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ABSTRACT
The origin of mass is one of the deepest mysteries in science.
Neutrons and protons, which account for almost all visible
mass in the Universe, emerged from a primordial plasma
through a cataclysmic phase transition microseconds after
the Big Bang. However, most mass in the Universe is invis-
ible. The existence of dark matter, which interacts with our
world so weakly that it is essentially undetectable, has been
established from its galactic-scale gravitational effects. Here
we describe results from the first truly physical calculations
of the cosmic phase transition and a groundbreaking first-
principles investigation into composite dark matter, studies
impossible with previous state-of-the-art methods and re-
sources. By developing a powerful new algorithm, “DSDR,”
and implementing it effectively for contemporary supercom-
puters, we attain excellent strong scaling, perfect weak scal-
ing to the two million cores of the LLNL BlueGene/Q, sus-
tained speed of 7.2 petaflops, and time-to-solution speedup
over the previous state of the art of 200.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
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Applications; J.2 [Physical Sciences and Engineering]:
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1. OVERVIEW
Mass is the cornerstone of our existence, so familiar that

we take it for granted, but the existence of mass is one of
deepest mysteries of science. Almost all the visible mass in
the Universe today was created about ten microseconds af-
ter the Big Bang. This is the mass that resides primarily in
the neutrons and protons that make up the nuclei of all the
atoms in the Universe. Neutrons and protons are composite
particles, containing more elementary constituents, quarks
and gluons, within. Gluons are the carrier-particles of the
strong nuclear interaction, which holds quarks together in
bound states. In fact, the interaction is so strong that un-
der ordinary conditions, quarks cannot escape, a property
known as confinement. However, in the very early and hot
Universe, quarks and gluons coexisted in a deconfined state.
Only once the Universe expanded and cooled to below 2 tril-
lion degrees Celsius, and underwent a phase transition, did
the quark-gluon plasma transform into the stable packets
of quarks and gluons that are the protons and neutrons we
know today. It is from this transition that almost all the vis-
ible mass in our Universe emerged, and understanding it is
of paramount importance. The physics of this phenomenon
is staggering if you consider that 99% of the proton and
neutron masses is energy stored in the field of the massless
gluons, with only 1% contributed by the massive (but light)
constituent quarks.



The quark-gluon plasma was first produced in the lab-
oratory at the Relativistic Heavy Ion Collider in 2004 [1],
followed by the Large Hadron Collider in 2010 [2]. Also in
2004, the architects of the theory that captures the physics
of quarks and gluons, Quantum Chromodynamics (QCD),
which decades of experiment have verified to extraordinary
precision, were awarded the Nobel Prize [3, 4, 5, 6, 7]. How-
ever, the transition has yet to be studied in a way that
includes all the relevant physics because to span the vast
range of scales starting from the quarks and gluons, includ-
ing fluctuations in the plasma, and ending with macroscopic,
interacting nuclear matter is extremely challenging. Many
questions remain to be answered with controlled systemat-
ics. Until this is done, our understanding of the transition
that gave rise to the Universe as we know it will be incom-
plete.

Bridging the immense range of scales relevant to the QCD
transition can only be done by numerical simulation. The
most powerful approach is Lattice Gauge Theory (LGT), in-
vented in 1974 by Wilson [8, 9]. One discretizes space-time
onto a grid called the lattice, associates quarks with the sites
of this lattice and gluon fields with its links. One then per-
forms an approximate Feynman path integral over all pos-
sible states of the system using molecular dynamics-driven
Markov chain Monte Carlo. While simulating gluons turns
out to be straightforward and efficient, quarks are compli-
cated and require solving millions of times a sparse, O(1010)-
dimension matrix-vector equation, involving what is known
as the fermion matrix, which evolves with the system. These
solves account for over 99% of the operations. Furthermore,
vital properties of the quarks are grossly distorted by the
lattice discretization and are recovered only as the lattice
becomes asymptotically fine (the continuum limit) [10]. Sev-
eral improved discretization methods have been developed
to lessen these distortions, two of the most popular being
“staggered fermions” and “domain wall fermions” (DWF);
but as we show here, these can not faithfully reproduce the
physics of the transition unless prohibitively large and cur-
rently non-existent computing resources are used.

Quarks and gluons combine to form a plethora of other
particles in addition to protons and neutrons. These are
unstable and exist for only tiny fractions of a second, but
still play a crucial role in the phase transition. The lightest
particles, known as pions, play a particularly important role
since their small masses allow them to communicate infor-
mation over long distances throughout the plasma. There
are three pions with approximately equal masses each about
one-seventh the mass of the proton (Mpion ≈ 140 MeV/c2,
Mproton ≈ 940 MeV/c2, 1 MeV/c2 ≈ 2×10−30 kg). Ordinary
discretizations break the symmetries responsible for these
small masses to an unacceptable degree unless extremely
small lattice spacings are employed, which is prohibitively
expensive. Even with the somewhat improved staggered
fermion approach, simulations feasible today fall short by at
least an order of magnitude, in terms of computational cost,
of the lattice spacings required to control these effects. Al-
ternatively, one can use the more advanced DWF approach,
which achieves dramatic symmetry restoration by restruc-
turing the fields using an auxiliary fifth dimension. Still,
physical pion masses require very large fifth dimension size
and very small quark masses, and since the condition num-
ber of the fermion matrix scales with the quark masses, the
cost of the many inversions becomes exorbitant. As a result,

simulating the transition with the correct matter content has
remained an outstanding challenge in nuclear and particle
physics for the past 40 years; but no more.

