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Cryogenic considerations dominate many aspects of 

the target design & materials

• Thermal impedance between 

the hohlraum (TMP) and 

cooling arms

• He/H2 flow through capillary fill-

tubes (Thurs AM)

• Visco-elastic thin films: windows 

and tents (Thurs and Fri AM)

• High degree of density control 

of tamping gas (He or H2) in the 

TMP

– Leak tight 
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Hydrogen ice layers are critically 

dependent on cryogenic 

performance of the target

Cryogenic issues at 18K
Simulation of thermal 

symmetry required at 18K

Tice=18.33517K

Tsink=18.24K

Tsink=18.12K

Requirement for low mode 

roundness: ±0.5 mK



Ice layer specs
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Fill tube
CH/Be

DT ice

DT vapor

Cross-section of a NIF shell

Rice

Requirements and tolerances for the ice layer 

are specified as a power spectral density
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„Shimming‟ heaters are used to create a thermally 

spherical hohlraum

• Cylindrical configuration leads 
to capsule being cooler in the 
mid-plane relative to the ends

—This makes a layer that is 
thicker on the equator that the 
poles. 

• Heat the center using heaters: 
“shimming” to generate 
spherical thermal profile

• This depends

— on conductivity of the adhesive

— on conductivity of the TMP

— conductivity of the bond 
between the Si cooling arm and 
the TMP
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Cylindrical Hohlraum
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Layers met the high mode spec in target R5 

• Si used for its high conductivity (4000 
W/mK) and brittleness at shot time

– Deep RIE fabrication

• Flexures accommodate difference in 
thermal contraction (0.4% vs 0.02%)
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Layers were smooth enough to meet the high mode spec
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Power Spectral Density plot
NIF Cryogenic Target



Early prototype targets showed de-centering of the 

ice layer with shimming power
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De-centering of the ice layer occurs as the power required to shim mode P2 is 

supplied to the shimming heaters

De-centering is a result of azimuthal thermal asymmetry

LEH View
Mode Amplitude vs Shim Power



NIF-0000-12345.ppt
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Wedge analysis predicted a de-centering drift towards the fill tube with 

34 degree off axis component

Actual drift was towards the fill tube with 16 degree off axis component

Prototype layering target bond line thickness data

….   Smoothed data

___  Raw data

Arm 2

Arm 2

Degree of azimuthal bond asymmetry
Prototype layering target



FEA thermal model of the TMP

Using kglue= 0.1 W/mK &

kAl5052 = 20 W/mK

• ∆T=1.8 mK for PV ∆t=0.2µm

• ∆T=0.5 mK for PV ∆t=0.1µm

• ∆T=0.25mK for PV ∆t=0µm

• Centering : ±5µm
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∆T=30mK

• Requirement: 0.5 mK axisymmetry for low mode roundness

Thermal conductivity vs T
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Thermal conductivity measurements @18K
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Experimental set-up

k18K=0.006 W/mK



Role of the thermal conductivity of the adhesive
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Glue thermal conductivity, kglue, needs to be increased  composite adhesive

Simulation of TMP thermal asymmetry



Interplay between thermal conductivity and thickness 

requirements

Single phase adhesive

• k~0.006 W/mK

• Thickness control has to 

be submicron

Composite adhesive

• Expect higher k

• Expect higher viscosity

• Particle size - submicron

Squeeze flow

• Could be used with a 

higher viscosity adhesive

• Depends on surface 

tension and to some 

extent on viscosity

Uniformity by fixing the gap

• Machined bump on the 

TMP flange

• Allow the adhesive to 

wick in after dry alignment
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Need to improve thickness control and conductivity



Thickness control using squeezing flow

2/17/2010 12

Viscosity should be <10,000 cP

Gap due glue vs force (model)

Force applied is limited by 

silicon arm toughness

Kinetics of flow (model)



Composite adhesive- percolation
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Thermal impedance of a TMP sub-assembly

• We used a silver filled adhesive 

that met these requirements:

√ Volume fraction - 35% (82wt%)

√ viscosity 3200 cP

√ particle size sub-micron

• Both critical parameters were 

optimized

– Cryogenic thermal impedance of 

the filled adhesive

– Bond thickness uniformity  
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Ice layer center has been sufficiently stable while 

shimming for all low mode specs

The remaining ~1 micron of ice position error due to capsule position.  

It can be adjusted with trim heaters if necessary

Ice location vs. shim power

One more improvement was required- heat leak from leads to shim heaters



This approach was used in production of NIF targets
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Over 300 sub-assemblies
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Statistics for controlling arm to can bond thickness have been excellent
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Thermal axisymmetry is critical

±0.5 mK

Arc Length
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Signature of flexure (16x) attenuates in TMP 


