particle position: Explicitly update particle position Xn+1 by the follow-

ing procedure:

Xn+1 = Xn +
Un+1 + Un

2
∆t, (20)

where X is the position of the particle centroid. If a particle or a solid body is represented as

polyhedron with vertex coordinates Xv
n+1, their positions are updated as

Xv
n+1 = Xn + [Ωn+1 × r], (21)

Once the vertex positions are defined the volume fractions for solid bodies are computed and

used for computations at the next time step.

2.3 Treatment of collisions

Different collision models have been developed for the coupled solvers for the fluid and solid

systems. These collision models aim to capture the collision process of solid particles by in-

troducing short-range forces as additional body forces acting on the particles. Treatment of

collisions includes contact detection algorithm and applying collision forces to prevent particles

from overlapping. In the present work the contact is detected in the region where two particles

overlap based on the volume of fraction function φ. The condition φ > 1 means that more

than one particle exists in the given grid cell, therefore additional collision force is applied in
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each grid cell where particles overlap. While this approach would not be optimal for ”classical”

DEM algorithms, it is a natural fit for fluid-particle problems. Moreover, it easily extends to

non-spherical objects which are hard to accommodate in a typical DEM approach. The collision

force acts along the normal (Fn-component) as well as the tangential direction (Ft-component)

at the point of contact between two particles. For spherical particles, the normal and tangential

directions are defined by the line joining the centers of two colliding particles and two lines

perpendicular to it, respectively. The components of the normal collisional force is computed in

each cell where particles overlap and then integrated over the overlapped region as

Fn=-
∑

ijk

(knVijk + dnVijkv
)
n/mp (22)

where Vijk - volume of cell ijk in the overlapped region, vn - relative velocity between the

two interacting particles in the normal direction, kn- normal spring constant (or stiffness), dn -

damping coefficient in the normal direction, mp - particle mass

The tangential component is computed according to a Coulomb friction law as

Ft =























∑

ijk
dtVijkvt

−µf |Fn| t,

, |Ft| ≤ µf |Fn|

|Ft| > µf |Fn|
(23)

where µf is the friction coefficient, and dt is the damping coefficient in the tangential direction.

The important advantage of the present collision method that it is flexible enough to handle

arbitrary particle shapes and size distributions and doesn’t require extra parameterizations

for fluid-particle interactions. The shear friction forces discussed above can allow only slow

movement in the tangent direction, not stop or reverse it. These results are inadequate for

applications that require truly static friction, such as heap formation or angles of repose. In

such situation, there is a threshold force below which the grains do not move at all, opposed

by static friction. However, implementation of even a simple history-dependent threshold rule is

algorithmically complicated and will be a subject of future work. Thus the applications in this

paper is limited by the visco-elastic collisional model described above.
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2.4 Parallelization

The code has been built on top of the SAMRAI (Structured Adaptive Mesh Refinement)

Hornung and Kohn (2002) library developed at LLNL. SAMRAI is a general object-oriented

software infrastructure for implementing parallel scientific applications that employ structured

adaptive mesh refinement. The method uses a hierarchical structured grid approach first devel-

oped by Berger and Oliger (1984). In particular, AMR is based on a sequence of nested grids

with successfully finer spacing in both time and space. Increasingly finer grids are recursively em-

bedded in coarse grids until the solution is sufficiently resolved. An error estimation procedure

evaluates where additional refinement is needed and grid generation procedures dynamically

create or remove rectangular fine grid patches as resolution requirement change (Figures 1, 15).

Automatic regridding in time is based on Richardson extrapolation and in space on detection

of gradients (velocity, scalar etc) in the solution. SAMRAI provides the backbone of our imple-

mentation, managing the locally-refined Cartesian grid patch hierarchy with both the Eulerian

and Lagrangian data points defined on the hierarchy. It also provides facilities for performing

adaptive regridding, load balancing, and parallel data communication. To store and manage

the Lagrangian data points a version of the SAMRAI IndexData patch data type is used. For

a general-purpose solver library, we have chosen PETSc Balay et al. (2004), developed at Ar-

gonne National Laboratory. This suite solves large-scale linear and nonlinear equations. We

used preconditioned Krylov methods provided by this library. A parallel data managing and

implementation is done similar to algorithm described in Griffith et al. (2001).