Here, for the first time ever, we have successfully simu-
lated the QCD phase transition with exactly three pions all
with the correct mass. We have reached this monumental
landmark by inventing and implementing a new algorithm
known as the Dislocation Suppressing Determinant Ratio
Domain Wall Fermion method (DSDR DWF), which has re-
duced the time to solution for our problem by more than a
factor 10. In addition, we optimized our code to achieve an
efficiency of 30%, which is on par with the former state of
the art, so that we benefit greatly from advances in hard-
ware, a factor of roughly 20 for the Blue Gene/Q over the
Blue Gene/P. We attain excellent strong scaling and per-
fect weak scaling for up to two million cores on the LLNL
Sequoia Blue Gene/Q. Moreover, much of our optimization
applies equally well to other modern supercomputers with
large numbers of on-node cores. Altogether, we have re-
duced the time to solution for our calculations by a factor of
over 200, enabling this unprecedented numerical simulation.

But the QCD transition only accounts for the visible mass,
which has been found to comprise only 17% of the total
mass of the Universe. The other 83% is hidden from us.
Light does not bounce off of it and visible matter passes
through it with only the feeblest of interactions. It has been
termed dark matter and its existence is another great puzzle
of modern science. Though we have not been able to “see”
dark matter yet, the effects of its gravitational pull on visi-
ble matter on galactic scales are extensive and amazing [11,
12, 13, 14, 15]. There are few clues to how much of it should
exist, but the fact that its cosmological density is only a
few times that of visible matter suggests a relation between
the origins of the two. A tantalizing possibility is that, like
neutrons, dark matter particles are composite, consisting of
new elementary particles tightly bound by a new strong in-
teraction of Nature. Like QCD, this Strong Force Dynamics
(SFD) [16, 17] can be studied in detail only by numerical
simulation, i.e. LGT. We present below the very first re-
sults in this new field of research [18].

Our work is a synergy of algorithms, implementation, and
effective utilization of the latest generation of supercomput-
ers to provide answers to one of the most important scien-
tific problems of our time, the origin of mass. Our results
are of importance to all practitioners of particle physics,
possibly to condensed matter physicists, to supercomputing
application developers, and to architects of the next gener-
ation of supercomputers. In the sections that follow, we de-
scribe all these components, and give the performance char-
acteristics and the physics results of our simulations, which
were all performed on the Sequoia+Vulcan 25 Petaflops Blue
Gene/Q supercomputer at the Lawrence Livermore National
Laboratory.

2. PREVIOUS STATE OF THE ART AND OUR
NEW RESULTS

As discussed in section 1, our work represents a very sig-
nificant improvement over the previous state of the art in
the effort to understand the origins of mass both visible
and dark. The previous state of the art in lattice numer-
ical simulations of QCD comes from work using staggered
fermions [19] and domain wall fermions without DSDR [20].



The main handicap of these methods is the inability to sim-
ulate with three pions with physical masses; instead, calcu-
lations are carried out with several times too many pions or
significantly larger pion masses. Since the physics involves
the transition from one phase (quark-gluon plasma) to an-
other (protons and neutrons), collective phenomena of the
degrees of freedom over large distances are dominant, and
proper treatment of the lightest particles, the pions, is es-
sential. Small deviations from the physical pion mass could
distort the physics in drastic ways and are a well known
source of systematic uncertainty. Both the staggered and
(non-DSDR) DWF methods suffer from this problem.

For staggered fermions, only one pion assumes its physical
mass, the other two are heavier by about 50%. Furthermore,
this method unavoidably introduces twelve additional, un-
physical pions. These are lattice artifacts and disappear in
the continuum limit (finer lattice spacing), but still require
the use of the questionable “rooting” method to reduce the
effective number of pions. To put this into perspective, the
computational cost of reducing the lattice spacing by a fac-
tor of 2 in all four dimensions would require 211 ≈ 2, 000
times more computing.

In contrast, there are exactly three pions with DWF. Even
at finite lattice spacing, domain wall fermions preserve one of
the most important symmetries of the theory (chiral sym-
metry) and introduce no unphysical pions. However, this
comes at a price, since the computational cost increases lin-
early with the 5-D volume, i.e., linearly in the extent of the
fifth dimension, Ls. Moreover, since DWF do possess a dis-
cretization effect which increases the pion masses for finite
Ls, and former state-of-the-art calculations with DWF were
limited by cost to Ls ≤ 32, a lower bound on the attainable
pion masses approximately 40% larger than their physical
values was imposed. It has been estimated [21] that reach-
ing the true pion masses with DWF would require Ls ≈ 320,
requiring an order of magnitude more computation than was
previously feasible.