3 Validation against empirical data and experiments

3.1 Fixed particle beds

Flow behavior through packed beds of spheres or other porous-media-like structures are of

crucial importance in industry and nature. The determination of pressure drop through a packed

bed as a function of fluid flow rate, geometrical constrains of the bed and physical properties of

bed material is very critical, for example, in hydraulic and pneumatic devices. The well-known

empirically derived equation used for that purpose has been proposed by Ergun (Ergun, 1952)
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based on experimental measurements:

∆p

L
= A

(1 − ε)2

ε3

ν

D2
p

u + B
(1 − ε)

ε3

ρf

Dp
u2, (24)

where ∆p is the pressure drop through the packed bed, L is the bed length or height, ε =
Vf

V

is the bed porosity, where Vf is the voids volume, V is the total volume, u is the superficial

velocity at the exit of bed, ν is the fluid dynamic viscosity, and Dp is the particle diameter. Ergun

equation (24) incorporates momentum loses due to viscose effects (first term in (24) which is

important in laminar regime) and inertia effects (the second term in (24) which dominates in the

turbulent regime). Ergun equations is often used in more general form by introducing a friction

coefficient Λ which is defined as

Λ = A + BReC =
∆p

L

ǫ3D2
p

(1 − ǫ)2νu
, (25)

A standard form of Ergun equation uses the values of empirical constants A = 150, B = 1.75,

C = 1. However many other studies have been performed and published to check the appropriate

choice of the empirical constants A,B and C in (24). Some authors proposed values in the range

150−200 for A and 1.7−4.0 for B as well as functional forms for these coefficients that depends

on both porosity and Reynolds number, see overview in Plessis (2001). Vortwek and Brunn

(1994) proposed to use values A = 181, B = 2.01 and C = 0.96 to estimate the pressure drop

in randomly arranged packed beds. Franzen (1979) found that for A = 164.97, B = 1.976 and

C = 0.9, equation (25) gives good estimate of the pressure drop for regularly arranged spheres in

the cubic packing. The reason for variation in the constants was determined as the variations in

particle geometry and orientation, as well as macroscopic properties of the packing. It should be

noted that Ergun equation was derived for densely packed beds, and is not expected to be valid

for high void ratios. For that range (when porosity is smaller than 40 %), normally the Wen and

Yu equation (Wen and Yu, 1966) is used. However this equation significantly underpredicts the

drag force at higher Reynolds numbers (Beetstra et al., 2007). Also the transition from Ergun to

Wen and Yu equation is not a smooth function. For moving particles the situation becomes even

more complicated since particles begin to interact with each other and may dissipate additional

energy that affects the pressure drop. Therefore detailed mesoscale simulations that resolve the

flow around each particle are needed to predict flow characteristics such as the pressure drop

and volumetric flow rates in these systems.

As the first step, we validate our code against experimental and empirical data for both

randomly and regulary arranged packings in different flow regimes and Reynolds numbers. First
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we consider configuration that consists of the monodisperse spheres of radius R = 0.002m

arranged in the cubic packing. We consider two flow regimes with Reynolds numbers Re = 18

and Re = 900, where Reynolds number is defined as Re =
ρfDpu

2

ν(1 − ε)
. A constant inflow velocity

field of u = 0.5 m/s was prescribed at the left boundary and the open boundary conditions

are set up at the right boundary. Other boundaries are chosen to be periodic. The porosity is

ε = 47.64%. Figure 2 shows values of friction coefficient Λ in different data sets that include

mentioned earlier Ergun (1952); Franzen (1979); Hovekamp (2002); Martin et al. (1951); Vortwek

and Brunn (1994). For small Re numbers, difference in the data sets for both random and cubic

packings is small (Figure 2a). For high Re numbers, there is a spread of more than half an

order magnitude for the friction coefficient in existed empirical and experimental data (Figure

2b). Figure 3 shows flow patterns at different resolutions for Re = 19. We use Richardson

extrapolation f(h) = fexact + Chp to estimate the convergence order using computed values of

f(h). Here f is calculated parameter (pressure drop in our case), h is some measure of grid

spacing, C is a constant, and p is the order of convergence. Based on the results of simulations

we found that the convergence rate is close to the second order: 1.86 for Re = 18 and 1.8 for

Re = 900 (Figure 4 and Figure 6, respectively). However the low Reynolds number flow requires

less resolution to get converged solution then the high Reynolds number flow. About 48 cells

per particle are needed to describe flow behavior for Re = 18. In the case of Re = 900, the

resolution needs to be twice higher to get the same order of error. This is mainly because of

the flow separation and turbulent boundary effects that require finer grid resolutions to describe

them adequately (Figure 5). In these simulations we do not use any turbulent model. However

in future studies we may need to incorporate turbulent effects and additional drag terms to be

able to simulate high Re number flow regimes with relatively modest resolution. Another option

to improve the convergence rate is to revise the interpolation scheme for the velocity field in

the mixed cells in (15). The grid resolution needed for converged solution depends on particular

configuration and porosity. For densely packed beds, the flow characteristics are constrained by

the maximum resolution available in the void space between particles. Therefore fine-resolution

simulations are required to describe flow effects through these small void spaces for high Re

numbers. The overall agreement with available data is very good (Figure 2).

The next example is flow in a periodic domain of randomly packed spheres of radius R =

0.11283m. Re number in this configuration is about 900 and the solid packing ratio is 60%. A

superficial velocity is specified as u = 0.008 m/s. The periodic random distribution of spheres

is generated using Donev et al. (2005) algorithm. The pressure drop through the packed bed

is illustrated in Figure 7. We perform a numerical analysis to estimate the convergence rate of
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numerical solution. The error in the pressure drop decreases with approximately second order

when refining the mesh (Figure 8). The difference for converged solution with Ergun equation

(24) for coefficients A = 150 and B = 1.75 is found to be 7%. This is quite reasonable agreement

since the considered configuration with given porosity of 40% is a good representaion of the cases

investigated in the experiments by Ergun (1952). It should be noted that for loosely packed beds

with porosity larger than 40% different random configurations may produce different results and

deviations from Ergun values, this is discussed in Freund et al. (2003). In the next section we

show how the local inhomogeneities in the local porosity distribution of randomly packed bed

with the same global parameters (porosity, particle size) may influence the flow and transport

properties.

3.2 Anisotropic effects in fixed beds

It is mentioned in section 1 that Ergun equation (24) is widely used as a drag parametrization

in the coarse grid models. But it includes only averaged properties of the packed bed such as

porosity. Thus, pressure-drop correlations, using only the mean porosity as system describing

parameter, can give an approximate range of the pressure drop in packed beds, but do not

account for the influence of the local structure on the global pressure drop and permeability.

However, in many applications it is important to know how the local anisotropic inhomogeneities

in the packing could affect averaged properties of the packed bed and flow characteristics. These

local inhomogeneities in the granular medium can appear, for example, during dynamic loading

as a result of homogeneous deformation with associative dilatancy or localized shear bands with

even higher void ratios. Anisotropy can be observed also in the improperly fixed packings leading

to the formation of bypass channels. We generate two different configurations of randomly packed

spheres with the same porosity of 42 %. In the first configuration (configuration 1) the anisotropy

in packing in vertical plane is introduced, by removing few particles from initial randomly packed

structure with porosity 36% (Figure 9a). The second configuration (configuration 2) is produced

in the similar way by removing few particles in the horizontal plane (Figure 9b). We estimate the

pressure drop in both anisotropic configurations and compare it with the pressure drop in the

regular random packing with the same porosity of 42%. Figure 10 shows the computed pressure

drop in each configuration. It is found the pressure drop in the configuration 1 is almost identical

to the pressure drop in the regular packing with the same porosity of 36%. The maximum

difference in the pressure drop between these two cases is found to be 22 % (Figure 10). Based

on the averaged packing densities in the granular bed (Figure 11) we represent the packed bed
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in configurations 1 and 2 as a combined medium that consists of two layers of granular material

with different porosities and volumes (Figure 12). The first layer has width 0.7 m and porosity

36% and the second layer has width 0.3 m and porosity 56%. For configuration 1 these layers

are connected in parallel, whereas in configuration 2 they are connected in series (Figure 12).

Analytical estimations from Ergun equation (see APPENDIX) give us normalized pressure drop

0.0079m2/s2 for configuration 1, about 0.0118m2/s2 for configuration 2, and 0.0089m2/s2 for

the regular packing with porosity 42%. Therefore the analytical estimation from Ergun equation

predicts that the pressure drop in configuration 1 decreases by 11% and increases by 32% for

configuration 2 from the pressure drop estimated for regular packing. The difference between

directly calculated results and analytical estimations from Ergun equation can be explained by

non-linear effects in the flow behavior at the grain scale. This highlights once again, importance

of the local effects in packing on the global characteristics of the packed bed.