As described in the following sections 4 and 6, we were able
to overcome the limitations of standard DWF using a new
algorithm and an implementation that gives us outstanding
performance using contemporary supercomputers, in partic-
ular, the Blue Gene/Q. The results are shown in Figure 1.
For the new results (blue diamonds) all three pion masses
are set to the physical value of 140 MeV/c2. The best previ-
ous calculation [20] (red circles) was done with unphysically
heavy, 200 MeV/c2 pions. The difference between the two
is striking. It is clear that the former state-of-the-art cal-
culation underestimated the quark field fluctuations, given
by the height of the peak, by a factor of two and overesti-
mated the transition temperature, given by the location of
the peak, by several percent. Both effects were anticipated
for DWF, but their sizes were unknown. This is a unique
result and a very significant improvement over the previous
state of the art.

Our research in composite dark matter numerical simula-
tions [18] is the first of its kind, with no previous standard
for comparison. The results for our groundbreaking com-
putations of cross sections (roughly, probabilities that the
XENON100 experiment would detect dark matter) for two
models are shown in Figure 2 along with the bound mea-
sured by the XENON100 experiment [22]. Each solid line
represents the cross section for the electromagnetic interac-
tion between the dark matter and the detector, for a particu-
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Figure 2: Event rates for composite dark matter
models calculated in our work [18] compared to
model-independent results from the XENON100 ex-
periment [22]: theoretical rates including all terms
(solid lines) and including only the charge radius
contribution (dashed lines) for comparison; the up-
per bound on the event rate is the dotted line. See
the text for discussion.

lar model, for a range of values of the composite dark matter
particle mass (Mχ), and for the two primary components of
the interaction (the magnetic moment and charge radius).
Each dashed line is the same but with the magnetic moment
set to zero. The bottom line is that much of parameter space
for these models (and closely related ones) is ruled out by
experiment. To be viable, either Mχ must be greater than
10 TeV/c2 (or 107 MeV/c2) or the magnetic moment must
be zero and Mχ must be larger than 1 TeV/c2 (i.e., every-
thing above the dotted line is ruled out). For comparison,
the mass of a neutron again is 1 MeV/c2, 1− 10, 000 times
smaller. The two models studied here are like QCD in that
there are three “quark” colors, but different in that one has



Figure 3: Cutaway of a 3-D contour plot of the mag-
nitude of the neutral composite dark matter candi-
date electric charge density with 3 colors and 2, 6,
and 10 species (flavors). Low-density regions are
colored blue while regions of increasing density are
colored green, orange, yellow, and finally red.

two “quark” flavors Nf (or species, e.g., up and down) and
the other has six. While the cross section is evidently largely
insensitive to the number of flavors, we have uncovered sig-
nificant flavor dependence in the dark matter particle’s elec-
tric charge density, which encodes how the electric charges
of the constituents are arranged inside of the composite ob-
ject. Results for the two- and six-flavor models prompted
us to simulate the ten-flavor model as well, all illustrated in
Figure 3. These are landmark results in numerical simula-
tions of composite dark matter and are currently the only
ones of their kind.

3. PERFORMANCE MEASUREMENT METH-
ODS AND THE LATTICE

We measured performance of our lattice simulations in
a straightforward way using cycle-accurate time-base mea-
surement in conjunction with manual flop counting since
we know exactly how many flops are done by our kernel
as described in equation 1 below. Furthermore, we checked
against instruction records in the IBM virtual simulator and
FPGA emulator logs. We also used the Blue Gene Perfor-
mance Monitoring (BGPM) API. Our performance results
and discussion are given in section 6. Our physics applica-
tion and the computations involved are described in some
detail below.

Most quantitative studies of QCD and QCD-like models
require numerical methods, the most powerful of which is
Lattice Gauge Theory, introduced above. Its inception by
Wilson in 1974 [8] in the mid 1970’s has been followed by
a steady stream of algorithmic advances [23, 24, 25], lead-
ing to the methods and algorithms that are practiced at
present [26].

The codes associated with LGT are large (hundreds of
thousands of lines). Some of the authors of this paper are
lead developers of the Columbia Physics System (CPS) [27]
used in this work. CPS is written in C++ and equipped
with MPI for inter-node communications (from its begin-
ning) and OpenMP for shared memory (as of this work).
It is highly portable, can run on any system that supports
C++, MPI and OpenMP, and has been used for production
on many platforms ranging from Blue Gene systems to Linux
clusters. The core algorithm is Markov chain Monte Carlo
(MCMC) with Molecular Dynamics (MD) evolution of the
matter and interaction fields based on an energy functional
derived from the theory under investigation. A typical simu-
lation begins with some initial field configuration (i.e., set of
initial values for every degree of freedom) and evolves these

fields stochastically to one new configuration after another,
guided by the energy functional. After a set of configura-
tions is generated, it is used to compute path integrals which
yield values of physical observables that can be compared to
experimental results. For example, one can compute the cor-
relation function of the composite neutron field and extract
from it the neutron mass.