3.3 Falling sphere

We further validate our code by investigating the sedimentation of a cylindrical particle in a

Newtonian fluid. We consider sedimentation of a single two-dimensional disk with radius 1cm

in a channel 0.2mx0.4m. The fluid density is 2000kg/m3 and the particle density is 2500kg/m3.

The various Reynolds number dependent flow regimes are obtained by varying the fluid dynamic

viscosity ν. We consider three cases here with ν = 3, 0.1 and 0.002 Pas. Gravity acceleration

9.8m/s2 acts in a negative y direction. The simulation is started at t = 0s by dropping a particle

at the center of the channel at 0.33cm depth. Different grid resolutions are considered ranging

from 4 up to 256 grid cells per particle diameter.

Figure 13 shows vertical velocity snapshots and vorticity contours for Re = 0.2, Re = 100

and Re = 2000 correspondingly. Vorticity contours are plotted as an illustration of the different

flow regimes which depend on the Re number. For the small Re number the flow is laminar

and the disk reaches its terminal velocity relatively quickly (Figure 13a). With increasing the

Re number the vortex is forming behind the particle. For high Re numbers the vortex shedding

occurs that lead to the deviation of the trajectory of the particle (Figure 13c). We found that the

vortex shedding begins at Re = 400 that agrees well with experimental and theoretical findings

(Achenbach, 1974).

We also investigated the convergence rate for different Re numbers. The results agree well

with the previous finding for the fixed array of spheres considered in the previous section.
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Whereas for small Re numbers, only few cells per particle diameter (around 6) are required to

get converged solution, for high Re numbers, about 32 grid cells are needed to represent the

flow around particle and drag effects correctly (Figure 14, the right panel). Figure 14 shows the

patch structure for a numerical solution with adaptive mesh refinement (AMR). The refinement

is chosen in zones with maximum vorticity. An adaptive computation employs a total of two

levels, with a refinement ratio of 2. A reasonable code performance and adaptive speed up with

factor of 3.2 is achieved in this example.

3.4 Particle flow through opening

The examples considered in the previous sections focused mainly on the flow through sta-

tionary packed beds. When the particles are not so constrained, the motion of the fluid leads

to particle motion, and the moving particles interact with each other as well as with the fluid

leading to complex flow patterns that depend significantly on the packing density and particle

contact physics. For highly viscous fluids, viscous forces could prevent contact between parti-

cles, but for most applications, these forces are insufficient to prevent particle contacts. As in

was mentioned in (2.3) to account for particle-particle interactions, separately applied collision

forces similar to those used in the distinct element method (DEM) (Cundall et al., 1979) are

implemented in the code. To validate the code performance and the particle contact physics

algorithm, we performed simulations of a representative experiment conducted at UC Berkeley.

The experimental configuration consists if 2500 polypropylene pebbles, initially suspended in

a vertical water column that were discharged through a narrow opening. The pebble reservoir

was 40.6cm in diameter, while the diameter of the narrow opening has a diameter of 10.2cm. A

conical region, with a 45 degree cone angle, connects the pebble reservoir to the narrow opening.

The surface of the cone has been perforated to allow back flow of water into the reservoir as

the pebbles were evacuated. The pebbles were all the same size, with a diameter of 2.5cm and a

density of 0.843g/cm3. The bottom boundary of the container is closed, and a physical barrier

is placed in the narrow opening to inhibit pebble motion such that, at the beginning of the

experiment, both the pebbles and water are at rest.

The experiment is initiated by removing the physical barrier, thus allowing the pebbles to

move upward through the water column. As the pebbles flow out of the lower reservoir, the

evacuated volume is filled with water flowing into the reservoir through the porous conical

section. In the simulations, the holes in the conical section were not modeled explicitly. Instead,

the effect of the holes was taken into account by allowing the conical surface to physically
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constrain pebble motion while at the same time be transparent to fluid flow.

The comparisons between simulation results and experimental data are presented in Figures

16, 17 and 18. The overall agreement is very good, though there are some discrepancies. Initially,

simulation show that the pebbles move faster in the central region, and slower near the wall

with some of the pebbles near the wall moving in a downward direction (see Figure 16a). This

can be explained by the fact that the counter fluid flow is not distributed uniformly through

the cone section. There could be several reasons for this behavior. One reason may be that the

holes in the conical section were not modeled explicitly. Another, more likely reason, is that

our initial packing was not ideally conformed to the boundary of the container, thus leading to

higher porosity near the skin of the container than in the interior of the pebble bed, thus leading

to higher fluid flow rates near the outer boundary of the cylinder. However, it appears that those

local fluctuations do not affect the integral characteristics of the flow field. A comparison of the

simulated evolution of the bed bottom position with that observed during the experiment is

shown in Figure 17. The bed bottom position was taken as the lowest pebble position in the

central cylindrical slice of radius 5.1cm. The averaged pebble mass flow in the bed region was

about 4kg/(m2s) and about 60kg/(m2s (Figure 18) in the chute section.

We performed numerous parametric studies for different boundary conditions and contact

model parameters. The most important ones are presented and discussed. The averaged pebble

mass flux appears to be not very sensitive to changes in the damping coefficient dn (Figure 19).

According to Tsuji et al. (1992) the damping coefficient is related to the restitution coefficient

(the ratio between particle velocities before and after collision) We compare results with no

damping (damping parameter 0), damping parameters 0.07 and 0.7 and the maximum difference

was less than 15%. Another study was done to quantify effects of the stiffness coefficient kn in

equations (22). Our numerical simulations showed that this parameter has a significant effect

on the results, and should be chosen very carefully. The characteristic time step for fluid flow

could be hundreds of times larger than the time step required to simulate contact interaction

between particles based on the stiffness estimated from the physical properties of the particles.

If we use real stiffness and explicit integration of contact forces, the computations become

prohibitively expensive. However, as demonstrated below, reasonable numerical solutions can be

obtained using a lower stiffness than that computed based on physical properties of the pebbles.

According to the Hertzian contact theory Hertz (1882), the relation between the normal force

Fn and displacement δ is given by
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Fn = KHδ3/2, (26)

where KH is the Hertzian stiffness. In the case of two spheres of the same size with radius r,

KH is expressed by

KH =

√
2rE

3(1 − σ2)
, (27)

where E is Young’s modulus and σ is the Poisson ratio of the particles. For E = 3 GPa and

σ=0.33, the Hertzian stiffness is 1.7108. Since in (22) the normal contact force is proportional to

the volume of the overlapping region, our computational stiffness can be related to the Hertzian

stiffness as

KH = knπrδ1/2 (28)

The time step required for stable solutions is given as ∆t = 2/5π
√

m
KH

Tsuji et al. (1992),

which for the case considered here is ∼ 10−5s. The maximum time step used in our calculations

was 10−3s, thus implying that the minimum computational stiffness was in 10000 times smaller

than the theoretical value. This agrees well with rough estimation of the stiffness based on the

displacement δ equal to 1% of particle diameter. The simulation results used in the comparisons

with experimental data presented here were obtained with a stiffness factor (the ratio of the

computational stiffness to the theoretical value) of 0.01. As indicated in Figure 20, further

increase in the computational stiffness does not significantly change the simulated pebble mass

flux. Therefore the simulations based on a smaller stiffness (in 100 time smaller) than the actual

one can be used to predict pebble flow in a considered regime within a bearable computational

time. However using too small stiffness leads to unrealistic flow patterns. This is a quite common

problem for DEM models Tsuji et al. (1992). Marshall (2009) proposed to use three-time step

procedure consisting of a fluid time step, a particle time step and collision time step. However

since our fluid and particle equations are tightly coupled this approach does not seem applicable

in our case.

4 Conclusions

We have presented a distributed Lagrange multiplier algorithm for particulate flows. The

method is following ideas of Patankar et al. (2001); Sharma and Patankar (2005); Glowinski et

al. (1999). The idea of the method is to use operator-splitting technique to solve the fluid equa-

tions in the entire domain first and then correct the flow inside the rigid domain using Lagrange

multipliers. The parallel implementation of the algorithm is done using SAMRAI library. Previ-
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ous works include collisions based on elastic forces that prevent particles from overlap. We extend

this approach by incorporating DEM methods for inelastic, frictional contact forces. Following

Patankar et al. (2001), the proposed numerical method does not include additional equations of

motion for the particle translational and angular velocities. Code validation was done by com-

paring numerical results with known experimental and empirical data for a falling sphere in a

Newtonian fluid, flow through the stationary packed beds, and pebble release through a narrow

opening. We performed numerous convergence tests for different applications and found that for

the low and moderate Re numbers the convergence of the method is close to the second-order.