About 99% of the code carries out less than 1% of the
operations and so can be written at a high level of abstrac-
tion without tuning for performance. The remaining 99% of
the operations are performed in a relatively short routine,
referred to as the kernel, which solves the fermion matrix-
vector equation required to compute the quark contributions
to the energy functional and forces. The matrix, also known
as the “Dslash” operator (or just the “Dslash”), connects dif-
ferent fermionic states of the system and is therefore enor-
mous. Its dimension is O(1010), a product of the 5-D lattice
volume (O(1004 × 10) for modern calculations), the space-
time dimension (4), and the number of quark colors (3 for
this work).

To solve this system, we use the conjugate gradient method,
which ordinarily converges in O(1, 000) to O(10, 000) itera-
tions, each consisting mainly of one Dslash operation. This,
along with fact that we must solve the system thousands of
times to generate each new configuration, is why the Dslash
dominates the computation. Thus, highly optimizing it is
essential. It is remarkable that the dimension of the Blue
Gene/Q torus matches that of our 5-D DWF system ex-
actly, making short work of network mapping. Our lattices
are typically many times larger than the Blue Gene/Q torus
grid, and we map a small sub-lattice to each node (for exam-
ple, 84 × 16). In the Dslash, only nearest-neighbor informa-
tion exchange is necessary, so for sufficiently large sub-lattice
volumes, all communication costs can be hidden by overlap-
ping with computation. Note that while we have tuned the
Dslash for the Blue Gene/Q, it is straightforward to achieve
similar efficiency on basically any modern massively parallel
supercomputer.

The Dslash is given by the following equation (for zero
mass):

D(x, x′; s, s′) = δxx′
[
δss′(m0 − 5) + δs+1

s′ P−5 + δs−1
s′ P+

5

]
+ δss′

∑4
µ=1

[
δx+µx′ Uµ(x)P+

µ + δx−µx′ U†µ(x− µ)P−µ
]

(1)

where m0 is the domain wall height, δij is the Kronecker

delta (1 if i = j, 0 if not), and P±i ≡ (1± γi)/2 are matrices
which govern how the spins of different particles interact.
Indices running over the lattice space-time (x and x′) and
the fifth dimension (s and s′) are shown; spin and color
indices have been suppressed for presentation purposes but
are carried by the complex 4× 4 spin matrices (P ) and the
complex 3 × 3 color matrices (U). The index µ indicates
different directions in space-time. In practice, each space-
time index is split into one index running over on-node sub-
lattice points Vs and another running over the sub-lattices
Vn (the number of the nodes in each dimension), such that
the total volume V = Vs × Vn.

The large Vn computation is done in a typical SIMD way
by spreading the values of the fields across the nodes of
the machine, performing the nearest-neighbor communica-



tion as needed. The other sums contain fewer terms and
are not distributed across the torus grid. Instead, their data
dependencies are exploited to efficiently spread the opera-
tions over the 16 on-node cores. A brief description of the
operations involved is:

1. Load the gauge interaction (i.e., gluon) fields U (typi-
cally 72 doubles per site).

2. Load the matter (i.e., quark) fields (24 to 96 doubles
per site).

3. Initiate the communication of the matter fields needed
for the next iteration.

4. Compute the terms of the above equation.

As can be seen from this ordering, the memory access per op-
eration as well as the communication per operation is about
one double per flop and severely exposes the application to
hardware and software latencies. In a sense, our application
“lives” in the strong scaling regime. This makes coding it
efficiently very challenging.

4. INNOVATIONS
Our innovative new algorithm reduces the total time to

solution by a factor of about 10. In addition, we have im-
plemented the algorithm, and optimized pre-existing code,
in a manner that greatly benefits from the new supercom-
puter architectures by maintaining ≈ 30% of peak (effi-
ciency on par with former state-of-the-art implementations
of previous-generation methods) while it exhibits perfect
weak scaling to 2 million cores and excellent strong scal-
ing. In addition, we note that our time to solution, approx-
imately 180 Blue Gene/Q rack-days, would scale perfectly
with resource size and availability (i.e., we could solve the
same problems using 120 racks for 1.5 days or 1 rack for
180 days). We derive the full benefit of hardware advances,
a factor of about 20 compared to previous state-of-the-art
machines (of approximately one petaflops size), such as Blue
Gene/P. Combining the new algorithm, effective implemen-
tation, and hardware evolution, we have reduced the overall
time to solution for this work by factor of approximately 200
compared to the previous state of the art. We describe our
algorithmic innovations and kernel implementation advances
in the the following sections.

4.1 The DSDR algorithm
The Dislocation Suppressing Determinant Ratio method

(DSDR) [28, 21, 29] was invented to solve the notorious
problem described in section 1, that simulating at the phys-
ical value of the pion mass would require enormous amounts
of computational resources (approximately 100 Blue Gene/P
rack-years). We have employed DSDR here in order to per-
form for the first time ever thermodynamics calculations
with physical pions. The DWF method [30] was first em-
ployed in numerical simulations in [31]. The DWF method
defines an auxiliary fifth dimension of size Ls. As Ls is in-
creased, the unphysical violation of chiral symmetry is sup-
pressed, and the quark and pion masses can be made smaller
with a computational cost linear to Ls. The problem is that
very large Ls values (a few hundred) are needed to reach the
physical pion mass.

The reason for this is traced to the eigenvalue spectrum
of the underlying transfer matrix along this new fifth di-
mension. Roughly, the determinant of the five-dimensional
fermion matrix D is the exponential of the four-dimensional
transfer matrix DT . If we denote the lowest eigenvalue of the
transfer matrix by λT , then the lowest eigenvalue of the 5-D
fermion matrix, λ5, is related to λT by λ5 ∼ exp−Ls ∗ λT .
It is this 5-D eigenvalue that sets the value of the pion mass
by reducing the residual quark mass mres. Provided that
λT > 0, one can make λ5, and therefore mres, small by in-
creasing Ls. There is an interesting interplay in that the
lowest eigenvalue of the 4-D matrix must be large in order
for the lowest eigenvalue of the 5-D matrix to be small.

The value of λT depends on the dynamics of the theory
and it is very nearly zero for the lattice spacings that are
feasible today. For a given lattice spacing, one has no control
over λT and can only increase Ls in order to compensate
which is an expensive proposition; however, λT does increase
as the lattice becomes finer (another prohibitively expensive
proposition as described in section 1). This suggests that the
small value of λT is not physical but rather a lattice artifact
and that one might be able to increase λT , and thereby
reduce λ5, through improved discretization.

This artifact is related to lattice dislocations; gluonic fields
on the lattice are able to transform “between the cracks”
(i.e. due to the gaps between sites) in ways that are not
possible in the continuum. This unphysical behavior is re-
flected in the 4-D transfer matrix, DT . If one multiplies the
determinant of the physical 5-D matrix with the determi-
nant of the unphysical 4-D matrix, det(DT ), it is possible to
steer the molecular dynamics away from field configurations
with small det(DT ), which are precisely those with small
λT , without affecting physical properties of the calculation.
This indeed has the effect of reducing mres for a given Ls
and allows one to achieve a small pion mass for moderate
values of Ls.

In other words (more familiar in condensed matter physics),
domain wall fermions are surface states, living in five dimen-
sions but localized to a four-dimensional boundary, which
corresponds to real space-time. This localization is essen-
tial to describe the 4-D physics, but a certain discretiza-
tion artifact enables DWF to delocalize, spreading out into
the auxiliary fifth dimension and giving rise to the symme-
try breaking which prohibits the simulation of light com-
posite states. DSDR eliminates this artifact and strongly
suppresses delocalization, by imposing a penalty precisely
on the artifact in the energy functional which drives the
molecular dynamics evolution. The phenomenology of sur-
face states is well known in condensed matter physics; for
the connection, see [32] and references therein. In that case,
the states typically live in 3-D and are localized on a 2-D
surface. Our DSDR algorithm may be of direct interest to
any practitioner of condensed matter physics studying sur-
face state localization problems.

The reduction ofmres is demonstrated in Figure 4 from [21].
For Ls = 32, mres ≈ 2 × 10−4 for DWF with DSDR (blue
diamonds). To achieve a similar value for mres using DWF
without DSDR (red circles) requires Ls ≈ 330 (extrapolat-
ing the data shown using the simple form mres = c/Ls,
which fits the data well for Ls > 16, giving χ2/dof ≈ 0.5
and c ≈ 0.064), which is more than a factor of 10 larger and
would come at a computational cost more than 10 times
greater. This discussion is conservative since, as can be seen
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in the figure, for Ls > 16, mres continues to decrease ex-
ponentially for DWF with DSDR but falls only linearly for
standard DWF. In fact, to reach the physical pion mass at a
temperature of 140 MeV (the coarsest lattice simulated) us-
ing DSDR DWF requires Ls = 48 only, while reaching this
low mass using standard DWF would require Ls ≈ 1, 000
- over 20 times larger. The physics results in Figure 1
were obtained using Ls = 48 at the lowest temperatures
and Ls = 32 at the rest. By developing and deploying
DSDR, we have reduced our time to solution more
than 10-fold.

For technical reasons, det(DT ) must be divided by a sim-
ilar determinant to allow for a small controlled number of
dislocations to occur. The reason for this is beyond the
scope of this paper and is discussed extensively in [28, 21,
29]. Suffice to say, it does not affect the above discussion in a
significant way. Its effects are offset by using the Möbius al-
gorithm [33, 34], which performs well in tandem with DSDR,
reducing our time to solution somewhat further.