For the high Re numbers the convergence becomes slightly slower and could be explained by

deficiencies in the flow representation near the rigid walls, in particular,the velocity interpolation

in the mixed cells where both fluid and solid coexist and necessity to resolve turbulent structures

in the fluid domain. The overall performance and accuracy of the code is very good and promises

to be a valuable tool both for simulations of flow involving up to a few hundred thousand parti-

cles as well as for calibrating the phase-coupling relationships in two-fluid continuum simulation

models.

5 APPENDIX

Parallel layers: unknowns u1, u2, ∆p






































uL = u1L1 + u2L2

∆p

L
= 150

(1 − ε1)
2

ε3
1

ν

D2
p

u1 + 1.75
(1 − ε1)

ε3
1

ρf

Dp

u2
1,

∆p

L
= 150

(1 − ε2)
2

ε3
2

ν

D2
p

u2 + 1.75
(1 − ε2)

ε3
2

ρf

Dp
u2

2,

(29)

Solution: u1 = 0.0055 m/s, u2 = 0.138 m/s, ∆p = 7.9 kg m−1 s−2

Series layers: unknowns ∆p1, ∆p2, ∆p
















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
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













∆p = ∆p1 + ∆p2

∆p1

L1

= 150
(1 − ε1)

2

ε3
1

ν

D2
p

u + 1.75
(1 − ε1)

ε3
1

ρf

Dp

u2,

∆p2

L2
= 150

(1 − ε2)
2

ε3
2

ν

D2
p

u + 1.75
(1 − ε2)

ε3
2

ρf

Dp
u2,

(30)

Solution: ∆p1 = 11 kg m−1 s−2, ∆p2 = 8 kg m−1 s−2, ∆p = 11.8 kg m−1 s−2.
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Figure 1. Geometry of AMR patches for simulation of fluid flow through the cubic array of

spheres.

Figure 2. Comparison of the computed friction coefficient with available data for random

and cubic packings at Re = 18 (left panel) and Re = 900 (right panel). Data from Hovekamp

(2002),Vortwek and Brunn (1994), Ergun (1952), Franzen (1979) and Martin et al. (1951) are

shown.

Figure 3. Horizontal velocities at the central slice for the cubic packing of spheres at Re = 18.

Figure 4. Convergence rate at low Reynolds numbers, Re = 18. Numerical error versus

resolution is shown.

Figure 5. Horizontal velocities at the central slice for the cubic package of spheres at Re = 900.

Figure 6. Convergence rate at low Reynolds numbers, Re = 900. Numerical error versus

resolution is shown.

Figure 7. Pressure drop through the randomly packed bed.

Figure 8. Convergence rate. Numerical error versus resolution is shown.

Figure 9. Two different packings with the same porosity of 42%. In configuration 1 (a) the

anisotropy in the vertical plane is introduced by removing few particles from the initial randomly

packed structure with porosity 36%. In configuration 2 (b) the anisotropy in the horizontal plane

is introduced in the same manner.

Figure 10. Comparison of the pressure drop in configuration 1, configuration 2 and regular

random packing with porosity 42%.

Figure 11. Averaged packing density for configuration 1 (a) and configuration 2(b).

Figure 12. Schematic representation of two layers with different porosity and volume to

estimate averaged properties of the combined medium.

Figure 13. Numerical simulation of falling particle in a Newtonian fluid. A vertical velocity in

the fluid is shown for different Reynolds numbers. Vorticity contours are plotted as an illustration

of the different flow regimes.

Figure 14. Settling velocity and convergence rate for Re = 0.2 (a), Re = 100 (b) and Re =

2000 (c).

Figure 15. AMR grid in simulations of falling particle in a Newtonian fluid.
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Figure 16. Comparison of the pebble flow in experiment and simulations at time 9.5 s (left

panel) and 28.5 s (right panel).

Figure 17. Comparison between experiment and simulations for the bed position below the

chute outlet.

Figure 18. Pebble mass flux in the lower bed section and the chute section.

Figure 19. Effect of the damping coefficient on the pebble mass flux in the chute section.

The pebble mass flux is shown relative to the pebble mass flux with no damping. Note that

the damping coefficient is connected to the restitution coefficient Tsuji et al. (1992). Damping

coefficient 0 corresponds to no damping and restitution coefficient 1, damping coefficient 1

corresponds to fully damped situation with restitution coefficient 0.

Figure 20. Effect of the stiffness coefficient on the pebble mass flux. The axis shows normalized

numerial stiffness Stiffness using theoretical Hertzian value SriffnessT
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