4.2 Kernel implementation innovations on con-
temporary supercomputers

As discussed in section 3, we have designed the applica-
tion kernel with great care by employing several innovations
in order to take advantage of the generic features of mod-
ern massively parallel supercomputers. These innovations
are presented below for the particular example of the Blue
Gene/Q architecture as described in section 5; however, the
features we leveraged are quite generic in today’s supercom-
puters, and our methods are applicable to other platforms as
well. For example, hardware features such as a large num-
ber of cores per chip, inter-node communication, memory
sharing, and wide FPUs are relatively common. Our kernel
can be ported to other platforms with only moderate effort.

QPX: In order to achieve the SIMD parallelism required
to feed the 4-multiply-add-per-cycle QPX unit, the data
must be laid out carefully. In particular, it is optimal to
store data that will participate in one QPX instruction se-
quentially in an L1 cache line, so that the data can be loaded

directly into a quad-double QPX register. The numerically
intensive part of our calculations involves complex arith-
metic, so a natural layout is one with two complex numbers
z1 and z2 adjacent in memory with alternating real (r) and
imaginary (i) parts [r1,i1,r2,i2]. Our application can achieve
SIMD parallelism through other data layouts as well, but we
have found that effects of register pressure make this the best
choice. Using P.B.’s BAGEL assembly generator, we have
produced assembly code for the Dslash operator to ensure
that every flop is 4-way parallel and every opportunity to
use the fused multiply-add is exercised, yielding a speedup
of the Dslash of nearly 3.2.

L2 cache: The 16 L1 caches have an aggregate peak
bandwidth to L2 that is about 10 times greater than the
bandwidth from L2 to external memory (410 vs. 42 GB/s).
The L2 cache size is 32 MB, which is large enough for our
application provided some care is taken to reuse data. As
can be seen from equation 1, the term that involves the
computationally intensive operations with the gauge field
U is diagonal in the 5th dimension (s), which means Ls
vectors are multiplied by each U matrix; thus, high reuse of
the U matrices is possible, which is key since the Dslash is
otherwise bandwidth-limited. Since a U matrix is 72 bytes
and a fermion vector is 48 bytes (in single precision), using
each U matrix 32 (or 48) times per load, as we do, reduces
the bandwidth requirement by over 60%.

Cache interference: While caches serve a very basic
and important role, our application would benefit from full
control of some of the L1 cache resource. Specifically, accu-
mulating results from equation 1 in L1 creates back-pressure
from L2 because of large write-through traffic and degrades
performance. It would be beneficial if the user could assign
a small part of L1 to behave as scratch memory, but this fea-
ture is not available, and so we must accumulate our results
in-register to maximize performance. The drawback of this
strategy is that it significantly reduces register availability;
however, we largely mitigate this drawback through effective
use of the L1 prefetcher.

L1 prefetcher: The L1 prefetcher hardware unit is lo-
cated on the chip between the L1 and the L2 switch inter-
face. Because the memory access pattern of our application
is fully deterministic and repeats itself in regular intervals,
we are able to program the L1p to hide almost completely
the load latencies which would otherwise result from the
small bursts of data loading that stem from our register
management strategy (described above).

L1 locking: The PowerPC A2 core allows the user to
lock L1 lines for reuse. As described above, the U fields can
be reused many times because of our data ordering strategy.
In order to maximize this reuse, we lock the values into L1 in
order to avoid undesired eviction and consequent reloading.
The hardware locking mechanism is made possible because
of an L1p innovation that hides the “locking” from L2, elimi-
nating L2 overlocking and L1-L2 locking message exchanges.

Threads: Each core is capable of hosting four hardware
threads for a possible total of 64 hardware threads among the
16 on-chip cores. Our code employs thread-level parallelism
with OpenMP thread creation and Blue Gene/Q SPI bar-
rier synchronization, running optimally with 1 task and 64
threads per node. The many threads of Blue Gene/Q allow
the processor pipelines to operate at high utilization. For
example, it is possible for one thread to execute a floating-
point operation while another thread performs a load oper-



ation during the same cycle.
SPI communications: The bulk of our code has been

written with MPI communications as implemented in the
QMP SciDAC interface library. For the more critical com-
munications, a layer was written at the SPI level that al-
lows for communicating relatively short data streams with
low latency. This SPI makes use of the injection/reception
torus network-to-memory DMA engines to overlap calcula-
tions with communications. Because the number of compute
and communication cycles is very similar, this overlap pro-
vides a speedup of nearly 100%. We also use SPI global bar-
riers and reductions, which we determined to be necessary,
in spite of the relatively large number of cycles between col-
lective communications in our application, because we found
standard MPI collectives to be very costly initially on the
Blue Gene/Q.

Loop ordering: Different loop orderings are possible in
our application allowing for different strategies. We found
the following to be the most effective loop ordering to cal-
culate equation 1 (Q denotes the input vector to which the
Dslash matrix is applied, and Q′ the result):

for x in V do
Lock the gluon matrices U(x, µ = 1, ..., 4) into L1
for s = 1 to Ls do

for µ = 1 to 4 do
Load nearest-neighbor fermion vectors Q to registers
Multiply Q by the (constant) spin matrices P±µ
Load locked U from L1 into registers
Perform the Q′ = U ×Q matrix vector mult.
Sum the results in register

end for
end for

end for

5. THE LLNL BLUE GENE/Q SEQUOIA AND
VULCAN

We performed our simulations and performance measure-
ments on LLNL’s Sequoia and Vulcan Blue Gene/Q super-
computer system. Sequoia is a 96-rack system and Vul-
can is a 24-rack system. During the early science period,
the racks of the two machines were wired as a single ma-
chine consisting of 120 racks making the combined system
the fastest supercomputer in the world. The peak speed of
one rack is 209.7 teraflops for a total system peak speed of
25.2 petaflops. Each rack consists of 1024 compute nodes
and therefore the full system has 122,880 nodes or 1,966,080
cores since there are 16 cores per node. All nodes are inter-
connected with a low-latency, high-bandwidth custom net-
work that connects neighboring nodes in a 5-dimensional
grid.

The node (shown in Figure 5) consists of a card that con-
tains the IBM Blue Gene/Q ASIC, external DRAM memory,
and all necessary on-node connections. The ASIC is a so-
phisticated IBM chip with a wealth of features. There are
16 user accessible CPU cores, each with 4 hardware threads,
and its own L1 cache memory. They are connected through
a high performance crossbar to a large shared L2 memory
that is followed in the hierarchy by external DRAM mem-
ory. Memory is coherent at the L1 level. A sophisticated L1
prefetcher connects each L1 with the L2. The prefetcher is
capable not only of streamline prefetching but is also pro-
grammable, and can prefetch according to learned memory

Figure 5: Diagrammatic representation of a single
Blue Gene/Q node [35].

access patterns.
Each core can execute 4 multiply-add instructions per cy-

cle using custom hardware called QPX. This SIMD unit is
implemented at the highest chip frequency and it includes
4 sets of 32 double precision registers. A QPX hardware
instruction set is implemented in order to load/store data
directly from an L1 line into the 4 sets of registers and per-
form numerical operations. This unit defines the peak per-
formance of Blue Gene/Q as 8 floating point operations per
cycle per core at the highest frequency domain.

The interconnect is a five-dimensional nearest-neighbor
torus. The fifth dimension has only 2 nodes. Each node has
specialized router hardware that implements cut-through
routing that allows any node to communicate with any other
without CPU intervention. Furthermore, the on-node net-
work hardware has a Direct Memory Access engine that di-
rectly loads data from the memory to the network and of-
floads network data directly into memory, also without CPU
intervention. This is crucial for our application since it al-
lows for overlap of communication and computation.

6. PERFORMANCE RESULTS
The performance results presented in this section were

obtained on the LLNL Sequoia+Vulcan Blue Gene/Q sys-
tem as described in section 5. All results shown are for the
conjugate gradient solver of our kernel as described in sec-
tions 3 and 4.2. As explained there, this accounts for about
99% of all operations and, therefore, the performance plots
presented here basically express the full application perfor-
mance. As can be seen from Figure 6, the weak scaling of our
application is nearly perfect to 120 racks (1,966,080 cores)
sustaining 3.7 Gflops/core indicated by the solid black line.
At the largest machine size, our application achieves
a sustained speed of 7.2 petaflops.

We present the strong scaling behavior in Figure 7. Ma-
chine sizes ranging from four racks (65K cores) to 64 racks
(1M cores) were used for a fixed problem size of 642 × 1282

lattice sites. Again, the solid black line represents perfor-
mance of 3.7 Gflops/core. As can be seen, the strong scaling
is nearly linear up to 16 racks (256K cores); the increase is
sub-linear for larger machine sizes, but the deviations from
linear are small. At the largest machine size, the perfor-
mance is only 30% below linear. This reflects typical effects
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of communication latencies and bandwidths. As the number
of nodes increases, the local problem shrinks, the surface-to-
volume ratio grows, and more data must be communicated
per flop, exposing the performance to network limitations
inherent in the hardware.

As discussed, the highest sustained speed obtained by our
application is 7.2 petaflops, or 58 Gflops/node. One Blue
Gene/Q node has a peak speed of 210 Gflops/node, attain-
able only by using 4 multiply-add instructions every clock
cycle in the fastest clock domain. One multiply-add corre-
sponds to 2 floating point operations; however, the corre-
sponding multiply-add hardware is fused and peak can be
achieved only if the application has a perfect pairing of mul-
tiply and add operations. In our application, there are a
substantial number of adds which cannot be paired with
multiplies coming from multiplication by the γ matrices in
equation 1. These 4× 4 complex matrices have entries that
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Figure 8: Graphical depiction of the time to solu-
tion for the research conducted vs. machine size.
The computational cost of this work was 180 Blue
Gene/Q rack-days, and does not depend on system
size in the range shown.

are known constants throughout the simulation and only
amount to multiplication by ±1. There is no need to use
the hardware to perform these multiplications and so we do
not; as a result, the maximum performance possible for our
application is reduced to 174 Gflops/node, 83% of the peak
performance for the hardware. This means that our sus-
tained performance of 58 Gflops/node, which corresponds
to 28% of the hardware peak, is 33% of our application’s
theoretical peak performance. We note that if we would use
a simple hardware counter (measuring only the number of
times the floating point unit is accessed), rather than deter-
mining the flop count by hand, this multiply-add imbalance
would be hidden, and our performance would appear to be
more than 15% higher than it is (33% of the hardware peak).

As described above, through algorithmic and machine ad-
vances, we reduced the time to solution for the calculations
that we carried out by a factor of over 200 compared to the
previous state-of-the-art. Given (1) the strong scaling re-
sults of Figure 7, (2) that the total computation it took to
produce the physics result of Figure 1 (blue diamonds) was
measured to be 180 rack-days using a wall-clock and (3) that
our physics problem involves 18 data-independent runs, we
are capable of utilizing a large range of system sizes with
basically uniform efficiency. Regarding (3), each point in
Figure 1 was produced by combining two data-independent
runs, one with zero-temperature initial values for the fields
and the other with infinite-temperature initial field values.
This is standard practice to ensure that the results are inde-
pendent of the initial configuration. The nine temperature
points also share no data dependencies. This “parallelism”
is necessary to determine the peak region in figure 1 and
is therefore inherent to our application. Because the strong
scaling is basically linear up to 16 racks and because we
can perform 18 data-independent runs simultaneously, we
can utilize up to 288 racks (well beyond the size of the en-
tire LLNL Sequoia+Vulcan system) without increasing the
computational cost. With the full 120-rack LLNL system,
our wallclock time to solution would be just 36 hours. This
is graphically represented in Figure 8.



7. IMPLICATIONS FOR FUTURE SYSTEMS
AND APPLICATIONS

Our results are of importance to all physics practitioners
in our field, possibly to condensed matter physicists study-
ing surface states, and also to developers of supercomputing
applications and architects of the next generation of super-
computers.

Our research has several implications for future systems
as was discussed in some detail in sections 3 and 4.2. These
are:

For our application, memory access per operation and
communication per operation are about 1 double per flop
and severely exposes the application to hardware and soft-
ware latencies. This is why our application is an exceptional
guide for supercomputer architecture design. If a supercom-
puter cannot sustain a reasonable fraction of peak perfor-
mance for our simulation, then it is handicapped by large
hardware latencies that are likely to impact a host of other
applications. Our research suggests then that the next gen-
eration of supercomputers, which will likely have an even
larger number of compute engines per chip, must focus not
only on bandwidth but also on latencies for both on-chip
shared memory and inter-node communication.

We have also found that allowing the user to set part of
the L1 cache as scratch memory would be very beneficial
since it will relieve register pressures and allow for less data
movement. For some critical portions of a code, only the
application developers know the optimal data layout and
access patterns, and so allowing this type of L1 control via
high level pragmas can prove to be very advantageous in the
more complex hardware world we are heading to.

In addition, we have found that global operations, even if
they are infrequent, can substantially handicap performance
if they carry large latencies. Optimizing the hardware and
software for low-latency global operations in future architec-
tures will be of advantage.

We have also reestablished that the full overlap of commu-
nications with computations was crucial for our application.
It is basically essential for future architectures to maintain
this capability in good standing, especially as the computa-
tion rate per node grows.

Our research also demonstrates that the DSDR algorithm
is very powerful and of immediate interest to all practition-
ers of lattice simulations. Our algorithm also may have
important implications for condensed matter research that
involves surface states, as discussed in section 4.1. The
progress reported here now opens the door to a wealth of
studies of strongly coupled systems. Some are described be-
low:

One immediate next step is the exploration of the nature
(order) of the phase transition as one varies the pion mass
below its physical value. It is of great scientific interest to
determine the mass value where the transition becomes first
order, since this could shed light on the question why our
cosmic evolution is what we observe it to be today. Our
group has already begun calculations aimed at solving this
puzzle.

Research in strongly coupled dark matter using our meth-
ods has just begun. Investigating other dark matter candi-
date models is now possible. Again, our group is already
pursuing this with calculations with SU(4) gauge theory (a
QCD-like theory with four colors instead of three).

As mentioned above, the question of the origin of quark
and electron masses, which account for only 1% of the vis-
ible mass in our Universe but are still a crucial ingredient,
is another open question. Significant progress in unraveling
this mystery has been made recently with the discovery of
the Higgs boson at the Large Hadron Collider. According
to the Higgs mechanism it is interaction with this particle
that gives rise to the masses of the elementary particles such
as quarks and electrons. Beyond the Higgs mechanism, ex-
ists a great desire to understand the Higgs boson itself, and
there is a long-standing conjecture that the Higgs particle is
actually composite, with constituents bound very tightly by
a new, even stronger interaction of Nature. Such a strongly
coupled model cannot be studied in detail without lattice
methods, and so research in this area would also greatly
benefit from the advances we report here. Indeed, our group
has started working to address this mystery as well.
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